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Abstract. General models describing the interactions between one or a pair of
piezoceramic patches and elastic substructures consisting of a cylindrical shell, plate,
or beam are presented. In each case, the contributions to the internal moments and
forces due to the presence of the patches are carefully discussed. In addition to
these material contributions, the input of voltage to the patches produces mechanical
strains that lead to external moments and forces. These external loads depend on the
material properties of the patch, the geometry of patch placement, and the voltage.
The internal and external moments and forces due to the patches are then incorpo-
rated into the equations of motion, which yields models describing the dynamics of
the combined structure. These models are sufficiently general to allow for potentially
different patch voltages, which implies that they can be suitably employed when us-
ing piezoceramic patches for controlling system dynamics when both extensional and
bending vibrations are present.

1. Introduction. The use of piezoceramic elements as sensors and actuators has
burgeoned in the last several years in applications ranging from the measurement
and damping of vibrations in large flexible structures to the control of noise in struc-
tural acoustics settings. Their utility as sensors derives from the property that when
the element is subjected to a mechanical strain, a voltage proportional to the strain is
produced. Conversely, they also exhibit the phenomenon that an applied polarization
voltage across the unconstrained element produces in-plane mechanical strains in the
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material. Because of these properties, piezoceramic elements have found increasing
success both as sensors such as strain gauges and accelerometers and as distributed
actuators. Their success as actuators is augmented by the fact that they can be used
to directly control local vibrations without applying rigid body forces and torques,
and, due to their distributed nature, they are less prone to spillover effects in many
control strategies. Moreover, the piezoceramic elements or patches are inexpensive,
lightweight, space efficient, and can be easily shaped or bonded to a variety of sur-
faces. Hence a large number of patches can be used to sense and control without
significantly changing the mass or dynamic properties of the system.

In order to obtain optimal results with the piezoceramic elements or patches in
sensing and control applications, it is necessary to have accurate models of the me-
chanics of induced strain actuation. This modeling also provides knowledge of the
physical limitations of the piezoceramic patches as actuators in various settings. De-
tailed models have been developed for piezoceramic patch interaction with Euler-
Bernoulli beams [2, 3, 4, 5, 10] and thin plates [6, 13]. Because many of the initial
applications of piezoceramic elements were in settings involving the sensing and con-
trol of bending deformations (these vibrations are dominant in many low-frequency
vibration and noise-control problems), most of these models concentrate on patch
configurations that excite pure bending motion of the substructure with more limited
discussions of pure extensional excitation. It was not until [10] that a model was de-
veloped that provided for simultaneous excitation of both bending and extensional
deformations in an Euler-Bernoulli beam. One motivation for developing such a
model is the observation that in complex coupled systems, in-plane vibrations with
small displacements can have large in-plane energy levels due to the property that
beams are much stiffer in extension than in bending. This in-plane energy can then
couple into flexural vibrations at structural discontinuities such as joints, thus neces-
sitating the control of both bending and extensional vibrations in such structures. As
determined by Fuller et al [8] through experimental work, simultaneous reductions
in bloth flexural and extensional deformations in a beam can be obtained through the
use of asymmetric pairs of piezoceramic actuators and sensors in adaptive control
schemes, and the analytic work in f 10] was a first step toward developing a model that
could be used in further such control settings. In that work, force and moment bal-
ancing were used to determine expressions for the moments and strains induced by
the activation of a single piezoceramic patch that was bonded to an Euler-Bernoulli
beam.

In addition to beams and plates, thin elastic shells are often used to describe var-
ious structural components as well as for modeling the coupling between structural
vibrations and their radiating or receiving acoustic fields. For example, the trans-
mission of sound through an airplane fuselage due to low-frequency, high-amplitude
exterior acoustic fields can be modeled by a vibrating thin cylindrical shell that is
coupled to an interior acoustic pressure field [9], In order to optimally control the
interior noise via piezoceramic patch actuation, one first needs to model accurately
the interactions between the patches and the shell. This raises modeling issues that
differ from those encountered in the beam and plate analyses in that the in-plane and
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bending vibrations are coupled in the cylindrical shell due to curvature effects.
Analytical models describing piezoceramic patch/cylindrical shell interactions have

primarily been based on layered-shell theory [12, 23] or the use of flat plate piezoce-
ramic coupling results when determining the resulting loading on the shell [17], In the
first case it is assumed that the piezoceramic material makes up an entire layer of the
elastic structure, and so this model is of limited use when considering small patches
as actuators. When using the flat plate theory, it is assumed that the patch dimen-
sions are small in comparison with the cylinder radius. Curvature properties are then
neglected when modeling the coupling between the patch and shell and determining
the loading due to activation of the patch.

In this work, we present general models describing the dynamics of structures com-
prised of piezoceramic patches that are bonded to elastic substructures consisting of a
beam, plate, or thin cylindrical shell. These results differ from those obtained previ-
ously both in their generality (curvature effects are retained in the shell interactions,
differing patch voltages are allowed, etc.) and in the care taken to differentiate be-
tween and separate the internal (material) and external moments and forces that are
generated by the patches. Specifically, when the piezoceramic patches are bonded
to the substructure, the basic equations are affected in two ways. The first is due
to the fact that the presence of the patches on the beam, plate, or shell changes the
material properties of the structure since the patches add thickness and have Young's
moduli, damping coefficients, and Poisson ratios which in general differ from those
of the underlying substructure. These differences in material characteristics lead to
additional terms in the internal moment and force resultants which, as illustrated
in [1], must be accounted for in order to match system frequencies when estimating
physical parameters. The second contribution due to the piezoceramic patches results
from the strains that are induced by an applied voltage. This leads to the generation
of external moments and forces that enter the equations of motion as external loads.

The inclusion of these internal and external moment and force expressions into the
equations of motion leads to models that consistently describe both the passive and
active contributions due to the patches. These models are sufficiently general so as to
allow for differing voltages into the patches (including the possibility of an inactive
patch receiving no voltage). From a control perspective, these models are important
since they provide for greater latitude in designing control strategies involving the
use of piezoceramic elements to affect both the bending and extensional properties
of a structure.

As a prelude to the development of the patch interaction models, equations of
motion for the underlying substructures are presented, with special attention paid to
the contributions due to externally applied moments and forces since this is where
the interactions between the patches and substructure occur. The analysis leading up
to the structural equations also motivates many of the techniques that are used to
develop the patch interaction models.

To this end, a synopsis of the derivation of the strong form of the time-dependent
Donnell-Mushtari thin-shell equations from Newtonian principles (force and mo-
ment balancing) is presented in Sec. 2. A complete treatment of this topic can be
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found in [14, 16, 19, 21, 22], and so our discussion is limited to summarizing that
material that is needed for developing the shell/patch interaction model as presented
in Sec. 3. The choice of the Donnell-Mushtari model is for ease of presentation, and,
as noted at various points in the discussion, the patch/shell interaction model can be
easily extended to higher-order models as warranted by the physical situation.

