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Abstract Nonlinear dynamics is an exciting approach to describe the dynamical practices of COVID-
19 disease. Mathematical modeling is a necessary method for investigating the dynamics of epidemic
diseases. In the current article, an effort has been made to cultivate a novel COVID-19 compartment
mathematical model by incorporating vaccinated populations. Primarily, the fundamental characteristics
of the model, such as positivity and boundedness of solutions, are established. Thereafter, equilibrium
analysis of steady states has been illustrated through vaccine reproduction number. Further, a nonlinear
least square curve fitting technique has been employed to recognize the best fitted model parameters from
the COVID-19 mortality data of five regions, namely Maharashtra, Delhi, Uttarakhand, Sikkim, and Russia.
The numerical framework of the model has been added to interpret the consequence of various control
schemes (pharmaceutical or non-pharmaceutical) on COVID-19 dynamics, and it has been ascertained
that all the control protocols have a positive influence on curtailing the COVID-19 transference in the
aforementioned regions. In addition, the essence of vaccine efficacy and vaccine-induced immunity are
examined by considering different scenarios. Our analysis demonstrates that the disease will be wiped off
from the Maharashtra, Delhi, Uttarakhand and Sikkim regions of India, while it shall persist in Russia for
some more time. It is also found that, if a vaccine calamity arises, the government should majorly focus
on permanent drug treatment of hospitalized individuals rather than vaccination.

Mathematics Subject Classification Primary
92B05 · Secondary 62P10

1 Introduction

The current coronavirus pandemic (COVID-19), caused
by the highly contagious SARS-CoV-2 virus, is a dev-
astating disease. Since its release from China’s Wuhan
City in December 2019, it has had unprecedented con-
sequences that are causing massive crises all over the
world [1]. Due to its deadly nature, the World Health
Organization (WHO) announced it as a global pan-
demic on March 11, 2020 [2]. The nonlinear dynam-
ics perspective of COVID-19 has attracted increasing
attention since it contributes to the understanding of
pandemic evolution. Hence, it is convenient and helpful
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in establishing the appropriate health strategy plans. A
literature study revealed that SARS-CoV-2 originated
from pangolins and bats [3]. The virus transmission can
be through the droplets impending out from a cough or
sneeze of a COVID-19 infected person. It is supposed
that it can spread via direct contact with an infected
individual or through indirect contact with contami-
nated objects [4]. The regular symptoms of COVID-19
include dry cough, fever, shortness of breath, fatigue,
sore throat, and aches. According to the literature,
the majority of infected people have mild to moder-
ate symptoms and recover quickly without any specific
treatment. Individuals who are suffering from comor-
bidity (having diabetes, cancer, chronic respiratory dis-
ease, etc.) or medical illness are more susceptible to
infection than normal individuals [5].

During the second wave of COVID-19, it was detected
that the reinfection rate was very sharp as compared
to the first wave. In addition, the Indian Centre for
Medical Research deliberated that the reinfection rate
is 4.5% in the second wave of COVID-19 and that a
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maximum of the reinfection cases are asymptomatic [6].
Governments come up with various types of interven-
tion policies, such as enforcing complete lockdown and
prolonging this lockdown for more time with relaxation
and facial sanitization, wearing face masks, and main-
taining social distancing as necessary. However, these
policies assisted in a reduction of the infection rate but
could not mitigate the disease completely [7]. The emer-
gence of vaccinations magnified the optimism that the
end of SARS-CoV-2 could be attainable. The imme-
diate lockdown combined with rapid vaccination can
improve the COVID-19 situation. Countries with a high
vaccination rate are thought to have fewer active, fatal,
and hospitalized cases on a daily basis.

A literature study showed that numerous forms of
epidemiological models are employed to portray dif-
ferent epidemic diseases. An exciting and convenient
approach is compartment modeling of the population.
Kermack and Mckendrick [8] produced an epidemic
model using three compartments: susceptible, infected,
and recovered (SIR), which was further improved by
Anderson [9] and May [10] by considering an extra com-
partment exposed. Nowadays, various epidemic mod-
els are established based on the susceptible, exposed,
infected, and recovered (SEIR) framework, such as
the influenza model, the HIV model, and the Zika
model [11].

Currently, these models are largely used to desig-
nate COVID-19 dynamics. So that the disease trans-
mission dynamics and its future behavior can be pre-
meditated. Lin et al. [12] proposed a model for COVID-
19 in Wuhan, China, contemplating individual behav-
ior and government actions. Bastos et al. [13] used two
variations of the SIR model for COVID-19 in Brazil
and predicted the optimal date for mitigating the social
distancing policy. Further, Mandal et al. [14] refined
the SEIR model by including quarantine class and gov-
ernment intervention policy and predicted the disease
dynamics in three eminently damaged states in India.
Rai et al. [15] explained the SEIR model by considering
the influence of social media advertising and deduced
that social media awareness boosts the control of dis-
ease transmission. Gowrisankar et al. [16] analyzed the
COVID-19 infection data from the top 15 affected coun-
tries, and moreover, their comparison results with other
countries demonstrate that India has a lower death
rate or more immunity against COVID-19. Thereafter,
Easwaramoorthy et al. [17] introduced a fractal based
prognostic model that compared and predicted the
first and second waves of the COVID-19 pandemic in
the five most affected countries: USA, Brazil, Russia,
India, and the UK. Similarly, Kavitha et al. [18] applied
the SIR and fractal interpolation methods to estab-
lish the trend of COVID-19 second and third waves
in India and its provinces, namely Delhi, Karnataka,
Tamil Nadu, Kerala, and Maharashtra. Furthermore,
Khajanchi et al. [19] proposed a compartment model
with nine stages of infection to control and forecast
the pandemic situation in India. They also implemented
an optimal control scheme considering pharmaceutical
and non-pharmaceutical interventions as control func-

tions. Their study determines that the implementation
of both control schemes is more effective as compared
to a single control scheme or no control scheme.

The influence of vaccination is often considered in
epidemic models to illustrate disease control. Das et al.
[20] formulated a COVID-19 model with comorbidity
and claimed that disease will persist in society when-
ever exposed individuals have comorbidity. Moreover,
they anticipate that disease can be controlled by utiliz-
ing proper non-pharmaceutical interventions and vac-
cination approaches. Similarly, Foy et al. [21] explored
an age-structured deterministic SEIR model to assess
age specific vaccine allocation tactics in India. Their
findings suggest that older age groups (≥ 60) should be
prioritized for vaccination over younger age groups to
reduce disease-induced mortality.

