
The Modelling and Analysis

of Security Protocols:

the CSP Approach

P.Y.A. Ryan, S.A. Schneider,

M.H. Goldsmith, G. Lowe and A.W. Roscoe

First published 2000.

The original version is in print December 2010 with Pearson Education.

This version is made available for personal reference only. This version is copyright

c©Pearson Education Ltd, and is made available with the permission of the publisher

and the authors.

Contents

Preface vii

0 Introduction 1

0.1 Security protocols . 1

0.2 Security properties . 6

0.3 Cryptography . 14

0.4 Public-key certificates and infrastructures 21

0.5 Encryption modes . 22

0.6 Cryptographic hash functions . 22

0.7 Digital signatures . 23

0.8 Security protocol vulnerabilities . 26

0.9 The CSP approach . 32

0.10 Casper: the user-friendly interface of FDR 36

0.11 Limits of formal analysis . 36

0.12 Summary . 37

1 An introduction to CSP 39

1.1 Basic building blocks . 40

1.2 Parallel operators . 47

1.3 Hiding and renaming . 53

1.4 Further operators . 57

1.5 Process behaviour . 59

1.6 Discrete time . 72

2 Modelling security protocols in CSP 75

2.1 Trustworthy processes . 75

2.2 Data types for protocol models . 80

2.3 Modelling an intruder . 82

2.4 Putting the network together . 85

3 Expressing protocol goals 91

3.1 The Yahalom protocol . 94

3.2 Secrecy . 95

3.3 Authentication . 99

iii

iv CONTENTS

3.4 Non-repudiation . 108

3.5 Anonymity . 114

3.6 Summary . 120

4 Overview of FDR 123

4.1 Comparing processes . 124

4.2 Labelled Transition Systems . 127

4.3 Exploiting compositional structure 133

4.4 Counterexamples . 136

5 Casper 141

5.1 An example input file . 141

5.2 The %-notation . 149

5.3 Case study: the Wide-Mouthed-Frog protocol 151

5.4 Protocol specifications . 157

5.5 Hash functions and Vernam encryption 158

5.6 Summary . 159

6 Encoding protocols and intruders for FDR 161

6.1 CSP from Casper . 161

6.2 Modelling the intruder: the perfect spy 164

6.3 Wiring the network together . 167

6.4 Example deduction system . 169

6.5 Algebraic equivalences . 171

6.6 Specifying desired properties . 171

7 Theorem proving 175

7.1 Rank functions . 177

7.2 Secrecy of the shared key: a rank function 181

7.3 Secrecy on nB . 187

7.4 Authentication . 192

7.5 Machine assistance . 198

7.6 Summary . 199

8 Simplifying transformations 203

8.1 Simplifying transformations for protocols 203

8.2 Transformations on protocols . 207

8.3 Examples of safe simplifying transformations 210

8.4 Structural transformations . 213

8.5 Case study: The CyberCash Main Sequence protocol 215

8.6 Summary . 221

9 Other approaches 225

9.1 Introduction . 225

9.2 The Dolev-Yao model . 226

9.3 BAN logic and derivatives . 226

9.4 FDM and InaJo . 230

CONTENTS v

9.5 NRL Analyser . 231

9.6 The B-method approach . 232

9.7 The non-interference approach . 232

9.8 Strand spaces . 233

9.9 The inductive approach . 236

9.10 Spi calculus . 237

9.11 Provable security . 238

10 Prospects and wider issues 241

10.1 Introduction . 241

10.2 Abstraction of cryptographic primitives 241

10.3 The refinement problem . 242

10.4 Combining formal and cryptographic styles of analysis 242

10.5 Dependence on infrastructure assumptions 244

10.6 Conference and group keying . 244

10.7 Quantum cryptography . 245

10.8 Data independence . 245

A Background cryptography 249

A.1 The RSA algorithm . 251

A.2 The ElGamal public key system . 252

A.3 Complexity theory . 254

B The Yahalom protocol in Casper 257

B.1 The Casper input file . 257

B.2 Casper output . 258

C CyberCash rank function analysis 273

C.1 Secrecy . 273

C.2 Authentication . 278

Notation 297

vi CONTENTS

Preface

The value of information and the power that it can convey has long been recognized.

Now, more than ever, information is a driver of society and its integrity, confidentiality

and authenticity must be ensured.

Security protocols are a critical element of the infrastructures needed for the

secure communication and processing of information. They are, of course, not the

only components needed to ensure such security properties: for example, good

cryptographic algorithms and systems security measures to protect key material

are also needed. Protocols can however be thought of as the keystones of a secure

architecture: they allow agents to authenticate each other, to establish fresh session

keys to communicate confidentially, to ensure the authenticity of data and services,

and so on.

Aims of the book

This book is about the role of security protocols, how they work, the security properties

they are designed to ensure and how to design and analyze them.

It was recognized very early on, almost as soon as they were conceived, that the

design and analysis of security protocols was going to be a very delicate and error-

prone process. Security protocols are deceptively simple-looking objects that harbour

surprising subtleties and flaws. Attempts to develop frameworks and tools to reason

about their properties goes back over 20 years, but the topic remains a highly active

and fruitful one in the security research community. An overview of the historical

background can be found in Chapter 9.

In this book we present the particular approach to security protocol verification that

has been developed by the authors. It was the first to apply process algebra and model-

checking to the problem. The process algebra in question is CSP (Communicating

Sequential Processes).

There is a widespread misconception that pouring liberal libations of cryptographic

algorithms over an architecture will render it secure. Certainly, good cryptographic

algorithms are important but, as we will see, it is quite possible to have an architecture

employing high grade algorithms that is still wide open to exploitation due to poor

protocol design.

We hope that our readers will come away with a good understanding of the role of

security protocols, how they work and the kinds of vulnerabilities to which they are

vii

viii Preface

prey. In particular we hope that they will better appreciate the subtleties in making

precise the security goals that such protocols are intended to ensure and the importance

of making these goals – as well as the assumptions about the underlying mechanisms

and environment – precise.

Ideally we hope that the reader will gain sufficient understanding (and enthusiasm!)

to apply the tools and techniques presented here to their own protocols, real or

imaginary. Perhaps also some readers will be sufficiently intrigued to go on to

pursue research into some of the open problems that remain in this challenging and

fascinating area.

Structure of the book

This book is concerned with the particular approach to analysis and verification of

security protocols based around the process algebra CSP. There are a number of facets

to this approach, and the book uses a running example, the Yahalom protocol, to link

the material.

The Introduction introduces the general topic of security protocols. It covers the

issues that arise in their design, the cryptographic mechanisms that are used in their

construction, the properties that they are expected to have, and the kinds of attacks

that can be mounted to subvert them. It also discusses the CSP approach and the

tool support. The chapter introduces the Yahalom protocol and several other protocol

examples.

Chapter 1 provides a general introduction to the main aspects of CSP relevant to

the approach. CSP consists of a language and underlying theory for modelling systems

consisting of interacting components, and for supporting a formal analysis of such

models. This chapter introduces the building blocks of the language which enable

individual components to be described, and discusses how components are combined

into systems. Specification and verification through refinement, and with respect to

property-oriented specifications, is also covered. The chapter finishes with a brief

discussion of how discrete time can be modelled.

Chapter 2 shows how to use CSP to construct models of security protocols, which

consist of a number of communicating components and are thus well suited to analysis

in CSP. The variety of possible attacks on protocols must also be built into the model,

and the chapter shows how to incorporate the Dolev-Yao approach to modelling a

hostile environment and produce a system description which is suitable for analysis.

Chapter 3 covers the kinds of properties that security protocols are expected

to provide, and how they can be expressed formally within the CSP framework.

Secrecy and authentication are the main concern of the approaches in this book, and

various forms are covered. The properties of non-repudiation and anonymity are also

discussed.

Chapter 4 introduces the model-checking tool support available for CSP, the

Failures-Divergences Refinement checker (FDR). It discusses how this tool works,

and the nature of refinement checking.

Chapter 5 is concerned with the Casper tool. This is a compiler for security

protocols, which transforms a high-level description of a security protocol, and the

Preface ix

properties required of it, into a CSP model of the protocol as described in Chapter 2,

and a number of assertions to be checked. This model can then be analyzed using the

model-checker FDR discussed in Chapter 4.

Chapter 6 discusses in more detail some of the CSP modelling that is carried out by

Casper, particularly how the hostile environment is modelled to allow efficient analysis

by the model-checker.

Chapter 7 is concerned with direct verification of CSP models of protocols. It

introduces the ‘rank function’ approach to proving protocols correct. This allows

proofs to be constructed that verify protocol descriptions of arbitrary size against

their requirements. The theorem-proving and bespoke tool support available for this

approach is also discussed.

Chapter 8 addresses the problem of scale. Real-world protocols are very large and

their analysis is difficult because of the volume of detail contained in their description.

This chapter is concerned with ‘simplifying transformations’, which allow extraneous

detail to be abstracted away when checking a protocol against a particular property

in such a way that verification of the abstract protocol implies correctness of the full

protocol. The approach is illustrated with the CyberCash main sequence protocol.

Chapter 9 discusses the literature on security protocol verification and its historical

context. There are a number of different approaches to the problems addressed in this

book, and this chapter covers many of those that have been most influential in the field.

Chapter 10 discusses the broader issues, open problems and areas of ongoing

research, and gives indications of areas for possible further developments and research.

One area of current research discussed in this chapter, of particular importance to

the model-checking approach of this book, is the development of techniques based

on ‘data independence’, which allow the results of model-checking to be lifted to

protocol models of arbitrary size.

There are three appendices. The first covers some background mathematics and

cryptography, introducing the RSA and the ElGamal schemes; the second is an example

of Casper applied to the Yahalom protocol, containing the input file and the CSP model

produced by Casper; and the third contains a verification using rank functions of the

simplified CyberCash protocol descriptions produced in Chapter 8.

The book has an associated website: www.cs.rhbnc.ac.uk/books

/secprot/ This website provides access to all of the tools discussed in this book,

and to the protocol examples that are used throughout (as well as others). Readers

are recommended to download the tools and experiment with protocol analysis while

reading the book. The website also provides exercises (and answers!), as well as a

variety of other related material.

Acknowledgements

The authors would like to thank DERA (the Defence and Evaluation Research Agency,

UK) and the MoD for funding the Strategic Research Project (SRP) ‘Modelling and

Analysis of Security Protocols’ under which the foundations of the approach were

laid down, and the EPRSC (UK Engineering and Physical Sciences Research Council)

and ONR (US Office of Naval Research) for funding subsequent developments of

x Preface

the approach. Thanks are also due to Inmos, ONR, DERA and ESPRIT, for funding

developments to FDR over the years.

Peter Ryan would also like to thank the Department of Computer Science, Royal

Holloway, and Microsoft Research, Cambridge, for hospitality during the writing of

this book.

This work has benefited from collaboration with Philippa Broadfoot, Neil Evans,

James Heather, Mei Lin Hui, Ranko Lazić and the staff at Formal Systems. It has

also been influenced by discussions with and comments from Giampaolo Bella, Steve

Brackin, Dieter Gollmann, Andy Gordon, Roberto Gorrieri, Joshua Guttman, Richard

Kemmerer, John McLean, Cathy Meadows, Larry Paulson, Matthias Schunter, Paul

Syverson and Paulo Verissimo.

Thanks also to Giampaulo Bella, Neil Evans, Dieter Gollmann, Mei Lin Hui,

Matthias Schunter and Paulo Verissimo for their careful reading of various parts of

this book, and for their suggestions for improvement.

Finally, special thanks are due to Coby, Helen, and Liz, Kate, and Eleanor for moral

support.

Chapter 0

Introduction

0.1 Security protocols

As with any protocol, a security protocol comprises a prescribed sequence of

interactions between entities designed to achieve a certain end. A diplomatic protocol

typically involves some exchange of memoranda of understanding and so on, intended

to establish agreement between parties with potentially conflicting interests. A

communications protocol is designed to establish communication between agents, i.e.

set up a link, agree syntax, and so on. Even such mundane, everyday activities as

withdrawing money from an ATM or negotiating a roundabout involve protocols.

The goals of security protocols, also known as cryptographic protocols, are to

provide various security services across a distributed system. These goals include: the

authentication of agents or nodes, establishing session keys between nodes, ensuring

secrecy, integrity, anonymity, non-repudiation and so on. They involve the exchange

of messages between nodes, often requiring the participation of a trusted third party or

session server. Typically they make liberal use of various cryptographic mechanisms,

such as symmetric and asymmetric encryption, hash functions, and digital signatures.

In some cases further devices like timestamps are also used. We will explain these

terms more fully shortly.

The difficulty of designing and analyzing security protocols has long been

recognized. This difficulty stems from a number of considerations:

• The properties they are supposed to ensure are extremely subtle. Even the

apparently rather simple notion of authentication turns out to harbour a number

of subtleties and comes in various flavours. The precise meaning, or rather

meanings, of this concept remain hotly debated.

• These protocols inhabit a complex, hostile environment. To evaluate them

properly we need to be able accurately to describe and model this environment

and this will have to include the capabilities of agents deliberately trying to

undermine the protocol. In this book we will refer to such a hostile agent as

1

2 CHAPTER 0. INTRODUCTION

Figure 1: Setting up a secure channel

an intruder; in the literature other terms such as ‘spy’, ‘enemy’, ‘attacker’,

‘eavesdropper’ and ‘penetrator’ are also used.

• Capturing the capabilities of ‘intruders’ is inevitably extremely difficult.

Arguably it is impossible, but at least we may hope to make good

approximations that can be progressively enhanced as new styles of attack

come to light. Besides manipulating messages passing across the network, they

could include cryptanalytic techniques, monitoring tempest emanations, timing,

power fluctuations, probabilistic observations and other nefarious activities as

‘rubber hose-pipe cryptanalysis’ (non-mathematical techniques for extracting

cryptographic variables).

• By their very nature security protocols involve a high degree of concurrency,

which invariably makes analysis more challenging.

Security protocols are, in fact, excellent candidates for rigorous analysis

techniques: they are critical components of any distributed security architecture, they

are very easy to express, and they are very difficult to evaluate by hand. They are

deceptively simple looking: the literature is full of protocols that appear to be secure

but have subsequently been found to fall prey to some subtle attack, sometimes years

later. In Roger Needham’s remark ‘they are three line programs that people still

manage to get wrong’.

Security protocols have taken on a role for the formal-methods community

analogous to that of fruit flies to the genetic research community. They are compact

and easy to manipulate whilst embodying many of the issues and challenges to the

tools and techniques for the analysis and evaluation of security critical systems.

To make things rather more concrete let us consider an example: the Needham-

Schroeder Secret-Key (NSSK) protocol. This is one of the earliest such protocols and

has, aside from a rather subtle vulnerability that we will discuss later, stood the test of

time. It forms the basis of the well-known Kerberos authentication and authorization

system [65]. It uses purely symmetric encryption algorithms and is designed to enable

two agents, Anne and Bob say, to set up a secure channel of communication with the

help of a trusted server, Jeeves. This situation is illustrated in Figure 1.

To start with, all the registered agents, including Anne and Bob, share private, long-

term keys with Jeeves. These are pair-wise distinct so although each can communicate

0.1. SECURITY PROTOCOLS 3

securely with Jeeves they are not able to communicate directly with each other. Now

suppose that Anne wants to start talking privately with Bob. One obvious possibility is

for them to communicate via Jeeves: she sends an encrypted message to Jeeves using

the key she shares with him; he decrypts this and then encrypts the plaintext using the

key he shares with Bob. This works but rapidly gets very cumbersome: it involves a lot

of computation and means that Jeeves becomes a bottleneck and single point of failure.

The trick then is just to use Jeeves as and when necessary to establish a new key

between Anne and Bob so that they can then communicate directly without further

recourse to Jeeves. An obvious question is: why not just supply each pair of agents

with a key at the outset? Again this works up to a point but requires roughly N2

distinct keys to be distributed from the start, where N is the number of agents. If N

is large this rapidly becomes impractical, especially as it is likely that most of these

keys will never be used. It is even worse as we may not know at the outset what the

set of users is going to be. Typically, registered users will come and go. Another

important point is that it is desirable to change keys frequently to make the task of

cryptanalysts harder and contain the effect of any compromises. Having a mechanism

like the Needham-Schroeder Secret-Key protocol to set up new keys as required makes

this easier. The long-term keys, ServerKey(a), ServerKey(b) etc., can be stronger and

should less susceptible to cryptanalysis as they tend to carry only a small volume of

traffic.

Returning then to the protocol we see that if we start with N users only N keys need

be set up initially and it will be fairly straightforward to supply each new user with a

new private key as and when they register.

Suppose that Anne shares the key ServerKey(Anne) with Jeeves, whilst Bob shares

ServerKey(Bob) with him.

The protocol proceeds as follows:

Message 1 a→ J : a.b.na

Message 2 J → a : {na.b.kab.{kab.a}ServerKey(b)}ServerKey(a)

Message 3 a→ b : {kab.a}ServerKey(b)

Message 4 b→ a : {nb}kab

Message 5 a→ b : {nb − 1}kab

This requires some explanation. First let us explain the notation. Each step of the

protocol is represented by a line in the description. Thus

Message n a→ b : data

indicates that in the nth step of the protocol agent a dispatches a message data to b.

The message in general consists of a number of parts concatenated together. In practice

it is of course possible that this message will not reach b or might reach someone else.

For the moment however we are only concerned with presenting the intended progress

of the protocol.

Terms of the form na denote so-called nonces: freshly generated, unique and

(usually) unpredictable numbers. The subscript indicates who generated it, but notice

that this is just a notational convenience; in the real protocol there will typically be

4 CHAPTER 0. INTRODUCTION

nothing in the actual value to indicate that it was created by a. We will discuss the role

of nonces more fully shortly.

Compound terms can take the forms:

• {data}k, which denotes the value data encrypted under the key k;

• m.n, which denotes the text m followed by (concatenated with) the text n.

Now we are in a position to walk through this protocol step by step. In the first

step Anne tells Jeeves that she would like to talk to Bob and she supplies the nonce

na. Jeeves now creates a new key kab and returns the message with nested encryption

indicated in step 2 to Anne. The outer encryption is performed using ServerKey(a)
which Anne can strip off. Inside Anne finds the following:

na.b.kab.{kab.a}ServerKey(b)

The first term is just the value of the nonce she sent to Jeeves in message 1. She

is expected to check that this value agrees with the value she originally sent out. We

will return to the significance of this a little later. The second term should be Bob’s

name. Again she should check that this agrees with the name in her request of message

1. The third term is the new key kab. The last term is encrypted using the key that Bob

shares with Jeeves. Anne can’t read this last term but in accordance with the protocol,

and assuming that all the other checks have succeeded, she simply forwards it to Bob

in the third step. When Bob receives this he is able to strip off the encryption to reveal:

kab.a.

So he now knows the value of the new key kab and knows that it is intended for

communication with Anne. He now dreams up a new nonce of his own nb and sends it

back to Anne encrypted under kab in message 4. Anne decrypts this to extract nb. She

modifies this in some standard way – the convention is to subtract 1 – and sends this

modified value back to Bob, again encrypted under kab. Finally Bob decrypts this and

checks that the resulting value agrees with what he expects for nb − 1.

So, what has all this frantic activity achieved? In informal terms, and assuming

that all has gone smoothly, Anne and Bob end up with shared knowledge of kab. In

fact they share this knowledge after message 3 has been received by Bob. So why a

further two messages and yet another of these nonces? Messages 4 and 5 are really just

acknowledgement messages to assure each other that the other also knows kab. We see

that by the time Bob receives message 3 he knows that Anne knows kab. Once Anne

gets message 4 she knows that Bob knows kab and, further, she knows that he knows

that she knows kab. And so on. We can see that we could go on constructing an infinite

chain of acknowledgement messages leading to a tower of states of knowledge about

knowledge.

We should stress though that the conclusions reached by Anne and Bob above are

based on very informal reasoning. On receiving message 3 Bob is reasoning something

along the following lines:

Apart from me only Jeeves knows ServerKey(b) so only he could have

generated these terms. Assuming that Jeeves is being honest he would

only have generated them in response to a request from Anne and so they

0.1. SECURITY PROTOCOLS 5

must have been included in a message to Anne encrypted with her long-

term key. Hence it could only have reached me if it was forwarded to

me by Anne. So Anne received the appropriate message from Jeeves with

kab. . .

Such chains of reasoning are extremely error prone as we will see in, for example,

the analysis of the Needham-Schroeder Public-Key (NSPK) protocol. We will see in

this book how one can reason about protocols in a fully formal and indeed largely

automated way.

The goal of this protocol is authenticated key distribution. In particular it should

fulfil Anne’s request to provide the means for her to have a private, authenticated

conversation with Bob. What she wants at the end of the protocol run is to be sure

that Jeeves has supplied her and Bob, and only her and Bob, with a freshly generated

session key K that they can now use in further exchanges. As long as this key is only

known to her and Bob she can be confident that messages she sends out encrypted with

K can only be read by Bob, and furthermore that messages she gets back encrypted

with K must have come from Bob and will also be safe from prying eyes.

This protocol illustrates a number of interesting issues that will crop up repeatedly

throughout this book. Ensuring that Anne and Bob are really justified in having

confidence in the services provided by this protocol is no easy task. First, we need

to be sure that intruders can’t undermine this goal by manipulating the messages in

various (non-cryptographic) ways. This depends on the correctness of the protocol

design, and is the principal concern of this book. It is also possible that poorly

designed or unsuitable cryptographic primitives might lead to vulnerabilities that can

be exploited. By and large we will not deal with such problems except to discuss to

some extent how features of the crypto algorithms might interact with the protocol

itself to give rise to vulnerabilities. We should also note that, from Anne’s point of

view say, she needs to place confidence in certain, remote parts of the system. She

has to trust Jeeves to act according to the protocol description and to employ a ‘good’

key generation scheme. She also needs to trust Bob. If Bob is going to compromise

his key, either deliberately or simply through carelessness (insecure storage of the key

material), then all hope of secrecy or authentication is lost. On the other hand she

should not need to place any great faith in the communications medium. Quite the

contrary: she should typically assume that the medium is entirely open to malicious

agents trying everything in their power to undermine the security goals.

Notice that the first message from the initiator, Anne, goes out in the clear. There

is thus nothing to ensure the secrecy or integrity of this message. We are assuming that

the intruder learning that Anne wants to talk to Bob is not a problem. We will also see

later that there is no use to the intruder of learning the value of na. Thus lack of secrecy

of these values is not a problem unless we are worried about traffic analysis. As to

the integrity, it is certainly the case that there is nothing to prevent the intruder altering

these values. However the only effect will be for Anne to back out when she finds that

the values in the reply from Jeeves do not agree with her records. A denial of service

attack can be launched in this way, but secrecy and authentication are not breached.

Another point is that we are assuming that the protocol is using a form of block

cipher (which operates on fixed length blocks of plaintext and ciphertext) rather than

6 CHAPTER 0. INTRODUCTION

say a stream cipher (which converts plaintext to and from ciphertext one character

at a time). We will discuss the distinctions in more detail in Section 0.3 but this is

important for Bob’s nonce challenge to work. If a stream cipher were used the intruder

would most likely be able to fake {nb − 1}kab
, without even knowing either nb or kab,

by simply flipping an appropriate bit of the ciphertext of message 5.

We are further assuming that encrypting a number of terms together has the effect of

binding them together, that is, it is not possible to cut and paste a chunk of the ciphertext

in order to replace one of the terms without garbling the whole encipherment. Where

the length of the terms exceeds the length of the block cipher, a suitable encryption

mode will be needed to achieve this and we will discuss this in more detail a little later.

Without such a mechanism the intruder, Yves, might be able to cut and paste a chunk

of ciphertext that he knows will decrypt to his identity rather than Anne’s, so as to fool

Bob into thinking that he has a secure channel with Yves rather than with Anne.

This example served to give the flavour of the role of security protocols and

how they are typically implemented. This particular protocol enables principals to

authenticate each other and, if required, communicate in secrecy. Other security

goals are of course possible and we will see several more in the next section. A

number of cryptographic primitives have made an appearance here serving a number

of roles: encryption to achieve secrecy, bind terms and ensure authenticity; nonces to

foil replays; and so on. Such primitives will recur throughout the book and we will

give an overview of the cryptographic background required to understand how these

primitives are implemented in Section 0.3.

0.2 Security properties

Here we give an intuitive description of a number of important properties or services

that security protocols may be required to provide. Typically, of course, a protocol will

only be expected to provide a subset of these, depending on the application.

The meanings of these terms are frequently taken as obvious and widely

understood. One typically finds that when pressed people find it remarkable difficult to

make precise their understanding. Furthermore it often turns out that these supposedly

widely understood terms are given different interpretations, sometimes within a single

document or design. It is for these reasons that it is so essential to give precise,

formal meanings. It is not sufficient, for example, to assert that a particular protocol is

‘secure’, or worse ‘correct’. A protocol can only be claimed to be correct with respect

to a given, precisely defined property and even then only against certain classes of

threat and subject to various assumptions.

In the following sections we outline possible formalizations of these properties.

These should be regarded as indicative rather than definitive. More detailed

descriptions, along with formalizations in CSP, can be found in Chapters 2 and 3.

Secrecy

Secrecy, or confidentiality, has a number of different possible meanings and which is

appropriate will depend on the application. We might have a very strict interpretation

0.2. SECURITY PROPERTIES 7

in which the intruder should not be able to deduce anything about the legitimate

users’ activity. In effect he should not even be able to perform any traffic analysis,

let alone be able to derive the content of any messages. For this a non-interference

style characterization is required that asserts that a high-level user’s activity should not

result in any observable effect on low-level users or outside observers of the system.

See for example [82] for a detailed discussion. This is a very strict interpretation and

requires correspondingly elaborate implementations. In the case of a communications

network it would require, for example, hot-line style dummy traffic, or anonymized

routeing.

This tends to be an overly strong characterization for most applications, and

typically simpler, safety-style formalizations are sufficient. Such properties are

both simpler to understand and to check and also seem more appropriate to most

applications, so we will confine ourselves to these in the bulk of this book.

In most cases it is sufficient to prevent the intruder from being able to derive the

plaintext of messages passing between the honest nodes. That is, Yves may be able

to tell that Anne has sent a message to Bob and maybe even have a good idea of

how long it was, but he is unable to read its contents. A property of this kind can

be formulated as a safety or trace property. Such properties can be stated as predicates

over the behaviours of the system. They state which behaviours are acceptable and

which are not. Such properties are generally easier to understand and analyze than

say liveness and non-interference, both of which must be formulated as properties over

the ensemble of system behaviours and cannot be reduced to a predicate on individual

traces.