An inherent disadvantage of the strong form for the equilibrium equations when
the external loads are generated by piezoceramic elements is the resulting presence of
the first and second derivatives of the Heaviside function due to the finite support of
the patches. As a result of this as well as other parameter estimation and approxima-
tion issues, we then develop the weak form of the time-dependent Donnell-Mushtari
shell equations. This is done in more detail, since this development is less readily
available in the literature. This formulation is advantageous in many approximation
schemes, admits the estimation of discontinuous material parameters, and eliminates
the problem of differentiating the Heaviside function since the derivatives are trans-
ferred onto the test functions.

Section 2 concludes with a synopsis of the strong and weak forms of the Kirch-
hoff plate and Euler-Bernoulli beam equations. As in the shell discussion, particular
emphasis is placed on the contributions of externally applied forces and moments,
since this is where the coupling between the substructure and piezoceramic patches
occurs.

The patch contributions to the cylindrical shell equations are developed in Sec.
3. As mentioned previously, these contributions consist of internal (material) and
external moments and forces. The internal moments and forces account for the
material changes in the structure due to the presence of the patches and are present
even when no voltage is being applied to the patches. The external contributions are
due to the strains induced by the patches when voltage is applied, and they enter the
equations of motion as external loads.

In Sec. 4, the techniques of Sec. 3 are tailored to composite structures consisting of
piezoceramic patches that are bonded to plates and beams. Due to their generality,
the models allow for complex interactions involving both bending and extensional
components, since the voltages and material properties of the individual patches can
differ (e.g., the mere presence of a single patch on a beam leads to coupling between
the partial differential equations (PDEs) describing transverse and longitudinal mo-
tion, since the structure is no longer symmetric). As with the shells, this provides
structure/patch interaction models that can be used in various structural and struc-
tural acoustics control settings.

2. Underlying shell, plate, and beam equations. Throughout this discussion, we
consider a thin circular cylindrical shell of radius R, thickness h , and having the
axial coordinate x as shown in Figure 1. The variable z measures the distance of a
point on the shell from the corresponding point on the middle surface (z = 0) along
the normal to the middle surface.

Strain-displacement relations. By combining Love's shell assumptions with the
strain-displacement equations of three-dimensional elasticity theory, one obtains the
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strain relations

Fig. I. The cylindrical thin shell

^ '
1 /;(eg + ZKg),

yxe
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1 + z/R exe + z (1 + n)*
where ex and eg are normal strains at an arbitrary point within the cylindrical shell
and yx9 is the shear strain. Here ex, eg , and exd are the normal and shear strains
in the middle surface, and kx , Kg , and r are the midsurface changes in curvature
and midsurface twist (see [16], p. 8).

Note that within the framework of infinitesimal elasticity, the equations (2.1) are
exact and in the Byrne-Fliigge-Lur'ye shell theory, these represent the exact form of
the kinematic equations. In the Donnell-Mushtari theory, one neglects the underlined
terms z/R with respect to unity, thus leaving

= £x + ■

ee ~ ee + ZKe» (2.2)

?*. = «,« + *( 1 + ^)r-

In terms of the axial, tangential, and radial displacements u, v , and w , respec-
tively, the expressions for the midsurface strains and changes in curvature for the
cylindrical shell are

du d2w
~ dx ' Kjc~ Qx2

1 dv t w _ 1 d2w 1 dv
ee = R^^ + R, = +

dv 1 du 2 d2w 2 dv
£xe ~ dx + Rdd' T = ~Rdxd6 + Rdx'
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As before, the underlined terms are retained in the Byrne, Fliigge, and Lur'ye
theory and are discarded in the Donnell-Mushtari theory. We point out that the
equations (2.1) and (2.3) differ from those arising in the theory of flat plates both in
the presence of the length differential RdO as well as in the retention of the strain
terms ex and eg (only bending contributions are considered in the corresponding
models of the transverse vibrations of a flat plate).

Stress-strain relations. To determine the constitutive properties of the shell, it is
assumed that the shell material is elastic and isotropic. Hooke's law in conjunction
with the assumption that the transverse shear stresses ox_ and og„ as well as the
normal strain component are small in comparison with other stresses and strains
(these conditions are part of Love's third and fourth assumptions) then yields

ax =

E
a e = - j(eg + uex), (2.4)

1 - V
E

axe ~ °ex ~ 2(1 + v)Vxe'

where ax and og are normal stresses and axg and af)x are tangential shear stresses.
The constants E and u are the Young's modulus and Poisson ratio for the shell.

Force and moment resultants. By integrating the stresses over the face of a funda-
mental element, the force resultants can be expressed as

nx9
Q .x J -/

A/2

-A/2

and

"e
»ex

I <2$
Similarly, the moment resultants are

rA/2

-A/2

and
M,

L

°x

°xe

A/2

A/2

Z\ + -) dz (2.5,

a0x dz. (2.6)
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Ke fJ-I

Mex
-L

°x
axe

A/2

A/2

1 + j)zdz (2.7)

°6x
zdz. (2.8)

The orientations of the various forces and moments are shown in Fig. 2. We point
out that the transverse shear stresses axz and ag, are used when obtaining the force
resultants Qx and Qg even though they are omitted in the constitutive relations.
This is one of the contradictions that arises in the classical shell theory.
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Fig. 2. Force and moment resultants for the cylindrical shell

In the Donnell-Mushtari theory the underlined terms z/R are neglected in com-
parison to unity, and the integrals are determined accordingly, to yield
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(l-vz)

M„ = Eh3

du f 1 dv w
dx+" {Rdd + ~r

d2w v d2w
12(1 — v2)

+
dx2 R2 dd2

Eh
(1 -v2)

Ma = -
Eh3

1 dv w du
 1 h V Rdd R dx

1 d2w d2w
12(1 - v2)

+ v-
R2 dd2 dx

(2.9)

EhN — N =  - 
xD dx 2(1+1/)

dv 1 du
dx + Rd6

M = M - — 9 Wxe 8x \2R(\ + v)dxd6'
Similar expressions are obtained in the higher-order theories.

Strong form of the Donnell-Mushtari shell equations. The equations of the dynamic
equilibrium of the element are obtained by balancing the internal force and moment
resultants as shown in Fig. 2 with any externally applied forces and moments. Let

V = 4JX + Qo'o + VJn
and

m = mjx + meie
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denote the surface forces and moments due to an external field that is acting on the
middle surface. Hence q and m have units of force and moment per unit area,
respectively.

Considering equilibrium of the forces in the x, 6 , and z directions yields
8N 8N„

RH? + l>r + Rt* = 0>

^4^ + ̂  = 0, (2-10)
dQ 8Qg N R,Q

R-d^ + -dd--N° + Rq»-°>
respectively. In the Donnell-Mushtari theory, the transverse shearing force Qg is
considered to be negligible in the second equation of (2.10) and is subsequently
neglected when determining the final equilibrium equations. Similarly, with 0 as a
reference origin, the balancing of moments with respect to 0, x , and z yields

8M 8MH
R^f + ̂ r-R^ + R^ = ̂
d~w+Rd-^f-RQo + R,hx-0' (2-n)

Me
R

respectively. By referring to the integral definitions of Nxg, Ngx, and Mg% , it can
be seen that the third expression in (2.11) is identically satisfied due to the symmetry
of the stress tensor.