In the absence of entire extinction schemes, the vac-
cination process has been considered the best remedy
to protect humans from the COVID-19 infection glob-
ally. Therefore, it is instructive to practice the Mathe-
matical Models to assess the potential effect of a hypo-
thetical anti-COVID-19 vaccine. However, it is believed
that SARS-CoV-2 will be finished once herd immunity
has been acquired (naturally or through vaccination).
But, the endemic model to evaluate the impact of the
vaccination process on COVID-19 dynamics has to be
established.

The present work deals with the novel determinis-
tic model for the COVID-19 pandemic that portrays
the disease transmission from symptomatic infected,
asymptomatic infected, and vaccinated populations.
The established model employed a system of seven
differential equations to deal with the evolution of
susceptible, vaccinated, exposed, asymptomatic, symp-
tomatic, hospitalized, and recovered populations. Fur-
thermore, the parameter estimation has been calcu-
lated by fitting our model to the daily reported deaths
and cumulative deaths of COVID-19. In this regard,
reported daily death data and cumulative death data
from Maharashtra, Delhi, Uttarakhand, Sikkim, and
Russia show good agreement between simulated out-
comes and reported outcomes. The comprehensive sta-
bility analysis of equilibrium points is performed to
investigate the qualitative behavior of the pandemic.
Moreover, the effects of non-pharmaceutical interven-
tions (i.e., lockdown) and pharmaceutical interventions
(i.e., drug treatment, vaccination, and vaccine efficacy)
on the five regions mentioned above are explored under
different scenarios. Results demonstrate that nonlinear
dynamics is an efficient tool to inspect COVID-19 pan-
demic evolution in any region.

2 Model development and assumptions

A nonlinear system of equations has been employed
to classify the creation of a deterministic model for
COVID-19. An additional vaccination population com-
partment has been included by assuming that recov-
ery after vaccination is impermanent. The total popu-
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Fig. 1 Flow diagram of the model

lation N(t) has been separated into seven distinct com-
partments, namely: susceptible S (t); vaccinated V (t);
exposed E (t); asymptomatic infected A (t); symp-
tomatic infected I(t); hospitalized/isolated H (t) and
recovered R(t), as shown in Fig. 1. Susceptible grasp
infection from the individuals of asymptomatic class
A and symptomatic infected I at λ rate (force of
infection). Here, β is the disease transmission coeffi-
cient due to asymptomatic and symptomatic individu-
als. The modification parameter η1 (0 < η1 ≤ 1) defines
that infection rate is faster in symptomatic individuals
as compared to asymptomatic individuals. Susceptible
individuals are vaccinated at ξv rate and ε(0 < ε ≤ 1)
considered the vaccine efficacy for the protection of
further infection from infected individuals. Further, ω
measured the rate of loss of vaccine-induced immunity.
Exposed individuals join the asymptomatic class and
the symptomatic class with σk1 and (1 − k1) σ rates,
respectively. The isolation or hospitalization rates for
asymptomatic and symptomatic patients are signified
by γ1 and γ2, respectively. While, recovery rate of iso-
lated or hospitalized individuals is denoted by δ.

Some other adopted basic assumptions are listed as
follows:

• Some portion of the susceptible individuals follow
the COVID-19 guidelines of lockdown (wear face-
masks, maintain social distance, etc.) and denoted
by θ. Therefore, (1−θ) percentage of the population
can contribute to the disease transmission. Hence,
the disease transmission rate becomes β (1 − θ) .

• Vaccine-induced immunity is not eternal. Therefore,
we applied the parameter ω to represent the rate of
loss of vaccine-induced immunity.

• The COVID-19 vaccine is imperfect, so infection
from vaccinated individuals can occur, but at a
reduced rate as compared to infection from suscep-
tible individuals.

• Some symptomatic individuals may die before being
notified, so we assumed that they die at d2 rate.

• Some hospitalized or isolated individuals may have
severe COVID-19 infections that lead to deaths.
Therefore, we presume d1 a disease-induced death
rate for hospitalized or isolated patients.

• Some vaccinated individuals may not be protected
from infection, and therefore can infect others if
they become infectious again.

• Some proportion of the asymptomatic class may
recover naturally (without isolation) at δ1 rate.

• H(t) class contains individuals who are either hos-
pitalized or isolated but are non-infectious.

• All the compartments have the same natural death
rate expressed by μ.

• The disease-induced death rate for the asymp-
tomatic class is negligible, hence not measured in
the present model.

A model with governing nonlinear differential equations
is defined as follows:

dS

dt
= Λ − λS + ωV − (ξv + μ) S

dV

dt
= ξvS − (1 − ε) λV − (ω + μ)V

dE

dt
= λS + (1 − ε) λV − (σ + μ) E

dA

dt
= σk1E − (μ + γ1 + δ1) A

dI

dt
= σ (1 − k1) E − (μ + γ2 + d2)I

dH

dt
= γ1A + γ2I − (μ + d1 + δ)H

dR

dt
= δH + δ1A − μR, (1)
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where λ is the force of infection explained as follows:

λ =
β(η1A + I)(1 − θ)

N
.

3 Non-negativity and boundedness
of solutions

To make our model biologically and epidemiologically
well posed, non-negativity and boundedness of solutions
are very imperative, which we shall verify in the follow-
ing lemmas 1 and 2.

Lemma 1 Let initially {(S (0) , V (0) , E (0) , A (0) ,
I (0) ,H (0) , R (0)) ∈ R7

+} then all the solutions of sys-
tem Eq. (1) will remain positive for all t ≥ 0.

Proof Now, to prove the positivity of all solutions of
system Eq. (1), we have:

(
dS

dt

)
S=0

= Λ + ωV ≥ 0
(

dV

dt

)
V =0

= ξvS ≥ 0
(

dE

dt

)
E=0

= λS + (1 − ε) λV ≥ 0
(

dA

dt

)
A=0

= σk1E ≥ 0
(

dI

dt

)
I=0

= σ (1 − k1)E ≥ 0
(

dH

dt

)
H=0

= γ1A + γ2I ≥ 0
(

dR

dt

)
R=0

= δH + δ1A ≥ 0. (2)

Equation (2) confirms that all the state variables are
non-decreasing functions at any time. Further, since
initially all the state variables are non-negative, it fol-
lows that state variables will be non-negative for all
t ≥ 0. Thus, the positivity of solutions has been clearly
proven. ��
Lemma 2 The system Eq. (1) is bounded in the region(
Ω = {S (t) , V (t) , E (t) , A (t) , I (t) , H (t) , R (t)} ∈

R7
+ : N(t) ≤ Λ

μ

)
.