We can capture a simple notion of secrecy as follows. Suppose that there is

some set M of data items that we regard as sensitive and that the users will be

encouraged to transmit to each other encrypted under-session keys established using a

key-establishment protocol. We want to ensure that no message from this set can be

obtained by the intruder in unencrypted form. We will see later how this is formalized

in CSP. For the moment we can think of it as follows: if there is any behaviour of the

system that reaches a state in which an item from the set M shows up in plaintext form

in the intruder’s set of knowledge this is deemed to represent a breach of the secrecy

property. We of course suppose that the intruder does not have any elements of M in

his original knowledge set so if he does learn a value it must be through observation of

messages between the legitimate nodes. We are not concerned that the intruder may

be able to get hold of encrypted version of sensitive data items, indeed we fully expect

this to happen, as long as he doesn’t also get hold of the corresponding decryption key.

Authentication of origin

Intuitively authentication of origin is taken to mean that we can be sure that a message

that purports to be from a certain party was indeed originated by that party. Furthermore

we will typically also require that we can be sure that the message has not been

tampered with between times.

We can turn this around and phrase it as follows: a protocol maintains

authentication of origin if it is always the case that if Bob’s node accepts a message

as being from Anne then it must indeed be the case that earlier Anne sent exactly this

8 CHAPTER 0. INTRODUCTION

message. A stronger property is to further require that Anne actually intended the

message for Bob. These can be formulated as predicates on system behaviours.

Notice that here we have made no mention of time so there is no measure of the

time that might have elapsed between Anne sending her message and Bob receiving it.

We tend to assume, for example, that if an agent is still prepared to accept a response

to a nonce challenge then the challenge itself was sent out only ‘recently’. To take

more detailed account of the freshness of the message when it reaches Bob, and to

express timed requirements, we typically need a timed model (see Chapters 1 and 5).

Another point to note is that there is nothing in this formulation to prevent

Bob receiving the message several times even if Anne only sent it once. For many

applications this may not be a concern so this formulation is adequate. Sometimes it

may be an issue. For example, if the messages represent money transfers then clearly

we don’t want to allow one deposit to lead to multiple increments to Anne’s account.

For such applications the predicate can be strengthened in a straightforward fashion,

as discussed in Chapter 3.

Entity authentication

The term ‘entity authentication’ crops up frequently in the literature and its meaning

is often unclear. In particular the distinction between entity authentication and

authentication of origin is not obvious. Intuitively the notion is that you can be

confident that the claimed identity of an agent with whom you are interacting is

correct. To a large extent this is already captured in the notion of authentication of

origin: you are able to verify the origin of each message you receive from an agent

during the course of an interaction.

Entity authentication carries with it a notion of timeliness that is absent in the

simple formulation of authentication of origin given above. There also seems to be an

implication that it is a one-off process: you establish the identity of your interlocutor

and proceed with your interaction. For some forms of communications media this

might make sense, if for example once a link is established it is difficult for a third

party to tap into it and start masquerading. Terms like ‘trusted channel’ are sometimes

employed to indicate such a link. Such links can be implemented, but great care needs

to be taken if you are incorporating the assumption of such links in your analysis. Even

if you do have such a link set up, there remains the possibility, for example, that your

interlocutor gets overpowered by an intruder and again authentication is undermined.

It is actually rather difficult to capture the notion of entity authentication in a

precise mathematical way and for most purposes it seems enough to regard it as

a repeated form of origin authentication at each step of the interaction between

agents. This is the approach that we will adopt in this book. Gollmann has studied

the notion of authentication in great detail in, for example [36]. Much of the

confusion surrounding the notion of entity authentication seems to arise from differing

models of communication: some people think in connection-oriented terms, others

in connectionless terms. The way that we model communications in this book

corresponds to the connectionless approach: each message is separately consigned to

the medium and the fate of every message is independent.

0.2. SECURITY PROPERTIES 9

Integrity

Integrity is usually taken to mean that data cannot be corrupted, or at least that any

such corruption will always be detected. In this sense integrity is seen as a corollary of

our authentication property above. This follows from the fact that in this formulation

we required that the contents of the output message match that of the input message.

Notice that we are thinking of the occurrence of an event such as receive.Anne.Bob.m
as indicating that the node has not detected any corruption of the message and has

output it to Bob. If it were possible for a corrupted message to be accepted then

this would show up as a violation of the property above and we would have to deem

the protocol to be flawed. We could relax the condition in our definition of origin

authentication that the data values match. This would give us something akin to entity

authentication: it would establish that the other party is alive and responding, but would

not guarantee the authenticity of any contents we might receive. This may be useful in

some circumstances, for example if you want to check that an alarm is active.

This captures the notion of integrity of communicated messages. Integrity can

also be taken to encompass the immunity from corruption of stored data. We will

not explore this further as it is really a systems security issue rather than a security

protocols problem.

Authenticated key-exchange

One of the major roles of security protocols is to enable authenticated, confidential

communication across networks by setting up key material between the various players.

To some extent this can be viewed as a special case of secrecy as described earlier,

where the sensitive data items are the keys. However, it is a bit more subtle as we have

to be precise about who should get knowledge of the keys and who must not. It is also

often the case that further properties besides secrecy of the keys are called for. Slightly

different terminology is used to reflect the differing requirements.

Secrecy alone is not enough, or at least we have to be far more precise about what

secrecy means. Pure Diffie-Hellman key establishment (see page 20) does provide a

form of secrecy in that only the two interlocutors know the session key at the end of the

protocol. The problem is that it is all very well knowing that you share a secret with

another person but not much use if you do not know for sure who this other person is.

Thus the essential properties to be upheld by a key-establishment protocol are the

secrecy and authenticity of the resulting session keys. More precisely: suppose that

Anne starts up a protocol to agree a key to talk to Bob. We need to be confident that

whenever Anne reaches a commit state in which she thinks that she shared a key K with

Bob, then K should indeed be known at most to Anne and Bob. Similarly for Bob. Thus

key establishment and authentication must be inextricably bound up in the protocol to

avoid any danger of one of the players being fooled into associating the key with the

wrong agent. We will refer to such requirements as authenticated key establishment.

Many authenticated key-establishment protocols are based on a cryptographic

primitive like Diffie-Hellman to provide the secrecy of the session key with additional

features to ensure the authentication. A prime example of this is the Station-To-Station

(STS) protocol due to Diffie, Van Oorschot and Wiener [24]. The reference is in fact

10 CHAPTER 0. INTRODUCTION

Anne Bob

ax

ay·{Sign
Bob

(ay·ax)}
k

{Sign
Anne

(ax·ay)}
k

Figure 2: Station-To-Station protocol

an excellent summary of authentication and authenticated key-exchange protocols and

recommended reading for anyone interested in the subject.

One of STS’s key features is the intertwining of the authentication with key

exchange, which would seem vital in order to assure that authentication is maintained.

Assume first (as in Diffie-Hellman, page 20) that a cyclic group along with a

primitive element a are publicly known. Assume further that public keys of users

are available (for example via certificates issued by a certifying authority). With this in

place we proceed as follows:

Anne chooses a random number x and sends ax to Bob. All calculations are of

course performed modulo p. Bob now chooses a random number y and calculates

k = axy. He then sends Anne a message of the form:

ay.{SignBob(a
y.ax)}k

where SignBob(X) denotes the application of Bob’s signature to X.

Anne can now compute k = ayx and thence decrypt the token and then finally check

Bob’s signature from her knowledge of his public key. Anne now sends Bob:

{SignAnne(a
x.ay)}k

Finally Bob can decrypt and check Anne’s signature. Figure 2 summarizes the

exchanges involved. The outcome of all this is that Anne and Bob should be confident

of each other’s identities and that they share a key k that can now be used for

subsequent communication using a symmetric encryption scheme.

The security of the scheme can be enhanced by allowing each user to use a distinct

field. The most powerful attacks against these Diffie-Hellman style schemes involve

the pre-calculation of a large look-up table to speed up the calculation of logarithms. If

a single field is used over a network then clearly such attacks become more attractive. If

this proposal is adopted then of course a minor modification to the protocol is needed

to ensure that both parties use the same field and primitive element. Thus the first

message must include a statement of p and a. So Anne starts the protocol by sending:

ax.p.a. Other variants of the protocol are also suggested, such as an authentication-only

version. A version in which certificates are shipped across with the messages is also

proposed for a situation in which the public keys are not already distributed.

0.2. SECURITY PROPERTIES 11

The term ‘key-agreement’ often also carries an additional connotation: that both

players contribute to the final value of the session key, ideally in a symmetrical fashion.

In particular, in the absence of some form of collusion, neither can determine the final

value. Protocols based on the Diffie-Hellman scheme are a prime example. When

Anne supplies her ax term she cannot predict what y value Bob will use. Arguably if

Bob could compute discrete logs he could choose a y to give a particular value for K

but we are in any case supposing that this is intractable.

Sometimes Anne, say, may want to know not only that the key is at most known

only to her and to Bob but further to be sure that Bob does indeed know it and associates

it with communication with her. This kind of requirement is often referred to as

key-confirmation. What typically happens is that the agents’ knowledge grows as the

protocol unfolds. Consider the following toy protocol:

Message 1 Anne→ Bob : SignAnne(Bob.ax)

Message 2 Bob → Anne : SignBob(Anne.ax.ay)

Message 3 Anne→ Bob : {data}K

where K = axy.

After receiving the first message Bob knows that Anne wants to talk to him

and that she has supplied the Diffie-Hellman term ax. He responds with the second

message and can already infer that if Anne gets this message uncorrupted she should

be able to calculate the session key K. Arguably, he could already try sending some

data to her along with this message encrypted with K. In fact this would be rather

dangerous as, at this stage, he has no assurance of the freshness of the first message

from Anne. However, when she receives this second message from Bob she knows

that he has acquired her ax term and has provided his ay and so he presumably knows

K and associates it with her. Furthermore, she has assurances of freshness of message

2 because her Diffie-Hellman term in effect doubles as a nonce. She could now

transmit some data to Bob encrypted with K. On receiving this Bob can now infer that

Anne did indeed receive his message and so has constructed K and associates it with

him. It may be preferable, of course, just to have some innocent data value here.

Note how the Diffie-Hellman terms double as nonces, so providing assurances of

freshness. Note further that we can perform an authentication analysis on this protocol

to check that if Bob accepts ax as originating from Anne then it really was created

by Anne and vice versa. We can then invoke the Diffie-Hellman problem to infer the

secrecy of the term K between Anne and Bob.

The terms ‘key distribution’ and ‘key transport’ are sometimes used to denote

schemes in which the keys are generated in one place and shipped out as requested.

Here we are thinking more of some central server creating keys as required. There is

no notion of the various participants all contributing to the resulting keys, as with the

Diffie-Hellman scheme, for example. The Needham-Schroeder Secret-Key or Yahalom

(see p. 33) protocols provide examples of key distribution protocols in which the key

is generated solely by the server with no input from the principals.

12 CHAPTER 0. INTRODUCTION

Non-repudiation

For most security goals we are making assumptions that the legitimate participants are

honest, i.e. behave according to the protocol rules. Usually it will be in their interests

to do so. If, for example, Anne and Bob want to have a private conversation then it is

in their interests not to disclose their keys or stray from the protocol rules.

Non-repudiation is rather different however. Here we are concerned with

protecting one participant against possible cheating by another. Consequently we

cannot assume that the ‘legitimate’ participants will not cheat. In essence the idea is to

provide the parties with evidence that certain steps of the protocol have occurred. For

example, non-repudiation of transmission should provide the recipient with proof that

the message was indeed sent by the claimed sender, even if the sender subsequently

tries to deny it. Furthermore, this proof must be convincing to a third party, not just to

the recipient himself. It is essential therefore that the evidence should not be forgeable

by the recipient.

As such we see that non-repudiation appears to be very similar to authentication.

This suggests that we may be able to capture this property as a variant of authentication,

but ensure that our model endows the principals with intruder-like capabilities. That is,

the participants are given capabilities to fake messages up to the usual cryptographic

constraints. If we can then show that Bob could only have come into possession of a

message of a certain form if Anne had actually sent an appropriately related message

to him then we will have shown that the non-repudiation property holds. This will

usually call for some signature-type mechanism to ensure that Bob can only come into

possession of such a message if Anne really had previously signed and sent it to him.

Alternatively, a trusted notary can be used, but this adds communication overheads and

so on.

Fairness

Occasionally protocols are required to enforce certain fairness properties. In electronic

contract signing, for example, we will want to avoid one of the participants being able

to gain some advantage over another by halting the protocol part-way through. Bob

could, for example, refuse to continue after Anne has signed up, but before he has

signed. Various protocols have been proposed to address this, some involving Trusted

Third Parties (notaries). Others avoid this but use instead some form of incremental

commitment mechanism. See for example [102]. There tends to be a trade-off here

between, on the one hand, the need to involve a third party and, on the other, the need

for rather a lot of communication. The former calls for an extra entity to be trusted and

to be available. The latter tends to require a large number of messages to pass back and

forth. More recent protocols seek to provide fairness efficiently by only resorting to a

third party in the event of dispute as discussed in [6].

Anonymity

Anonymity is a property that seems to have been explored comparatively little from a

formal point of view. Intuitively a system that is anonymous over some set of events

0.2. SECURITY PROPERTIES 13

E should have the property that when an event from E occurs then an observer, though

he may be able to deduce that an event from E has occurred, will be unable to identify

which. Of course this will in general depend on the status of the observer so we must

be clear about the observer viewpoint in formalizing such a property. Typically the set

E will be an indexing set of users, so we are asserting that although an observer may be

able to tell that a certain class of action has occurred, he is not able to identify which

of the agents was associated with it.

An elegant formalization of this property can be given in CSP. The key idea is to

use the renaming operator of CSP to shuffle the events of the set E. We then assert that

if the observer’s view of the system is unchanged after an arbitrary shuffling of the set

E then the system provides anonymity with respect to the set E and that observer.

A number of examples of systems displaying various degrees of anonymity, such

as Chaum’s ‘dining cryptographers’, have been analysed using FDR (see Chapter 3).

The CSP approach is essentially ‘possibilistic’ in style, that is to say it abstracts

away from issues of probability and considers only whether or not certain events are

possible. Other approaches have taken a probabilistic style, for example Pfitzmann and

Waidner [72]. Here the idea is to show that the a posteriori probability distribution

over some event set that some observer can assign after an observation is equal to the

a priori distribution before the observations.

Up to now we have assumed that anonymity should apply to each occurrence of

the events in question, in effect that the events from the anonymity set could be freshly

shuffled on each occurrence. In some situations we might not expect the occurrence of

events from the set to be wholly independent. Voting provides a good example: we do

not want a particular vote to be associated with an individual, but on the other hand we

want to prevent double voting. The events are thus not independent but are subject to

the constraint that for a given run each event should occur at most once.

This and other similar conditional forms of anonymity are most elegantly

formalized as constrained forms of the strong anonymity outlined above. Here we

construct a process that embodies the constraint and compose it in parallel with the

system and again impose the anonymity condition on this. Any behaviours that violate

the constraint will fall outside the condition. This allows for the possibility that if

an agent violates the constraint then his anonymity will be broken and his identity

revealed.

Alternatively we may want to design the system so that such behaviours are not

possible. In this case we simply do a refinement check of the system against the

constraint.

Availability

Thus far we have discussed the rather negative properties of protocols: establishing

that they do not allow certain undesirable behaviours. It is clearly also important to

be able to establish that, under appropriate assumptions, the protocol will achieve

some desired goal. Thus, for example, for a key-exchange protocol, we would like

to be confident that a session will indeed be established. We need to use the more

sophisticated semantic models of CSP that deal with such liveness issues. Thus we

might have a specification along the lines of: if Anne requests the server to set up a

14 CHAPTER 0. INTRODUCTION

session key between her and Bob then the system must subsequently reach a state in

which Anne and Bob both have knowledge of the fresh session key.

Of course, for a system to be able to guarantee such a property we will need

to curtail the intruder capabilities to some extent, in particular we cannot allow him

unlimited ability to kill messages. It is fairly straightforward to construct models of

intruders with curtailed capabilities, e.g. able to kill only a finite number of messages

or only over some finite period.

0.3 Cryptography

For the purposes of this book we will treat cryptographic algorithms in a very abstract

way. We will be concerned with what properties such algorithms provide and not with

the details of how they are implemented. In particular, details of their cryptographic

strength will not really concern us; we will typically assume that the algorithms are

secure (though in some of the more elaborate analyses we can take account of possible

compromises).

In recent decades the science of cryptography has moved from being the exclusive

preserve of governments and security agencies into the open world. This has been

prompted partly by the increase in the importance of secure communications, but also

in large part by the discovery of public-key cryptography (PKC) [23]. It is now widely

studied and taught in academia and industry and as a result there is now a substantial

open literature on cryptography.

For the most part the two topics of protocol analysis and cryptanalysis have

developed quite separately, that is the two styles of analysis are typically conducted

quite independently. This is partly to keep the analysis tractable: a model that

encompasses aspects relevant to both is likely to be virtually intractable. It can also

be attributed in part to the fact that the two communities – the formal analysts and the

cryptologists – are largely disjoint and attend separate conferences etc. This is starting

to change gradually, with some collaboration and interchange of ideas and techniques

taking place between these communities.

For most of this book we will be making this separation, in common with virtually

all work in this field. It should be noted though that potentially there can be subtle

interactions between protocols and cryptographic algorithms, leading to flaws that

would not show up in either style of analysis conducted separately. We will return

to this issue in Chapter 10.

Here we will outline the features of cryptographic primitives that we will need

later. Our outline is necessarily rather shallow and will not cover all aspects of

the subject. We are seeking only to give the reader sufficient feel for the nature

and role of these primitives in security protocols. Anyone wanting to delve deeper

into the fascinating subject is referred to [89], [100] or [97], for example. An

excellent reference book that gives a very rigorous treatment of the whole subject

is the Handbook of Applied Cryptography [63]. Less mathematical and technical

expositions, but excellent introductions with plenty of historical background, can be

found in [45] and [94], for example.

0.3. CRYPTOGRAPHY 15

Symmetric cryptography

Until the advent of public-key cryptography all cryptography was what we now class

as symmetric or secret-key. In effect this means that for two parties to communicate

securely they need to share some secret: the cryptographic key. The process of

encryption is essentially the same as that of decryption; in particular if you can do

one you can necessarily do the other. To take a simple example: in the Caesar cipher

you encrypt by shifting each plaintext letter three forward in the alphabet. Clearly, to

decrypt you shift back three in the alphabet.

This is rather like the situation with ordinary locks and keys: locking and unlocking

can be done with a single key, you just twist in opposite directions. It is not usual to

have locks that require one key to lock and a different one to unlock, though in principle

such a lock could be constructed. It is of course common to have locks that do not

require a key to lock but do to unlock, and indeed this does have some analogy with

the notion of public cryptography. We will return to this in the next section.

A distinction is often drawn between the notion of a code, in which the syntactic

objects that are manipulated may be letters, syllables, words or phrases, and a cipher,

in which (blocks of) letters, alphanumerics, bits etc. are manipulated. Codes in this

sense will not be relevant to us.

Ciphers can be classified into substitution and transposition. In the former the

letters of the plaintext are replaced by ciphertext equivalents according to some

algorithm. In the latter the letters are unchanged but their position is shuffled.

Transposition ciphers will not concern us, but it should be noted that modern block

ciphers typically involve substitution and transposition to achieve appropriate levels of

confusion and diffusion.

Substitution ciphers are further divided up into stream and block ciphers. The

distinction is only important to us in as much as it affects integrity issues: the extent to

which attempts to manipulate the ciphertext and hence the decrypted plaintext can be

detected.

In a stream cipher each symbol is encrypted individually in turn. The Caesar cipher

is a simple example in which the same transformation is applied to each symbol of the

plaintext. Such ciphers are usually referred to as monographic. A more sophisticated

stream cipher would involve applying a varying transformation as you move through

the plaintext, for example the Vigenère cipher in which the substitution is determined

by a cyclic key. Another example, with a vastly longer, mechanically generated key

cycle, is the German Second World War Enigma machine. This is referred to as

polyalphabetic. A one-time-pad in which the numerical representation of the plaintext

letters are added modulo 26 to a random, letter key stream is another. Such ciphers can

provide very high-grade secrecy, indeed a genuine one-time pad system is known to

provide perfect security when properly used [92]. However, the key stream has to be

truly random, at least as long as the plaintext, and never reused.

What precisely we mean by ‘random’ here is itself a deep topic that we will not

delve into. Crudely speaking, it can be taken to mean that the stream cannot be

compressed without loss of information. Thus a pseudo-random stream is not truly

random, in that an arbitrarily long sequence can be generated once you know the

appropriate algorithm and key. Nor is a cyclic key for which it suffices to know the

16 CHAPTER 0. INTRODUCTION

cycle pattern.

Although stream ciphers can provide a very high level of secrecy they tend to be

very weak in providing integrity. As a stream cipher encrypts each element of the

plaintext separately it may be possible for the ciphertext to be altered in a way that is not

detectable by, for example, changing letters of the ciphertext or cutting out, inserting

or reordering chunks. This may not be easy, as most such manipulation will lead to

obvious garbling of the resulting plaintext, but there are scenarios in which this is a

real danger. Subverting Bob’s nonce challenge in the Needham-Schroeder Secret-Key

protocol is an excellent example. Another concerns financial transactions involving

messages of fixed format in which certain fields represent amounts of money. These

fields could easily be altered in a way that would not be readily detectable. Clearly,

redundancy in the message space helps, but the point is that the encipherment does not

of itself provide any integrity assurances.

In a block cipher, encryption is performed on blocks of plaintext rather than on

each letter or bit individually. A well-known, classical example is the Playfair cipher

in which the encryption is performed on pairs of letters. The alphabet (minus J) is

written into a five by five table. The order of the letters in this table constitutes the key.

Suppose that we choose the table (scrambled using the keyword ‘dyslexia’):

D Y S L E

X I A B C

F G H K M

N O P Q R

T U V W Z

To encipher a pair of letters, PL say, we first situate them in the table. Typically a

pair of letters will occupy different rows and columns, as is the case here, and so form

opposite corners of a rectangle. The ciphertext letters are taken to be the other corners

of the rectangle ordered according to some suitable convention. Thus PL enciphers to

QS in this case. Different rules apply when the letters fall on the same row or column.

Double letters in pairs can be eliminated by inserting nulls.

The Playfair cipher is thus a simple substitution cipher acting on pairs of letters,

digraphs, rather than single letters. It is simple in the sense that the mapping A ×
A → A × A remains constant. It of course considerably more complex than a simple

monographic cipher, which is a constant mapping A→ A. The complexity and security

can be made greater by working with larger blocks.

Computers allow us to construct ciphers that work with far bigger blocks than

would be practical with pen and paper. Ciphers that work with 64 or 128-bit blocks

are typical. The Data Encryption Standard (DES) system is a well-known example.

Here the ciphertext is first translated into binary streams using, for example, the ASCII

standard. Encryption is now performed on strings of 64 bits at a time and involves

an iterated sequence of complex transformations designed to ensure a high degree

of confusion and diffusion. In particular, altering a single bit in the plaintext string

influences the value of all the ciphertext bits of the block. It is thus extremely difficult

to manipulate the ciphertext to produce a given change in the corresponding plaintext.

0.3. CRYPTOGRAPHY 17

With the rapid growth in computing power DES is now widely thought to be

vulnerable to current cryptanalytic techniques and tools and to have reached the end

of its useful life. Another symmetric, block algorithm that is widely thought to be

very strong is the IDEA algorithm [50] that works with 128-bit blocks. At the time

of writing a competition is being staged by the US National Institute for Standards

and Technology to establish a new encryption standard AES (Advanced Encryption

Standard) [67].

Asymmetric or public-key cryptography

Prior to 1976 it was taken as an unwritten axiom that all cryptography had to be

symmetric: to communicate securely the participants would have to share a common

secret. So ingrained was this assumption that it was not even recognized as such.

In 1976 a paper was published by Diffie and Hellman [23] that was to take

cryptography into entirely new realms. Here, for the first time in the open literature,

the possibility of forms of secret communication without a prior shared secret was

aired.

The idea of public-key cryptographic systems had in fact been invented slightly

earlier at GCHQ, but was not made public. Indeed this fact was not publicly announced

until 1998. Details can be found in [94].

Public-key systems open up possibilities that would previously have been regarded

as absurd. For example, it is possible for two complete strangers who do not have any

prior shared secrets to establish a shared secret using only open lines of communication.

Superficially, this sounds manifestly impossible: any information available to them

will equally be available to anyone who can monitor the traffic. Any knowledge they

can derive can also be derived by the intruder. However, this ignores the issue of the

complexity of deriving information from given information.

First we describe how the concept can be used. Later we will outline some of the

mathematical concepts that are used to actually realize the idea. Finding workable,

secure implementations of the concept was non-trivial and indeed refinements and new

approaches are still being developed.

In public-key cryptography keys come in pairs, one that we will refer to as the

private key SKi and the other the public key, PKi. The subscript i is drawn from some

indexing set that will typically correspond to the set of names of users. Decryption

using the private key undoes the effect of encryption with the public key:

{{X}PKi
}SKi

= X

However, knowledge of PKi, say, does not entail knowledge of SKi and vice versa. This

gives us a possibility that was not available with shared-key cryptography: we can make

PKi publicly known whilst keeping SKi private. Anyone who knows Anne’s public key

PKa can send her a secret message by simply encrypting it under PKa. Assuming that

Anne has kept SKa private and only she knows it then only she can undo the encryption

and so read the contents. Some asymmetric schemes such as the RSA scheme, devised

by Rivest, Shamir and Adleman [74], have the additional property that:

{{X}SKi
}PKi

= X

18 CHAPTER 0. INTRODUCTION

but this is not true of all public-key schemes.

In fact, using public-key techniques to exchange secret information in this way

tends to be very inefficient due to the effort required to perform the necessary

computations. Public-key techniques are far more effective when used for

authentication and for establishing session keys that can then be used with a symmetric

algorithm to do the actual exchanges of secret information. Many of the protocols we

will be seeing through this book are designed to achieve various flavours of this.

Coming up with the notion of public-key cryptography is one thing, coming up

with a mathematical scheme to actually realize it is yet another. James Ellis of GCHQ,

one of the co-inventors of public-key ciphers, gives an account that is interesting here.