Time enters the equilibrium equations through the inertial terms; hence for time-
dependent problems the force qx is replaced by

, d u

where p is the density in mass per unit volume of the shell. Similar substitutions
are made for q0 and qn . By combining (2.10) and (2.11), one arrives at the time-
dependent Donnell-Mushtari equilibrium equations for a thin cylindrical shell with
radius of curvature R and thickness h :

Rph^ - R^ = RqQt2 dx 86 x

R nh® V R^xt> — Rn P P)
p a?"W' q'- '

n , d2w d2M \ d2Mn d2M „ 9m
Rph—y - R—-f - D—r - 2innr + nb = r% + R8t dx R 86 dxdd " n dx 86
We note that the representation of the external loads as surface moments and

forces is convenient when deriving the strong form of the equations of motion. How-
ever, in many applications where it is necessary to actually determine expressions
for these loads or when using the weak form of the equations, it is advantageous
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to represent these loads in terms of line forces and moments. To accomplish this,
let Mx, Me , Nx , and Ne denote the external resultants acting on the edge of an
infinitesimal element which have the same orientation as the internal resultants de-
picted in Fig. 2 (with units of moment and force per unit length of middle surface).
Force and moment balancing can be used to write the area moments and in-plane
forces in terms of these line moments and forces, thus yielding

dNx . 1 dNg 1 dMe „ 8MX
q>'-R~d- m' = -R~W = (2'13)

We point out that the first expression in (2.13) can be obtained from (2.10) simply
by replacing Nx by Nx and deleting dN6x/dd in the first expression of (2.10). Sim-
ilar analysis leads to the other expressions in (2.13). The use of these line moments
and forces in (2.12) is equivalent to including the external resultants directly when
determining the equations of moment and force equilibrium for an infinitesimal shell
element as done in (2.10) and (2.11).

The substitution of the internal moments and forces in (2.9) and the external
resultants from (2.13) then yields

1 d2u d2u 1 - v d2u 1 + v d2v v dw
C2l dt2 dx2 2R2 dd2 2R dxdO R dx

(1 -v2)dNx
Eh dx '

1 d2v 1 - v d2v 1 d2v 1 + v d2u 1 dw
C2Ldt2 2 Qx2 R2dd2 2/? dxdd r2 86

{\-v2)\dNg
Eh R 86 '

d2w v du 1 dv 1 h2

(2.14)

+  1 T T77T H ^ + T^-V W
C2l dt2 Rdx R2 d6 r2 12

- 1 d2Me d2Mx
q" R2 dO2 dx2

(1 zv_
Eh

2\

where again, u, v, and w are the axial, tangential, and radial displacements, re-
spectively [16], The constant CL given by

1/2
h

CL
p{ \-v2)

is the phase speed of axial waves in the cylinder wall. The external line forces Nx and
Ng and moments Mx and Mg have units of force and moment per unit length of
the middle surface, respectively, and are generated in our problem by the activation
of the piezoceramic patches. The load qn is left as a surface force, since this is
the form that it usually takes in problems involving the excitation of a shell through
normal forces (an example of a normal force in this form is the pressure exerted on
the shell due to an exterior or interior acoustic field).



362 H. T. BANKS, R. C. SMITH, and YUN WANG

We again emphasize that the resultant expressions in (2.13) (and hence the system
(2.14)) were derived for an infinitesimal element; hence certain modifications must
be made when considering the global form of the resultants and equations (as is
necessary when the resultants are generated by a piezoceramic patch). In certain
cases (e.g., for certain types of moments and forces), the system (2.14) agrees with
the strong form of the global shell equations. In general, however, this is not true, and
one must exercise extreme care in determining the form of the global representations
for the moments and forces.

Weak form of the Donnell-Mushtari cylindrical shell equations. In order to find
the weak form of the shell equations, the kinetic and strain energies of the shell are
needed. By combining the Kirchhoff shell hypothesis with the strain results from
classical elasticity theory, it follows that the strain energy stored in the shell during
deformation is given by

| rh/2 r2u rl

U=T / l {oxex +odee +oxgyxg)(\ + z/R)Rdxd6 dz,
z J-h/2 J0 J0

where the strains and stresses are given in (2.1) and (2.4), respectively. Substitution
and integration (with (1 + z/R)~l replaced by its geometric series expansion and
neglecting powers of z in the integrand which are greater than two) yields

U -1 r ['~ 2 Jo Jo

Rz

With the change of variables s = x/R, the total strain energy can be written as

Rdxdd.

1 [2n fl/R Eh
~ 2 /0 J 0

i2 „,-n2

u — T / I 2\ [^DM + ^BFlJ ^ dB ,
(1 -vL)

where k = hA/(l2R'), /DM is the integrand corresponding to the Donnell-Mushtari
theory and /BFL denotes the terms that are retained to yield the Byrne, Fliigge, and
Lur'ye strain energy. These two components are given by

,'du dv \2
/dm~ ( J~s+dB+W)

du (dv \ 1 (dv du\
~ds \dd+W) ~ 4 + 8BJ

+ k { (V2w)2 - 2(1 -v)
n2 q2o w a w
Os2 dB2

and
, dv d2w dv d2w 3 /dv\2 du d2wW= -2^^—r-3(1-1/) — —- + -(!-,/) — +{\-u)

BFL~ dB ds 2 JVi "'dsdsdB^ 2V* J\dsJ^y 'dBdsdB

1/, % /du\^ ^dud2w „ d2w 2
+ ~2a y+2w 2+w2 \dBJ ds ds2 dB2
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For simplicity of presentation, a weak form of the shell equations will be developed
using the Donnell-Mushtari strain expression; a corresponding set of equations can
be derived in a similar manner in the BFL case.

The kinetic energy of the shell is given by

'= - f [
2 Jo Jo

2 n fl/R
ph R2 dsdd.

Throughout this development, it is assumed that the shell satisfies shear diaphragm
boundary conditions at x = 0, I; that is, it is assumed that

v = w = Nx — Mx = 0

at the ends. This is done merely to demonstrate the equivalence between the weak
form which follows and the strong form already discussed; other boundary conditions
can be treated with similar arguments. It should be noted that the conditions v =
w = 0 at the ends are essential boundary conditions and hence must be enforced on
the chosen state space.