Proof Since

N (t) = S (t) + V (t) + E (t) + A (t) + I (t)
+H (t) + R (t)

implies

dN

dt
=

dS

dt
+

dV

dt
+

dE

dt
+

dA

dt
+

dI

dt
+

dH

dt
+

dR

dt
,

now substituting all the values from system Eq. (1), we
have

dN

dt
= Λ − μN − d2I − d1H ≤ Λ − μN.

Now, we have following inequality:

dN

dt
≤ Λ − μN

on integrating and using initial condition,

0 ≤ N (t) ≤ Λ

μ
+

(
N (0) − Λ

μ

)
e−μt

lim
sup

N (t) ≤ Λ

μ
as t −→ ∞.

Thus, the region Ω is positive invariant and bounded
so no solution will pass beyond the boundary of Ω. ��

4 Model system dynamics

4.1 Equilibrium analysis and the vaccine
reproduction number

The model Eq. (1) has a unique disease-free equilibrium
(DFE) point as

E0 = (S0, V0, E0, A0, I0,H0, R0)

=
(

Λ(ω + μ)
μ(ξv + ω + μ)

,
Λξv

μ(ξv + ω + μ)
, 0, 0, 0, 0, 0

)
.

(3)

Now, to achieve the vaccine reproduction number
(R0v), next-generation matrix approach is used. Let the
system Eq. (1) can be written as

ẋ = F (x) − V(x),

where matrix F corresponds to new infection terms,
while matrix V corresponds to remaining transfer
terms. Now, writing the model system variables in
x = (E,A, I,H)T sequence, we have

F (x) =

⎡
⎢⎣

λS + (1 − ε) λV
0
0
0

⎤
⎥⎦ ,

V (x) =

⎡
⎢⎢⎢⎣

(σ + μ) E

(μ + γ1 + δ1) A − σk1E

(μ + γ2 + d2) I − σ (1 − k1) E

(μ + d1 + δ) H − γ1A − γ2I

⎤
⎥⎥⎥⎦ .
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Now, using Eq. (3) at disease-free equilibrium point,
the Jacobian matrices F and V can be written as

F =

⎡
⎢⎢⎢⎢⎣

0 βη1(1−θ)(S0+(1−ε)V0)
N0

β(1−θ)(S0+(1−ε)V0)
N0

0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

V =

⎡
⎢⎢⎢⎣

m1 0 0 0
−σk1 m2 0 0

−σ(1 − k1) 0 m3 0
0 −γ1 −γ2 m4

⎤
⎥⎥⎥⎦ ,

where m1 = (σ + μ) , m2 = (μ + γ1 + δ1) , m3 =
(μ + γ2 + d2) , m4 = (μ + d1 + δ). Hence,

R0v = ρ
(
FV −1)

=
βσ (1 − θ) ((1 − k1) m2 + η1k1m3) (S0 + (1 − ε) V0)

m1m2m3N0
.

(4)

At disease-free equilibrium point substituting the values
of N0, S0, V0 and m1,m2,m3 in Eq. (4), we have

N0 = S0 + V0 =
Λ

μ
, S0 =

Λ(ω + μ)
μ(ξv + ω + μ)

and

V0 =
Λξv

μ(ξv + ω + μ)
.

Hence, the vaccine reproduction number R0v is defined
in the following equation:

R0v =
βσ(1 − θ)((1 − k1) (μ + γ1 + δ1) + η1k1 (μ + γ2 + d2))((1 − ε) ξv + (ω + μ))

(σ + μ) (μ + γ1 + δ1) (μ + γ2 + d2) (ξv + ω + μ)
. (5)

Basic reproduction number without vaccination is
denoted by R0 and written as the following equation:

R0 =
βσ(1− θ)((1− k1) (μ + γ1 + δ1) + η1k1 (μ + γ2 + d2))

(σ + μ) (μ + γ1 + δ1) (μ + γ2 + d2)

(6)

implies

R0v = R0

(
(S0 + (1 − ε) V0

N0

)
.

Now, substituting the values of N0, S0 and V0, we get
the relation between R0v and R0 as follows:

R0v = R0

(
1 − εξv

(ξv + ω + μ)

)
. (7)

4.2 Stability of equilibrium points

Theorem 1 The disease-free equilibrium point {E0} is
locally asymptotically stable for R0v < 1, whereas unsta-
ble for R0v > 1.

Proof The Jacobian matrix JE0 at disease-free equilib-
rium point will be

JE0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (ξv + μ) ω 0 −βη1(1−θ)S0
N0

−β(1−θ)S0
N0

0 0

ξv −(ω + μ) 0 −βη1(1−ε)(1−θ)V0
N0

−β(1−ε)(1−θ)V0
N0

0 0

0 0 −(σ + μ) βη1(1−θ)(S0+(1−ε)V0)
N0

β(1−θ)(S0+(1−ε)V0)
N0

0 0
0 0 σk1 − (μ + γ1 + δ1) 0 0 0
0 0 σ(1 − k1) 0 − (μ + γ2 + d2) 0 0
0 0 0 γ1 γ2 − (μ + d1 + δ) 0
0 0 0 δ1 0 δ −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The Jacobian matrix JE0 has two eigen values as −μ
and − (μ + d1 + δ), and the other eigen values will be
the eigen values of subsequent two block matrices J1E0

and J2E0 :

J1E0 =

[− (ξv + μ) ω

ξv −(ω + μ)

]
and J2E0 =

⎡
⎢⎣

−(σ + μ) βη1(1−θ)(S0+(1−ε)V0)
N0

β(1−θ)(S0+(1−ε)V0)
N0

σk1 − (μ + γ1 + δ1) 0
σ(1 − k1) 0 − (μ + γ2 + d2)

⎤
⎥⎦ .