Having conceived of the possibility, he was stumped as to how to realize it in an

effective way. He did come up with an existence theorem, however, by noting that one

possibility is simply to have a pair of vast code books, one the inverse of the other. The

decryption book can be thought of as the private key, the encryption book as the public

key. The former will be organized in lexical order according to the ciphertext, the latter

according to plaintext. We assume that these books embody random permutations, one

being the inverse of the other. Now we note that with the encryption book it is easy to

encrypt a message. However to decrypt a message will be extremely difficult because

you do not have the appropriate lexical ordering. In effect you have to search the entire

book to decrypt each element. With the decryption book decryption is easy of course

– you have the right lexical ordering.

This is fine in theory, but to provide a good degree of security these books will

have to be astronomically large to ensure that searching is infeasible. The required

size means that it is not practical actually to construct them so this remains a proof of

existence rather than a practical possibility. What is really needed is a mathematical

procedure to generate the elements of the books as and when they are required. Given

that this procedure must also be infeasible to run in reverse it is still not clear that this

can ever be realized in a practical way.

The mathematical trickery that enables us to realize the PKC idea in a workable

way is the notion of one-way functions and in particular trap-door functions. A one-

way function is one that is easy to compute in one direction but intractable in the other.

A trap-door function has the added feature that it can be reversed quite easily if you

possess a suitable secret, the trap-door, but of course this trap-door has to be extremely

difficult to discover. Of course, whoever constructs the function can incorporate the

trap-door quite easily. Devising mathematical functions that are one-way and for which

a trap-door can be incorporated and effectively concealed is really the key breakthrough

here. First let us describe two mathematical operations that were identified early on as

having the one-way property:

• calculating the product of a pair of numbers is easy whilst the inverse process of

factorizing a number into prime factors is, in general, thought to be intractable;

• taking an exponent in a finite field is easy whilst computing the log of an element

of such a field is thought to be intractable.

See Appendix A for further details of these operations, in particular what exactly is

meant by intractable.

0.3. CRYPTOGRAPHY 19

Just having a one-way function does not advance you very far in the quest for a way

of realizing public-key encryption: the legitimate recipient of the message is not going

to be any better off than the intruder when it comes to decrypting. An extra ingredient

is needed: the notion of a trap-door, a secret that enables the reverse of the one-way

function to be calculated easily. Of course, the trap-door has to be hard to discover just

from knowledge of the encryption algorithm. We describe two ways to achieve this.

The best known is the RSA algorithm. Here we sketch how it works (the details of

the number theory that lies behind it can be found in Appendix A):

1 Two ‘large’ distinct primes p and q are chosen and their product n = pq

computed.

2 An integer e is chosen that is relatively prime to (p− 1)(q− 1).

3 An integer d is found such that ed = 1 mod (p − 1)(q − 1). Using Fermat’s

Little Theorem it can be shown that, for all m:

med = m(mod n) (1)

4 n and e are publicized whilst p, q and d are kept secret.

Encryption of a message m (modulo n) can now be performed by anyone knowing the

public values n and e by computing:

c = me(mod n)

If the message does not encode to a number less than n then it must be chopped

into a suitable number of blocks such that each can be so encoded and each block is

enciphered separately.

Decryption is effected by taking the dth power modulo n of the ciphertext (number)

which, thanks to equation 3 above equals the original message:

cd = med = m(mod n)

If you know the factorization of n it is comparatively easy to find a d that is ‘inverse

to’ e, in effect to construct the decryption algorithm corresponding to the encryption

with e. The details are in Appendix A. Without the knowledge of the factorization

it is thought to be intractable to find a suitable d. In turn, the factorization of the

product of a pair of large, suitably chosen primes is thought to be intractable. In effect

the factorization of n constitutes the trap-door for this algorithm and its concealment

depends on the difficulty of factorization. The description of another trap-door one-

way algorithm for encryption, the ElGamal algorithm based on the difficulty of taking

discrete logarithms in a finite field, is also given in Appendix A.

It must of course be stressed that the belief that problems like factorization and

taking discrete logs are intractable remain unproven conjectures, albeit supported by

strong circumstantial evidence. As yet nobody has come up with an effective algorithm

for their solution, but equally no proof exists that no efficient algorithm could exist.

Indeed any such proof would presumably have to be relative to some model of

20 CHAPTER 0. INTRODUCTION

computation. Thus even if such a proof were found and if effective alternative models

of computation were found – quantum computation, to take a random example – then

all bets would be off.

An alternative way of using one-way functions is for key establishment. This is

rather more straightforward as it is not actually necessary to devise a trap-door: it

suffices to have a family of one-way, commutative functions. The Diffie-Hellman key

establishment scheme is based on the difficulty of taking discrete logs: finding the

exponent l (for a given a, b, and n) such that al = b mod n.

1 A prime p and a primitive root a modulo p are chosen and made public (a being

primitive simply means that all numbers between 1 and p − 1 can be generated

by taking exponents of a modulo p).

2 Anne chooses at random an integer x and sends Bob the message:

m1 = ax(mod p).

3 Bob chooses an integer y and sends Anne the message: m2 = ay(mod p).

4 Now Anne, who knows x and has been sent m2 by Bob can calculate: K = mx
2.

5 Similarly Bob, who knows y and m1, can calculate: m
y
1.

6 But now we have that mx
2 = m

y
1, because axy(mod p) = ayx(mod p).

7 So we let K = mx
2 = m

y
1 and K can now be used as the shared key.

Notice that both Anne and Bob played an essentially symmetric role in the generation

of K. More precisely, neither of them can dictate or predict what the final value of K

will be, barring collusion or solving discrete logs.

It is thought that for an eavesdropper, who only sees the values m1 and m2,

calculating the K would require taking a discrete logarithm of either m1 or m2. Taking

logarithms in a discrete field is thought to be intractable, in the general case. This

means the process of taking exponents in a discrete field generates a pseudo-random

permutation of the field and so gives us one of our code books. It does not, however,

give us the inverse book, but for this scheme we don’t need the inverse function. All

that we need is that operation of taking exponents commutes to ensure that Anne and

Bob arrive at the same value.

This suggests that one could try other large, commutative groups as a source of

structures on which to base such a key establishment scheme, and indeed elliptic

and hyper-elliptic curves have been proposed, for example [90]. Elliptic curves

appear to provide a rather attractive framework, as the equivalent of the discrete logs

problem here appears if anything to be harder than for finite fields. The most powerful

techniques for tackling the problem of taking logs in a discrete field is based on the

so-called index calculus. There is no known equivalent of the index calculus in the

context of elliptic curves.

As it stands, the scheme described is flawed in that it is open to man-in-the-middle

attacks, which we will describe shortly, due to the lack of authentication. Elaborations

of this scheme that avoid such attacks are described in the section on authenticated key

exchange.

0.4. PUBLIC-KEY CERTIFICATES AND INFRASTRUCTURES 21

A number of other ‘hard’ problems have been proposed as the basis for public

key encryption or key establishment. These include variants of the knapsack packing

problem, coding theory problems, and so on. These have tended to fall foul of various

vulnerabilities and so have not really taken off or been implemented. We will not

discuss them further here. The interested reader can find further details in [89, 97, 100],

for example.

0.4 Public-key certificates and infrastructures

In our discussion above we have glossed over a difficulty of how the agents acquire the

public keys of other users and be sure that they are valid, i.e. associated with the correct

user. This is quite tricky, but a standard solution is to set up a trusted authority, known

as the Certification Authority (CA), that issues certificates that authenticate public keys

and binds them to the names of the users. A public-key certificate is basically a digital

document that contains the name of the user along with their authorized public key and

perhaps information about the lifetime of the key etc., all signed by the CA using its

public key. We discuss digital signatures later. As long as the CA does not cheat and

is trusted by the users, the problem reduces to being sure that you have a valid public

key for the CA which you can use to check certificates. When you need to acquire

someone’s public key you simply request a copy of the relevant certificate from some

publicly accessible library, say, and verify the signature. Alternatively people just keep

a copy of their own certificate and supply it as required. This idea can be applied

recursively to establish hierarchies of Certification Authorities, but of course ultimately

the recursion has to be cut off. The public key of the root authority has to be distributed

in some off-line manner, for example by being published in hard copy [4].

A rather different approach is adopted by Zimmermann [103] in his PGP (Pretty

Good Privacy) system. Rather than depending on a central, trusted authority, PGP

works by recommendations: if someone you trust passes you the public key for another

user in some authenticated fashion then you will tend to trust that key. Thus users

gradually build up networks of trust. If you get someone’s key from several sources

then of course you tend to have a correspondingly higher level of confidence in the

validity of the key.

Revocation of certificates remains a tricky problem: how to call in compromised

or invalidated certificates. There is no entirely accepted solution to this problem. An

obvious step is to give certificates a lifetime. This helps, but getting the lifetime right is

not easy: too long and an invalid certificate might survive in the wild for quite a while,

too short and you spend a lot of effort refreshing certificates.

For the purposes of this book we will usually assume that each user has a

unique private key and associated public key. We further assume that some suitable

infrastructure exists to associate reliably the correct public key with the correct user. It

should be borne in mind that this may not always be an appropriate or safe assumption.

Sometimes there will be good reasons for users to have more than one private/public

key pair, for example, and we may then have to take care that this cannot be exploited.

It may also be that the mechanisms for associating public keys with users are flawed.

It is possible to design a protocol in such a way as to insulate it from vulnerabilities

22 CHAPTER 0. INTRODUCTION

of the infrastructure for providing public keys. One can, for example, pass certificates

with the messages of a key establishment protocol in a way that ensures that they are

cryptographically bound to the rest of the message. This ensures that the recipient uses

the certificate intended by the sender.

0.5 Encryption modes

Block ciphers can be used in a number of ways or modes. The simplest is the electronic

code book mode in which each block is enciphered separately and in turn. This has the

merit of being straightforward but does suffer from the drawback of not providing any

linkage between successive blocks. As a result, it is comparatively easy to delete,

modify or re-order blocks, insert fake blocks, and so on.

Of course for short messages that fit in a single block this is really not an issue.

Such messages do occur, particularly if the data is, say, a key or nonce: this might well

comprise 128 bits, so if the cipher acts on 128-bit blocks then it is fine. However, many

messages will span blocks and so these dangers appear. To foil such vulnerabilities

requires more sophisticated modes of encryption that introduce some form of binding

between blocks. One such mode is Cipher Block Chaining (CBC) and it works as

follows.

Suppose that the cipher acts on blocks of length l. Denote the blocks of the plaintext

by P1, P2, P3 etc. up to Pn. Some padding may be necessary to fill out the final block.

Typically this mode will also involve the use of an Initialization Vector IV which should

be a freshly, randomly chosen value for each message. The first block of the ciphertext

comprises IV in plain. The second cipher block is the encryption of the first plaintext

block xor’ed with the first cipher block:

{IV ⊕ P1}K

Subsequent cipher blocks are constructed by iterating this process: enciphering the

xor of the appropriate plaintext block with the ciphertext output of the previous block:

Ci := {Pi⊕ Ci− 1}K

Thus the value of the ith cipher block depends on that of the i−1th, and hence on all

the previous blocks. As a result any messing with a block of the ciphertext will result

in a garbling of the decrypt from that point on. In effect we have built in forward-error

propagation.

Other modes exist and have various properties that make them more or less

suitable in certain applications. The significant point from our point of view is that

cryptographic techniques exist to bind together blocks of text when used in such a way

as to ensure that any tampering with any block will be detectable.

0.6 Cryptographic hash functions

Hash functions map inputs of data of arbitrary length into outputs of some fixed length.

They serve a variety of purposes in computer science, for example as a way of detecting

0.7. DIGITAL SIGNATURES 23

corruption of data. Suppose that the data is stored alongside its hashed value. If the

data is corrupted, a re-computation of the hash will almost certainly not agree with the

stored value. We are assuming, of course, that the range of the hash function is some

reasonably large space so the chance of accidental agreement is small. We are also

assuming that small changes in the data input produce some large change in the hash

value. As a result it is unlikely that an arbitrary change in the input data will result in

the same hash value, even if the hash value itself has also been corrupted.

To detect accidental corruption of the data, the hash function does not have to be

particularly sophisticated: a glorified parity check such as a Cyclic Redundancy Check

(CRC) will do. Where we are trying to guard against malicious alteration of the data we

have to be more careful in our choice of hash. For a simple hash function it will be fairly

easy for someone to choose an alteration of the data that yields the same hash value,

which will thus go undetected. To avoid this we must choose a function for which,

given some input, it is extremely difficult to find another input that gives the same hash

output. Such hash functions are referred to as cryptographic hashes. Designing such

functions and establishing that they do have such characteristics is quite an art in itself.

Even defining these characteristics in a precise mathematical way is rather delicate. We

will not discuss this in any detail but will merely assume that they exist and are readily

available. Again references like [89] and [63] give full details.

Various cryptographic hash functions have been proposed and extensively

analyzed, for example MD5, SHA1, RIPEMD-160 and so on. Their role is usually to

map texts of arbitrary length to a length suitable for a block cipher. Another role is to

serve as a way of committing to a certain text or value without necessarily revealing

it. A long established role is in the storage of password material. Rather than store

the raw password, which would be vulnerable to snooping, the hash value is stored.

Checking can be done by computing the hash of the putative password and checking

this against the stored value.

0.7 Digital signatures

These are the analogues in the digital world of conventional signatures and seals of

the pen and paper world and supposed to prove the origin and authenticity of the data

to which they are bound. Digital signatures are usually implemented using public-

key cryptography, though a form of signing that does not provide non-repudiation

is possible using private-key encryption. We will stick to the PKC version here. A

signature algorithm takes a document and a private key SK and produces a signed

document. A signature verification algorithm takes a signed document and a public-

key PK and delivers valid or invalid as output. If the output is valid then we should

be entitled to conclude that the document was indeed signed with the matching private

key SK and furthermore this document has not been corrupted or tampered with.

A well-known implementation of a digital signature is to use a combination of

cryptographic hash function and the RSA algorithm. The role of the hash function

serves to compress the given message to the size of the block handled by the encryption.

Suppose that Anne wants to sign a message M. She first applies a publicly known

24 CHAPTER 0. INTRODUCTION

cryptographic hash H to give:

H(|M|)

which is arranged to match the block size of the encryption algorithm. She then

encrypts this with her private key to give:

{H(|M|)}SKAnne

and finally she appends her name and the original message to give:

SignAnne(M) := A, M, {H(|M|)}SKAnne

Someone receiving this and knowing Anne’s public key is now able to confirm that

it is authentic, i.e. that it was indeed signed with Anne’s private key and that the value

of M has not been tampered with in transit. The checking proceeds as follows:

1 Apply the hash function H to the second term to give H(|M|). The function H is

publicly known so this is straightforward.

2 Now encrypt the third term using Anne’s public key, to give

{{H(|M|)}SKAnne
}PKAnne

Given that for RSA {{X}SKy
}PKy

= X, i.e. encrypting with the public key undoes the

effect of the private key encryption as long as the pair of keys match, we see that the

outcome of these two calculations should be equal. If the value of any of the terms

SignAnne(M) have been tampered with or if the encryption was not in fact performed

using Anne’s private key then the equality will fail.

To be sure that this check does actually give a good guarantee that the message is

authentic we need to be sure that it would be very hard to forge and very hard to alter

M in some way that would not be detected by the check. Informally we can argue that

this will be true as long as the encryption and hash functions have the properties we

claimed earlier:

• Given some W it is very difficult for anyone but Anne to compute {W}SKAnne

(assuming that SKAnne has not been compromised, i.e. is known only to Anne).

• Given a W it is extremely difficult to find W ′ such that H(|W|) = H(|W ′|).

The scheme would clearly fail if someone other than Anne could apply the encryption.

Another way it might fail is if Yves could find an M′, different from M, for which

H(|M|) = H(|M′|) and such that M′ was somehow more advantageous to him than M.

Note that this verification serves to show that the document was signed with the

private key that we have associated with Anne. There remains the problem of whether

we have been correct in associating the key with Anne. Even if this issue is solved there

remains the further question of whether we can be sure that it really was Anne who did

the signing. If Anne has compromised her key then it may be that the document was

indeed signed with her key but by someone else. Here we are straying into rather legal,

non-technical waters but is is important to be aware of such issues. For example, it

may be that it does not matter for some applications that we cannot be sure if it really

was Anne who performed the signing. As long as we have performed the verification

we might still be guaranteed payment. This is the sort of business model that applied

to credit-card payments.

0.7. DIGITAL SIGNATURES 25

Nonces

The Oxford English Dictionary defines the phrase ‘for the nonce’ as meaning for

the time being or for the present occasion and a ‘nonce-word’ is one coined for one

occasion. In the context of security protocols a nonce can informally be taken to be a

fresh, random value. It is created as required in a way that is supposed to guarantee

that it is unpredictable and unique. Giving precise formal meaning to terms like

‘unpredictable’, ‘fresh’ and ‘unique’ is itself rather subtle and we will see later how

this can be done in a number of frameworks, including our own. For the moment the

intuitive understanding will suffice. The exact properties we require of nonces can

vary somewhat, depending on how exactly they are used. In some cases it may not be

necessary to make them unpredictable and so a simple counter might suffice.

Roughly speaking, nonces are usually used to establish causal relationships

between messages. Take the example of the nonce in the first and second messages of

the NSSK protocol. When Anne checks the nonce value embedded in the message

she receives back from the server against her record she can feel confident that this

message was indeed generated by the server in response to her latest request. The

point of this is to guard against replay attacks: if the nonce was not included in the

protocol then Anne is open to an attack as follows.

Suppose that earlier she had invoked the protocol and been provided with a session

key kab to talk to Bob. She and Bob will presumably have long since discarded this key.

The trouble is that Yves can cryptanalyze their exchanges at his leisure and eventually

break the key. Assuming that the strength of the keys has been chosen to be sufficiently

strong to guard the information for as long as it is likely to be useful, this isn’t really

a problem. By the time Yves finally breaks the key, the information is well past its

use-by date. The problem arises when Anne subsequently sends out a new request to

Jeeves. Now Yves intercepts Anne’s latest request (or alternatively Jeeves’s reply) and

replays the old message with the old session key back to Anne:

Message J → a : {b.kab.{kab.a}ServerKey(b)}ServerKey(a)

Now, unless she has been diligently squirrelling away all her old session keys

and checking them all for repeats, Anne has no way of telling that this isn’t a fresh

message from Jeeves with a fresh key. Consequently she goes ahead and exchanges

secret information with Bob that Yves can now read immediately, as easily as Bob in

fact.

We now clearly see the role of the nonces and why they have to have unique and

unpredictable properties. If they failed to be unique, then Yves could launch a similar

replay attack. If they are unique but are predictable, then Yves could fake a request

from Anne ahead of time and then simply wait for Anne actually to issue the request at

some later time. With luck this will again give him enough time to break the key.

Typically nonces are implemented as freshly created random values drawn

from some large space of possible values. Strictly speaking this will not guarantee

uniqueness, but if the space is sufficiently large – bit strings of length 128, say – then

the chance of a nonce failing to be unique is sufficiently small to be ignored.

26 CHAPTER 0. INTRODUCTION

Timestamps

Nonces are in some sense local markers in time that an agent lays down as the protocol

unfolds. They are local in that they are really only meaningful to whoever created them.

In the NSSK protocol, Na means nothing to either Jeeves or Bob. In fact the value isn’t

even communicated to Bob. To Anne, though, it is highly significant: she knows that

it first saw the light of day when she transmitted her request containing it. As a result,

any message that she later gets back that depends on it can only have been created after

this point in time.

For some applications such a local reckoning of time is fine, but for many a more

global notion is required. For example, suppose that we are using a protocol designed

for electronic contract negotiation. Here we may want to assert that an offer will remain

valid for a certain time after it is issued. For this we need a global notion of time and a

mechanism for marking messages with the time that they are submitted, for example.

A timestamp is simply a way of attaching the current time value to a message.

Sometimes it is used as an alternative to nonces: the freshness of a message can be

calculated by subtracting its time-stamp from actual time.

For time-stamps to work we need a reliable way of maintaining consistency

between clocks across the network. We often also need a reliable way of ensuring that

timestamps are valid – guaranteed to give the true time of creation of the message.

Two requirements arise from this: that there is some automatic mechanism to attach

accurate stamps and that once attached they are difficult to modify or forge.

If we are using time-stamps to help maintain the security of the protocols we need to

bear in mind ways that an intruder might try to subvert the mechanisms. He might, for

example, try to meddle with the agent’s notion of time. He might try to modify or fake

timestamps or subvert the time-stamping mechanism. Countering such vulnerabilities

can be quite difficult and the designer of protocols must bear this in mind. There has

been something of a debate in the community as to whether nonces or timestamps are

better. The debate is somewhat vacuous in that they serve rather different purposes.

Where they are both candidates for mechanisms to establish freshness it is worth

remarking that it tends to be easier to establish a high level of assurance with nonces

than with timestamps. For nonces it is sufficient, roughly speaking, to ensure that the

random number generation is done carefully. With timestamps we need to worry about

maintaining global time, ensuring validity of the stamps, and so on. Even in a benign

environment it can be difficult to maintain accurate time across a distributed system. In

a hostile environment it is even harder.

0.8 Security protocol vulnerabilities

To illustrate the kind of attacks to which security protocols can fall prey we outline a

number of well-known strategies that an intruder might employ. Note however that the

style of analysis that we are presenting in this book does not depend on knowing these

strategies. In particular we do not need to worry about whether the list is exhaustive. In

fact we can be pretty sure that it is not exhaustive. It will, however, serve to illustrate

the various styles of attack. We should also note that we are only dealing here with

0.8. SECURITY PROTOCOL VULNERABILITIES 27

vulnerabilities due to flaws in the protocol design. There are, of course, other styles of

attack, such as cryptanalytic, monitoring timing, EM radiation or fluctuations in power

consumption. These are typically outside the scope of our formal models.

Man-in-the-middle

As implied by the name, this style of attack involves the intruder imposing himself

between the communications between Anne and Bob. If the protocol is poorly designed

he may be able to subvert it in various ways; in particular he may be able to masquerade

as Bob to Anne, for example.

To illustrate this, consider a naı̈ve protocol in which Anne wants to send a secret

message X to Bob using public-key techniques but where Anne and Bob do not even

need to know each other’s public keys. Using an algorithm like RSA, for which

encryption and decryption are inverse and commute, the following protocol suggests

itself:

1 Anne sends Bob a message {X}PKAnne
, where {X}PKAnne

represents the message X

encrypted with Anne’s public key.

2 When Bob receives this he cannot decrypt it to read the message, only Anne can

do this. What he can do is to further encrypt it with his public key:

{{X}PKAnne
}PKBob

this he duly does and sends this back to Anne.

3 Now, using the commutative property of RSA we have:

{{X}SKAnne
}SKBob

= {{X}SKBob
}SKAnne

and so now Anne can strip off her encryption to give:

{X}SKBob

4 Anne can send this back to Bob and he, and only he can decrypt it.

At first glance this protocol looks like it might work as a means to enable Anne to

communicate securely with Bob given the properties that we have stated. It turns out

that Yves can easy subvert it by intercepting the messages between Anne and Bob and

inserting some of his own. The attack works as follows:

1 Yves intercepts the first message from Anne to Bob and applies his own public

key encryption:

{{X}PKAnne
}PKYves

2 This he returns to Anne and she has no way of knowing that this is not the reply

she expects from Bob. One random stream looks pretty much like another. So

she duly strips off her encryption according to the protocol and sends back to

Bob:

{X}PKYves

28 CHAPTER 0. INTRODUCTION

3 Now Yves again intercepts this before it reaches Bob and strips off his own

encryption to reveal X.

This attack arises due to the lack of any form of authentication in this protocol:

Anne has no way of checking that the message she gets back is really from Bob as she

expects. The Diffie-Hellman key-establishment protocol that we presented earlier is

similarly vulnerable. We leave it as an exercise for the reader to fill in the details.

Reflection

The trick here, as the name suggests, is to bounce messages back at an agent.

Sometimes this can fool the originator into revealing the correct response to his

message. A simple analogy might be responding to a sentry’s ‘what is the password?’

with ‘what is the password?’ to which, if he is conditioned to respond automatically to

that request, he might respond with the password. You can then supply the password

to him. This is a bit simple-minded but just such an attack has been used against some

real friend-or-foe type protocols.

The attack depends very much on the symmetry of the situation. In our simple

example we are supposing that the sentry is prepared to authenticate himself and does

so with the same password as people approaching. Breaking the symmetry by, for

example, ensuring that sentries authenticate themselves with a different password to

everyone else, would foil at least this attack.

Oracle

Here the intruder tricks an honest agent into inadvertently revealing some information.

The honest agent is induced to perform some step of a protocol in a way that helps

the intruder to obtain some data he could not otherwise obtain. We will illustrate this

shortly with an attack that uses a combination of oracle and interleaving of protocol

interactions.

Notice that such an attack may involve the intruder exploiting steps from a different

run of the protocol, or indeed may involve steps from an entirely different protocol.

The latter tends to be rather more unusual as it is clearly necessary for there to be some

commonality between the protocols for this to work, but this is by no means unheard

of. This is a distinct danger where key material is shared across protocols.

Countering such vulnerabilities typically involves making the roles of every atomic

term of a protocol explicit so that it is clear to which run of which protocol it belongs.

The paper by Abadi and Needham [2] discusses explicitness as one example of good

practice in protocol design, among others. We discuss how to characterize more

precisely the conditions that ensure that there will not be such unfortunate interactions

of security protocols in the ‘strand spaces’ section of Chapter 9.

Replay

Here the intruder monitors a (possibly partial) run of the protocol and at some later time

replays one or more of the messages. If the protocol does not have any mechanism to

0.8. SECURITY PROTOCOL VULNERABILITIES 29

distinguish between separate runs or to detect the staleness of a message, it is quite

possible to fool the honest agents into rerunning all or parts of the protocol. We have

already seen an example of this with the attack on the weakened NSSK protocol with

Anne’s nonce removed.

Devices like nonces, identifiers for runs and timestamps are used to try to foil such

attacks.

Interleave

This is perhaps the most ingenious style of attack in which the intruder contrives for

two or more runs of the protocol to overlap.

Let us illustrate with a famous attack that combines interleaving with oracle

techniques.

The protocol in question is the Needham-Schroeder Public-Key protocol. It should

not be confused with the Needham-Schroeder Secret-Key protocol that we described

earlier. In particular, as the name suggests, it uses public-key algorithms rather than

shared secret-key. It proceeds as follows:

Message 1 a→ b : {a.na}PKb

Message 2 b→ a : {na.nb}PKa

Message 3 a→ b : {nb}PKb

In the first step Anne creates the nonce, na, and encrypts it (along with her name)

under Bob’s public key. When Bob receives this he, and only he, can decrypt it and

so ascertain the value of na. He in turn creates a nonce of his own nb and encrypts the

pair na, nb under Anne’s public key which he then sends back to Anne. On receiving

this message Anne can decrypt it and check that the value in the first field agrees with

the value she has recorded. The other term, Bob’s nonce, she encrypts under Bob’s

public key and sends back to him. When he receives this he can decrypt the message

and check that the value is correct. At the end of all this they might be inclined to feel

confident that:

• they know with whom they have been interacting;

• they agree on the values of na and nb;

• no one else knows the values na and nb.