For an arbitrary time interval [;0, ?,], consider the action integral

A[u\ ['\t - U)dt (2.15)
Jtn

112where u = [u, v , w] is considered in the space V = Hb (Q) x Hb (Q) x Hb (Q). Here
£2 denotes the shell and the subscript b denotes the set of functions satisfying the
essential boundary conditions. One then considers variations of the form

u = u + eO =
u(t, r,6,x)
v(t, r, 8 , x)
w(t, r, 6 , x)

+ e
W\(t)4>\(r, o, x)
tl2(t)<f>2(r, 6,x)

_tl3(t)4>3(r, e,x)

Here rj = [t]l, r]2, ^3] and 0 = [cpl, (j>2, 03] are chosen so that
(i) u(t, - € V, and
(ii) u(t0, - = u{tx

Note that this enforces ff e [H2(0, T)]3, rf(tQ) = rf(t{), and $ G V.
Hamilton's principle states that the motion of the shell must give a stationary value

to the action integral when compared to variations in the motion, thus leading to the
requirement that, for all O,

d_
de A[u + e<I>]|£=o = 0.

With the definition (2.15) for the action integral, Hamilton's principle leads to the
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condition

0 = d_
de'

(, r2 n rt/R
ph dudt], , dv dt]7 , dw dr],

a7^. + a7a7^ + R2 ds dd dt

j-tI r2n rl/R pfo [ (du dv \ ( d(f). d(fi2 \
- I L Jo (7^7) { U + M +aF + + <>*>)

.. r d(f>. dv dep. du d<f>2 du
— aF +as ^7 + ">a7 ae"+ "'aJ^

1 (dv du\ ( dcfr2 d(f>l
2 V ds dd) V 2 ds d6

+ k i f73V2wV203 -(1 -v)
d2w d2(f), d2w d2(j),

^ dO2 ds2 +r,3ds2 dd2

,2... q2
-2 r\

d w 9 f>3
3dsdddsdd ds dd dt.

Note that this must hold for all arbitrary intervals [?0, ?,] and all admissible pertur-
bations. Temporal integration by parts in the first integral in conjunction with the
underlying condition that ff(t0) = //(?,) then yields the coupled system of equations

2n j-l/R | p(\ - p2) d2U x d2 (du t dv ^ <90,

'0 0
R - ^ 1- TT7T + U>

E dt2 1 \ds dd J ds

+(1 -V)
d(f>. dv d<j). 1 (dv du\ d(/>.

w   H    1   ds dd ds 2 \ds de J dd }
ds dd dt — 0,

In rl/R ( p(l-v2)d2V 2 f du dv \ d(j)2
1 ' M-Ur+aii+^y

>t0 JO Jo dt2^2 \ds dd J dd

+(1-1/) du d4>2 1 (dv du^ d(f>2
ds dd 2 \ds dd ds ds dd dt - 0,

2ji rl/R ( pl\-ii2\d2W± n2 f du dv \ .du

0 JO

—k \ V2wV2(j), - (1 — u)

Qt2 3 \ds dd J 3 ds 3

> ds dd dt = 0.d2wd24>ti , d2wd2(p3 o d2w d24>
dd2 ds2 ds2 dd2 dsdddsdd
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The weak form of the equations of motion for the unforced shell is thus

[2k rl/R (R2 d2u fdu dv \ d<f>,I I + +
1 s (dv du\ d<f>. 1

+2(1-") {aJ + ae)-aFj'isde = 0'

2n rl/R f ft! g2y / qu gv \
^7+ ^"5- + tttt + W -777TII./0 J 0 c2 dt2 2 V 95 50 ; 90

1 . f dv 0u\ d4>21 , ,0 A+ 2<' -") (gj + '

27C f R1 d2w , ( du dvIIJ 0 Jo cl^?^+ys-s + ae+w)^

+k \\>2wV2(j),- {\ — v)
d2w 92<^3 ̂  d2w 9203 ^ d2w d2</>3
d02 <9s2 <9s2 d(92 dsdddsdd

dsdO = 0

for all 4> e V. Again, the constant CL = [E/(p( 1 - z^2))]1/2 is the phase speed of
axial waves in the cylinder wall.

In terms of the moment and force resultants (see (2.9)) and the original axial
variable x, the weak form is

f" [' Up^<h + f,^ + ™J4i\<lxdl> = 0, (2.16)
Jo Jo ( dt2^2 6 06 " x» dx

d>, + NA, - RMX-1*1 - 2M ^ \dxdd = 0.
Jo Jo \ Ot2 3 0 3 X9x2 * *c>02 ^9x90/

The derivation thus far has been for the unforced shell. To include the contri-
butions of applied external forces and moments that do nonconservative work on
the shell, one can appeal to an extended form of Hamilton's principle or more for-
mally include these contributions directly in the system (2.16). Both techniques yield
identical final equations, and for ease of presentation we will take the latter approach.
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The inclusion of the applied line forces and moments Nx, Ng and Mx, Mg and
the surface load qn in the system then yields

f*f;{Rp^l+RN^ + NJ£-R^dxde--o,

d2w d^d)-, 1 d2d>
df2 —Xdx2 R"<ede 2

-RqJ 3 + RMX+ \-MgC—^x dx2 R 6 dd2

(2.17)

for all 4> e V as the weak form of the Donnell-Mushtari equations of motion for the
forced shell.

With the assumption of sufficient smoothness, the weak solution in this form is
consistent with the strong solution in (2.12). The vanishing of several of the boundary
terms that arise during integration by parts is a result of the choice V = Hxb (Q) x

1 2Hb(Q) x Hb(Sl) for the function space since the state variables and test functions
are required to satisfy the essential boundary conditions

v — w = 0

at x = 0, I.
We point out that in the weak form (2.17), one is not required to differentiate the

applied force and moment resultants Nx, Ng, Mx, and Mg as is required in the
strong form (2.14). This proves to be very beneficial when these terms are generated
by finite piezoceramic patches, as discussed in the next section.

Plate equations. Consider a thin rectangular plate whose edges lie along the coor-
dinate lines x = 0, / and y = 0, a. We assume that the plate is subjected to both
longitudinal and transverse loading via the surface forces and moments qx, qg, qn
and mx, mg . With u, v , and w denoting the displacements in the x, y, and nor-
mal directions, respectively, the strong form of the Kirchhoff plate equations is given
by

' ,,r Ox By
g2v ON. dN„

"*fl7-3?~5? = 4" <2'18)

dt2 dx2 dy1 dxdy dydx " dy dx
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where the moment and force resultants are

Eh fdu dv\ .. Eh3 (d2w d2w\

Ar £/? f dv du\ Eh3 /"c?2u; d2w\
N= =■ hr + f^- , M =   =5-  r+v-

y l-u2\dy dxj' y 12(1 -V2)\dy2 dx2 J '

Eh (dv du\ ,/ „ Eh3 d2wN = N = I 1 I M = M = ^ ^ 2(1 + v)\dx dy)' xy yx 12(1 +v)dxdy'
The first two equations in (2.18) describe the longitudinal movement of the plate
while the third equation describes the transverse motion of the plate.