The eigen values of J1E0 are −μ and − (ξv + ω + μ),
whereas the eigen values of J2E0 can be determined by
solving the following cubic characteristic polynomial:
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A0λ
3 + A1λ

2 + A2λ + A3 = 0

A0 = 1, A1 = (σ + 3μ + γ1 + γ2 + δ1 + d2)

A2 = (σ + μ) (μ + γ1 + δ1)
+ (μ + γ1 + δ1) (μ + γ2 + d2)

+ (μ + γ2 + d2) (σ + μ)
−σβ (1 − θ) (1 − k1 + k1η1)

×
(

1 − εξv

(ξv + ω + μ)

)

A3 = (σ + μ) (μ + γ1 + δ1)
× (μ + γ2 + d2) − σβ(1 − θ)

×((1 − k1) (μ + γ1 + δ1)

+η1k1 (μ + γ2 + d2))

×
(

1 − εξv

(ξv + ω + μ)

)
.

A3 can be written as

A3 = (σ + μ) (μ + γ1 + δ1) (μ + γ2 + d2) (1 − R0v) .

(8)

It can be observed from Eq. (8) that A0 > 0, A1 > 0
and also A3 > 0 whenever R0v < 1. Therefore, we need
to illustrate that A2 > 0.

Since R0v < 1 implies

βσ(1 − θ)((1 − k1) (μ + γ1 + δ1) + η1k1 (μ + γ2 + d2))((1 − ε) ξv + (ω + μ))
(σ + μ) (μ + γ1 + δ1) (μ + γ2 + d2) (ξv + ω + μ)

< 1

βσ(1 − θ)((1 − ε) ξv + (ω + μ))
(ξv + ω + μ)

<
(σ + μ) (μ + γ1 + δ1) (μ + γ2 + d2)

((1 − k1) (μ + γ1 + δ1) + η1k1 (μ + γ2 + d2))
A2 = (σ + μ) (μ + γ1 + δ1) + (μ + γ1 + δ1) (μ + γ2 + d2) + (μ + γ2 + d2) (σ + μ)

−σβ(1 − θ)(1 − k1 + k1η1)
(

1 − εξv

(ξv + ω + μ)

)

also,
(σ + μ) (μ + γ1 + δ1)+(μ + γ1 + δ1) (μ + γ2 + d2)+

(μ + γ2 + d2) (σ + μ) > (σ + μ) (μ + γ1 + δ1)+(μ + γ2
+d2) (σ + μ) implies

A2 > (σ + μ) (μ + γ1 + δ1) + (μ + γ2 + d2) (σ + μ)

−σβ (1− θ) (1− k1 + k1η1)

(
1− εξv

(ξv + ω + μ)

)

A2 > (σ + μ) (μ + γ1 + δ1) + (μ + γ2 + d2) (σ + μ)

− (1− k1 + k1η1) (σ + μ) (μ + γ1 + δ1) (μ + γ2 + d2)

((1− k1) (μ + γ1 + δ1) + η1k1 (μ + γ2 + d2))

A2 >
(σ + μ) ((1− k1) (μ + γ1 + δ1)

2 + η1k1 (μ + γ2 + d2)
2)

((1− k1) (μ + γ1 + δ1) + η1k1 (μ + γ2 + d2))

> 0.

Hence, using Routh–Hurwitz criterion, all the eigen val-
ues of Jacobian matrix J2E0 are having negative real

part, whenever R0v < 1 and A1A2 > A3. While if
R0v > 1 then A3 < 0 implies, J2E0 will have at least
one eigenvalue with positive real part. Hence, DFE
{E0} of the system is locally asymptotically stable when
R0v < 1 and unstable if R0v > 1. ��
Theorem 2 The disease-free equilibrium point is glob-
ally stable whenever R0v ≤ 1 in its feasible region Ω.

Proof Now, to show the global stability of DFE, we
used the Lyapunov function method. Let us construct
a Lyapunov function as

F{S (t) , V (t) , E (t) , A (t) , I (t) ,H (t) , R (t)}
→ R+ as
F = E + g1A + g2I,

where g1 and g2 are positive constants.

Taking time derivative of F , we get

dF

dt
=

dE

dt
+ g1

dA

dt
+ g2

dI

dt
.

Now, substituting the values of dE
dt , dA

dt and dI
dt from

model system Eq. (1), we have

Ḟ = λS + (1 − ε) λV − (σ + μ) E

+g1 {σk1E − (μ + γ1 + δ1)A}
+g2{σ (1 − k1) E − (μ + γ2 + d2) I}

Ḟ =
β (η1A + I) (1 − θ)

N
(S + (1 − ε) V ) − (σ + μ) E

+g1 {σk1E − (μ + γ1 + δ1) A}
+g2 {σ (1 − k1) E − (μ + γ2 + d2) I} .

At disease-free equilibrium point, we have from Eq. (3)

N0 = S0 + V0 =
Λ

μ
, S0 =

Λ(ω + μ)
μ(ξv + ω + μ)

and

V0 =
Λξv

μ(ξv + ω + μ)

implies Ḟ can be written as

Ḟ ≤ β(η1A + I)(1 − θ)
N

(S0 + (1 − ε) V0) − (σ + μ) E
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+g1 {σk1E − (μ + γ1 + δ1) A}
+g2σ (1 − k1) E − (μ + γ2 + d2) I

Ḟ ≤ β(η1A + I)(1 − θ)

×
(

1 − εξv

(ξv + ω + μ)

)
− (σ + μ)E

+g1 {σk1E − (μ + γ1 + δ1) A} + g2{σ (1 − k1) E

− (μ + γ2 + d2) I}
Ḟ ≤ [σg1k1 + σg2 (1 − k1) − (σ + μ)] E

+
[
βη1 (1 − θ)

(
1 − εξv

(ξv + ω + μ)

)

−g1 (μ + γ1 + δ1)] A

+
[
β (1 − θ)

(
1 − εξv

(ξv + ω + μ)

)

−g2 (μ + γ2 + d2)] I.