These beliefs seem plausible given that only Bob can strip off an encryption using

his public key and similarly for Anne’s public key. Anne and Bob could presumably

now go on to use these values, either for later re-authentication purposes or even maybe

to use some hash of them as a shared session key for later secret communications.

For many years this protocol was widely thought to provide exactly these

properties. In fact the protocol has be shown to be subject to a rather neat vulnerability

30 CHAPTER 0. INTRODUCTION

discovered by one of the authors [54]. It runs as follows:

Message α.1 A→ Y : {A.NA}PKY

Message β.1 Y(A)→ B : {A.NA}PKB

Message β.2 B→ Y(A) : {NA.NB}PKA

Message α.2 Y → A : {NA.NB}PKA

Message α.3 A→ Y : {NB}PKY

Message β.3 Y(A)→ B : {NB}PKB

Note that in this attack Yves is actually a recognized user, that is, he is known to the

other users and has a certified public key. We suppose that Anne innocently starts

off a protocol run with Yves, thinking of him as a trusted user. Yves however is not

interested in playing by the game and instead of responding to Anne in the expected

way he uses Anne’s nonce to initiate another run with Bob but inserting Anne’s name

instead of his own. The notation Y(A) denotes Y generating the message, making it

appear to have come from A. Bob duly responds with his nonce NB, but he will of

course encrypt it with Anne’s public key as he thinks that this run was initiated by

her. Yves intercepts this message. He cannot read its contents but alters the address

information so that it will appear to come from him and forwards this to Anne. This

is now exactly what Anne is expecting from Yves and so she dutifully proceeds to

the next step: she decrypts it and shoots a message back to Yves that contains NB

encrypted with Yves’ public key. Yves can of course decrypt this and so he can extract

the value of NB. He can now construct the final message of the run he initiated with

Bob: encrypting NB under Bob’s public key.

So, at the end of this we have two interleaved runs of the protocol with Yves sitting

at the centre of the web. Anne thinks that she and Yves exclusively share knowledge

of NA and NB. Bob thinks that he exclusively shares knowledge of NA and NB with

Anne. This is not the case, even though the agent B believes he ran the protocol with

is honest. Thus, at the very least, the attack has created a mismatch in Anne and Bob’s

perception.

This vulnerability has stirred up considerable interest and some controversy in

the community. The protocol first saw the light of day in the seminal paper [68] by

Needham and Schroeder in 1978. The protocol was subjected to an analysis using the

BAN logic of authentication and given a clean bill of health. As a result the protocol

was widely regarded as providing a sound mechanism for authentication. We will

discuss in more detail in Chapter 9 how this attack slipped through the BAN analysis.

In essence the attack falls outside the assumptions made by the BAN logic. However,

the attack provides a nice illustration.

Let us examine more closely how the attack works. It is a combination of

interleaving and oracle. Clearly two runs have occurred and completed successfully

(the runs are labelled X and B). In steps 2 and 3 Yves is using Anne as an oracle to

decrypt the message from Bob that he cannot himself decrypt. She is thus innocently

fooled in one run into providing Yves with information that he can use to complete

successfully another run with Bob.

0.8. SECURITY PROTOCOL VULNERABILITIES 31

Failures of forward secrecy

The attacks described above all work without any cryptanalysis on the part of Yves. He

has managed to subvert the protocol purely by manipulating the traffic. Inevitably key

material will be compromised, either due to successful cryptanalysis or by other means,

for example the three Bs: burglary, blackmail and bribery. An analytic framework

needs to be able to model key compromises and allow us to establish the consequences.

We can then design mechanisms to contain such compromises as far as possible and to

recover as effectively as possible.

Some consequences will be rather obvious: any messages encrypted under

a compromised key must be regarded as compromised. Where key transport or

distribution has been used with keys being transmitted in encrypted form then we must

chain through the effect of a compromise: any key encrypted with a compromised key

must itself be regarded as compromised. In effect we need to form a transitive closure

of a graph representing the dependencies between keys.

Besides these rather obvious consequences there may well be far more subtle ones.

The weakness in NSSK that was identified by Denning and Sacco [22] is a prime

example. This is a violation of the goal of forward secrecy: that compromises should

not propagate into the future. The attack is somewhat similar to the attack we outlined

earlier on a weakened form of NSSK with the initiator’s nonce removed. Here we

exploited the fact that, with her nonce removed, Anne could not detect the staleness

of a replayed message and enclosed session key. If we examine the protocol more

carefully we note that the responder, Bob in our example, does not have any way of

establishing the freshness of the first message that he sees, number 3 of the protocol.

This suggests that we might be able to fool Bob with a stale message, and this is indeed

the case. Suppose that Yves has broken an earlier session key K, long since discarded.

He can simply replay message 3 to Bob and then masquerade as Anne.

This is an example of quite a general vulnerability: even if we think that we have

restored a system’s security after a compromise by replacing all compromised keys, or

even all session keys, there may still be a way for Yves to leverage an earlier breach and

so violate forward secrecy. The counter to this particular attack that was adopted by the

Kerberos protocol was to use timestamps in place of nonces. An alternative to counter

such an attack is to use nonces in a different way, as with the Yahalom protocol:

Message 1 a→ b : a.na

Message 2 b→ J : b.{a.na.nb}ServerKey(b)

Message 3 J → a : {b.kab.na.nb}ServerKey(a).{a.kab}ServerKey(b)

Message 4 a→ b : {a.kab}ServerKey(b).{nb}kab

Here we see that both Anne and Bob get to inject nonces before the request reaches

Jeeves. They both get a handle on the freshness of the key that Jeeves generates in

response to the message from Bob. That freshness is really guaranteed needs to be

carefully verified of course. We will use the Yahalom protocol as a running example

throughout the book.

32 CHAPTER 0. INTRODUCTION

Algebraic attacks

Cryptographic functions often satisfy various algebraic identities. Sometimes these are

essential for the correct functionality of a protocol. The fact is that exponentiation in a

finite field is commutative and this is essential for Diffie-Hellman key establishment to

work. However, it may be possible for inturders to exploit such identities to undermine

the security of the protocol. A number of examples of this are known, e.g. [34].

In order to be able to identify such attacks it is necessary to represent such

identities within the modelling framework. In effect this means extending the

intruder’s capabilities to include knowledge of such identities and endowing him with

a certain facility with algebra. This will be discussed in detail in Chapter 2. There

is still the difficulty of being sure that all relevant identities have been identified and

correctly modelled. There does not seem to be any easy way to deal with this. A naı̈ve

possibility would be to include the functions and algorithms in the model in their full

glory. This would certainly be entirely intractable.

The above sections should serve to give the reader an idea of the variety and

subtlety of the attacks to which protocols may be vulnerable. There are many other

known styles of attack and presumably many more that have yet to be discovered.

Many involve combinations of these themes. As we saw, Lowe’s attack on the original

Needham- Schroeder Public-Key protocol involves a combination of interleaving and

oracle attacks, for example. We will see further illustrations of many of these later.

Often these are remarkably subtle and in some cases they have gone unnoticed by even

the best experts for many years. In many ways spotting an attack on a cryptographic

protocol is rather like solving a deep chess combination. The combination is often very

subtle, but obvious when you’ve seen it. As with chess puzzles, a number of standard

themes tend to crop up. And it of course helps a lot to have the analogue of a good

chess analysis program like Fritz.

0.9 The CSP approach

The approach that we present in this book is centred on the use of the process algebra

Communicating Sequential Processes (CSP) and the model-checker FDR. CSP is a

mathematical framework for the description and analysis of systems consisting of

components (processes) interacting via the exchange of messages [41, 76, 87]. An

introduction to CSP is provided in Chapter 1.

In this section we introduce the reader in informal terms to how a system is

modelled in CSP. More detailed descriptions in CSP will be given later in Chapter 2.

Nodes and servers, at least honest ones, are fairly straightforward to model as CSP

processes, as they merely enact a simple sequence of actions. A little care is needed in

treating exceptions, especially where, as is often the case, the design fails to be specific

about these. We have to be explicit about what checks are performed by the nodes and

what is their intended behaviour if checks fail.

The default behaviour of the medium is to deliver messages correctly to their

destination, by which we mean that when it receives a message i.j.m from the node i it

will duly output i.j.m to the node j. Note that we generally assume an open addressing

0.9. THE CSP APPROACH 33

scheme. That is to say messages carry address fields that specify the source and

destination in the clear. These are not bound to the messages but can be manipulated

freely by the intruder. In particular, he can alter the source field to make a message

appear to come from a different source. To guard against agents being fooled by such

tricks we will need to incorporate suitable cryptographic mechanisms in the protocol.

A number of other behaviours are possible that can be thought of as being

controlled by the intruder. The protocol may:

• kill a message, i.e. prevent it from being delivered;

• sniff a message, i.e. obtain his own copy;

• intercept a message, i.e. sniff and kill a message;

• re-route a message;

• delay delivery of a message;

• reorder messages;

• replay a message;

• fake a message.

These are not all independent but we list them all to make clear the full capability.

It may be appropriate in some applications to modify the intruder’s capabilities. For

example, it may not be possible for the intruder to kill messages if we are dealing with

a protocol for communications broadcast over the airwaves.

It is sometimes convenient, though it may seem a little bizarre, to identify the

intruder and the medium. This follows the approach of Dolev and Yao [25]. When

it suits him he will pass messages on correctly.

The intruder is the most fascinating character in this game. His aim is to subvert

the protocol. Exactly what powers we imbue him with can be varied according to

circumstance, but typically we will perform a worst-case analysis: we allow him to

manipulate messages passing through the medium as outlined above, limited only

by cryptographic considerations. That is to say, his ability to extract terms from

messages he sees or construct new terms will be limited by cryptographic constraints.

He can only extract the contents of an encrypted term if he possesses the relevant key.

Conversely, he can only construct an encrypted term if he has the appropriate key. He

can compute a hash but not its pre-image, and so on. In some models we may even

allow him to acquire keys in certain circumstances to mimic the possibility of keys

being broken or compromised.

Note that in some analyses we may want to allow the intruder, in addition to

the capabilities described above, the status and capabilities of a legitimate user. In

particular we may give him a recognized identity and corresponding keys, certificates,

and so on. The server and other nodes thus regard him as a legitimate player and will

communicate with him accordingly. We see this in Lowe’s attack on the Needham-

Schroeder Public-Key protocol for example.

34 CHAPTER 0. INTRODUCTION

From an abstract point of view we can include as many intruders as we want. In

some cases it can be shown that we can restrict the model to a single intruder process

without loss of generality: it can be shown that a single intruder is equivalent to n

intruders. Occasionally it may be necessary to include more than one if we need to

consider the possibility of collusion attacks. This might occur if, for example, we are

considering a protocol designed to enforce an n-man rule (e.g. the agreement of at least

n different agents). Even here it is often sufficient to give a single intruder access to

multiple identities.

The intruder will be provided with certain initial knowledge and will subsequently

be able to deduce further knowledge from traffic that he observes through the medium.

The intruder is equipped with an inference system that governs what he can deduce

from given information as indicated earlier. This system will be spelt out formally in

Chapter 2.

Besides passively overhearing traffic, the intruder can construct fake messages from

the information he can deduce and try to use these to trick the other principals. He can

thus mount interleaving, replay, oracle, man-in-the-middle attacks, and so on. Note that

such strategies are not coded explicitly but are emergent. In this respect the intruder is

more like Deep Blue than Kasparov: he tries everything until something works.

Where appropriate we may include algebraic identities in the intruder’s inference

system. Some crypto-algorithms are commutative, for example, and this fact may be

exploitable by the intruder. Vernam encryption (bit-wise exclusive-or of the message

and the key) is self-inverse, and so on. For some protocols such facts may actually be

vital to allow the protocol to function: Diffie-Hellman key exchange depends on the

commutativity of exponentiation in a finite field, for example.

Our intruder will be rather obliging in that whenever he discovers some sensitive

data item he reports it to us. This is of course not typical intruder behaviour but is a

modelling device to allow us to detect when a breach has occurred.

Another attractive feature of this style of analysis is that an explicit and flexible

model of the hostile capabilities is incorporated. This allows us to tailor a realistic

threat model appropriate to the application. For example, if we are dealing with a

system using broadcast messages, then it might be deemed unreasonable to give the

intruder the ability to kill messages. This is in contrast with many other approaches in

which the intruder has fixed and often only implicit capabilities. In the BAN logic, for

example, there is no explicit statement of the intruder’s capabilities – they are implicit

in the choice of logical axioms.

Having defined the components of the systems as CSP processes we can now

construct the entire system as the parallel composition of these components: the nodes,

the intruder and the medium (if it hasn’t already been incorporated in the intruder).

Having formulated a model of the system and the properties of interest in the

framework of CSP the next problem is to find effective ways of reasoning about and

analyzing such descriptions. Two, complementary approaches have been developed

and will be described in this book: one is highly automated based on model-checking

(essentially exhaustive search over behaviours), the other is rather more interactive,

involving theorem-proving techniques to establish properties of the designs.

0.9. THE CSP APPROACH 35

Model-checking

The automated tool support for the approach is provided by the model-checker FDR1).

Given two CSP specifications, Imp and Spec say, FDR checks whether Imp is a

refinement of Spec, that is whether the behaviours of Imp are contained in those of

the Spec. In Chapter 1 we will make precise what is meant by refinement. Put very

simplistically, the check is performed by enumerating all the behaviours of Imp and

checking that they are allowed by Spec. If the check fails it returns a behaviour that

violates the property encoded in Spec.

To perform a CSP/FDR analysis of a security protocol against a given security

property, a CSP model of the system in question, including hostile intruders along with

a CSP process that encodes the security properties required, are input into FDR. If the

check fails FDR returns a counterexample: a trace that violates the refinement. In the

context of security protocols such a counterexample represents the interactions of the

intruder in an attack.

The great advantage of such an approach is that it is highly automated. Once the

system model and specification have been constructed the checking is essentially push-

button. This means that it is highly effective for debugging designs: we can start with

a putative design and run a check. This will almost certainly come back with an attack

that will suggest a modification to counter it. This can then be run through the checker

prompting further, incremental improvements to the design until a version is found that

passes the checks.

An alternative technique is to start with a (possibly over-designed) protocol and

check various weakenings. This will indicate either that certain details of the design

are overkill, if no attack is found, or will make clear why they are necessary, if an attack

is found.

The drawback of model-checking is that the models have to be finite and indeed

rather small. This means that in practice considerable ingenuity may be required

to keep the models compact enough whilst not sacrificing any significant behaviour.

Indeed in many ways this is the major challenge facing this approach. We will discuss

how such reductions can be performed in more detail in Chapter 4 and future directions

in tackling this in Chapter 10.

Proving protocols

The FDR approach has been used principally as an efficient and reliable way to uncover

vulnerabilities – to debug protocol designs in effect. This is very valuable in itself, but

ultimately we would really like to be able to prove that, modulo the assumptions of the

models, a given protocol does ensure a given security requirement.

Techniques like data-independence, induction, simplifying transformations, and so

on, all help broaden the class of systems that can be analyzed using model-checking,

but complete proofs using model-checking are still difficult to establish.

The alternative is to take a theorem-proving approach rather than a model-checking

approach. In Chapter 7 we will discuss an approach that uses rank functions. These are

functions from the space of messages to the integers. They are used to formulate certain

1Marketed by Formal Systems (Europe) Ltd.

36 CHAPTER 0. INTRODUCTION

invariants whose validity implies the property of interest. Rank-function techniques

have been encoded in the PVS theorem prover enabling mechanical support for the

approach. In addition, for a particular class of protocols a decidable procedure can

either generate the appropriate rank function automatically (where it exists), or can

establish that no valid rank function can exist. This approach is also supported by a

tool, the RankAnalyser. This is discussed in detail in Chapter 7.

0.10 Casper: the user-friendly interface of FDR

The construction of the FDR code corresponding to a given protocol requires specialist

skills. However, the production of such a code from the description of the protocol

is largely systematic. Based on this observation, one of the authors (Lowe) [56]

developed a compiler that takes a description of the protocol and the security property

and automatically generates the corresponding FDR code.

In practice this is not entirely straightforward:

• The standard notation for describing protocols is notoriously ambiguous.

• Security protocols differ widely in their security goals and the mechanisms they

employ. This means that it is difficult to have a general-purpose compiler able to

handle them all.

Lowe introduces an enriched notation to describe the protocols that resolves the

ambiguities and makes explicit certain aspects of the protocols. This has much in

common with the CAPSL notation [64] proposed originally by Millen as the basis for

a standard notation for describing security protocols.

Casper has considerable theoretical as well as practical significance as it addresses

the issue of ensuring a clear correspondence between the formal framework and a

notation accessible to the protocol designers and implementers. The process of analysis

is thus much more efficient and less error prone. Chapter 6 gives a detailed description

of Casper, along with worked examples.

0.11 Limits of formal analysis

It is quite possible to implement a perfectly secure protocol using high-grade crypto-

algorithms in such a way that the result is hopelessly flawed. A real example of this

is an implementation proposed by a company called APM of a protocol that had been

verified by Paulson [69]. This was found to have a glaring vulnerability. Paulson’s

analysis was perfectly valid, but the way APM proposed to implement the encryption

gave rise to some additional algebraic identities not included in the model. It was these

identities that the intruder could exploit. This is documented in [81].

More generally, security properties tend not to be preserved by conventional

refinement techniques. This is a widely recognized problem for which no general

solution is yet available and an area of ongoing research. In Chapter 10 we will

discuss this in more detail.

0.12. SUMMARY 37

Our models are, like all mathematical models, only ever approximations to reality.

We are usually assuming that the intruder’s only source of information is through

monitoring traffic. In reality he may have other sources such as EM radiation, power

fluctuations or timing information, or indeed extracting information using ‘rubber hose’

tactics. In principle such possibilities could be incorporated in the models, but that

would inevitably tend to vastly complicate them. It seems best to deal with such

vulnerabilities separately, i.e. to establish that EM radiation cannot leak out, and so

on. There is always the danger, of course, that there may be aspects of reality that

may be relevant that we have overlooked but that some smart hacker might light on.

Thus we must bear in mind that the validity of our analysis will always be relative to

the threat model and to the faithfulness of our system model, so proofs of security will

never be absolute. Of course, as and when new modes of attack are uncovered, they

can be incorporated into the analysis.

0.12 Summary

CSP has been shown to be a very effective framework in which to formulate the

behaviour and properties of security goals. The CSP framework readily encompasses

a whole host of different architectures, mechanisms and security properties.

Furthermore, the model-checking technique based on FDR has been shown to be very

effective in identifying vulnerabilities.

When faced with a new security protocol for evaluation a good methodology is as

follows:

• Establish exactly how the protocol works and what security properties it is

intended to provide and against which threats.

• Examine it for obvious flaws. It can be surprising how much can be picked up

just by eyeballing a protocol.

• Once any obvious flaws are eliminated then try to analyze the protocol using

Casper. This may require some intervention in the Casper output in some cases

(for more exotic protocols and properties).

• Once any further flaws identified by the Casper/FDR analysis have been ironed

out, go on to construct a proof using the rank-function techniques.

Later in this book you will be taken through a number of worked examples of this

process.

The effectiveness of this approach has been demonstrated by the uncovering of

several new attacks on well-established protocols (see e.g. [55]). Its utility as a design

tool is also apparent, as exemplified by its use to strengthen progressively the TMN

protocol [61]. Here a weak version of the protocol was progressively strengthened in

the light of vulnerabilities revealed by the analysis until a version was arrived at that

stood up to analysis. Alternatively, an over-engineered design can be progressively

‘weakened’ to probe for redundancies and help better understand the role of the

cryptographic primitives.

38 CHAPTER 0. INTRODUCTION

Chapter 1

An introduction to CSP

CSP (Communicating Sequential Processes) is a notation for describing systems of

parallel agents that communicate by passing messages between them. In this book

we will be seeing it mainly as a descriptive language: a natural way of writing down

the type of systems we study. However, it is also an excellent vehicle for studying the

theoretical problems that arise from concurrency (the study of parallel and interacting

systems), which means that it provides just about all the machinery required for the

formal study of systems described in it. We will get glimpses of this mathematical

side of CSP every now and again when we formalize security properties.

This chapter gives a basic introduction to CSP, and should give sufficient detail for

readers of this book. Much fuller descriptions can be found in three different textbooks.

Hoare’s [41] is the original presentation, and gives an insight into the subject from

the point of view of its inventor. It was, however, written before many of the most

interesting developments in CSP, for example the modelling of time and the use of

tools. Two up-to-date treatments, which cover these and much more besides, are by

Roscoe [76] and Schneider [87]. Schneider’s book gives many more details about time

(and especially modelling continuous as opposed to discrete time), whereas Roscoe’s

covers a wider range of theory and applications for untimed modelling. Both of these

last two books have websites with links to and from that of this book.

CSP is traditionally written in a fairly mathematical notation, with special symbols

representing its operators, and is typeset more like mathematics than a typical

programming language. We will be following this style for most of this book. All

implementation (for example in the scripts obtainable from this book’s website)

is done in CSPM , an ASCII version of the notation (see [76]) which mimics this

mathematical style and the appearance of the operators, but also provides the features

necessary to make it into a language for programming large-scale practical system

models. Readers are advised to familiarize themselves with CSPM as well as the

mathematical style of notation that we will be seeing in this chapter.

CSP is, fundamentally, a notation for describing interaction, and can be used to

describe a huge range of systems whose only feature in common is that there are

different components that influence each other. Thus it can be used to write programs

for components of distributed computing systems, such as the protocols that are the

39

40 CHAPTER 1. AN INTRODUCTION TO CSP

main focus of this book, can describe interactions between humans and machines

(as in the vending-machine examples of Hoare’s book), or provide models of safety-

critical control systems like railway networks (where things such as points, signals,

segments of track, and trains interact with each other) or of combinatorial puzzles

like peg solitaire (see Roscoe’s book). We will also find that it is useful to use the

language of CSP to form specification processes that set out another system’s intended

behaviour. You can deduce from all of this that the processes we describe in CSP

sometimes behave like you might expect a ‘real’ parallel process to behave, but at least

as often they do not. We will find that the notation contains enough constructs for both

classes of process, including some that would look a little eccentric if all we wanted to

build was the first sort.

1.1 Basic building blocks

The only way in which one CSP process interacts with others, or with us as observers,

is by communicating. Communications take the form of visible events or actions;

processes can often also perform invisible actions that represent some sort of internal

progress, but these have no direct effect on the outside world. The set of all visible

events is called Σ (the Greek capital letter sigma). There is usually no reason to have

any more than one internal action, and it is conventionally written τ (the Greek letter

tau).

The language of CSP provides us with a way of describing the states in which

processes might be. What the language describing the state has to do is to allow us

to work out what actions are immediately possible for the process and what the result

state or states of any action is or are. The process then ‘runs’ by the selection of any of

its initial actions, waiting to see what state it ends up in, selecting one of the actions of

that state, and so on.

If two different programs produce patterns of visible actions that cannot be

distinguished by an observer then they are to be thought of as equivalent. In other

words, formally speaking, it is only the communications of a program that really

matter.

Communication and recursion

The simplest process of all is Stop, which does nothing: no internal actions and no

visible actions. By itself it is pretty useless, of course! We will see, however, that

it plays some unexpectedly useful roles in constructing programs and in forming

specifications. Thanks to the principle set out in the last paragraph it also serves the

important purpose of being a simple process equivalent to any other that simply sits

there and refuses all external communications. The best known example of this is

the phenomenon of deadlock, in which a network of parallel processes cannot agree

on any action to perform next. Thus you can think of Stop as the pure expression of

deadlocked behaviour – we will see some more interesting examples later.

Obviously we need a way of introducing communications into our programs. This

is done by prefixing: given a process P and a communication a, a → P is the program

that performs a and then behaves like P. Thus if in and out are two actions in Σ, the

1.1. BASIC BUILDING BLOCKS 41

process

in→ out→ Stop

performs the actions in turn and then does nothing else. In fact it is a little bit more

complicated than this, since the process’s environment might choose not to accept one

or other of these actions, so it might get stuck earlier.

In the usage seen so far, all we can do is to create processes that offer a finite

succession of ‘take it or leave it’ choices to its environment, before finally stopping.

It is easy to build processes to go on for ever: all we have to do is to provide some

way of them looping back to a state they have been in before. In CSP the most usual

way of doing this is to give names to one or more of the states our program can reach,

and allow these named processes to be used in the program itself. We can thus create

several processes, all of which (except Malt2) describe simple and equivalent machines

that performs tos and fros alternately for as long as its environment wants:

Alt = to→ fro→ Alt

Dalt = to→ fro→ to→ fro→ Dalt

Malt1 = to→ Malt2

Malt2 = fro→ Malt1

Nalt = to→ fro→ Dalt

The Alt recursion is the most obvious presentation of this simple process, while Dalt

is a more complex recursion with the same result. The pair of processes Malt1 and

Malt2 together form a mutual recursion: they are defined in terms of each other. The

final process is not recursive on its own name, instead relying on the already-defined

process Dalt.

A further presentation of the same recursive process as Alt is

µ P.to→ fro→ P

This is exactly the same recursive definition as that of Alt, but represents the process

only, in a form that can be used as part of a larger process definition directly, rather

than having to give the process a name and then separately use the name in any larger

definition.

The communications in the prefix construction can take more interesting forms than

simply offering a single action. We can, instead, offer a choice: if A ⊆ Σ is any set of

visible actions the process ?x : A → P(x) offers the environment all of the actions in

A and, when any a ∈ A is chosen, goes on to behave like P(a). Here, of course, P(x)
must be a recipe for building the next state, whichever a ∈ A is chosen.

A particularly simple example of this is the process

RUNA =?x : A→ RUNA

which is always prepared to offer any event from A ⊆ Σ. This is, of course, a rather

uninteresting process by itself, but we will find it is a useful building block.