To find the weak form of the equations, the vector u = [u,v,w] containing
the displacements in the x, y, and normal directions is considered in the space

112V = Hb(Q) x Hh(Q) x Hb(Gl), where Q denotes the plate and the subscript b
denotes the set of functions satisfying essential boundary conditions for a specific
problem. By using analysis similar to that just described for cylindrical shells, the
weak form of the equations of motion for the plate can be found to be

+N"W~"'at) dxd^°-

(2.19)

-M 3 - q <f>3 + M  f + M—f > dxdy — 0yxdxdy "r3 x dx2 dy2 )

for all cj) = [0j, cf)2, </>3] e V. As in the case of the thin shell, the external line
forces and moments Nx, N , Mx, and My are related in an infinitesimal sense to
the corresponding area forces and moments qx, qy, m , and mx appearing in the
strong form of the equations by the relations

dNx . dN . dM . dMx
«- = -a3f- "' = -$£• m' = sf' = (2'20)

If the solution has sufficient smoothness, integration by parts can be used to show
that the weak solution is consistent with the strong solution in (2.18).

Beam equations. The motion of an undamped thin beam of length I and width
b can be determined from the dynamics of thin plate theory by considering only
the vibrations in the x direction along with the usual transverse vibrations (in the
z direction). From (2.18) this yields the strong form of the Euler-Bernoulli beam
equations

]Ud2u dNx „ iLd2w d2Mx „ dm
+ -Ft- (2'21)
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where

AT T?UUdUN^EhhS~x'

Eh3bd2w „r<92ty
Mx =—vtt:t =12 dx2 dx2

Note that I = h3b/12 is the moment of inertia for a beam of width b and thickness
h.

A corresponding weak or variational form of the equations can be determined by
1 2choosing V = Hh (Q) x H^(Q) for the space of trial functions, where Q denotes

the beam and the subscript b again denotes the set of functions that must satisfy
the essential boundary conditions. Through either an energy derivation such as that
given for the thin shell, or simply integration by parts, one arrives at the variational
form

d(bx ^ d(b, I _ i L AT 1 V Ayr — A oil A\ T-T I
dx1 + Nx-ZZ-- Nx-ZZ- }dx = 0 for all (j>l G Hh(£2),

f \phb^-^-cj), - M- q+ Mdx = 0 for all 03 G H2h(Q.)Jo ( dt2 3 x dx2 " 3 v dx2 J 3 b
(2.22)

of the beam equations. We point out that in this form one is not required to dif-
ferentiate the external force or moment resultants, Nx and Mx, which proves to be
very useful when these terms are generated by the activation of finite piezoceramic
patches.

3. Patch contributions to the shell equations. In the last section, the strong and
weak forms of the equations of motion for a homogeneous, thin cylindrical shell
having uniform thickness were presented (see (2.12) and (2.17)). When piezoceramic
patches are bonded to the shell, these basic equations are affected in two ways. First,
the presence of the patches on the shell significantly alters the material properties
and thickness of the structure in regions covered by the patches; this must be taken
into account when determining the internal (material) moment and force resultants
to be used in (2.12) and (2.17). Moreover, when a voltage is applied, mechanical
strains are induced in the patches, which leads to external moments and forces as
loads in the shell model. Both contributions are discussed here, and a general model
describing the structural dynamics when patches are bonded to the shell is presented.

We assume for now that a pair of piezoceramic patches having thickness T are
perfectly bonded to a cylindrical shell of thickness h with midsurface radius R (see
Fig. 3). As shown in Fig. 4, the patches are assumed to be situated so that their edges
are parallel to lines of constant x and 9 .
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Fig. 3. Strain distribution for the composite structure

e2

71 l I

X, X-f

Fig. 4. Piezoceramic patch placement

Internal forces and moments. As noted in (2.1), the infinitesimally exact strain
relationships for a cylindrical shell having midsurface radius R are given by

ex = (ex + zkx) ,
1

ee~ <\ >_ 7/R\(se + ZKe">'(1 + z/RY

7x0 = (1 + z/R) K0 + Z{1 + Jr) T1
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with ex , eg, kx , Kg, ex6 , and r described in (2.3). To simplify the discussion that
follows, we will neglect the term z/R with respect to unity as is done in the Donnell-
Mushtari theory; we emphasize, however, that this is done merely for brevity of
presentation and the infinitesimally exact terms can be used in a manner correspond-
ing to that of the Byrne-Fliigge-Lur'ye theory. Moreover, it is reasonable to assume
that this relationship is maintained throughout the combined thickness h + 2T as
shown in Fig. 3 (see [13]). Hence we will take ex = ex + zkx , ee - eg + zk9 , and
y = ex8 + zr throughout the combined thickness of the structure. Note that this as-
sumption implies that the strains at the interface are continuous and that the centers
for the radii of curvature for the shell and patch are concurrent.

Although the same strain distribution is assumed throughout the patch and shell,
the stress changes since the Young's modulus and Poisson ratio for the patch will,
in general, differ from those of the shell. For an undamped shell with E{, vl and
E2, v2 denoting the Young's modulus and Poisson ratio for the outer and inner
patches, respectively, the stress component ax is given by

£
  i(ex + vee) (shell),
1 - v

E,
-—-2(ex + v\eg) (outer patch), (3 n
1 - z/j v '

E->
  (ex + l/2ee) (inner patch),

ax

t 2 v x1 l-"2

with similar expressions for aB and axg = agx (see (2.4)). The subscripts 1 and 2
will be used throughout this discussion to denote outer and inner patch properties,
respectively.

The moment and force resultants are obtained by integrating the stresses across
the thickness of the structure. This yields the expressions

Nxe\ J-h/2-T

K
Ke

= r+'K i(,+')(b. \N>\ = r'J-h/2-T Y°xe ^ R' KJ J-hi2-

= fhl2+T [^1 (i + L\zdz, \m6} = f
J-h/2-T ^ R' Max. J-

h/2+T

-h/2-T

°8x

°6x J

dz

(3.2)

zdz

in regions of the structure covered by the patches and the previously discussed expres-
sions (2.5)-(2.8) in those regions of the structure consisting solely of shell material.
In accordance with the Donnell-Mushtari assumptions, the curvature terms z/R ap-
pearing in the integrals are neglected with respect to unity, but again, this is done
for ease of presentation and higher-order results can be obtained by retaining these
terms. For the undamped combined structure when both patches in a pair are present
and have potentially differing material properties, this yields the force and moment
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resultants

Eh E &
Nx = :—2(ex + ^) + 7—4 ^x + v\ee)T+y(Kx + v\Ke) Xpe(x,e)

1 — V 1 — Vj L ^ J\-vl x a 1-1/

1-22
(ex + v2eg)T -^(kx + u2k6)] , 0),

Eh E d
Ne =  i(eB + U£x) + t-4 (ee + I/ieJr+^(/c0 + iyi'cx) Xpe(x,d)

1 — 1/ I — Vj L ^

l-vl {Eg + u2ex)T- Ke + v2Kx)\ Xpe(x, 6),

.. Ar Eh „
•^vfl — r ■(" E

T a- 9
£w. + "T77^ rT

I
1 *„,(*> 0)

*e 0X 2(l + i/) x0 1 [2(1 +1/J xe 4(1 +1/

32
+ £ 2(1 + v2)Gxe 4(\+v2T

Eh3 E ci ci
MX = j^—^-^Kx + "Ke) + YZ1^rx + l/^eH + {Kx + l'iKeH\Xpe{x' d)

E

xPM, e)

+ -^ -(ex + ^2£e)^ + (*x + f2*fl)^] ^e(x, 0)1-^2

E h~* E cl ci
Me = X2{\-v2)(-Ke + VKx) + Y^vi [^° + V^*H + (-K8 + U\KxH\XPe{-X' e)

\-ul (Ee + "2£,)y + (*fl + ^Jy] *,«,(*> 0)•

,3

Mxe Mex 24(1+ i/)T + £l [4(1+^)fcjc0^ 6(1+ i/j)T
a,

+ ;v(*, 0)
^2 ^3

4(1 +„2)e^ + 6(1 + i/2) T_+ E,

The constants a2 and a3 are given by

Xpe{x, 6).