Choose g1 and g2 such that

g1 =
βη1(1 − θ)

(μ + γ1 + δ1)

(
1 − εξv

(ξv + ω + μ)

)
,

g2 =
β(1 − θ)

(μ + γ2 + d2)

(
1 − εξv

(ξv + ω + μ)

)

implies

Ḟ ≤
[
σk1βη1(1 − θ)
(μ + γ1 + δ1)

(
1 − εξv

(ξv + ω + μ)

)

+
σβ(1 − k1)(1 − θ)

(μ + γ2 + d2)

(
1 − εξv

(ξv + ω + μ)

)

− (σ + μ)
]

E

Ḟ ≤
[
σβ (1 − θ)

(
1 − εξv

(ξv + ω + μ)

)(
k1η1

(μ + γ1 + δ1)

+
(1 − k1)

(μ + γ2 + d2)

)
− (σ + μ)

]
E

Ḟ ≤ (σ + μ)
[
σβ (1 − θ)
(σ + μ)

(
1 − εξv

(ξv + ω + μ)

)

×
(

k1η1
(μ + γ1 + δ1)

+
(1 − k1)

(μ + γ2 + d2)

)
− 1

]
E

Ḟ ≤ (σ + μ) (R0v − 1) E. (9)

Hence, it can be clearly verified from Eq. (9) that
Ḟ ≤ 0 if R0v ≤ 1 and Ḟ = 0 if and only if either
R0v = 1 or E = 0; now, put E = 0 in system Eq.
(1), we have S → S0, V → V0, A → 0, I → 0,H →
0, R → 0 as t → ∞. Thus, maximal invariant set in
{(S(t), V (t), E(t), A(t), I(t),H(t), R(t)) εΩ : Ḟ = 0}
is singleton DFE {E0} if R0v ≤ 1. Hence, by La
Salle invariance principle [22], {E0} is globally stable
if R0v ≤ 1. ��
Pandemic equilibrium point analysis

Pandemic equilibrium point can be found by solving
the following system equations:

Λ − λS + ωV − (ξv + μ) S = 0

ξvS − (1 − ε) λV − (ω + μ) V = 0

λS + (1 − ε) λV − (σ + μ) E = 0

σk1E − (μ + γ1 + δ1) A = 0

σ (1 − k1) E − (μ + γ2 + d2) I = 0

γ1A + γ2I − (μ + d1 + δ) H = 0

δH + δ1A − μR = 0, (10)

we get pandemic equilibrium point E∗
e = (S∗, V ∗, E∗,

A∗, I∗,H∗, R∗) determined as follows:

S∗ =
Λ {(1 − ε) λ + (ω + μ)}

[(λ + ξv + μ) {(1 − ε) λ + (ω + μ)} − ωξv]

V ∗ =
Λξv

[(λ + ξv + μ) {(1 − ε) λ + (ω + μ)} − ωξv]

E∗ =
λ

(σ + μ)
(S∗ + (1 − ε) V ∗) , A∗ =

σk1E
∗

(μ + γ1 + δ1)
,

I∗ =
σ(1 − k1)E∗

(μ + γ2 + δ2)
, H∗ =

γ1A
∗ + γ2I

∗

(μ + d1 + δ)
,

R∗ =
δH∗ + δ1A

∗

μ
.

Similarly, applying the same Lyapunov function, we
established the stability of pandemic equilibrium point
of the system Eq. (1), which consequently states the
following result.

Theorem 3 The Pandemic equilibrium point {E∗
e} is

globally asymptotically stable whenever R0v > 1.

Proof For this, we have created the Lyapunov function
L as follows:

L : {(S∗, V ∗, E∗, A∗, I∗,H∗, R∗) ∈ Ω∗} → R , where
Ω∗={(S∗, V ∗, E∗, A∗, I∗,H∗, R∗) ∈ R

7 : S (t) , V (t) ,
E (t) , A (t) , I (t) , H (t) , R (t) > 0}

L = C1

{
S−S∗ln

(
S
S∗

)}
+ C2

{
V − V ∗ ln

(
V

V ∗

)}

+ C3

{
E − E∗ ln

(
E

E∗

)}

+C4

{
A − A∗ ln

(
A

A∗

)}

+ C5

{
I − I∗ ln

(
I

I∗

)}

+C6

{
H − H∗ ln

(
H

H∗

)}

+ C7

{
R − R∗ ln

(
R

R∗

)}

dL

dt
= C1 (S − S∗)

dS

dt
+ C2 (V − V ∗)

dV

dt
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+ C3 (E − E∗)
dE

dt
+ C4 (A − A∗)

dA

dt

+ C5 (I − I∗)
dI

dt
+ C6 (H − H∗)

dH

dt

+ C7 (R − R∗)
dR

dt
.

Now, put down the values of derivatives from system
Eq. (1), we have

dL

dt
= C1 (S − S∗) {Λ − λS + ωV − (ξv + μ) S}

+ C2 (V − V ∗) {ξvS − (1 − ε) λV − (ω + μ) V }
+ C3 (E − E∗) {λS + (1 − ε) λV − (σ + μ) E}
+ C4 (A − A∗) {σk1E − (μ + γ1 + δ1) A}
+ C5 (I − I∗) {σ (1 − k1) E − (μ + γ2 + d2) I}
+ C6 (H − H∗) {γ1A + γ2I − (μ + d1 + δ) H}
+ C7 (R − R∗) {δH + δ1A − μR} . (11)

Now, at pandemic equilibrium point,

Λ =
β (1 − θ) (n1A

∗ + I∗)
N

S∗ − (ξv + μ)S∗+ ωV ∗,

ξvS
∗ = (1 − ε)

β (1 − θ) (n1A
∗ + I∗) V ∗

N
− (ω + μ) V ∗,

(σ + μ)E∗ =
β (1 − θ) (n1A

∗ + I∗)
N

S∗ + (1 − ε)

×β (1 − θ) (n1A
∗ + I∗) V ∗

N
,

σk1E
∗ = (μ + γ1 + δ1) A∗, σ (1 − k1) E∗

= (μ + γ2 + d2) I∗, γ1A
∗ + γ2I

∗

= (μ + d1 + δ) H∗, δH∗ + δ1A
∗ = μR∗,

using these conditions in Eq. (11), we get dL
dt =

−μ
(
1 − S∗

S

)2

+ f̂ (S , V,E ,A , I ,H ,R ) ,

where f̂ (S , V,E ,A , I ,H ,R ) is non-positive by fol-
lowing the defined approach [23]. This implies f̂ ≤ 0 for
every S , V, E ,A , I ,H ,R > 0 . We found that dL

dt ≤ 0
and dL

dt = 0 only if S = S∗, V = V ∗, E = E∗, A =
A∗, I = I∗,H = H∗, R = R∗. Thus, pandemic equi-
librium point {E∗

e} is the only singleton set for which
dL
dt = 0. Applying LaSalle invariance principal, it can
be verified that {E∗