In ?x : A → RUNA, the state that results from each choice of action is the same,

but in general this is not true, of course. You should think of x as being a parameter

42 CHAPTER 1. AN INTRODUCTION TO CSP

of P(x). It can be used to decide what to do based on cases: the parameter can be

used in events in the program, or it can be manipulated by applying a function to it

and any other parameters. We can also give programs other parameters that are not

introduced directly by input. For example, suppose we have a coding machine with

some internal state s that has keys L ∪ {off} where L is the alphabet of individual

characters it supports. Then we can define the machine

CM1(s) = ?x : L ∪ {off} → CM1′(s, x)

CM1′(s, off) = Stop

CM1′(s, x) = crypt(s, x)→ CM1(newstate(s, x)) (x ∈ L)

where crypt(s, x) is the output communication the machine produces from x in state s,

and newstate(s, x) is its new state.

Presumably, here, crypt(s, x) is not in L, since otherwise we would be confusing

the input actions and output actions of our machine. However, they probably both

have similar form as data, and in general it is essential that we have a simple way of

incorporating ordinary data – such as characters, numbers and truth values – into both

our programs and actions in a simple way. Programs are easy: just add necessary data

values as parameters to named process states, as we did with the state s in the example

above. In order to allow the same freedom with actions, CSP allows compound events

in which the components are put together using a dot. In general, an action is a channel

name c followed by zero or more (but always finitely many) data components drawn

from the list of types corresponding to c. Thus a simple communication (such as to or

fro as used above) has no data components, and it would be more natural to write our

coding machine with input and output channels in and out of type L.

Forgetting for the time being about the event off and its consequences, we can now

build a machine with the same functionality as follows:

CM2(s) = in?x→ out!crypt(s, x)→ CM2(newstate(s, x))

This introduces two new ways of building communications: in?x allows the

environment any communication of the form in.x, where x ranges over the type of in

(or, where a channel has more than one data component, it ranges over the type of

the component to which x refers). This construct binds the identifier x to whatever

data value is chosen by the environment so that it can be used in the process following

the prefix (and, indeed, in most treatments, in any components of the same action

that follow it, as in c?x!x + 1). Thus ? models a process inputting data. In the

corresponding output form, c!x, the effect is to offer the compound action c.x. While it

is good practice to use ! to denote the output of data, it is usually immaterial whether

it or a simple dot is used1 and many processes and scripts use the two forms fairly

interchangeably.

1The only difference comes in multiple data component communications where there is an input (via

?) of an earlier component since then c?x!y and c?x.y have different meanings. The latter assumes that a

compound object x.y is being input rather than x being input and y output. For further explanation see [76].

In practice all you need to remember is always to make the input or output nature of each data component

following a ? explicit with either ? or !.

1.1. BASIC BUILDING BLOCKS 43

The use of parameters allows us to build mutual recursions that define infinitely

many different processes. This is already true of CM(s) and its relations, if the set over

which s ranges is infinite, and is certainly true of the following example of a counter,

parameterized over the natural numbers N = {0, 1, 2, 3, . . .} which uses the choice

operator of the next section:

Count0 = up→ Count1
Countn+1 = up→ Countn+2

✷ down→ Countn

This is a useful example because it is just about the simplest possible process that is

evidently infinite-state: all of the states Countn are, in a clear sense, behaviourally

distinct.

Choice operators

By naming one process Pi for each state, and using the ?x : A → P(x) construct to

set out the possible actions of each state and the new state that results, it is possible to

describe any deterministic finite state machine over a finite Σ using only the notation

we have already seen. All you have to do is set Pi =?x : Ai → P′
i(x) where Ai is the

actions possible in state i, and give a case-by-case definition of which Pj each resulting

value P′
i(x) is. The word ‘deterministic’ here means that there only is one possible

result of each action: no ambiguity about what a given action leads to. As we have

already seen with our coding machine, this sort of program for a state machine can be

clumsy, and mixes badly with the input of data.

We can do a lot better by introducing an operator ✷ whose job it is to give us the

choice between the actions of two processes, and then behaves like the one chosen. If

A = B ∪ C then

?x : A→ P(x) = (?x : B→ P(x)) ✷ (?x : C→ P(x)) (1)

the equality between programs meaning that they always behave equivalently. We can

add back the off switch into CM2(s), getting a much clearer definition than CM1(3).

CM3(s) = in?x→ out!crypt(s, x)→ CM3(newstate(s, x))
✷ off → Stop

The style in which CM3(s) is written is how we will see most of the sequential

components of CSP programs written throughout this book. Choices of actions in

each state are presented by an appropriate mixture of input, output and ✷, and the

process frequently loops back to just being in one of the named states again. This is

tail recursion.2

If B = ∅ then obviously ?x : B → P(x) is equivalent to Stop, since no options are

given to the environment. Since A = A ∪∅ we can deduce from equation (1) that

(?x : A→ P(x)) = (?x : A→ P(x)) ✷ Stop

2Tail recursive definitions can also use the other choice and prefixing constructs that we will meet in this

chapter, but not the other styles of operator that we will see.

44 CHAPTER 1. AN INTRODUCTION TO CSP

In fact, P ✷ Stop is equivalent to P in general, since offering the environment the

choice between P’s actions and no others is the same as just offering P’s.

It is natural to imagine that B and C are disjoint in (1), since then they combine to

give all the choices of A without any ambiguity. However, even if they do overlap it

would not matter, as the result P(x) of selecting action x is the same either way. Since

✷ is an operator between pairs of processes, we do have to understand what P ✷ Q

means whatever P and Q are, so it is necessary to worry not only about the case where

B ∩ C 6= ∅ in (1), but about the similar case in which the results of choosing an action

x ∈ B ∩ C are different on the two sides:

(?x : B→ P(x)) ✷ (?x : C→ Q(x))

This type of situation obviously presents an implementor with a problem, since he has

to choose between two options but has no basis on which to make the choice if the

environment picks x. The answer CSP gives to this is to allow the implementor to

make the choice between the two sides: in the above case the process may behave like

P(x) or Q(x) after the action x, and the environment has no control over which.

In practice this sort of case is rare, since it is usually easy to avoid creating this

type of ambiguity in programs and it is only in rather eccentric situations that there is

any reason to introduce it deliberately. However, it does serve to introduce us to one of

the most important concepts that appears in CSP and all other similar notations, that of

nondeterminism. A program acts nondeterministically when it is unpredictable because

it is allowed to make internal decisions that affect how it behaves as viewed from the

outside. For example,

(a→ a→ Stop) ✷ (a→ b→ Stop)

is nondeterministic because after the action a the implementation is allowed to choose

whether the next action is to be a or b. We will find later that the way parallel processes

run and interact with each other introduces nondeterminism whose effect is rather

similar to this.

Since nondeterminism is around in the CSP world whether we like it or not,

the language contains an operator for expressing it directly. Like P ✷ Q, the

nondeterministic choice P ⊓ Q behaves like P or like Q. The difference is that the user

has no control over which. The choice in this nondeterminism can be implemented

using internal actions: we can imagine the initial state of P ⊓ Q as having no visible

actions and two internal τ actions, one each to the initial states of P and Q. There is,

however, no obligation on the implementor to do this and he can implement it as P, or

as Q, or even as P ✷ Q. There is nothing that any of these processes can do that P ⊓ Q

cannot.

Nondeterministic choice is not something a programmer is very likely to use in a

practical program, since if his program would work with P ⊓ Q in it then it would also

work with the shorter and simpler process P (or Q) instead. It is, however, useful in

modelling components of systems that have a degree of unpredictability and which are

outside our control, such as a communication medium that may transmit data correctly

or lose it:

NDM = in?x→ (NDM ⊓ out!x→ NDM)

1.1. BASIC BUILDING BLOCKS 45

It also plays major roles in the formulation of specifications, in the mathematical theory

of CSP, and in cases where we deliberately build models of systems in which some of

the deterministic decision-making capability is abstracted away. It can be useful to

do this last thing, either to produce a system with fewer states and therefore easier to

verify, or in order to prove that its correctness does not depend on which decision is

made – for an example see [76].

The processes P ⊓ Q and P ✷ Q have identical sets of traces, namely the

sequences of visible communications that can be performed from the start to some

point. Therefore the distinction between these two processes is not vital when all one

is doing is judging a process by its traces – as we will actually be doing most of the

time. It is, however, an issue of which you should try to get an understanding, since

conceptually there is a great difference between

(a→ P) ⊓ Stop and (a→ P) ✷ Stop

(one can deadlock immediately, the other behaves exactly like a → P) and because

there are many important properties (like deadlock) that do depend on the difference.

One of the most important roles of CSP is to make sense of nondeterminism and

allow us to reason about it cleanly. It argues that in most circumstances there is no

way how we can tell when a nondeterministic choice was made by observing a process,

either immediately before its effects become visible or a long time before. So, for

example, the processes

a→ (b→ Stop ⊓ c→ Stop) (a→ b→ Stop) ⊓ (a→ c→ Stop)

are equivalent. Just about all CSP operators satisfy the so-called distributivity principle,

which says that it does not matter whether a nondeterministic choice is made before

or after applying them. In other words F(P ⊓ Q) = F(P) ⊓ F(Q) for any such

operator F(·). The equality above is an example of the distributivity of prefixing, and

the distributivity of ✷ is set out in the following law (which holds for all P, Q, R):

(P ⊓ Q) ✷ R = (P ✷ R) ⊓ (Q ✷ R)

Much more discussion of this issue and related theoretical points can be found in [76].

Informally, we would expect process P to be more nondeterministic than Q if every

choice open to Q is also possible for P. It must be free for P to behave exactly like Q.

Another way of saying this is that P is indistinguishable from, or equivalent to P ⊓ Q.

If this holds we say that Q refines P. This is written P ⊑ Q, and is an extremely

important concept, not least since the FDR tool’s main function is to decide questions

of refinement. There will be further discussion of refinement in Section 1.5.

It is sometimes useful to have generalized versions of the choice operators that can

be applied to a nonempty (possibly infinite) collection of processes: if S is a nonempty

set of processes then ✷ S offers the choice of all the processes in S. S should be

nonempty to ensure that at least one process is offered. Furthermore, ⊓ S can choose

to act like any member of S. It must choose one of them, which is why S has to be

nonempty.

46 CHAPTER 1. AN INTRODUCTION TO CSP

One of the least refined process over a given alphabet A is the following process:

ChoasA = Stop ⊓ ?x : A→ ChoasA

Like Stop and RUNA, this is a pretty useless program in itself, but is used in many ways

in building and reasoning about systems.

P ✷ Q represents choice between P and Q in the hands of the environment that is

interacting with the process at run time, while P ⊓ Q represents choice between P and

Q left in the hands of the implementation to make as it wishes. Two other mechanisms

for making this choice are supported by CSP. The first is time: P
t
⊲ Q represents a

process that makes whatever offers P makes for t time units and if nothing is chosen

reverts to Q. Obviously P
t
⊲ Q has the same traces as the other two choices (on the

assumption that exact times of events are not recorded in traces), but again the choice

mechanism is different. It is often a lot easier to ignore exact times in both describing

CSP systems and reasoning about them, an issue we will return to in Section 1.6, and

in that case we often replace the precise timeout operator with the abstraction P ⊲ Q,

which offers the initial choices of P until some nondeterministically chosen time, and

then behaves like Q.

The final choice mechanism is that of explicit decisions based on the internal state

parameters of the process. We have already seen how useful it is to give processes

like our coding machine models some parameters representing data. This same data

is often the basis of decisions about how a process should behave, and so we need

a conditional (if–then–else) construct similar to the ones found in just about every

other programming language ever devised. Since this is an operator of a rather

different flavour to the others in our language – less connected with the particular

nature of concurrency and communication than it is with ordinary programming –

different presentations of CSP have dealt with it in different notations and with

different levels of formality. In this book we will employ two different notations: the

straightforward if–then–else and definition by cases, as in the following simple model

of an unidirectional firewall process:

FW(s) = in?x→ (if valid(x, s) then out!x→ FW(newstate(s, x))
else FW(newstate(s, x))

All this process has to decide is whether to let each input through or not. We are

assuming the relatively sophisticated structure where the state (and hence future

decisions) is affected by each successive input. There are obvious similarities between

this process and the coding machine processes, but the most interesting comparison

is with the nondeterministic medium process NDM. The only difference is that the

decision-making mechanisms have been turned from a nondeterministic choice into

one based on conditionals (even though we don’t give the details of the functions and

state that make the latter work). To an observer with no knowledge of the state s

or perhaps of the two functions used in FW(s), this process does in fact behave like

NDM: if he does not know how a decision is made, it appears to be nondeterministic.

We will not be using the elegant alternative notation proposed by Hoare (and used

in [76]) in which P<I b>I Q is an infix operator way of writing if b then PelseQ, because

1.2. PARALLEL OPERATORS 47

that often turns out to be hard to read in practical programs and is remote from the

machine-readable version of CSP (which uses if--then--else). It does, of course,

show the similarity of this form of choice to the others a lot more clearly than the more

ordinary forms of conditionals we use.

There is a further conditional construct allowed in machine-readable CSPM , which

is enormously helpful in clarifying programs: we will therefore use it too. If b is any

boolean condition and P any process, b&P is an abbreviation for

if b then P else Stop

This is so useful because it allows the creation of tail-recursive programs where the set

of communication options available varies with some parameter values. For example,

the following process describes a token moving in single horizontal and vertical steps

round a finite (N by M) board:

Counter(i, j) = (i > 0) & left→ Counter(i− 1, j)
✷ (i < N − 1) & right→ Counter(i + 1, j)
✷ (j > 0) & down→ Counter(i, j− 1)
✷ (j < M − 1) & up→ Counter(i, j + 1)

1.2 Parallel operators

The syntax seen in the previous section is enough to describe the communications

of any sequential process, and in particular the actions of any single participant in

a protocol. These components are relatively easy to understand as we can see the

sequences of actions and states that they go through: at any time a component is simply

in one of the states we have defined.

Things become far more interesting when we put a number of these in parallel, as it

is usually far harder to understand what happens when they interact with each other. A

state of the entire system is composed of one state of each component, so the number of

possible states increases exponentially with the size of the network – this quickly gets

beyond what we can understand. Usually we would not expect all these states to be

reachable, for example if two of the nodes are running a protocol with each other it is

reasonable to expect a close relationship between them. In most cases we do not want

the network to be able to reach a deadlock state, where no communication is possible.

How are we to know and prove this sort of thing and the ways in which the complete

network communicates with the outside world?

It is therefore vital that a language like CSP provides a clear understanding of how

processes behave when put together into parallel networks. It should also allow us to

be able to check formally whether such a network satisfies a specification we hold of

it.

CSP does not regard a parallel combination as anything special: it is just another

process to which we can apply any of the operators seen so far, like prefixing and ✷.

In fact, formally speaking, every parallel process is equivalent to a sequential one that

could have been written using the operators seen in the last section. This demystifies

parallelism, but only goes part of the way towards solving the problems discussed

48 CHAPTER 1. AN INTRODUCTION TO CSP

above, since for a practical network it is likely that any equivalent sequential process

will have an infeasibly large number of states; so we are left with determining what

these are and how they behave.

Running in parallel, CSP processes influence each other by affecting what

communications they can perform. The simplest operator is the one that forces all

visible actions to be synchronized: P ‖ Q can perform a ∈ Σ only when both P and Q

can. Thus

(?x : A→ P(x)) ‖ (?x : B→ Q(x)) =?x : A ∩ B→ (P(x) ‖ Q(x))

Notice how this law reflects the idea that each parallel process is equivalent to a

sequential one: here the two prefixes in parallel are turned into a single one outside

the parallel. As an example of how this operator works, consider a process that will

always communicate a but will only communicate b if the number of as to date is

divisible by N: Mult(N, 0) where

Mult(N, m) = a→ Mult(N, N)
✷ b→ Mult(N, m) if m = 0

= a→ Mult(N, m− 1) otherwise

The effect of putting Mult(N, 0) and Mult(M, 0) in parallel using ‖ is equivalent to

Mult(lcm(M, N), 0), where lcm(M, N) is the lowest common multiple of M and N.

This example shows the concept of handshaken communication in a pure form: b can

only happen when both sides agree on it, but there is no direction to the communication.

The same mechanism can have the effect of an output from one process to another; so

we have:

(c!x→ P) ‖ (c?y→ Q(y)) = c!x→ (P ‖ Q(x))

By forcing the two processes to agree on their first communication, all but one of

the options open to the right-hand process are cut off, leaving open only the one

corresponding to the data value x that the left-hand process is outputting. It is important

to realize, however, that the output event c!x cannot happen until the other process lets

it: CSP communication is completely unbuffered (unless, of course, buffer processes

are included as separate components in the network).

We can, of course, put as many processes as we like in parallel using ‖, but this is

not really a very realistic mode of composition as all the processes have to agree on all

events. There is no sensible way in which we can either arrange for a channel from one

of a large network of processes to another, or have communications that belong only

to one process (and represent the interface between itself and the outside world). The

solution is, when putting a pair of processes in parallel, to specify which events have to

be handshaken/synchronized on and which the processes can do without reference to

the other. The easy way to do this for a pair of processes is using the interfaced parallel

operator: P ‖
X

Q forces P and Q to synchronize on all events in X, but they are allowed

1.2. PARALLEL OPERATORS 49

to perform events outside X freely. If P =?x : A→ P′(x) and Q =?x : B→ Q′(x) then

P ‖
X

Q = ?x : X ∩ A ∩ B→ (P′(x) ‖ Q′(x))

✷ ?x : A \ X → (P′(x) ‖
X

Q)

✷ ?x : B \ X → (P ‖
X

Q′(x))

As a simple example, consider a pair of buffer processes:

BA = left?x→ mid!x→ BA

BB = mid?x→ right!x→ BB

The obvious interface between these two processes is the channel mid, and the

combination B2 = BA ‖
{|mid|}

BB behaves just as one would expect: BA accepts a

value on channel left, which is then passed across on channel mid to BB (just as in the

example of one process outputting to another above) and then output to the world on

right. The next input on left may or may not come before that last output. All of this

can be deduced from the step law quoted above, since it quickly proves (abbreviating

mid!x→ BA and right!x→ BB by BA′(x) and BB′(x) respectively) all of the following

equations:

BA ‖
{|mid|}

BB = left?x→ (BA′(x) ‖
{|mid|}

BB)

BA′(x) ‖
{|mid|}

BB = mid!x→ (BA ‖
{|mid|}

BB′(x))

BA ‖
{|mid|}

BB′(x) = left?y→ (BA′(x) ‖
{|mid|}

BB′(x))

✷ right!x→ (BA ‖
{|mid|}

BB)

BA′(x) ‖
{|mid|}

BB′(y) = right!y→ (BA′(x) ‖
{|mid|}

BB)

What we have in fact done here is to reduce the parallel program BA ‖
{|mid|}

BB to a

sequential one, since if we simply replace each of the four different parallel expressions

above by a suitably parameterized simple name for the state, the above becomes a

mutual recursion which, as we will discuss in Section 1.5, gives an equivalent process.

It is obviously possible to build a network consisting of as many processes as we

like, using the interface parallel operator. One way of doing this is to add one process

at a time, in each case making the interface set the union of all the interfaces between

this process and the ones already there. This is usually very easy if the network we

are building is something like a chain or a ring, as these interfaces are then simple.

In more complex networks there is a real risk of this interface definition becoming a

mess if left to the programmer. The solution provided by CSP is the concept of the

process alphabet: each process is given control of a particular set of events (usually,

but not always, the set of all events the process ever communicates). The parallel

composition is then formed in which no process is ever permitted to communicate

outside its own alphabet, and no event is permitted unless all the processes, to

50 CHAPTER 1. AN INTRODUCTION TO CSP

whose alphabet it belongs, agree. Since the interface between two processes is just

the intersection of their alphabets, there is no need to specify all the interface sets

separately. Pragmatically, in most cases where there are more than two or three

processes in a network, alphabet gives the clearest and cleanest way of defining how

processes interact.

Hoare’s book gives process alphabets a very prominent role indeed, and every

process has one whether it is to be put in parallel or not. We prefer to make the

alphabets explicit in the parallel operator. There is a binary operator P X‖Y Q which

places P in parallel with Q, giving them alphabets X and Y respectively. Thus P must

agree to all communications in X, and Q to all those in Y . But as discussed above, it is

not the binary but the general form in which this form of parallel comes into its own:

‖
n

i=1
(Pi, Ai)

is the parallel composition of the processes Pi in which each has the given alphabet.

This can easily be defined in terms of the binary form: for n ≥ 2 we have

‖
n+1

i=1
(Pi, Ai) = (‖

n

i=1
(Pi, Ai)) A∗

n
‖An+1

(Pn+1, An+a)

where A∗
n =

⋃n

i=1 Ai. This definition of A∗
n begins to show why the general form in

which we can leave the process alphabets separate is nicer to use.

When we want to define a large network in future, all we will usually have to do is

to define the component processes and their alphabets.

Alphabetized parallel makes one big assumption that the interface parallel operator

does not make, namely that if two processes are both allowed to communicate a

particular event a then the only way this event can happen is synchronized. In P ‖
X

Q,

if a 6∈ X, either P or Q can do a independently, and if they can both perform it in

their current states then it is nondeterministic which (as the step law given above) then

yields the nondeterministic case of ✷.

This assumption usually holds in practical network models, since ambiguity over

the source of a communication is often hard to deal with elegantly in programs, and the

ambiguity can always be avoided by appropriate naming of events. However, where it

is wanted for any reason, it is necessary to use either ‖
X

or the operator ||| (interleaving

parallel), which is an abbreviation for ‖
∅

. Most uses of P ||| Q in practical examples are

in cases where P and Q use disjoint sets of events, and so the same effect could have

been achieved with alphabetized parallel, only it is less work to use |||. There is also

a general version of interleaving: ||| S executes concurrent runs of all the processes

in the set S. At any stage during the execution, only finitely many of them can have

performed some event.

Computer security, as it turns out, provides most of the main applications we know

about for interleaving that could not be reduced to X‖Y .

Recursion through parallel operators can build a dynamically expanding network

of processes: if we have a definition like

P = a→ P ‖ P

1.2. PARALLEL OPERATORS 51

then the longer it runs, the more copies of P will be running in parallel. This particular

definition does not produce a very interesting result, but the use of interleaving, and

some of the other forms of parallel/hiding constructs we will see later, can build

networks where the parallelism serves interesting functions. For example, we can

achieve the same effect as Count0 without the infinite parameterization:

CT = up→ (CT ||| down→ Stop)

The more ups have happened, the more interleaved downs are left available to balance

them. This sort of behaviour is more interesting and complex than happens with tail

recursions, where recursive calls are made without leaving other baggage around.

It is, of course, possible to use P ‖
X

Q to synchronize some but not all of the events P

and Q have in common. One possible use of this would be in the broadcast of a global

signal to two processes that are otherwise interleaved, but it is not a common feature in

programs that give realistic representations of networks.

Unexpected uses of parallel operators

The CSP parallel operators are essentially combinatorial or logical operators on the

communications that their arguments perform. The obvious use to put them to is in

calculating the patterns of communications that appear when we put the processes

forming a realistic network together. There are, however, two interesting common

uses that put the combinatorial properties to work in other ways. In each case the

objective is not to build a model that is intended to reflect any real parallelism in an

implementation, but rather to achieve a particular overall behaviour.

The first is building up a series of constraints on traces. Suppose P is any process

and Q is one whose events all belong to the set X. Then all communications of P ‖
X

Q

come from P, but it is only allowed to do those things in X that Q lets it. Suppose we

want to build a process that has as many traces drawn from the alphabet A as possible,

subject to a series of restriction processes Ri, each of which says something about what

our process is allowed to do in a subset Ai of A. Then we can build up the behaviour

we want by starting with Q0 = Run(A) and adding the constraints one at a time:

Qj+1 = Qj ‖
Aj+1

Rj+1.

For example, suppose we have a building with rooms indexed {1, . . . , N},
each of which has a door and a light switch. We might then have events

open.i, close.i, on.i, off .i for each room. If A is the set of all these events (for all

rooms), then each of the following properties is easily expressed as a simple process:

• AltDoori = open.i → close.i → AltDoori, with alphabet {open.i, close},
says that door i is initially closed and that the open and close events alternate

appropriately.

• AltLighti = on.i→ off .i→ AltLighti, with alphabet {on.i, off .i}, says that light

i is initially off and that the on and off events alternate appropriately.

52 CHAPTER 1. AN INTRODUCTION TO CSP

• The process OnOpenCi, with alphabet {open.i, close.i, on.i}, defined

OnOpenCi = open.i→ OnOpenOi

✷ close.i→ OnOpenCi

OnOpenOi = open.i→ OnOpenOi

✷ close.i→ OnOpenCi

✷ on.i→ OnOpenOi

says that the event on.i can only occur when the door to room i has been opened

more recently than it has been closed. (In other words, this light may only be

turned on if the door is open.)

• Finally, we can express properties covering more than one room, such as the

following that says that only one door may be open at a time, with alphabet

{| open, close |}:

AllClosed = open?i→ close.i→ AllClosed

✷ close?i→ AllClosed

If we add each of these processes in parallel with Run({| open, close, on, off |})
we get a single process whose traces are just those satisfying all of the individual

constraints. Even though we would presumably never contemplate actually building

a parallel implementation looking like this, we might very well use a process defined

like this as a specification – we will find in later sections that the usual way to test

the correctness of a CSP process is to check that all its behaviours (e.g. traces) are

contained in those of some specification process.

We may also want – either as our whole implementation or part of it – a process that

is essentially combinatorial in nature, whose state is naturally expressed as a mapping

from one smallish set, A, to another, B. Even if there is no expectation that we will

want to create a real parallel process representing it, there can be advantages both of

clarity and efficiency on tools (especially FDR) from representing such a system as a

parallel combination of |A | processes, each of which has a state for each member of A.

Let us suppose we want a process that represents a varying subset of the finite

nonempty set A. It should have events add.i, delete.i and member.i for each i in A,

and global events empty and nonempty. We could build our set process as a single

recursion:

Set1(X) = add?i→ Set1(X ∪ {i})
✷ delete?i→ Set1(X \ {i})
✷ member?i : X → Set1(X)
✷ (if X = ∅ then empty→ Set1(X)

else nonempty→ Set1(X))

Alternatively, we could build a separate process S(i, b) for each i ∈ A where b is

1.3. HIDING AND RENAMING 53

either true or false:

S(i, b) = add.i→ S(i, true)
✷ delete.i→ S(i, false)
✷ (if b then (member.i→ S(i, b) ✷ nonempty→ S(i, b))

else empty→ S(i, b))

We can then combine them together into a process equivalent to Set1(X) by

synchronizing appropriately initialized S(i, b)s on the event empty (but not nonempty

since the set is nonempty if any rather than all of the components have something in).

Thus our ability to synchronize using ‖
{empty}

on selected rather than all shared events

proved useful in achieving the desired behaviour.