(3.3)

2 h1 (h \3 /z3a2~ I2 + rj ~~4' fl3- ( 2 +rl

while the characteristic function Xpe(x, 9) has the definition

f 1, x. < x < x,, 0. < 6 < 0,,

The midsurface characteristics ex , ee , kx , Ke, ex6 , and r are described in (2.3).
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In the case where both patches have identical material properties (E1 = and
v2 = vx), these expressions simplify to yield

..Eh 2E.T
NX = + »ee) + 7172(£^ + viee)Xpt(x> '

Eh T
Ne = + U£x) + ^ee + "\Ex)Xpe(x, 6) =

1
Ej h -E T

Nx0 = N6x = 2(1 + v)6*6 + (1 i^)ExeXpe(X' '

Ehi , ^ 2E1*3 , ^ m (3'4)
x = 12(1 - v2) + VKr) + 3(1 -V) * + ' }'

Mo^7^T^SKe + VKx) + ^1\(.K8 + V\Kx)XpM, 6),12(1 - v ) 3(1 - vx)
j3

Mxe = M0x = ^777—7rt + ,M ' 3 ,TLf(x, 0).
£7T E,a3

24(1 +u)T+ 3(1+1/,)'

If only patch is present, the internal force and moment resultants for the structure
can be determined from (3.3) by omitting the contributions from the missing patch.
For example, if only an outer patch is bonded to the shell, one can obtain the internal
resultants for the structure by deleting those terms in (3.3) that are multiplied by E2.

Finally, internal Kelvin-Voigt damping can be incorporated in the model by as-
suming a more general constitutive relation in which stress is taken to be proportional
to a linear combination of strain and strain rate. Letting cD, cD , and cD denote
the damping coefficients in the shell, outer patch, and inner patch, respectively, we
can replace the stress component ax in (3.1) by the more general expression

E c
vee) + . ° + v*e) (she11)'

=

1 — v1 e' \-v2
E CD

-—(ex + ee) + -—(ex + vxee) (outer patch).
1 — f, 1 -

E CD
~ 2 (^a' + v2ee) + 2—^x + vi^e) (inner patch),1 Z v A Z. U ' 1

v 1 - V2 2

with analogous expressions for ae and ax6 . The substitution of these stress terms
into (3.2) then yields moment and force expressions analogous to those in (3.3)
and (3.4) but, which now include damping contributions containing the temporal
derivatives of the terms ex , eg , kx , Kg , ex6 , and r given in (2.3).

The internal moments and forces determined by (3.3) and (3.4) are then substi-
tuted into (2.12) if one is using the strong form of the shell equations, or (2.17)
if one is employing the weak form of the equations. In this manner, the material
contributions due to the presence of the piezoceramic patches are incorporated in
the dynamic equations of motion.

External moments and forces. The second contribution from the piezoceramic
patches is the generation of external moments and forces which results from the
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property that when a voltage is applied, mechanical strains are induced in the x
and 8 directions. Here we assume that when the patch is activated, in accordance
with basic shell theory, equal strains are induced in the x and 6 directions and
the radius of curvature is not changed in either direction. Patches satisfying this
assumption could be made, for example, by taking a portion of a thin-walled tubular
piezoceramic element.

The magnitude of the induced free strains is taken to be

epex =(ex)pet =(ee)pel =^fVX>

epe2 = (ex)pe2 = (ee)pe2 = ~fV2>

where d3l is a piezoceramic strain constant, and V{ and V2 are the applied voltages
into the outer and inner patches, respectively. We point out that when a voltage is
applied to a patch with edge coordinates x,, x2, 0,, and d2, the point (x, 9) -
((Xj + x2)/2 , R(6i + d2)/2) will not move whereas the axially symmetric points on
either side will move an equal amount in opposite directions. This observation is
important when determining the sense of the force resultants, and it motivates the
use of indicator functions in several of the following expressions.

With Ex , f, and E2 , v2 again denoting the Young's modulus and Poisson ratio
for the outer and inner patch, respectively, the induced external stress distribution
in the individual patches is taken to be

E,
^°x\ex ~ — 1—1/ ePei '

E ' (3"5)
(ax)pe2 ~ (ae\e2 - ~ J _ v%e2

The negative signs result from the conservation of forces when balancing the material
and induced stresses in the patch.

By integrating the stresses over the face of a fundamental element, it follows that
the external moment and force resultants due to the activation of the individual
patches can be expressed as

rh/2+T . _. r-h/2rti/z+i / z \ r nl1 / 2 \
{a')"Xx + R)zdz' (M-)", = l1,!.rW«(1 + s)z''1'

rh/2+T r-h/2

{Me)pe= ]hi2 (aeWdz> {Me\e2 = J_h/2_T^eWdz'

rh/2+T z \ r~h/2 / 2 \

fh/2+T f-h/2

= ft/2 e.V,& = J_hl2J"»U dz
with units of moment per unit length and force per unit length, respectively. Inte-
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gration then yields the external forces and moments

(Mx)pex = ~ i _ ~

E , / n2

= A.
mPet = -

= + -A'I (3.6)

TO*, =

TO*, -
We note that in evaluating these integrals, we have retained the terms z/R that result
from the curvature of the shell. Although this yields external terms having slightly
more accuracy than the internal resultants obtained via the Donnell-Mushtari as-
sumptions, it provides expressions for the loads due to the excitation of the individ-
ual patches that can be directly used in higher-order theories (e.g., the Byrne-Flugge-
Lur'ye theory) without alteration.

We also emphasize that the expressions in (3.6) admit differing voltages into the
patches, including the possibility of letting one patch remain passive with no voltage
being applied. This provides a great deal of flexibility in applying various types of
loads through the activation of the patches.

Thus far in the development of the external forces and moments due to the activa-
tion of the patches, edge effects have been ignored, and hence the expressions in (3.6)
apply to patches covering the full circumference of the shell and having infinite axial
length. The equations can be modified for finite patches in the following manner.
For a patch with bounding values x,, x2, 0, , and d2 as shown in Fig. 4, the total
line moments and forces are

(Mx)Pe = + ^x)pe][Hx{x) - H2{x)][Hx{d) - H2m,

(.Me)pe = [(Me)pei + (Mg)pe \[Hx(x) - H2{x)]{Hx(6) - H2(0)\,

(Nx)pe = [{Nx)pei + {Nx)pe][Hx{x) - H2(x)][Hx(d) - H2{d)]SU2(x)Sl>2(d), (3'?)