e} is globally asymptotically stable
whenever R0v > 1. ��

5 Model parameter estimation and vaccine
reproduction number

The novel COVID-19 model has been employed to
accomplish dynamical analysis of the pandemic. We
have elected four states of India, namely Maharash-
tra, Delhi, Uttarakhand and Sikkim, and a majorly
affected country named Russia. Russia has been cho-
sen to validate our model for its application in other

countries. Our model uses reported death data from
novel COVID-19 in Maharashtra, Delhi, Uttarakhand,
Sikkim, and Russia to demonstrate its ability to pre-
dict different COVID-19 scenarios. The fixed demo-
graphic parameters and initial conditions for fitting
the model are presented in Tables 2, 3, 4, 5, and
6 for Maharashtra, Delhi, Uttarakhand, Sikkim, and
Russia, respectively. Daily new deaths of COVID-19
and cumulative deaths in Maharashtra [24], Delhi [25],
Uttarakhand [26], Sikkim [27] and Russia [28] for the
time period ranging from July 1st, 2021 to Septem-
ber 8th, 2021 are considered for study. The reason for
using death data is that it is more reliable than the
number of infected cases arising on daily basis. This
is due to the limited testing capacities [29]. We fit-
ted the model output (

∫ T

t=1
(d1H + d2I) dt where T =

70) to the cumulative deaths and daily new deaths
due to COVID-19. Eight unknown model parame-
ters, namely β, γ1, γ2, δ, δ1, d1, ω, ξv and the initial num-
ber of exposed people, E(0) are estimated from the
reported mortality data [24–28]. During the specified
time period, the nonlinear least square solver lsqnonlin
of MATLAB has been applied to fit the simulated daily
mortality data to the reported daily new deaths in the
aforementioned five regions. The estimated parameters
for these five regions are specified in Table 7. The fitting
of daily deaths of COVID-19 and cumulative deaths of
Maharashtra is displayed in Fig. 2a, and the same is
depicted in Fig. 2b–e, for Delhi, Uttarakhand, Sikkim
and Russia, respectively. It is clearly visible that fitting
shows good agreement for all the regions between the
numerical simulation and reported data.

The vaccine reproduction number is interpreted as
the expected number of secondary infections caused
by an infectious during its entire infectious period in
a population. For our mathematical model, it is given
in Eq. (5). We evaluated R0v using estimated and fixed
parameter values from Tables 2, 3, 4, 5, 6, and 7 for the
aforementioned regions, namely Maharashtra, Delhi,
Uttarakhand, Sikkim, and Russia, and listed them in
Table 1.

6 Numerical results and case study analysis

We simulated the proposed model system Eq. (1) for
Maharashtra, Delhi, Uttarakhand, Sikkim, and Russia
by employing the parameter values and initial condi-
tions from Tables 2, 3, 4, 5, 6 and 7 to measure the
impact of pharmaceutical and non-pharmaceutical con-
trol interventions on the transmission of COVID-19.

6.1 The effects of drug treatment

Recently, several drugs have been discovered to have
a quicker recovery from COVID-19. Such as the drug
2-deoxy-D-glucose (2-DG) originated by the “Insti-
tute of Nuclear Medicine and Allied Sciences (INMAS-
DRDO)”, in collaboration with Dr Reddy’s Laborato-
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Fig. 2 Model fitting of reported COVID-19 data
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Table 1 Calculated values of the vaccine reproduction number (R0v)

Region Vaccine reproduction number (R0v )

Maharashtra 0.728828
Delhi 0.238979
Uttarakhand 0.275416
Sikkim 0.310588
Russia 1.00982

Table 2 Fixed parameter values and initial conditions for Maharashtra

Parameter/initial condition’s Description Value Source

N(0) Initial population size 124904071 [30]
Λ Recruitment rate μ × N(0) [31]
σ Rate at which exposed class goes to infected class 0.2 [31]
k1 Proportion of exposed class, who joins A class 0.3785 [32]
d2 Disease induced mortality rate for symptomatic class 0.0052 [33]
μ Natural mortality rate 3.914 × 10−5 [34]
ε Vaccine efficacy 0.8 [35]
η1 Modification parameter 0.75 [36]
θ Proportion of the population following intervention policies 0.6 Assumed
S(0) Initial number of susceptible individuals 87432849 [37]
V (0) Initial number of vaccinated individuals 30000 –
E(0) Initial number of exposed individuals 22333 Estimated
A(0) Initial number of asymptomatic individuals 30000 –
I(0) Initial number of symptomatic individuals 9195 [24]
H(0) Initial number of hospitalized individuals 15000 –
R(0) Initial number of recovered individuals 50000 –

Table 3 Fixed parameter values and initial conditions for Delhi

Parameter/initial condition’s Description Value Source

N(0) Initial population size 19301096 [38]
Λ Recruitment rate μ × N(0) [31]
σ Rate at which exposed class goes to infected class 0.2 [31]
k1 Proportion of exposed class, who joins A class 0.3785 [32]
d2 Disease induced mortality rate for symptomatic class 0.0052 [33]
μ Natural mortality rate 3.914 × 10−5 [34]
ε Vaccine efficacy 0.8 [35]
η1 Modification parameter 0.75 [36]
θ Proportion of the population following intervention policies 0.6 Assumed
S(0) Initial number of susceptible individuals 13510767 [37]
V (0) Initial number of vaccinated individuals 500 –
E(0) Initial number of exposed individuals 175 Estimated
A(0) Initial number of asymptomatic individuals 500 –
I(0) Initial number of symptomatic individuals 93 [25]
H(0) Initial number of hospitalized individuals 15 –
R(0) Initial number of recovered individuals 1000 –

ries (DRL), Hyderabad, and also approved by the drug
controller general of India (DCGI) [46,47]. Its clinical
trial demonstrated that this drug is very beneficial in
hastening the recovery of hospitalized patients and also
in reducing the need for supplemental oxygen.

The mild symptomatic and asymptomatic classes do
not need intensive treatment. Therefore, antiviral drug
treatment is implemented only for hospitalized patients.