In this example there are relatively few interactions between the component

processes. In other examples they are more interesting: we might model some board

game, with the processes representing individual squares and events the moves of

the game. The rules of the game – which moves are allowed – can often then be

implemented using parallel composition. Further rules can be imposed via extra

parallel processes (much as in the example of building a specification incrementally

given above), and of course you can experiment with the effects of adding or changing

rules very easily. You can find a variety of puzzles, including peg solitaire, the towers

of Hanoi and the knight’s tour problem implemented for FDR, on this book’s website.

Perhaps the most interesting process definition in this book, namely that of the

intruder who tries to break cryptographic protocols, will have the shape of our set

process, but with much more interesting rules and interactions.

1.3 Hiding and renaming

One normally expects the internal details of how a program runs to be invisible to a

user, who only gets to see the program’s defined external interface (e.g. a procedure’s

parameters, or the externally available operations on an object). It is natural to want the

same degree of abstraction in CSP, but this is something the language we have seen so

far, lacks when it comes to building parallel networks. Consider the process B2 defined

on page 49. In this case we can divide the set of events used into two parts: the natural

external interface {| left, right |} and the rest, which represent internal communications

between the processes making up the system. Thus two systems with different internal

communications will not be equivalent even if everything they do with the outside

world is the same. Furthermore, since the internal communications remain visible it is

possible to synchronize further parallel processes with these events: e.g. B2 ‖
{|mid|}

Stop

would prevent the internal actions of B2 happening at all.

The natural thing to do is to remove the details of internal behaviour from view.

CSP has a hiding operator to do this: if P is any process and X a set of events, P \ X

behaves like P except that all events in X are turned into the invisible action τ . Thus

B2 \ {| mid |} leaves only the external communications visible, which is what is

appropriate for most purposes.

54 CHAPTER 1. AN INTRODUCTION TO CSP

You should think of the CSP parallel and hiding operators as being two different

phases of the most common natural mode of putting processes in parallel with each

other: connecting the channels over which they are to communicate and removing

these channels from view. In many languages the parallel operator incorporates hiding

rather than leaving it separate, but the CSP approach has its advantages:

• It becomes easy to vary the way processes are put in parallel, for example

by synchronizing a single outputting process with many inputs to achieve a

broadcast, or synchronizing all processes on a global clock signal (as we will do

in Section 1.6), without the need for more specially defined operators.

• Hiding is a valuable form of abstraction in its own right: there is no reason why

events should only be hidden on parallel composition.

• The CSP parallel operator can be used to construct many useful processes

representing combinatorial systems, one of the best examples of which is the

parallel intruder process we will see in Chapter 6, which would be impossible

with point-to-point parallel-with-hiding.

• It is useful to have the option of seeing, and making specifications about, internal

actions. This is something else we will be making much use of in this book:

when what we are studying is the operation of a protocol, it would be a shame

not to be able to build a version of the network in which the protocol messages

were visible.

• It is in any case straightforward to combine parallel, hiding, and the concept

of renaming that we will see below, into user-friendly operators for plugging

processes together in the sense described above. These are discussed at the end

of this section.

Hiding turns visible actions into invisible ones. It does not make sense in CSP to

do the reverse, since there would then be many processes with equivalent observable

behaviour that would become different, creating huge theoretical problems. What we

can do safely is to change one visible action into another, or on a grander scale to apply

a renaming scheme under which many of the events a process performs are turned

into other ones. Different presentations of CSP offer a number of forms of renaming

operator, but they all apply some sort of alphabet transformation to a single process.

The most general one, essentially the one used in the machine-readable version CSPM ,

is to apply a relation to the events.

A relation between two sets A and B is a subset of the Cartesian product A × B.

In other words it is a set of pairs (a, b) with a ∈ A and b ∈ B. Mathematics and

computer science are littered with relations: equality on set A (the set of pairs {(a, a) |
a ∈ A}), equivalence relations, and functions (under which the function f is identified

with the set {(a, f (a)) | a ∈ dom(f)}) are just three examples. In renaming the

process, P[[R]] behaves like P, except that all visible events a from P are relabelled

by whatever R associates a with. It is the custom only to use relations that associate

every event of P with at least one event. This procedure is easiest to visualize when R is

a function, because it then maps each event to exactly one image. As a simple example

1.3. HIDING AND RENAMING 55

of this, consider the processes BA and BB defined on page 49. Obviously these two

processes have essentially the same behaviour but use different channels: we ought to

be able to apply an alphabet transformation to one to get the other. The appropriate

transformation to BA is most conveniently written [[mid, right/left, mid]]: in other words

the channels left and mid are respectively mapped to (or substituted by) mid and right

respectively.

This is typical of one common use of renaming: to produce many copies of simple

component processes that have the different alphabets required for the parts they have

to play in some overall parallel composition. In such cases we usually have a choice

of using renaming, or defining the component processes with appropriate parameters

that allow the multiple copies to be created by varying the parameters. Thus we could

define

B1(in, out) = in?x→ out!x→ B1(in, out)

and define BA and BB in terms of it.

The renaming used to convert BA to BB was doubly simple because not only was

each event only mapped to one thing, but also all events get mapped to different things.

Renamings of this type really do just create copies of the original except for the names

of events. Obviously if we map a pair of events to a single target via a renaming then

we introduce confusion: we cannot be sure which event P is performing when we see

P[[a, a/b, c]] (in which both b and c are mapped to a) perform a. This is a potential

source of nondeterminism: many-to-one renaming like this is used in situations where

we deliberately want to lose information about a process, but is rarely used in programs

close to realistic implementations.

If a given event a is mapped to both b and c, then whenever P performs a, P[[R]]
offers the choice of b and c to the environment, but the state after either of these choices

is the same. This might seem a strange operation on processes, but it proves to be

extremely useful, not least (as we will see in the next chapter) in modelling security

protocols. As a simple example, the process (a→ P)[[b, c/a, a]] (meaning that a gets

mapped to b and c, and all other events of the process are unchanged) is equivalent to

(b→ P[[b, c/a, a]]) ✷ (c→ P[[b, c/a, a]])

A typical application of this one-to-many type of renaming is where there is a set of

events in the wider world that a process P needs to regard as equivalent. It is both

clearer and safer to define P with a single event representing this class and rename

later.

While it is possible in principle to have a renaming that both maps an event a to

several, and also introduces nondeterminism through one or more of these images also

being the images of other events, this is not something one meets in practice. In other

words, the renamings that are used are one-to-one (the simple case), or many-to-one,

or one-to-many, but not both of the last two.

In general, renaming is a useful tool to bear in mind when you are having difficulty

obtaining a particular effect in CSP. Let’s suppose we want to hide the first event (and

only the first event) of process P. This cannot be achieved using the hiding operator

alone, since it only hides by the name of the event rather than position in a trace.

However, if we give each event of P two separate identities using renaming, we can use

56 CHAPTER 1. AN INTRODUCTION TO CSP

a suitable parallel composition to distinguish between the first and subsequent events,

and then hide only the first event. If the events of P are drawn from set A, we create a

unique ‘shadow’ a′ for each a ∈ A, such that the set A′ of all these shadows is disjoint

from A. The hiding we want is then achieved by

(P[[R]] ‖
A∪A′

?x : A′ → Run(A)) \ A′

where R is the relation that maps each a to both a and a′.

Joining channels together

As discussed above, the CSP parallel and hiding operators complement each other

because they each represent half of the natural point-to-point parallelism in which the

common events of a pair of processes are synchronized and then hidden so that nothing

else can interfere with them. It certainly is not hard to create systems of this form using

the operators we have already seen: two processes can be joined together (P ‖
X

Q) \ X

or a whole network:

(‖
n

i=1
(Pi, Ai)) \ Z, where Z =

⋃
{Ai ∩ Aj | i 6= j}

(in which point-to-point communication occurs when Ai ∩ Aj ∩ Ak = ∅ whenever i, j

and k are all different). However, it can be useful to have operators that do the parallel

composition and hiding all at once, particularly when they solve another problem that

can – in a significant minority of cases – make CSP parallelism more trouble to use.

That is the need to have the same name in both of a pair of processes for any event on

which they are to synchronize.

For example, if we want to connect a series of N processes in parallel, the outputs

of each (except the last) being linked to the inputs of the next, it is a little inconvenient

to have to invent separate names for all the N + 1 channels (N − 1 of them internal)

and to have to build each of the component processes to use the right pair of them.

This shows up clearly in the example B2 seen earlier, of putting two one-place buffers

together. While this can be solved by either parameterization or renaming, it would be

friendlier to have an operator that did the work for us.

Hoare’s book introduced two special-purpose operators that combined parallel,

hiding and renaming. These were the chaining or piping operator P ≫ Q and the

enslavement operator (P//a:Q). Chaining assumes that both the processes it combines

have just two channels: an input channel (usually called left) and an output channel

(usually right). P ≫ Q is then the result of connecting the output of P to the input of

Q (by renaming to some other channel name) and hiding the internal communications.

The resulting process has the same two visible channels, namely the input of P and the

output of Q, so can itself be combined using ≫. For example, we can combine any

finite number of Copy (= left?x : T → right!x→ Copy) processes using this operator

Copy ≫ Copy ≫ . . .≫ Copy

The enslavement operator takes a ‘master’ process P and a (usually) named slave

a:Q whose alphabet is entirely contained within that of P, puts them in parallel (all

1.4. FURTHER OPERATORS 57

communications of Q being given the additional label a), hiding the alphabet of

a:Q (namely all events with label a). It is a useful operator for modelling situations

where one process provides a service to another, and for creating recursively parallel

networks.

You will find both these operators discussed in [76], and also the reasons why

neither of them fit comfortably with the principles of machine-readable CSPM (in

particular the way it handles types). The essential problem with chaining, for example,

is the special role given to two channel names: what are their types, particularly in

situations where we may want to use≫ on a process whose outputs are of a different

type from its inputs?

CSPM introduces an alternative operator that readily generalizes the other two: it is

called the link parallel operator: P[a↔ b, c↔ c]Q means P and Q in parallel, with the

a channel of P connected to the b one of Q, and the c channels of the two connected,

with all these internal communications hidden. In general this operator can link any

list of pairs of channels, where the type of the first and second components of each

pair has the same type and no channel is used twice as a first or twice as a second

component. Like≫, it can be written as an appropriate combination of parallel, hiding

and renaming. The ≫ operator then simply becomes [right ↔ left] in cases where

the types of these channels match.

The link parallel operator is a very useful one for programming CSP models of

distributed systems where (as one usually does) we want the internal communications

to be hidden. We will be using it relatively rarely in this book simply because we need

to keep the ‘internal’ communications of the security protocol models we build visible

so we can specify things about them.

1.4 Further operators

Many programming languages have the concept of sequential composition. P;Q does

whatever P does until it terminates, and then does what Q does. This makes sense in

the world of CSP – what the process ‘does’ is to communicate with its environment –

provided we understand what ‘terminates’ means. CSP programs can stop

communicating for a variety of reasons, such as reaching the state Stop, deadlocking

some other way, or getting into some race condition. All of these really correspond

to the process getting stuck in some way rather than terminating gracefully, and while

you can imagine wanting some operator that handles errors in a process P by passing

control on to a second one Q, it would not be an ordinary sequential composition.

The solution is to represent the act of a process terminating successfully by a

special event X, which is only introduced via the process Skip (i.e., it is not permitted

to write things like X → Stop, even though this particular example would be

equivalent to Skip if we could). Thus termination is something that a process does

positively, rather than arising negatively out of the failure to make any sort of progress.

For example, a → b → Skip is a process that terminates successfully after the

events a and b, and (a → Skip);P has the same externally observable behaviour as

a→ P. Each time that a X event triggers a sequential composition, the X gets hidden,

since it no longer represents termination of the entire process. In other words P;Q does

58 CHAPTER 1. AN INTRODUCTION TO CSP

Stop the process that does nothing

a→ P event prefix

?x : A→ P event prefix choice

c?x : A→ P input prefix choice

P ✷ Q choice between two processes

✷ S general choice

P ⊓ Q nondeterministic choice

⊓ S general nondeterministic choice

P ‖ Q lockstep parallel

P X‖Y Q synchronizing parallel

P ‖
X

Q interface parallel

||| S general interleaving

P \ X event hiding

P[[R]] process relational renaming

Skip successful termination

P;Q sequential composition

P = F(P) recursive definition

µ p.F(p) recursive process

Figure 1.1: CSP operators

not terminate until P has and then Q has, but only Q’s X is externally visible. X,

when it occurs, is always the final event the process performs: it is never followed by

anything else.

Skip and P;Q are easy to understand, and by far most often used, in situations

where:

1 They are used to build the sequential components of networks, rather than being

used to compose two parallel networks in sequence;

2 You never write a process that attempts to give the environment the choice of

terminating or not, as in P ✷ Skip.

Dealing properly with the general case, particularly when rule (1) above is violated,

presents a real challenge, and it would be wrong to get too involved here in these issues

since they are irrelevant to the use of CSP in this book and are in any case treated in

[76] and [87].3

All we do here, therefore, is give an outline of how termination is treated by the

other operators. X may not be hidden or renamed, or be the target of another action

under renaming. It never appears explicitly in any set used as a process alphabet

or interface in a parallel operator, but is always implicitly there, since we adopt the

principle of distributed termination: every type of parallel composition only terminates

3It must be noted here that these two books deal with problem (2) in subtly different ways, each of which

has its own advantages and disadvantages.

1.5. PROCESS BEHAVIOUR 59

when all its component processes have terminated. The effect of this is that P ||| Skip

is equivalent to P, since the right-hand process terminates immediately and waits for P

to do so.

The way sequential composition interacts with process parameters makes it a far

less universally used operator than it is in most imperative programming languages.

The problem is that P;Q provides no mechanism for transferring the parameter values

that P has built up at the end of its run over to Q. The second x in

(c?x→ P); (d!x→ Skip)

does not get bound to the value input in the first process, rather it means whatever

x means in the world that encloses the entire process. This means that P;Q tends to

get used at a very low level on components without data to pass on, or at a high level

between components that provide rather independent services to the environment in

sequence, rather than as a way of putting together stages of a typical computation.

Recursion through the left-hand argument of ‘;’ can create effects rather like the

CT definitions above based on recursion through |||. For example, we can create an

unbounded stack via the definition:

Empty = in?x→ Sx;Empty

Sx = out!x→ Skip

✷ in?y→ (Sy;Sx)

The process ChaosA described earlier never terminates, and therefore is not refined

by Skip. We can remedy this via an extended version:

ChaosX

A = Stop ⊓ Skip ⊓ ?x : A→ ChaosX

A

which can perform any trace of events from A, after which it can decide to carry on,

terminate successfully, or deadlock.

A summary of all of the operators introduced so far is given in Figure 1.1.

1.5 Process behaviour

Concurrent systems seem to be inherently more difficult to understand than sequential

ones. Rather than having a single process that works through its program in a linear

fashion a step at a time, we may have many that interact in ways that are less predictable

and create the potential for

• deadlock, in which, though each individual node may well be willing to do

something, the system as a whole cannot agree on any action;

• livelock, in which an infinite sequence of hidden internal communications occur

between components, so that the external appearance is much like a deadlocked

system;

60 CHAPTER 1. AN INTRODUCTION TO CSP

• nondeterminism, which though it appears in CSP from various angles, arises

most naturally – and unavoidably – in the situation where two processes P1 and

P2 are each willing to talk to a third, Q, which has to make the choice. These

internal communications will often be most naturally hidden, but obviously the

subsequent external behaviour may well be affected by which way Q jumps.

Indeed, just thinking about the different states (each a combination of states of the

component processes) a network can get into can be very challenging. For example,

can process Anne ever get into the state where she thinks she has run a protocol with

Bob, when he does not think he has run it with her? Trying to understand and specify

processes in these terms is complex, and perhaps leads one to think at the wrong level

of abstraction: how the process is built rather than what it is doing.

While we cannot eliminate potential misbehaviours simply by choice of notation

or the models used to specify and reason about CSP, we can use these things to make

the problems clearer and less frightening, and to give us a language for specifying how

we want systems to behave. We need models that clearly represent aspects of process

behaviour that are relevant to correctness – both behaviours that we might positively

want our processes to have and ones that we definitely want to exclude, and are not

cluttered by irrelevant detail.

The traces model

The finite traces of a process provide a strikingly simple model of behaviour: we

simply record the sequences of visible events that our process can communicate up

to an arbitrary finite time. For example:

• traces(Stop) = {〈〉}, where 〈〉 is the empty sequence: however long you watch

Stop, it will not do anything.

• traces(µ P.a → P ✷ b → Skip) = {〈a〉n, 〈a〉n 〈̂b〉, 〈a〉n 〈̂b,X〉 | n ∈ N} where

ŝ t is the concatenation of s and t, and sn is the concatenation of n copies of s. As

you would expect, when the event X that signals termination appears in a trace,

it is the last element of the trace.

In the traces model of CSP each process P is represented by its set of traces, which is

always

• (T1) nonempty, because every process can perform the empty trace;

• (T2) prefix-closed, in the sense that if ŝ t is a trace then so is s.

The individual traces range over the set of finite sequences of Σ with perhaps a X added

at the end. If X is any set, X∗ is the set of finite sequences of members of X (including

the empty sequence 〈〉, and then:

traces(P) ⊆ Σ∗X, where

Σ∗X = Σ∗ ∪ {ŝ 〈X〉 | s ∈ Σ∗}

1.5. PROCESS BEHAVIOUR 61

The traces model itself, which is written T , is the set of all subsets of Σ∗X that

satisfy (T1) and (T2).

A straightforward set of rules allow us to calculate traces(P) for any CSP term

P: there is one rule for each construct in the language that shows the effect of that

construct on traces. The following clauses describe the effect of the CSP operators we

have seen:

• traces(Stop) = {〈〉}.

• traces(a → P) = {〈〉} ∪ {〈a〉̂ s | s ∈ traces(P)} – this process has either done

nothing, or its first event was a followed by a trace of P.

• traces(?x : A→ P) = {〈〉}∪{〈a〉̂ s | a ∈ A∧s ∈ traces(P[a/x])} – this is similar

except that the initial event is now chosen from the set A and the subsequent

behaviour depends on which is picked: P[a/x] means the substitution of the

value a for all free occurrences of the identifier x.

• traces(c?x : A→ P) = {〈〉}∪{〈c.a〉̂ s | a ∈ A∧ s ∈ traces(P[a/x])} – the same

except for the use of the channel name.

• traces(P ✷ Q) = traces(P) ∪ traces(Q) – this process offers the traces of P and

those of Q.

• traces(✷ S) =
⋃
{traces(P) | P ∈ S} for any non-empty set S of processes.

• traces(P ⊓ Q) = traces(P) ∪ traces(Q) – since this process can behave like

either P or Q, its traces are those of P and those of Q.

• traces(⊓ S) =
⋃
{traces(P) | P ∈ S} for any non-empty set S of processes.

• traces(P ‖ Q) = traces(P) ∩ traces(Q) – when P and Q have to synchronize on

everything, every trace of the combination has to be a trace of both P and Q.

• traces(P X‖Y Q) = {s ∈ (X ∪ Y)∗X | s ↾ XX ∈ traces(P) ∧ s ↾ YX ∈
traces(Q)} – P must perform all events in X, and Q all in Y , and the combination

only terminates when they both have. XX is an abbreviation for X ∪ {X}, and

s ↾ Z means s restricted to Z, or in other words s with all members outside Z

thrown away. Note that with this parallel operator, once we are told a trace of

P X‖Y Q, we know exactly what traces P and Q must have done to create it.

The situation with P ‖
X

Q (and its special case P ||| Q) is not so simple, since,

for example, if P and Q can both perform the same initial event a, and it is not

one being synchronized, then 〈a〉 could have happened in either of two ways.

Thus the rule for calculating the effects of ‖
X

is a little more complex:

• traces(P ‖
X

Q) =
⋃
{s ‖

X

t | s ∈ traces(P) ∧ t ∈ traces(Q)}, where s ‖
X

t is the

set of traces that can result from P and Q respectively performing s and t. This

set is empty unless s ↾ XX = t ↾ XX. For further details of this calculation see

either [76] or [87].

62 CHAPTER 1. AN INTRODUCTION TO CSP

• traces(|||
i∈I

Pi) =
⋃

F⊆finI traces(|||
i∈F

Pi). Since traces are finite sequences

of events, any trace of the interleaving indexed over I will arise from only

finitely many of the processes. Thus the interleavings of all finite subsets F of

indexes from I will generate all the traces required. For a finite collection of

processes, |||P1, . . . , Pn can be defined in terms of the binary operator, to be

(. . . (P1 ||| P2) ||| . . . ||| Pn).

• traces(P \ X) = {s \ X | s ∈ traces(P)}, where s \ X = s ↾ (ΣX \ X).

• traces(P[[R]]) = {t | ∃ s ∈ traces(P) • s R∗ t}, where R∗ is the relation on traces

that relates two traces just when they have the same length, with each element

of s being related to the corresponding one in t by R ∪ {(X,X)}.

• traces(Skip) = {〈〉, 〈X〉}, since all Skip does is terminate successfully.

• traces(P;Q) = (traces(P)∩Σ∗)∪{ŝ t | ŝ 〈X〉 ∈ traces(P)∧ t ∈ traces(Q)}. In

other words a trace of P; Q is either a trace of P without a X, or is the combination

of a trace after which P can terminate and a trace of Q. Note that the effect of this

is to hide the X produced by P: we only want P; Q to terminate when Q does.

The only construct that leaves is recursion. A recursive definition

P = F(P)

says that the name P has the same behaviour – and in particular the same traces – as

the process F(P), namely the body F(·) of the recursion in which all recursive calls

behave as P. In terms of traces, F(·) will always represent a mapping from T to

itself which is monotone, namely if traces(Q1) ⊆ traces(Q2) then traces(F(Q1)) ⊆
traces(F(Q2)). It follows that traces(P) ⊇ traces(F(Stop)) (the last set are the traces

the body of the recursion can do without making any recursive calls). Applying F(·)
and monotonicity over and over again tells us that traces(P) ⊇ traces(Fn(Stop)) for

any n, where Fn(Stop) just means the result of applying F n times to Stop.

traces(Fn(Stop)) are the traces the process P can produce using no more than n

nested levels of recursion. Since we are only considering finite traces and any finite

trace must appear in a finite time, it is clear that any such trace must only take a finite

number of recursive unfoldings to produce. It follows that

traces(P) =
⋃
{traces(Fn(Stop) | n ∈ N})

and indeed it is possible to show that this value is always a fixed point of the T → T
mapping derived from F(·) (i.e., it is mapped to itself by this map). For further

discussion of how fixed points arise and correspond to recursions, see either [76] or

[87].

The above rules give a denotational semantics to CSP in terms of traces: an

inductive recipe for computing the value in T for any process. There are other ways

to work out the traces as well, such as simply observing the process P in operation:

the FDR tool effectively does this by running an abstract implementation of P (its

operational semantics) through all possible routes.

1.5. PROCESS BEHAVIOUR 63

Traces are a powerful tool for understanding how processes behave, and can be

used to specify just about any property that says that our process never communicates

anything we don’t want it to. Examples of such properties are:

• The outputs (the sequence of values appearing on channel right, say) are always a

prefix (initial subsequence of) the inputs (values on channel left), and the process

performs no other actions. This is the traces specification of a buffer, or reliable

communication medium.

• Each occurrence of event commit is preceded by starting then running, both of

which have occurred since the last commit.

• The event error never happens.

All of these little specifications are relevant to the world of security protocols,

since we often want to create a reliable communication service; we may well expect

one event in a cryptographic protocol to occur without some other sequence of

messages having happened first; and we may add events into our models that signal

the occurrence of some insecure state, and then want to specify that such states never

actually appear.

There are two distinct ways of expressing trace specifications like the above. The

first is to write down a logical expression that explicitly defines a property of traces.

The three above might be written (where tr represents a typical trace):

(a) tr = tr ↾ {left, right} ∧ tr ↓ right ≤ tr ↓ left, where tr ↓ a is the sequence of

values communicated along channel a in tr.

(b) tr = tr′̂ 〈commit〉 → ∃ tr1, tr2 • tr′ = tr1̂ tr2 ∧
〈start, running〉 ≤ tr2 ↾ {start, running} ∧ tr2 ↾ {commit} = 〈〉

(c) tr ↾ {error} = 〈〉

Here (a) is notably simple because the specification is so close to the prefix relation

on traces that we have already discussed; (b) is rather involved; and (c) is extremely

simple, as befits the concept it is expressing.

When all of the traces of a process P are claimed to satisfy a logical property S(tr)
on traces, then we write P sat S(tr) as shorthand for ∀ tr ∈ traces(P) • S(tr).

Three immediate consequences of this definition are:

• P sat true(tr) for any process P. This simply says that every process meets the

weakest specification that does not disallow any behaviours.

• (P sat S(tr) ∧ P sat T(tr)) ⇒ (P sat S(tr) ∧ T(tr)). If a process meets two

specifications, then it must also meet their conjunction. This is useful when

a specification with a number of conjuncts is to be established: each of the

conjuncts can be established separately.

• (P sat S(tr) ∧ (S(tr) ⇒ T(tr))) ⇒ P sat T(tr). This states that if P satisfies a

specification then it must also satisfy any weaker specification.

64 CHAPTER 1. AN INTRODUCTION TO CSP

It is possible to check that P sat S(tr) by calculating the traces of P directly from the

definitions, and then establishing that each of them meets the predicate S(tr). Another

way of doing this is to make use of a set of compositional proof rules, which allow

specifications of a process to be deduced from specifications of their components.

These make use of inference rules, which have the following form:

premiss1
. . .
premissn

[side− condition]
conclusion

This states that if we have already established all of the premisses premiss1 to premissn,

and also the side condition, then we may also obtain the conclusion. The side condition

is optional, and indeed a rule might have no premisses – in this case, the conclusion is

obtained immediately. For example:

Stop sat tr = 〈〉

Proof rules for sat specifications will typically use statements about sat relations as

premisses and conclusions, reserving other information for the side condition. For

example:

P sat S(tr)
Q sat T(tr)

P X‖Y Q sat S(tr ↾ X) ∧ T(tr ↾ Y) ∧ tr ∈ (X ∪ Y)∗

This rule states that if we already have trace specifications S(tr) and T(tr) for P and

Q respectively, then any trace of their parallel combination can perform only events

in their joint alphabets, and must have its projection to X (which is P’s contribution)

meeting S, and similarly its projection to Y must meet T .