Wpe = \.Wpex + TO„2][tfi(*> - H2{x)][Hx{d) - H2(6)]SX 2(x)Sl 2(6),
where H is the Heaviside function and Hj(x) = H(x — xi), / = 1,2, with a similar
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definition in 6 . The presence of the indicator function

'1, x < (x, + x2)/2,
S|2(x) = < 0, x = (x,+x2)/2, (3.8)

-1, x > (Xj + x2)/2

(with an analogous definition for 5, 2(0)), derives from the property that for homo-
geneous patches having uniform thickness, opposite but equal strains are generated
about the point (x, 6) - ((x, +x2)/2, R(9X +d2)/2) in the two coordinate directions.

If the weak form (2.17) is used, the external line moments and forces are simply

K = Wx)pe> Mg = (Me)pe, Nx = (Nx)pe, Ng = (Ng)pe (3.9)

where {Mx)pe, (Mg)pe, {Nx)pe , and (Ng) given in (3.7) are the respective moments
and in-plane forces that are generated by the input of voltage to the patches.

However, if one is using the strong form (2.12) of the equations of motion with
piezoceramic actuators, the surface moments and forces to be used in (2.12) are given
by

r ae • " dx ' 1 '
qx = q, = -S, Jx)S,

We point out that the differences between the external surface force expressions in
(2.13) and (3.10) are due to the fact that the former were derived for an infinitesimal
element whereas the latter are global expressions that preserve the overall signs of the
forces generated by the patches as well as reflect the discontinuities due to changes
in sign. These differences result from the property that the sense of the forces is
highly dependent on the specified location of the axis origin on the neutral surface.
Hence the direction of forces throughout the patch differs in some locations from
those observed in the infinitesimal element, thus necessitating the inclusion of the
indicator functions in (3.10).

Unlike the forces, the action of the moments is specified with respect to a fixed
point on the neutral surface (the point 0 for the element in Fig. 2, or a point on
the left edge of the shell in Fig. 1). As long as the orientation of the infinitesimal
element and full shell with patches are the same, the line moments derived from the
infinitesimal element will be consistent with those of the full structure. Thus the
expressions for the general infinitesimal moments in (2.13) need no modifications
when describing the surface moments generated by the patches as given in (3.10).

4. Patch contributions to plate and beam equations. Analysis similar to that used
for the thin cylindrical shells can be used to determine the forces and moments that
are due to the presence and activation of piezoceramic patches that have been bonded
to a flat plate or beam.

Plate/patch interactions. By repeating the analysis used in the last section for deter-
mining the internal moments and forces for the structure consisting of piezoceramic
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patches bonded to a thin shell, it is straightforward to show that the internal mo-
ments and forces for a damped plate having a pair of identical patches with edges at
x{, x2, yj, and y2 are given by

Nx =
Eh cDh

{ex + uev) + —^(ex + uev)1 -u2"x y' \-u2Kx

Ny =

2EJ 2cd,T . '
+ j _ u2^£x + V\ £y) + { _ly2^£x + U\£y)

Eh / x CDh f ■ \
(ev + ^ex) + -B-^(ev + uex)

Xpe{x,y).

\-u2 -V l-^2Vy

+
1E\T, ^ 2cd>T,-

2(ey + Ulex) + -T-1-2(Ey + iylEx)i ^ y i a ' i1 — Z/j 1 - I/j

^ = NyX =
Eh cnh

+

.2(1 + 1/) 2(1+1/) ^
E, T cD_ T

-8V„ +
2(l + i/.) ** 2(1 + «/ )

and

Mx =

+

Eh / \ CD/!3 ^
 5-(/C„ + VKv) +    ~—(K + 1//C12(1 — i/ ) y 12(1 - i/ ) y

2E\ai / , 2c«,a3
 LA-('CJC + 1/,/c ) + —j-(K + i/./e )3(1 - v2) x 1 y 3(1 -V2) x 1 y

Eh3 , , cc//3 ^
 r K + UK) +  ^ — (K + UK )12(1 — U ) y X 12(1 - u2) y x

Ia3

xpe{x,y)-

2E,a, / . 2cD a3
2:(% + "!**) + + VlKx)

Mxy = Myx =

3(1-1/,') * 3(1-1/,,

+

xpe{x,y),

Eh3 cn/?3
-T + ^TTT rT

C£>,fl3
 T +

3(1+!/.) 3(l+i/,)24(l + i/) 24(1 +i/)

(compare to (3.4)). The characteristic function here is given by
1, xx<x<x2,yx<y<y2,
0, otherwise,

xpe(x, y)

xpe(x,y) =

a} = {h/2 + T)3 - /?3/8 , and the midsurface characteristics ex , ey , kx , Ky , exy , and
t are defined by

du dv dv du
Ex dx ' Sy dy ' £jcy dx + dy

d2w d2w d2w
K„ — , K.= r-, T = -2-

* dx2 ' y dy2 ' dxdy
(see (2.1)). As before, E, cD, u and E{, cD , u{ are the Young's modulus, damping
coefficient, and Poisson ratio for the plate and patches, respectively.
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If the patches have differing material properties or if only one patch is present,
the moments and forces can be determined from (3.3) with 9 replaced by y .

These internal (material) moments and forces are then used in the strong form
(2.18) or weak form (2.19) of the plate equations, with the choice depending on
the application of interest. In either case, the use of these moments and forces
incorporates the structural contributions due to the presence of the piezocermanic
patches.

The external moments and forces due to the activation of the patches are also
found in a manner analogous to that used in the shell analysis. The induced stresses

<»,)„, = <».)„, = •

F F d(a) =((t) = e = lv
x'pe2 8>pe2 I -v2 Pe2 1 -u2 T 2

are integrated through the thickness of the respective patches, thus yielding the ex-
ternal moments and forces

(^cU, - Wy)Pex -

WX)Pe2 = Wy)Pe2 =

(Nx\e, = = _ j ^ ePet '

F T
(N ) = (N ) = 2—e .v X'pe2 V y'pe2 j _ v pe2

The total external moments and forces generated by the patches are then given by

(K)pe = (My)pe = [(Mx)pe< + (MXjmx) - H2(x)][H\(y) - H2(y)],

WPe = (Ny)pe = [TO*, + " H2{x)][Hx{y) - H2{y))Sl2{x)Sx2{y),
(4.1)

where, again, H((x) = H(x - xt), i = 1,2, 5, 2{x) denotes the indicator function
described in (3.8), and Ht(y) and .S^ 2(y) are defined in an analogous manner.