We considered that the recovery rate of hospitalized
patients through antiviral drug treatment is represented
by δ. According to Fig. 3a–e, when antiviral drugs are
unavailable (δ = 0), the hospitalized population peaks
in Maharashtra, Delhi, Uttarakhand, Sikkim, and Rus-
sia. When the treatment rate differs over time, the hos-
pitalized population assumes bigger values at the begin-
ning of an outbreak. While increasing the treatment
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Table 4 Fixed parameter values and initial conditions for Uttarakhand

Parameter/initial condition’s Description Value Source

N(0) Initial population size 11700099 [39]
Λ Recruitment rate μ × N(0) [31]
σ Rate at which exposed class goes to infected class 0.2 [31]
k1 Proportion of exposed class, who joins A class 0.3785 [32]
d2 Disease induced mortality rate for symptomatic class 0.0052 [33]
μ Natural mortality rate 3.914 × 10−5 [34]
ε Vaccine efficacy 0.8 [35]
η1 Modification parameter 0.75 [36]
θ Proportion of the population following intervention policies 0.6 Assumed
S(0) Initial number of susceptible individuals 8190069 [37]
V (0) Initial number of vaccinated individuals 500 –
E(0) Initial number of exposed individuals 105 Estimated
A(0) Initial number of asymptomatic individuals 500 –
I(0) Initial number of symptomatic individuals 124 [26]
H(0) Initial number of hospitalized individuals 15 –
R(0) Initial number of recovered individuals 1000 –

Table 5 Fixed parameter values and initial conditions for Sikkim

Parameter/initial condition’s Description Value Source

N(0) Initial population size 658019 [40]
Λ Recruitment rate μ × N(0) [31]
σ Rate at which exposed class goes to infected class 0.2 [32]
k1 Proportion of exposed class, who joins A class 0.3785 [32]
d2 Disease induced mortality rate for symptomatic class 0.0052 [33]
μ Natural mortality rate 3.914 × 10−5 [34]
ε Vaccine efficacy 0.8 [35]
η1 Modification parameter 0.75 [36]
θ Proportion of population follow the intervention policies 0.6 Assumed
S(0) Initial number of susceptible individuals 460613 [37]
V (0) Initial number of vaccinated individuals 500 –
E(0) Initial number of exposed individuals 100 Estimated
A(0) Initial number of asymptomatic individuals 500 –
I(0) Initial number of symptomatic individuals 122 [27]
H(0) Initial number of hospitalized individuals 15 –
R(0) Initial number of recovered individuals 1000 –

Table 6 Fixed parameter values and initial conditions for Russia

Parameter/initial condition’s Description Value Source

N(0) Initial population size 145934462 [41]
Λ Recruitment rate μ × N(0) [31]
σ Rate at which exposed class goes to infected class 0.19608 [42]
k1 Proportion of exposed class, who joins A class 0.5 [42]
d2 Disease induced mortality rate for symptomatic class 0.0132 [43]
μ Natural mortality rate 3.75 × 10−5 [44]
ε Vaccine efficacy 0.91 [45]
η1 Modification parameter 0.5 [42]
θ Proportion of population follow the intervention policies 0.6 Assumed
S(0) Initial number of susceptible individuals 102154123 [37]
V (0) Initial number of vaccinated individuals 50000 –
E(0) Initial number of exposed individuals 39915 Estimated
A(0) Initial number of asymptomatic individuals 50000 –
I(0) Initial number of symptomatic individuals 23543 [28]
H(0) Initial number of hospitalized individuals 20000 –
R(0) Initial number of recovered individuals 70000 –
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Table 7 Estimated parameter values for Uttarakhand, Maharashtra, Delhi, Sikkim, and Russia

Parameter Description Values
Uttarakhand

Values
Maharashtra

Values
Delhi

Values
Sikkim

Values
Russia

β Transmission coefficient 0.2176 0.2461 0.2124 0.4633 0.2799
γ1 Rate at which asymptomatic

individuals got hospitalized
0.0992 0.0841 0.0836 0.000003553 0.0001904

δ1 Natural recovery rate of
asymptomatic

0.32 0.2457 0.5677 0.3884 0.6312

δ Recovery rate of hospitalized
class after antiviral drug
treatment

0.3699 0.1393 0.3340 0.0784 0.0692

γ2 Rate at which infected
individuals got hospitalized

0.0379 0.0124 0.0405 0.077 0.0014

d1 Disease induced mortality
rate for hospitalized class

0.0369 0.0184 0.0944 0.00010033 0.0172

ξv Vaccination rate for
susceptible

0.5133 0.5605 0.3285 0.0329 0.0818

ω Rate of loss of
vaccine-induced immunity

0.0063347 0.0036 0.000214 0.0000000735 0.0189

rate above zero, we see decrement in the hospitalized
population. However, it should be pointed out that the
recovered population presents the same trend of incre-
ment for all the regions with increasing treatment rates.
The scenario recommends that treatment with drugs
like 2-DG can be consumed to avoid high contamina-
tion of disease.

6.2 Vaccination’s impact

Vaccination is a prominent tool for pharmaceutical
interventions that decrease the number of susceptible
individuals, thus reduces the disease in any population.
We introduced a vaccination compartment in the pro-
posed model and speculated that completion of vac-
cine doses implies only temporary immunity, and due
to loss of immunity, individuals can re-join the suscep-
tible class. Presently, several vaccines (Covaxin, Cov-
ishield, Sputnik, etc.) are being used by the govern-
ment to combat COVID -19. We adopted the symbol
ξv to know the effect of vaccination on the population,
which demonstrates the vaccination rate in susceptible
populations. Further, we considered that the vaccinated
class contains those susceptible who are fully vaccinated
and even completed 14 days after the last dose. Five
different scenarios are considered for the effect of the
vaccination rate ξv = 0, 0.25, 0.5, 0.75, 1. Figure 4a–e
shows the impact of vaccination on the evolution of the
pandemic in Maharashtra, Delhi, Uttarakhand, Sikkim,
and Russia, respectively, expressing that vaccination
has a huge impact on COVID-19. Higher the vaccina-
tion rate ξv, results lower the contamination peak and
as well as the symptomatic and hospitalized population.
As expected, the vaccination yields approximately the
same deduction for all regions; in the absence of vacci-
nation, disease will stay in the population forever.

6.3 The influence of vaccine efficacy

The efficacy of the vaccine plays an imperative role
in the termination of COVID-19 infection. A symbol
ε, (0 ≤ ε ≤ 1) has been introduced to signify the vac-
cine efficacy to rescue people from COVID-19 infection.
However, all the vaccines give some significant bene-
fits in comparison to having no vaccine. Figure 5a–e
clearly demonstrates that increasing the vaccine effi-
cacy, results drop in infection peak as well as in symp-
tomatic and hospitalized populations in Maharashtra,
Delhi, Uttarakhand, Sikkim, and Russia, respectively.
In addition, it can be detected for all five regions that
whenever vaccine efficacy is zero, the disease will stay
in the population, while whenever the vaccine is either
fully or at least seventy five percent effective, the dis-
ease can be eliminated from the population provided
other interventions work properly.