For example, suppose we know that

P sat tr = tr ↾ {left, mid} ∧ tr ↾ mid ≤ tr ↾ left

Q sat tr = tr ↾ {mid, right} ∧ tr ↾ right ≤ tr ↾ mid

Applying the rule for parallel combination yields that

P {|left,mid|}‖{|mid,right|} Q sat tr ↾ right ≤ tr ↾ mid ∧ tr ↾ mid ≤ tr ↾ left

If we are only concerned with the left and right channels, this may be weakened to

obtain

P {|left,mid|}‖{|mid,right|} Q sat tr ↾ right ≤ tr ↾ left

There is a complete set of proof rules for trace specifications, whose soundness is

based upon the trace definitions for all of the process operators. Some of them are

1.5. PROCESS BEHAVIOUR 65

Rule sat.stop

STOP sat tr = 〈〉

Rule sat.prefix

P sat S(tr)

a→ P sat tr = 〈〉 ∨ (tr = 〈a〉a tr′ ∧ S(tr′))

Rule sat.extchoice

∀ i • P(i) sat S(tr)

✷
i
P(i) sat S(tr)

Rule sat.parallel

P sat S(tr)
Q sat T(tr)

P ‖ Q sat S ∧ T(tr)

Rule sat.interleave

P sat S(tr)

Q sat T(tr)

[σ(P) ∩ σ(Q) = ∅]

P ||| Q sat S(tr ↾ σ(P)) ∧ T(tr ↾ σ(Q))

Figure 1.2: CSP satisfaction rules

given in Figure 1.2. Recursion is a special case that uses the technique of ‘fixed point

induction’, covered later in this chapter.

It is also possible to identify proof rules for particular kinds of specification, and

some examples of this are given in Chapter 7.

The other way of expressing trace specifications is to create the process that has

the maximum possible number of traces satisfying the specification, and test for trace

refinement between this specification process Spec and the proposed implementation

Impl. Impl trace-refines Spec, written Spec ⊑T Impl, when

traces(Impl) ⊆ traces(Spec)

Note that a process becomes more refined by having fewer traces. That is because the

fewer behaviours a process has, the fewer ways it has to violate a specification that says

each behaviour is right. It follows from this that Stop ⊒T P for all processes P. We

66 CHAPTER 1. AN INTRODUCTION TO CSP

will discuss this rather curious fact later.

These characteristic processes for our three specifications are as follows. In each

case a P satisfies the corresponding specification if and only if it trace-refines this

process.

(a) The infinite buffer process B∞
〈〉 , where

B∞
〈〉 = left?x→ B∞

〈x〉

B∞
ŝ 〈x〉 = left?y→ B∞

〈y〉̂ ŝ 〈x〉

✷ right!x→ B∞
s

(b) The process P0, where

P0 = ?x : Σ \ {start, commit} → P0

✷ start→ P1

P1 = ?x : Σ \ {running, commit} → P1

✷ running→ P2

P2 = ?x : Σ \ {commit} → P2

✷ commit→ P0

This specification moves on from one state to the next when the next event in the

cycle 〈start, running, commit〉 occurs. The first two of these events are always

allowed (but at other times do not change the state), but commit is only permitted

at the designated point in the cycle.

(c) RunΣ\{error}

This correspondence between refinement and the satisfaction of specifications is of

enormous practical importance, since, as we will see in Chapter 4, it lies at the heart of

how FDR works.

Refinement has other useful properties: it is transitive, in that

P ⊑T Q ∧ Q ⊑T R⇒ P ⊑T R

and is compositional: preserved by all the operations of the language, in the sense that

if F(·) is any CSP construct with a slot for placing a process, then

P ⊑T Q⇒ F(P) ⊑T F(Q)

This last property is, of course, just a re-statement of the idea of monotonicity

mentioned above when discussing recursions.

These principles can be used to demonstrate that complex systems meet their

specifications by stepwise, compositional development. For example, if we have a

system with a number of components

C(P1, P2, . . . , Pn)

1.5. PROCESS BEHAVIOUR 67

and we can show that if each Pi is replaced by its specification Si, then the overall

system would meet its specification

Spec ⊑T C(S1, S2, . . . , Sn)

Then if we can prove that Si ⊑T Pi for all i, the transitivity and compositionality of

refinement prove

Spec ⊑T C(P1, P2, . . . , Pn)

Beyond traces

Traces only tell part of the story about how processes behave. It is a very important

part, and indeed most of the formal analysis of protocols we will be doing in this book

will be done with traces alone, but there are important things we cannot tell from traces.

To put it simply, we can tell from traces that a process will not communicate things we

don’t want it to, but we cannot tell whether it will definitely accept events that we think

it must. For example, for any process P,

P P ⊓ Stop P ‖
Σ

ChaosX

Σ

have the same traces, but the second of them can deadlock immediately by picking

Stop, and the synchronization with ChaosX
Σ in the third can always prevent further

communications.

The problem we are facing here is that of nondeterminism: where a process can

make internal decisions that can affect subsequent behaviour it may very well be free

either to pick a route that will lead to deadlock or one that will not, and there is no

way of detecting this type of possibility via traces. The simplest addition to traces that

copes with this is the concept of a failure: the coupling (s, X) of a trace s and a set of

events X ⊆ ΣX that the process can refuse after s. Here, ‘refuse’ means permanent

refusal: we do not record the failure (〈〉, X) just because nothing happens when our

process is offered X for a short time, during which it may still be performing internal

computations. failures(P) is the set of all P’s failures: we can immediately tell the

difference between P and P ⊓ Stop since the latter has the failure (〈〉,ΣX) even when

P does not.

Just as with traces, it is possible to compute failures(P) either via a rule for each

operator or by observing the operational behaviour of P. Since the rules are more

complex than those for traces, we do not list them in this book, but they can be found

in any of [41], [76] or [87]. For the second option, a state of P refuses X just when

it can neither perform any member of X nor any τ actions, since the latter represent

internal progress that might lead to states that can accept X.

One of the most obvious deficiencies of T is that it cannot distinguish between

internal choice P ⊓ Q and external choice P ✷ Q (a fact that is apparent when you look

at the rules for calculating traces quoted above). This problem is solved by failures,

since for example

(a→ Stop) ⊓ (b→ Stop)

68 CHAPTER 1. AN INTRODUCTION TO CSP

has the failures (〈〉, {a}) and (〈〉, {b}), neither of which occurs in

(a→ Stop) ✷ (b→ Stop)

We can now make specifications that demand progress of a process, for example:

(d) Deadlock freedom: a process is deadlock free if for no trace s ∈ Σ∗ is (s,ΣX) ∈
failures(P). (Note that this does not prevent failures of the form (ŝ 〈X〉,ΣX),
since it is probably not right to think of a successfully terminated process as

deadlocked.)

(e) We can extend the buffer specification quoted earlier to make it insist that

the process must definitely accept inputs and give outputs in appropriate

circumstances. The usual thing to say here is that an empty buffer must accept

any input and that a nonempty buffer cannot refuse to output, so that in addition

to the traces specification already quoted we require

(s, X) ∈ failures(B) ∧ s ↓ right = s ↓ left⇒ X ∩ {| left |} = ∅

(s, X) ∈ failures(B) ∧ s ↓ right < s ↓ left⇒ {| right |} 6⊆ X

The idea of trace refinement extends easily to failures refinement: P ⊑F Q if and

only if

failures(P) ⊇ failures(Q) and traces(P) ⊇ traces(Q)

A question that might come to mind when studying this definition is ‘Since surely

all traces of a process P are associated with a failure, why does this definition still have

the explicit trace clause in it?’ The answer is perhaps surprising: there may in fact be

traces without any failures, and we have to take account of them in the modelling of

processes.

To discover how this happens we need to think about what a process might do after

communicating a trace s. It might already be in a stable state, and therefore refuse at

least ∅, so that would not create a problem. Alternatively it might go through some

finite sequence of τ actions and reach a stable state, which would also be fine for the

same basic reason. The final possibility is that it goes on doing τs for ever – which we

call diverging – and that is where things go wrong. Though there is clearly a strong

sense in which a diverging process is in fact refusing all visible actions, it does not fit in

with the idea that an unstable process is not yet in a state where it can refuse anything.

Basically, something like refusal is happening in a quite different way. Perhaps the

simplest definition of a process that does nothing but diverge is

div = (µ p.a→ p) \ {a}

– a process that has only the empty trace and no failures at all.

In fact, div ⊒F P for all processes P, just as Stop ⊒T P. It is, when you think about

it, rather unlikely that you are going to have the greatest process under refinement

in any model that gives a complete description of how processes behave, particularly

ones as useless as div and Stop, since there is the general expectation that refinement

produces in some sense a better process.

1.5. PROCESS BEHAVIOUR 69

The solution, of course, is to incorporate the concept of divergence into our models.

The phenomenon of divergence is almost always considered an error, and that provides

an excuse for a simplifying assumption that CSP makes, namely once a process has

had the possibility of diverging, we are not interested in the details of how it behaves.

This assumption lies behind the definition of divergences(P) as all extensions of traces

s after which P can diverge. In other words, if s ∈ divergences(P) and ŝ t ∈ Σ∗X then

ŝ t ∈ divergences(P).

The reasons behind this assumption are subtle, and can be found, for example, in

[76] and [87]. In order to implement the assumption fully we have to extend the sets of

traces and failures by anything that might have happened after divergence:

traces⊥(P) = traces(P) ∪ divergences(P)

failures⊥(P) = failures(P) ∪ {(s, X) | s ∈ divergences(P) ∧ X ⊆ ΣX}

In the failures/divergences model of CSP, we identify a process with the pair

(failures⊥(P), divergences(P)). This plugs the remaining hole we discovered

when considering failures by themselves: if a process has performed the trace s,

s 6∈ divergences(P) and (s, X) 6∈ failures⊥(P) then we know that P will certainly

accept a member of X if offered it for long enough.

Failures/divergences refinement is defined in the way we have come to expect:

P ⊑FD Q if, and only if

failures⊥(P) ⊇ failures⊥(Q) and divergences(P) ⊇ divergences(Q)

The buffer specification quoted earlier should certainly be extended to the

failures/divergences model in the obvious way: divergence is not permitted. We can

thus be sure that an empty buffer will certainly, if offered, accept any input, and that a

nonempty one will output given the chance: they cannot escape from these obligations

by diverging.

One can do the same for the deadlock freedom specification quoted above,

but should realize that a process can then fail the specification without actually

deadlocking. The failures/divergences version of the deadlock freedom specification

is really freedom from both deadlock and divergence. In most cases, this is an

entirely reasonable extension, but there is one important situation in which it is

undesirable: it is sometimes beneficial4 not to check a proposed implementation Impl

for deadlock, but rather Impl \ Σ. Intuitively this should not matter: hiding (or,

indeed, renaming) cannot affect whether a process can deadlock, but obviously it

can introduce divergence. In fact, for a process that never terminates (X), deadlock

freedom of Impl is equivalent to the statement that Impl \ Σ must diverge. It is thus

reasonable to say that, just as the natural model for assessing the buffer specification

is failures/divergences, the natural one for deadlock freedom is failures alone. The

deadlock freedom of any process P is equivalent to the truth of the refinement

Skip ⊑F P \ Σ

4The reasons for this, which are mainly concerned with efficiency, can be discovered in [76].

70 CHAPTER 1. AN INTRODUCTION TO CSP

In the same way the natural model for the traces specifications (b) and (c) quoted

earlier is the traces model. Though it is possible to lift them to the more elaborate

models, nothing is gained, and there is again the possibility that a process might fail the

failures/divergences version by diverging rather than actually communicating wrongly.

Despite these observations about specifications, it is generally agreed that

failures/divergences are the ‘standard’ model for CSP, and that this model gives the

best notion of what it means for two CSP processes to be equivalent.

For most of this book we will, however, be concerned mainly with properties

that can successfully be stated in the traces model. The subtleties of failures and

divergences will, most of the time at least, not be things we have to worry about.

Unique fixed points

Recursive processes can be defined equationally, by giving an equation P = F(P) that

the required process must satisfy. The process P defined in this way is a fixed point

of F(X), in that applying F to P results in the same process P. If a differently defined

process Q is also shown to satisfy the equation Q = F(Q), then it can be useful to know

if P and Q actually have the same behaviour – if they are actually the same fixed point

of F or not. It turns out that a wide variety of functions, including most of those that

are written in practical situations, have precisely one fixed point. For any such function

F, any two processes that turn out to be fixed points of F must actually be the same

process.

The most useful condition (but by no means the only one) that is sufficient to ensure

that F(X) has a unique fixed point is that all occurrences of X are guarded in F(X) by

some visible event. This means that:

• every occurrence of X appears within the scope of an event prefix, an event prefix

choice, or an input, or in a sequential composition following a process that must

perform at least one event before terminating;

• F(X) should not contain the hiding operator (since this may make visible guards

internal).

For example, the functions a → X, c?x : T → (X ||| d!x → STOP), and (a →
Skip); X meet these two conditions. By contrast, X ✷ a → STOP does not, and

neither does (a→ X) \ a. Both of these functions have multiple fixed points.

If a function F(X) has a unique fixed point, then all process descriptions that

satisfy the equation P = F(P) must describe the same process. This can be useful

for obtaining a better understanding of a process description.

Section 1.2 discussed one example, and we will consider another one here.

Consider the system

Prot = (S ‖
{|mid|}∪{ack}

R) \ {| mid |} ∪ {ack}

which is intended to act as a one place buffer. It is made up of the following

components:

S = left?x : T → mid!x→ ack→ S

1.5. PROCESS BEHAVIOUR 71

R = mid?y : T → right!y→ ack→ R

It is straightforward to establish that

S ‖
{|mid|}∪{ack}

R = left?x : T → mid!x→ right!x→ ack→ S ‖
{|mid|}∪{ack}

R

and hence that

(S ‖
{|mid|}∪{ack}

R) \ {| mid |} ∪ {ack}

= left?x : T → right!x→ (S ‖
{|mid|}∪{ack}

R) \ {| mid |} ∪ {ack}

Thus (S ‖
{|mid|}∪{ack}

R) \ {| mid |} ∪ {ack} is a fixed point of the function

F(X) = left?x : T → right!x→ X

The process Copy is defined by this equation. Since F(X) meets the conditions above,

it has a unique fixed point. That means that Prot is the same process as Copy, and

hence that it does indeed behave as a one-place buffer.

Fixed point induction

If P = F(P) is a recursively defined process, then we require a proof rule that allows us

to establish when P sat S(tr). Since traces(P) =
⋃

n∈N
traces(Fn(Stop)) it is enough

to show that Fn(Stop) sat S(tr) for each n ∈ N. This suggests an inductive approach.

If we can establish the following, which give a base case and an inductive step:

• Stop sat S(tr)

• ∀X • X sat S(tr)⇒ F(X) sat S(tr)

then we can conclude that P sat S(tr). The inference rule is given as follows:

∀X • X sat S(tr)⇒ F(X) sat S(tr)
[S(〈〉)]

µ P.F(P) sat S(tr)

The side condition is equivalent to checking that Stop sat S(tr), since there is only the

empty trace to check.

As an example, consider Copy = left?x : T → right!x → Copy. To show that this

satisfies the buffer specification

B(tr) = tr ↓ right ≤ tr ↓ left

we consider the following two assertions:

• Stop sat tr ↓ right ≤ tr ↓ left, which is true because the predicate is true for 〈〉,
the only trace of Stop;

72 CHAPTER 1. AN INTRODUCTION TO CSP

• X sat tr ↓ right ≤ tr ↓ left ⇒ left?x : T → right!x → X sat tr ↓ right ≤ tr ↓
left. To see that this is true, consider a trace of left?x : T → right!x→ X. This is

either 〈〉, or 〈left.v〉, or 〈left.v, right.v〉a tr′ where tr′ is a trace of X. The first two

cases meet B(tr). In the last case, tr′ ↓ right ≤ tr′ ↓ left since X sat B(tr), and

so 〈v〉a (tr′ ↓ right) ≤ 〈v〉a (tr′ ↓ left). But this is exactly tr ↓ right ≤ tr ↓ left,

and so in the last case B(tr) holds as well.

We see that the function left?x : T → right!x → X preserves the specification B(tr),
and it follows that Copy sat B(tr).

A form of this rule can be applied when using CSP processes as specifications.

In this case, Spec ⊑ Stop is true for any specification process Spec, and so the first

condition is always trivially true. The second condition turns out to be equivalent to

the single refinement requirement Spec ⊑ F(Spec). The inference rule in this case is

as follows:

Spec ⊑T F(Spec)

Spec ⊑T µ P.F(P)

If we consider the example of Copy again, in order to show that B∞
〈〉 ⊑ Copy,

we have only to show that B∞
〈〉 ⊑T left?x : T → right!x → B∞

〈〉 . But this is true

because one of the possibilities allowed by the left-hand process B∞
〈〉 is to permit input

of some value followed immediately by its output – this is acceptable behaviour for a

buffer – followed by some subsequent behaviour of B∞
〈〉 . And all of the behaviour of

the right-hand process is of this form, so the refinement relation holds, and the proof

rule supports the conclusion that B∞
〈〉 ⊑T Copy.

1.6 Discrete time

Time is often important in concurrent systems, since we may well want a system to

perform its tasks within timing constraints, and many systems use time-outs to avoid

deadlocks and related conditions. Time also has a significant role in security since

many protocols timestamp some or all messages in an effort to avoid attacks in which

an old message is replayed.

CSP, of the sort we have so far, does not handle time other than by remembering

which order communication events have occurred. The notions of equivalence,

refinement and satisfaction that we have created pay no attention to how long

processes take to do things.

There are two approaches to building time into CSP. ‘Timed CSP’ (which is

described extensively in [87]) attaches a non-negative real number time to each event

in the traces, so that we can record exactly when each event occurs. This simple

addition leads to what at first sight are larger changes to the theory than might have

been expected, and certainly the presence of the continuous time creates substantial

problems in building automated tools for reasoning about Timed CSP.

The other approach, and the one we will summarize here, is comparatively simple.

We add an extra event into the alphabet Σ, which is assumed to happen at regular time

1.6. DISCRETE TIME 73

intervals. The usual name for this event is tock. You write a CSP program involving this

event to define just how the occurrence of other events relates to the passage of time:

thus any event that happens between the third and fourth tocks is one that happened

between three and four time units from the moment the process was started. These time

units can be any length appropriate for the system being studied, but for convenience

we will assume from here on that there is a tock every second. Then for example, the

processes

T1 = a→ tock→ T1

T2 = a→ tock→ T2

✷ tock→ T2

both allow a single a every second, but there is a difference since T1 insists on an a per

second, while T2 is happy to wait.

T1 illustrates a major difference in how events are sometimes interpreted in the

timed world, since in standard CSP there is no obligation on a process’s environment

to accept any event. In other words, the timing regime implied by T1 is inconsistent

with our earlier generalization about how events are accepted: the inevitable march of

time through the regular tocks is halted. In a timed framework there is far more need

to distinguish between events that a process can rely on being accepted immediately

(often outputs) and ones that it might have to wait for (often inputs). Thus it might be

reasonable to create a timed buffer process

Tcopy = left?x→ tock→ right!x→ tock→ Tcopy

✷ tock→ Tcopy

but it would be much more surprising to find one that would wait indefinitely for output

but insist on immediate input.

A network can contain both timed and untimed processes, the latter placing no

restriction on when events happen and not using the event tock. All the timed processes

should, of course, synchronize on tock. If you put processes together that disagree

about when events that they share occur, the result may well be deadlock: imagine, for

example, the process Tcopy above feeding its outputs into a process that insists on at

least three tocks occurring between inputs. If whatever is giving Tcopy its inputs is in a

hurry and feeds it data as quickly as possible, this will quickly lead to a state where one

process is insisting on output now, but the other one is not yet ready. Such a situation is

called a time stop and represents an inconsistency in the timing requirements of one’s

model. For obvious reasons these inconsistencies must be avoided: some simple checks

for establishing their absence are discussed in [76].

When building a process description in this style of CSP it is often helpful to put

process states into one of three categories:

• An idling state is one that is happy for time to pass, but this will not change its

state (i.e. it can perform the event tock, though the latter simply leads back to the

same state); examples of idling states are the initial ones of Tcopy and T2.

74 CHAPTER 1. AN INTRODUCTION TO CSP

• An evolving state is one that allows time to pass (it has the event tock) but this

leads to a different state from the original one; all the states the processes T1, T2

and Tcopy get into immediately after a non-tock event are in this category since

in each case tock is the only possible event, but this leads to states where other

events are possible.

• An urgent state is one in which no tock is possible, and which therefore requires

some other event to happen immediately. Examples of these are the states in

which T1 and Tcopy respectively insist on a and an output. Evidently a time stop

is an urgent state with no other event possible, which is therefore paradoxical.

Far more about this approach to describing timed systems in CSP can be found in

[76].

Chapter 2

Modelling security protocols in

CSP

Security protocols work through the interaction of a number of processes in parallel

that send each other messages. CSP is therefore an obvious notation for describing

both the participants in the network and the composition that puts them together. In

this chapter we describe how this is done, concentrating specifically on how protocol

models can be built that allow us to probe for security flaws.

2.1 Trustworthy processes

The typical security protocol involves several agents (often two: an initiator and a

responder) and perhaps a server that performs some service such as key generation,

translation or certification. We will see how to program processes that faithfully run

the functions of a protocol in an entirely correct and trustworthy way, before worrying

about how we are going to look for security flaws.

If we look at the Yahalom protocol:

Message 1 a→ b : a.na)

Message 2 b→ s : b.{a.na.nb}ServerKey(b)

Message 3 s→ a : {b.kab.na.nb}ServerKey(a).{a.kab}ServerKey(b)

Message 4 a→ b : {a.kab}ServerKey(b).{nb}kab

it is clear that a trustworthy agent can take one of two roles, namely as initiator (the

sender of message 1, designated a above), or responder (the sender of message 2,

designated b). It would seem wise to suppose that all agents can take either of these

roles, and it may well be the case that we allow an agent to be able to run several

different instances of the protocol at once. For the time being, however, we will see

how to build agents for single runs of the initiator and responder roles (separately), as

well as the server process s, whose role is to generate a session key kab when suitably

prompted and issue it to a (and indirectly to b).

75

76 CHAPTER 2. MODELLING SECURITY PROTOCOLS IN CSP

An agent process has two essentially different communication domains: on the

one hand there are the messages it sends and receives over whatever medium it uses

to talk to other agents (and servers if any), and on the other it may have interactions

with its user through quite separate channels. Imagine a workstation connected to the

Ethernet via a secure card implementing our protocol (and in no other way). The first

communication domain would then be the Ethernet traffic, and the second would be

the messages sent to and fro between the card and the rest of the workstation. For

simplicity, let us assume that each process has channels receive and send that it uses

for all communications with other nodes via the medium: inputs and outputs take the

forms receive.a.b.m and send.a.b.m, in each case with a and b being the names of the

sender and addressee (each of which is either an agent or a server) and m the message

content.

All the protocol messages are transacted via receive and send, and we assume that

security threats come from that direction too. It follows that we have to be careful

to ensure that these communications faithfully reflect what actually goes on in our

implementation. Generally speaking, however, we will be economical with the other,

external communications, and where we do have them they often are present to help

us assess the security of systems rather than being things one would expect to see in a

real implementation.

Each of the four messages set out above are sent by one process and received by

another. It is unrealistic to assume that the two of them always handshake on the

message in the sense of the CSP parallel operator seen in the last chapter. It is better to

think of a sent message being posted into the communication medium and a received

message arriving from it. It would be wrong to build into our model any certainty

that a sent message was delivered to its destination or that a received one has really

come from where it seems to have come from. That sort of thing, after all, is what our

protocols are designed to achieve.

The view that each process has of the running protocol is the series of sent or

received messages that it sees. The three participants (A, B and J) respectively perform:

A’s view (as initiator)

Message 1 A sends to b : A.nA

Message 3 A gets from ‘j’ : {b.kab.nA.nb}ServerKey(A).{A.kab}ServerKey(b)

Message 4 A sends to b : {A.kab}ServerKey(b), {nb}kab

B’s view (as responder)

Message 1 B gets from ‘a’ : a.na

Message 2 B sends to j : B.{a.na.nB}ServerKey(B)

Message 4 B gets from ‘a’ : {a.kab}ServerKey(B).{nB}kab

J’s view (as server)

Message 2 J gets from ‘b’ : b.{a.na.nb}ServerKey(b)

Message 3 J sends to a : {b.kab.na.nb}ServerKey(a).{a.kab}ServerKey(b)

The quotes ‘x’ around the apparent senders of messages are just to emphasize that

there is no way at present in which any of these processes can be certain about where

2.1. TRUSTWORTHY PROCESSES 77

the messages came from, just as they cannot be certain that the messages they send will

be delivered.

What we need to do is to develop CSP programs for each of these three roles

(initiator, responder, server), which in each case take the process through the

appropriate series of messages. In this protocol each process alternates between

sending and receiving messages, and the programs that implement them simply

perform each send when all preceding messages have occurred correctly. Evidently

nothing of this type is required as a precondition for the sender a to set the protocol

running, though in practice this will be caused by an external communication from a’s

user (presumably telling it who to run the protocol with).

Each process has to do important things with data. They have to generate keys

and nonces, perform encryptions and decryptions, and decide when a message that has

been received is correct so as to allow the protocol to continue.

In practice, things like keys and nonces are probably chosen by something

like a random number generator and contain many (hundreds or thousands) bits

of information. There may very well be no mechanism that ensures all separately

created values are different, but the extreme unlikelihood of equality means that we

can assume that they are. This assumption does not translate well into CSP, not least

because in any practically analyzable file we need to use types of keys and nonces

than are vastly smaller than in real implementations. Therefore CSP models always

ensure that each key the server generates and each nonce an agent generates is really

different from all others in existence. This can either be done by equipping the

processes with appropriate lists of values (or a single nonce in the case of an agent

that is only intended to run the protocol once), or by adding a process into the parallel

composition (in no sense representing a member of the real network) that monitors

and distributes values.

The structure of the data type from which messages are drawn is, of course, of great

importance, and is the subject of the next section. It is obviously reasonable to assume

the existence of an encryption function over it: if k is a key and m a member of the

type, then encrypt(k, m) is the encryption of m under k. Clearly if there were several

different forms of encryption in use, then a separate function would be required for

each.

A process that has to encrypt a message will simply use this function. In our

protocol there are two different modes in which processes receive encrypted messages:

ones they ought to be able to understand, and ones they do not. An example of the first

sort is the message the server receives, because ServerKey(b) is a shared symmetric key

between b and the server, meaning that the server ought to be able to look ServerKey(b)
up and decrypt the messages. The same thing applies to all other encryptions except the

second half of message 3: a gets this from the server but cannot understand it because it

is encrypted under a key not known to her. It follows that a cannot check whether what

she inputs as this part of message 3 is reasonable, or even has the basic form implied

by the protocol.