These loads can be substituted directly into the weak form of the plate equations
(2.19) as the load on the system (with qn = 0 and Nx = (Nx)pe, Ny = {Ny)pe,

Mx = (Mx)pe, My = (My)pe). If the strong form of the plate equations is being
used, the surface loads can be determined via the expressions

d(N ) ~ d(N )
qx = -Sl2(x)Sl<2{y)^f^, qy = -S, 2(x)S{ <2(y)^^

rn--9^dy ' y dx '
and these latter values can be substituted into the equilibrium equations (2.18).
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As in the case of the shells, the use of the strong form results in up to two deriva-
tives of the Heaviside function, whereas the use of the weak form alleviates this
problem by transferring the derivatives onto the test functions.

It should be noted that the voltage choice e = e„„ = e„„ causes pure extension
P" P"\ P" 2

(patch pairs excited "in phase") in the plate while pure bending occurs with the choice
eno = —e„. = e„„ ("out of phase" excitation).P" P" i P"2

Beam/patch interactions. The patch contributions to the dynamics of a thin beam
can be determined directly from the plate/patch interaction model if one considers
only vibrations in the x direction along with the usual transverse vibrations. For
a damped beam of thickness h and width b having a pair of bonded patches of
thickness T with edges at xx and x2, this yields the internal force and moment

r-uudu , uu ^ uEhb-—b cnhb-

+

dx D dxdt

E'*(^ + T|?]+Vlr^ + T^J

,hibd2w h^b d3w+ c
12 Qx2 D 12 dx2dt

+

+

(4.2)

2 dx 3 dx2

, ( a-, du a-, d2w i , / >*-, u u v w \
E>b + -T9laJ + fi?i7 X"M-

where, again, a2 — (h/2 + T) - h"/4 and a3 — (h/2 + T) - h /8 . Also, Ex, cD
and E2 , cD denote the Young's modulus and Kelvin-Voigt damping parameter for
the individual patches. We note that in obtaining these expressions for the internal
forces and moments, we have assumed that the patches also have width b . This was
done for clarity of presentation, and more general expressions for the case when the
patches are narrower than the beam can be obtained in a similar fashion.

Two special cases of (4.2) are worth mentioning in more detail since they occur
quite commonly in applications. If both patches have the same material properties
(E2 = Ex and cD =cD), then (4.2) reduces to

Nx =

Mx =

T7UhdU , Uh ^Ehb-—l- cnhb-dx D dxdt +
. du , . , „ d2u

1 dx D> dxdt Xpe(x)

,h*bd2w \ib d3w
+ c

12 dx2 D 12 dx2dt
+

2a,d2w ,2a, d3w
E.b—r1—T + cn b—  
'' 3 dx2 D' 3 Qx2dt XpeW-
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If only one patch is present, the expressions reduce to

Nx =
vuudu , uu ®2uEhb-—|- cnhb-dx D dxdt

+

EYc'b d2w cnh3b d3w

, f^du a2 d2w\ ( d2u a2 d3w
Xpe(x),

+ "Z><
12 dx2 12 dx2dt

+ F + h ("I °1U I ^ d3W >
1 \2dx+ 3 dx2 + V [ 2 dxdt + 3 dx2dt Xpe(x).

When the latter expressions for the internal force and moment resultants are substi-
tuted into the strong form (2.21) or weak form (2.22) of the beam equations, it is
apparent that the longitudinal and transverse vibrations are coupled as a result of the
asymmetry due to the single patch.

The external forces and moments generated by the activation of the patches follow
directly from the expressions obtained in the case of the plate. Summarizing from
those results, we see that the total external forces and moments are

Wx)Pe = [(A^U, + (^c Wt", (*) - H2(x)] ,
(Nx)ne = K*X. + (NX)][HJX) - HJx)]S. Jx) ,

where

(«,)„, = (4 (j + T) ~ = ~\Eib(h + Vi •

_ 1
'x'pe2 ~(K)ne. = oE2b 4 - + T -h'\e = --E2b(h + T)d3l V2,

(AT) = - E1Tben„ = —E7bdx. V1.v x'pe2 2 pe2 2 31 2

These expressions can then be substituted directly into the weak equations (2.22)
as loads on the beam (with qn = 0 and Nx = {Nx) , Mx = (Mx) ). In order to de-
termine the patch loads for the strong form of the beam equations, the corresponding
surface moments and forces are found via the relationships

(a) --S (.X)i^ (m ) -JWb-WX)pe- 1,2' ' qx ' \my)pe gx '

and these latter values are used in (2.21). We again point out that this results in
the need to differentiate the Heaviside function (once for the force and twice for
the moment), whereas this problem is avoided in the weak formulation since the
derivatives are transferred on the test functions. In fact, the effect of the Heaviside
functions in the latter case is to simply restrict the integrals to the region covered by
the patches.



380 H. T. BANKS, R. C. SMITH, and YUN WANG

5. Conclusion. In this work, models describing the dynamics of structures con-
sisting of piezoceramic patches which are bonded to an underlying substructure have
been presented. While the presentation is for elastic substructures consisting of a thin
cylindrical shell, plate, and beam, the techniques discussed for determining the mo-
ments and forces generated by the patches can be directly extended to more complex
structures and geometries.

In the case of the shell, the patches are assumed to be curved and the coupling
between the in-plane strains and the bending, which is due to the curvature, is re-
tained. By bonding the patches to the shell, the material properties of the structure
are changed and general expressions for the internal and external moments and forces
which incorporate these differences are developed. As demonstrated by the results in
[1], it is necessary to account for these differences in material properties in order to
match structural frequencies when estimating physical parameters.

A second patch contribution occurs when a voltage is applied and strains are in-
duced. This results in external loads that depend on the material properties of the
patches, the geometry of patch placement, and the applied voltages. The expressions
for the external moments and forces are sufficiently general so as to allow for differ-
ing voltages into the patches, including the possibility of no voltage into a patch (we
reiterate that the contributions due to the presence of the passive patch are included
in the internal moments).

The techniques for determining the patch contributions to the cylindrical shell
equations were then used to develop general models for patches that are bonded to
thin flat plates and beams. The importance of careful modeling of the internal mo-
ments and forces resulting from the presence of the patches can easily be highlighted
in the case of a beam with a single patch bonded to it. Due to the asymmetry of
the resulting structure, the resulting internal moments and forces lead to coupling
between the PDEs describing the transverse and longitudinal vibrations, which is not
accounted for in previous models. As in the shell case, the models are sufficiently
general to allow for potentially differing patch voltages, which implies that they can be
used for controlling system dynamics when both flexural and extensional vibrations
are present.

For each of the shell, plate, and beam interaction models, the contributions of
the patches are carefully described in both the strong and weak forms of the time-
dependent structural equations of motion. This provides models that can be used in
a variety of applications, including numerical simulations, parameter estimation, and
control schemes. In each of these applications, the models are sufficiently general to
provide for a variety of approximation techniques including modal, spectral, spline,
and finite element schemes. Finally, the patch loads determined by these interaction
models can be applied to higher-order structural models in exactly the same man-
ner, and analogous models can be used for multiple patch pairs and more complex
geometries.
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