6.4 The influence of vaccine-induced immunity

Herd immunity refers to a group of susceptible individu-
als who are immune to infection and, as a result, can aid
in the elimination of disease transmission. There are two
ways to attain herd immunity. One is through natural
immunity and the other is vaccine-induced immunity,
although the latter is the most reliable and quickest
way. Furthermore, individuals who are pregnant, under-
going medical implications, due to age restrictions or
for some other reason, may be incapable of vaccinating
against COVID-19. In this case, we used the parameter
ω to depict vaccine-induced immunity, which (ω = 0)
expresses long-term immunity against infection.

Similarly, ω = 0.1 = 1/10 implies 10 days of immu-
nity from infection. Figure 6a–e clearly illustrates that
when vaccine-induced immunity is permanent, symp-
tomatic and hospitalized cases can be reduced rapidly
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Fig. 3 Effect of drug treatment
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in all five regions. Whereas, an increase in vaccine-
induced immunity results in a decrease in the number
of symptomatic and hospitalized people.

6.5 The effect of lockdown

The portion of the population that follows the lockdown
guidelines to guard each other from virus transmission
has been measured by the parameter θ (0 ≤ θ ≤ 1)
known as the lockdown parameter. When θ = 0, infers
no lockdown guidelines have been implemented and
people are freely shifting anywhere without any pre-
caution, while θ = 1 implies complete lockdown, which
means total population is following COVID-19 guide-
lines such as wearing facemasks, maintaining social
distance, and using sanitizers, which diminishes the
number of droplets discharged into the environment
by an infectious person. The variation in symptomatic
and hospitalized cases in Maharashtra, Delhi, Uttarak-
hand, Sikkim, and Russia has been deliberated with
the parameter θ. It is evident from Fig. 7 that there is
depletion in the infection peak, as well as in the symp-
tomatic and hospitalized populations, as the value of
the parameter θ increases. Hence, for all five regions,
it is determined that this parameter θ has a signifi-
cant impact on the reduction of symptomatic and hos-
pitalized populations. In particular, the low rate of the
parameter θ drives the symptomatic and hospitalized
cases to high values.

7 Conclusions and discussion

We introduced a nonlinear deterministic compartment
model comprising a system of seven ordinary differ-
ential equations to perceive the COVID-19 transmis-
sion dynamics by incorporating a vaccination compart-
ment. This model demonstrates COVID-19 dynamics
from three distinct populations: symptomatic infected,
asymptomatic infected, and vaccinated. Initially, to
make our model epidemiologically and biologically fea-
sible, basic properties like positivity of state variables
and boundedness of solutions are derived. Further, the
equilibrium points and the vaccine reproduction num-
ber of the proposed model are obtained using the next-
generation matrix approach. The disease-free equilib-
rium point was shown to be locally and globally asymp-
totically stable whenever the corresponding vaccine
reproduction number (R0v) is smaller than unity. Simi-
larly, the global stability of pandemic equilibrium point
was verified whenever the corresponding vaccine repro-
duction number (R0v) was greater than unity. In addi-
tion, extensive numerical simulations were executed to
assess the impact of various control schemes (such as
lockdown, vaccination, and treatment by drugs) on the
spread of COVID-19 disease.

We calibrated proposed model parameters to fit daily
mortality data from five regions: Maharashtra, Delhi,
Uttarakhand, Sikkim, and Russia, from July 1st, 2021

to September 8th, 2021. From the data fitting in Fig. 2,
it can be clearly visualized that model outputs are
closely connected with the real data for all five regions.
In addition, we computed the vaccine reproduction
number to measure the disease transmission in the
aforementioned regions. We asserted that the vaccine
reproduction number is shorter than unity for Maha-
rashtra, Delhi, Uttarakhand and Sikkim, while it is
larger than unity for Russia, which means that the dis-
ease will soon be terminated in Indian states, while it
shall remain in Russia. Afterwards, the consequences
of pharmaceutical measures (such as treatment with
drugs and vaccination) and non-pharmaceutical con-
trol measures (such as lockdown, wearing masks, usage
of sanitizers, etc.) on COVID-19 infection are exam-
ined extensively. Along with these control measures,
we investigated the significance of vaccine efficacy and
vaccine-produced immunity in symptomatic and hospi-
talized cases. It was realized that pharmaceutical and
non-pharmaceutical control policies could mitigate the
symptomatic and hospitalized cases. In addition to the
above, it was concluded that an upsurge in vaccine
efficacy can curtail the infection. We detected that
when vaccine efficacy is better, disease eradication is
conceivable (Fig. 5). Furthermore, it was shown that
by raising the vaccine-induced immunity period, the
symptomatic and hospitalized COVID-19 cases shrank
(Fig. 6). Finally, the outcome of lockdown is measured
and it is found that a boost in the lockdown related
parameter results in a decline in the corresponding
symptomatic and hospitalized cases (Fig. 7).

In a nutshell, the current study suggests that all the
COVID-19 intervention policies have a positive influ-
ence on the reduction of disease transmission in Maha-
rashtra, Delhi, Uttarakhand, Sikkim, and Russia. Phar-
maceutical and non-pharmaceutical control actions, as
well as vaccine efficacy and vaccine-induced immunity,
are critical to reduce COVID-19 prevalence in any
region. Moreover, our results also specifies that vacci-
nation of susceptible individuals and drug treatment of
hospitalized individuals are significant in managing the
COVID-19 pandemic in these regions. In fact, if a vac-
cine calamity arises, the government can majorly focus
on drug treatment for hospitalized individuals rather
than vaccination. This will undoubtedly mitigate dis-
ease transmission because it confers permanent immu-
nity from disease. It is worth mentioning that our eval-
uation and conclusions are based on the current sce-
nario of the pandemic in the aforementioned regions
(COVID-19 second wave). Thus, we are hopeful that
our established model and outcomes on the dynamics of
COVID-19 will be beneficial for inspecting the disease
dynamics in highly populated regions such as Russia,
India, and China.
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