The best and easiest way to program a CSP process only to accept messages of

the right form that it can understand is to form an external choice over all acceptable

messages. For example, when b receives message 4 he already knows nB and the name

78 CHAPTER 2. MODELLING SECURITY PROTOCOLS IN CSP

a, but does not yet know kab. Therefore he offers a choice of the form

✷
kab∈Key

receive.a.B.({a.kab}ServerKey(B).{nB}kab
)→ P(B, a, nB, kab)

and can of course use the key kab that is thereby input in the process that follows. The

effect of a choice like this is to all intents and purposes the same as the CSP input form

a?x, but the latter cannot cope with the complex data operations used here. If we send

the process an incorrect message (say one with the wrong value of nB) the fact that the

real implementation will abandon the protocol run is captured by the non-acceptance

of the message by this CSP model. Of course, if we want a process to do something

other than deadlock when it fails to get the message it is expecting, this will have to be

programmed in as an alternative:

✷
kab∈Key

receive.a.B.({a.kab}ServerKey(b).{nB}kab
)→ P(B, a, nB, kab)

✷ AbortRun(B)

This allows conveniently both for the node timing out and abandoning for other

reasons.

It ought to be said at this point that in programming our models of protocols we

do not usually pay much attention to CSP models beyond traces. That is because

the protocols themselves do not generally attempt to say how connection is to be

guaranteed in the presence of an aggressive intruder, and things become a lot more

difficult if we try to invent this detail. Therefore the precise way in which the choice

between continuing and aborting the run above is made is not that important; all that

matters is that we do not continue the run unless the right message is received, and

allow for any traces that might occur following an abort.

We are now in a position to build programs representing the roles of initiator,

responder and server. An initiator process equipped with only one nonce (and therefore

only able to run the protocol once) and using server J is

Initiator(a, na) =
env?b : Agent→ send.a.b.a.na →

✷
kab ∈ Key

nb ∈ Nonce

m ∈ T

(
receive.J.a.{b.kab.na.nb}ServerKey(a).m→

send.a.b.m.{nb}kab → Session(a, b, kab, na, nb)

)

where T is the set of all objects that our node can accept as something it is willing

to pass on to b (remembering that it cannot understand or properly check this object,

though clearly it might know how many bits to expect here, for example). Compound

objects have been formed by forming sequences 〈u.v.w〉. For the time being at least,

we are not going to try to specify what the agents do once they get into the Session

state. The key ServerKey(a) is the key that a shares with the server J. Obviously we

would expect a only to know her own such key, but the server should know them all.

The initial communication env?b : Agent is a representation of how the process’s

local environment might tell it to open a session with agent b. The precise way

in which this happens is irrelevant to security, provided it is unambiguous and

2.1. TRUSTWORTHY PROCESSES 79

none of the communications involved are over the medium. Notice that there is

nothing in this program to stop an agent asking to talk to himself (as a ∈ Agent

and so the communication env.a is allowed). Asking to talk to yourself sounds

rather schizophrenic, and indeed, if there is only one process with each identity,

it would be as bizarre as it looks. However, there are certainly cases where

a given identity for security purposes may well have a number of processes

active, quite possibly in different locations, and in that case it would not seem

so silly. In building a relatively abstract model of a protocol it therefore seems

wise to allow this possibility, though of course if it were part of the protocol

definition that a and b must be different, we could replace this communication by

env?b : Agent \ {a}.

The most interesting piece of this program, however, relates to the packet of

information that a receives from the server and passes on to b. You might have noticed

that this was recorded as {a.kab}ServerKey(b) in the original protocol, but all this structure

has disappeared from the way in which the CSP above handles it: it has become the

arbitrary input m, which is simply relayed to b. There is a general expectation that

processes participating in a cryptographic protocol will check that each message as it

comes in has the correct form and that all fields have the right value or are in the right

type (in the case of an input value). Thus our node, when expecting a message 3, will

only accept a first part that is encrypted under her own key ServerKey(a), which has

the right values for b and na in, and where the other values kab and nb are a key and a

nonce. The difficulty with the second part of the message, however, is that our node

cannot understand it: it is encrypted under the key that b shares with the server. Thus

she cannot check to see if it is in the right format or has plausible values in it: it seems

reasonable to suppose that she will treat a wide class of values as though they were

encryptions under ServerKey(b) and pass them on to B unchecked.

The responder role has a similar program. Again, assuming it has just one nonce to

use, we get:

Responder(b, nb) =

✷
kab ∈ Key
a ∈ Agent

na ∈ Nonce

receive.a.b.na →
send.b.J.b.{a.na.nb}ServerKey(b) →
receive.a.b.{a.kab}ServerKey(b).{nb}kab →
Session(b, a, kab, na, nb)

Obviously in this case it is not the agent process’s own local environment that instigates

the protocol, but rather it is started when it receives a message from an initiator who

hopes to run the protocol with it. Note that in this case the process ought to be in a

position to understand everything it receives, and therefore rejects any communication

that is not in the ‘official’ form described in the protocol definition.

The server has to generate a key when appropriately stimulated by receiving a

message 2, and send the key back to a in the two-part message 3. Just as with nonces,

we must expect all the keys a server generates to be unique, and this gives rise to just

the same sort of programming decisions. On the assumption that we want the server to

handle more than one protocol run, we cannot simply give our model a single key. The

easiest solution is to build into our server the set of keys KEYSServer that it can generate.

80 CHAPTER 2. MODELLING SECURITY PROTOCOLS IN CSP

The server operation is then to permit a single run Serv(kab) involving each of these

keys. This can be achieved with a general interleaving:

Server(J) = |||
kab ∈ KEYSServer

Serv(J, kab)

where

Serv(J, kab) =

✷
a, b ∈ Agent

na, nb ∈ Nonce

receive.b.J.b.{a.na.nb}ServerKey(b) →
send.J.a.{b.kab.na.nb}(ServerKey(a)

{a.kab}(ServerKey(b) → Server(J, ks)

Obviously we could give the agent processes the possibility of a larger or even

infinite number of runs by handling nonces in the same way, but it would of course be

necessary to give them the ability to start further protocol runs. In the most general

case, agents can be modelled as being able to engage in arbitrarily many concurrent

protocol runs in both sender and receiver roles. This can be described within CSP using

the generalized interleave operator |||
i∈I

Pi, with each single protocol run represented

by one of the Pi.

To ensure that the protocol runs all use different nonces, we use pairwise disjoint

sets Nonce Ia and Nonce Ra to represent all of the nonces that agent a might use in

a protocol run in the role of initiator, and in the role of responder, respectively. A

particular agent a will then be described as

Usera = |||
n∈Nonce Ia

Initiator(a, n)

|||

|||
n∈Nonce Ra

Responder(a, n)

For example, Anne = UserAnne and Bob = UserBob. The requirement that the nonce

sets are disjoint models the expectation that any nonce can be generated only once.

When we come to use theorem-proving to establish that protocols are correct in

the most general sense in Chapter 7, we will use these descriptions of agent protocol

behaviour. However, when first analyzing a protocol and searching for attacks on it as

described in Chapters 5 and 6, we are concerned with feasibility of model-checking,

and so care must be taken to keep the number of possibilities to a minimum. In this

case the number of runs involved in the agent descriptions will be chosen with care to

be large enough to make such analysis useful, but no larger.

2.2 Data types for protocol models

Real implementations of cryptographic protocols use data that is composed of blocks

of bits, and encryption algorithms are computed over the same type of structures and

might have properties that are open to exploitation by an intruder. The nature of this

data, and the form of the encryption used, are both extremely important when it comes

2.2. DATA TYPES FOR PROTOCOL MODELS 81

to analyzing a system for security. After all, an intruder is quite free to play around

with data at its lowest level, and to try to break or otherwise disturb the encryption.

For example, if a knows that a certain message contains an amount of money that

is to be paid to her, encrypted by adding some private numeric key to it, she might feel

that it is to her advantage to add a modest amount to the message in transit, even though

she cannot decrypt it.

But this book is not about breaking codes or analyzing particular encryption

methods for subtle weaknesses like the simple example in the last paragraph. Rather,

it is about how codes are used in building protocols, and whether the protocols are

themselves vulnerable. Pragmatically, the analysis of either a cipher or a protocol is

quite complex enough without having to look at them together. What we therefore do

is to build CSP models that operate over abstract data types, rather than looking at

the representation in bits, and model all the constants like agent names, nonces and

keys as symbolic constants, and constructions like encryption, hashing and tupling as

formal symbolic operations over the type. For example, instead of the object {a.na}k
being a list of bits, we might think of it as the construct

Encrypt.k.(Sq.〈a, na〉)

drawn from the syntax

fact := Encrypt.fact.fact |
Hash.fact.fact |
Sq.fact∗ |
Key.k | Nonce.n | Text.t

in which k ranges over a set of keys, n over a set of nonces, and t over a type

representing message contents (which can include agent names). Thus Encrypt is a

formal constructor creating an object that we will make sure our programs treat like an

encryption.

For the time being we will assume that all facts with different constructions in this

syntax are different: there are no equalities between them. Obviously this may not

be true of the real data this abstract structure represents, but in a great many cases it

is reasonable to assume that coincidences are so rare and unstructured as not to be of

serious concern.

The way we have built the type fact will be familiar to anyone who has studied

programming language design: it is simply an abstract syntax for a little language,

where the base objects are things like nonces and keys, rather than numbers and

characters, and the constructors are encryption, hashing, and sequencing, rather than

addition and division.

Throughout this book we use the notation introduced in the Introduction of

writing {k}m for Encrypt.k.m. We also use g(|m|) for Hash.g.m. We will abbreviate

the other constructs by dropping the formal constructors, so Key.k, Nonce.n, Text.t,
and Sq.〈m1, . . . , mn〉 will be abbreviated to k, n, t, and 〈m1, . . . , mn〉 respectively.

Furthermore, it is often useful to use pairs instead of sequences, and we will use

m1.m2 to denote the fact consisting of the pair of facts m1 and m2. This notation

generalizes to arbitrary tuples. In this book we use either pair notation or sequence

82 CHAPTER 2. MODELLING SECURITY PROTOCOLS IN CSP

notation to denote concatenations of facts, depending on convenience – the expressive

power in each case is the same.

The CSP models we build operate over this abstract type, which makes operations

such as encryption and decryption exceptionally easy to implement, though of course

we have to make sure that no agent does decrypt a message unless it has the right key.

There are two main consequences of using symbolic objects as data in our models

of protocols. The first is that (as we shall see) it becomes possible to handle the models

in tools such as FDR; something that would have been quite impossible without this

step. The second is that the symbolic type provides a clean interface between the cipher

designer and the protocol designer: they have to agree on a set of rules about what

inferences and equivalences are potentially exploitable by an intruder, and describe

these symbolically. The cipher designer is then obliged to provide a code that has no

further weaknesses, and the protocol designer must produce a protocol that is immune

from attack by an intruder who can exploit the agreed features.

2.3 Modelling an intruder

If the agent and server processes we created in Section 2.1 were in a world where

their messages were transmitted reliably and where there is no other entity generating

messages to put into the communication medium, then it seems most unlikely that

anything could go wrong. That is not, of course, the world that cryptographic

protocols are designed to face. Aside, hopefully, from a different probability of

delivery, a better analogy is to imagine Anne and Bob each living on their own desert

island, sending messages to each other by putting them in bottles and throwing them

into the sea; there is no guarantee of delivery: anyone else might find the bottle and

use its contents in any way he can, including putting further bottles in the ocean

that purport to be from Anne and Bob or adding his own content to what is already

there.

The way in which this risky world of communication is modelled is by adding

an intruder process into the network, who is given special powers to tamper with the

messages that pass around. The only limitations to what the intruder can do are that his

only source of knowledge (aside from things he knows initially or invents for himself)

is what he observes being communicated, and that he is constrained by the rules of

encryption. In other words, he cannot read the mind of another agent to know some

secret, and can only decrypt an encrypted message if he has the appropriate key.

On first encountering the idea of an intruder process, it is natural to imagine that

we have to program it with the cunning strategies it is going to employ to try to break

the security of the protocol under examination. There are two great drawbacks with

this idea:

• This programming exercise is likely to be very complex.

• By construction, we are only likely to find attacks that follow one of the routes

anticipated in the intruder definition, whereas we would really like to test for all

cryptographically possible intruder behaviours.

2.3. MODELLING AN INTRUDER 83

The solution is amazingly simple: just build a process that can, at any stage, perform

any action that is cryptographically justifiable:

(a) Overhear and/or block messages that one agent sends to another (including

servers).

(b) Generate any message that can be built on the basis of what the intruder has

heard, knew initially, or might legitimately have made up (such as nonces and

keys), all under the assumptions of what is cryptographically feasible.

(c) Act as agents other than those we explicitly build into our network as

trustworthy: in other words the intruder will have all the keys etc. that such

agents would have. The point here is that we want runs between Anne and Bob

to be secure even if there are other agents around who are corrupt.

So whatever traces the most cunning strategic intruder might have, they will all be

traces of this process. Therefore if we can prove that a network with the above intruder

in place is secure, we can be sure it is secure against any intruder (within the framework

we are using).

Provided we can calculate what messages our intruder can legitimately generate at

each stage, it is very easy to achieve all these effects. Most of them, as we shall see, are

by-products of the way the network is ultimately connected together. All we have to do

in building the intruder process that resides in a typical CSP protocol model is to create

a process that has an initial knowledge IK of members of fact (including things like all

agent names, the keys that belong to other agents as discussed in (c) above, and things

like nonces and keys that such agents might generate), can at all times hear messages,

and can generate any message generable on the basis of IK and the messages heard to

date.

At a CSP level this is very easy: it is Intruder(IK), where

Intruder(X) = learn?m : messages→ Intruder(close(X ∪ {m}))
✷ say?m : X ∩ messages→ Intruder(X)

Here, the parameter X ranges over subsets of fact and represents all the things the

intruder can reasonably create. messages is the subset of fact that represents all

messages that might be generated or accepted over the communication medium by a

trustworthy agent or server process. The function close(X) calculates all facts that are

buildable from X under the rules of encryption.

close(X) is best defined in terms of a set of possible deductions, each of which is

a pair (X, f) for X a finite set of facts and f a single fact. The meaning of (X, f) is

that if an intruder can construct every member of X, then it can also construct f . This

will be written X ⊢ f . Since they are evidently useless, and because their presence

can complicate some of the codings of intruders we will used later, we conventionally

exclude all pairs (X, f) in which f ∈ X (i.e. vacuous deductions). For the example type

fact quoted above, under the assumption that only the obvious deductions are possible,

a few simple rules cover all possible pairs:

1 ({k, m}, encrypt(k, m)) for all k and m.

84 CHAPTER 2. MODELLING SECURITY PROTOCOLS IN CSP

2 ({encrypt(k, m), k−1}, m) for all k and m.

3 ({Sq.〈. . . , x, . . .〉}, x) for all x and sequences that contain it.

4 ({x1, . . . , xn}, Sq.〈x1, . . . , xn〉) for all x1, . . . , xn.

These simply say that we can form an encryption when we know both the contents

and the key, we can decipher an encryption for which we know the inverse of the key,

and can both break up and form sequences.

For example, suppose the intruder picks up the following message 4 from the

Yahalom protocol:

Sq.〈encrypt(ServerKey(b), Sq.〈A, k〉), encrypt(k, nb)〉

and happens to know ServerKey(b). Then he can apply rule 3 twice to deduce the

two halves of this message, and then rule 2 to the first half and ServerKey(b) to obtain

Sq.〈A, k〉. Rule 3 again gives him k, and rule 2 on the second half (encrypt(k, nb)) and

k gives nb. He could then take some other k′ he happened to know and use all these

rules in reverse to create

Sq.〈encrypt(ServerKey(b), Sq.〈A, k′〉), encrypt(k′, nb)〉

which could then be sent on to b. Such a possibility would obviously destroy the

security of the protocol, so we have to hope that the intruder never does get hold of

ServerKey(b) for any trustworthy b. On the other hand, we would expect the intruder

definitely to be able to perform similar deductions for messages built using the key

ServerKey(c)) of an agent whose capabilities he incorporates (as discussed above): he

will need them simply to be able to perform the normal role of c.

The FDR tool, as we shall see, deals only with processes that have finite alphabets

and finite state spaces. Both of these are still in danger when it comes to modelling

Intruder(IK), because the type fact is infinite (containing, as it does, arbitrarily deep

nestings of the encryption and sequencing constructs). This means that the parameter X

of Intruder(X) ranges over a potentially infinite set, and that since the initiator accepts

an arbitrary second component of message 3 (since it does not seek to understand this

object) before passing it on, the set of messages that could be accepted on message 3

might himself be expected to be infinite, even when there are only a few agent names,

nonces and keys. What we in fact do in practical models is carefully pick an adequate

finite subset of the complete type fact and restrict the communications of the agents

and the intruder, and the deductions of the intruder, to this set.

In most cases this set consists of all the genuine protocol messages that it is possible

to build using the ingredients from finite sets of agent names, keys, nonces and similar,

plus all the constituent parts of these messages (namely, the members of these finite

types and all the members of fact that are created from these on the way to building the

messages). While, of course, an intruder who had all these things could build complex

objects outside this set, it is generally possible to argue that these would do him no

good.

For a typical protocol model in FDR this results in a set KnowableFacts that might

eventually be learned by the intruder, of size anywhere between a few tens and a

2.4. PUTTING THE NETWORK TOGETHER 85

few thousand. This creates problems of its own when it comes to building an FDR

model, since the potential state space of Intruder(X) is then very large indeed (X varies

over subsets of KnowableFacts and so the number of such sets grows exponentially.)

Fortunately, however, there is an elegant solution to this problem, as we shall see in

Chapter 6.

2.4 Putting the network together

We now have a good idea of how reliable agents, the server, and even the intruder

operate. In this final section of the chapter we will see how these are all put together

into a network that can be used to test the resilience of the protocol.

You might expect to see a network consisting of many reliable agents, together

with a server and the intruder. After all, the fact that Anne has run the protocol

with other people first may well have a bearing on whether the run she starts

with Bob is secure. However, the fact that our intruder is designed to be able

to act like other agents mean that Carol, Duncan etc. do not actually have to be

present as processes in our network in order for Anne to have done everything

she would have done in talking to them. Furthermore, the effect of having the

intruder run these other identities is that these ‘third party’ agents are assumed

to be corrupt: they pass all their knowledge on to whoever is trying to break

the security of Anne and Bob. Thus, by setting up a network consisting only

of Anne, Bob, the server and the intruder we are in fact giving the protocol a

particularly stern test: that it keeps connections between our two trusty agents

secure, even though (with the exception of the server) the rest of the world may be

corrupt.

In fact, in almost all circumstances, there is nothing to be gained from giving the

intruder any more than one extra identity to play with. In other words, he has all he

needs to act like Carol (say), but no others, and indeed the type of agent processes used

consists of just the three names {Anne, Bob, Carol}. This is justified by the argument

(usually valid, but not invariably) that any attack on Anne and Bob that could ever arise

through the intruder using any number of third party identities could equally arise if all

of these were replaced in the trace by a single identity other than Anne or Bob. This

topic will be discussed further in Chapter 5.

Therefore we end up with a network consisting of just four processes: Anne,

Bob, the server, and the intruder (who also possesses the ability to act like Carol).

Two different models of interconnection may be used in putting these together, the

choice being whether we think of the intruder as actually being the communication

medium, or have a separate communication medium that the intruder can tamper

with. The second of these is probably closer to the real world situations we

are trying to model, but the first is simpler to code in CSP. We can argue that

the second model is good enough for most purposes since (i) the intruder is at

liberty to trap every message that is ever sent by another agent, and (ii) he can

always choose to pass one of these unaltered on to its original intended recipient.

Thus the intruder can emulate a correctly functioning communication medium if

he wants to. In particular, any trace that could occur in a network with a real

86 CHAPTER 2. MODELLING SECURITY PROTOCOLS IN CSP

communication medium can be emulated by one in which the only means of

communication is via the intruder. Conceptually, if we fear that our communication

medium can be manipulated by the intruder process, we might as well identify the

two.

This network is connected together via renamings that match up the receive.a.b.m
and send.a.b.m events performed by agent and server processes with the say.m
and learn.m events of the intruder. The send and learn channels are connected by

renaming them both to a take channel, and the receive and say channels are connected

by renaming them to a fake channel.

The first thing to note is that the sender and receiver fields of the receive and send

messages are missing in the intruder ones. This is because these fields convey no

useful information to the intruder: we will generally assume that all agent names are

already known to intruder. Since our intruder is programmed to try out all possibilities

open to it, the fact that a particular message came with sender/address information

a.b (which would doubtless be very useful to an intruder programmed to follow a

particular strategy) is actually irrelevant to it. The event learn.m is thus mapped to

every event of the form take.a.b.m (i.e. for all legitimate choices of a and b). This

event take.a.b.m models a communication from a to b that is trapped by the intruder.

Similarly, we can model the fact that the intruder can offer any message he can

make up to any one who will accept it, pretending it is from anybody, by the renaming

that maps each say.m event to every corresponding fake.a.b.m, which is the action

that represents the intruder sending m to b, pretending it is from a. Internally, of

course, the server and agent processes send and receive communications via receive

and send, rather than take and fake, and have no way of knowing that the messages

they transact are being routed via the intruder. This illusion can be achieved by another

renaming: when process a performs an output send.a.b.m it is renamed to take.a.b.m,

and whenever it performs an input receive.b.a.m this is renamed to fake.b.a.m. Clearly

we could get by with a single level of renaming rather than having one renaming on the

intruder and one on the agents, but putting the network together as just described:1

(Agent(Anne)[[fake, take/receive, send]]

||| Agent(Bob)[[fake, take/receive, send]]

||| Jeeves[[fake, take/receive, send]])

‖
{|take,fake|}

Yves[[take.x.y, fake.x.y/learn, say | x, y ∈ Agents ∪ {Jeeves}]]

has two advantages: firstly the communications we see in traces more accurately

suggest what is going on, and, as we will see shortly, this model extends smoothly to

the case where the medium and intruder are separate.

A picture of this network is shown in Figure 2.1: the dotted lines represent

renamings, though in order to avoid clutter only a subset of the channel names are

actually included in the picture.

1Since these details are irrelevant to how the network is wired together, the parameters representing

nonces, keys, and knowledge have been omitted here.

2.4. PUTTING THE NETWORK TOGETHER 87

Anne Jeeves Bob

send

take.Anne.y

reveice

send

learn

send
reveice

say

Yves

reveice

fake.x.Bob

Figure 2.1: Network with all communication routed through the intruder

An example trace that can occur in the Yahalom protocol is shown in Figure 2.2:

it represents a run between Anne (represented by an actual process) and Carol (whose

activities are contained within the intruder). We see both the top-level trace (consisting

of take and fake events), and the events that the four component processes see inside

their renamings, plus the deductions performed by the intruder. Only those inferences

that the intruder needs to perform this particular trace are shown, even though there are

others he does enabled by what he hears here. In each of the entries for a non-infer

event (i.e. a take or fake) the message body m in the external and agent view of the

event is the same as in the intruder view.

Having built this model it is relatively simple to modify it to allow agents direct

communication as an alternative to using the intruder as a medium: we make take and

fake alternatives to the original communications rather than replacing them completely.

The process

RenAgent(A) = Agent(A)[[fake, comm, take, comm/receive, receive, send, send]]

which has alphabet

αRenAgent(A) = {comm.x.A, comm.A.x | x ∈ {Anne, Bob, Jeeves} \ {A}}
∪{take.A.x, fake.x.A | x ∈ Agents ∪ {Jeeves}}

represents A in which comm provides an alternative route to other trustworthy

processes, in such a way that the process inside has no way of knowing which of the

two options has actually occurred for those communications where there is a choice.

88 CHAPTER 2. MODELLING SECURITY PROTOCOLS IN CSP

Externally agent which sees Intruder

take.A.C.m A send.A.C.m learn.Sq.〈A, NA〉

infer.({Sq.〈A, NA〉}, NA)

infer.({A, NA, NC}, Sq.〈A, NA, NC〉)

infer.({Sq.〈A, NA, NC〉, ServerKey(C)},
{Sq.〈A, NA, NC〉}ServerKey(C)

infer.({C, {Sq.〈A, NA, NC〉}ServerKey(C)},
Sq.〈C, {Sq.〈A, NA, NC〉}ServerKey(C)〉)

fake.C.J.m J receive.C.J.m say.Sq.〈C, {Sq.〈A, NA, NC〉}ServerKey(C)〉

take.J.A.m J send.J.A.m say.Sq.〈{Sq.〈C, K, NA, NC〉}ServerKey(A),

{〈A, K〉}ServerKey(C)〉

fake.J.A.m A receive.J.A.m learn.Sq.〈{Sq.〈C, K, NA, NC〉ServerKey(A)}
,

{〈A, K〉}ServerKey(C)〉

take.A.C.m A receive.J.A.m learn.〈{〈A, K〉}ServerKey(C), {NC}K〉

Figure 2.2: Run between Anne and the intruder

We can carry out exactly the same transformation on the server, and use alphabetized

parallel to put these three processes together (so that pairs of them synchronize on

comm actions), to get a process Network. The intruder is then added:

Network

‖
{|take,fake,comm|}

(Yves[[comm.x.y, take.x.y, fake.x.y/learn, learn, say | x, y ∈ Agents ∪ {Jeeves}]]

so that he can hear the direct communications without getting in their way.

2.4. PUTTING THE NETWORK TOGETHER 89

comm.Anne.Bob

Anne Jeeves Bob

send

take.Anne.y

reveice

send

learn

send
reveice

say

Yves

reveice

fake.x.Bob

Figure 2.3: Network with alternative of direct communication

By using this coding we avoid the need to build a medium process,2 and observe

that any security breaches that any conceivable medium process might allow could still

appear in a trace where all messages pass through the intruder.

A picture of the resulting network appears in Figure 2.3, though only those extra

channels that emerge from Anne are shown, again to avoid clutter in the picture.

The main advantage of this slightly more complex network comes when we look

at its traces: where a message passes from one agent to another, or between an agent

and the server, this now appears as a single event that indicates what has happened,

rather than as two in which it looks as though the intruder is doing something

interesting. This is helpful both to human readers and to FDR, since the tool will

tend to find more straightforward attacks. As we will see in later chapters, it always

finds counterexamples with the least possible number of actions, so it will be pushed

towards the use of direct communication between agents because this is more efficient

in the number of communications.

2One thing that this direct wiring of comm channels does not allow for properly is an agent who wants to

send messages to herself: comm.Anne.Anne creates problems and is not allowed for in the coding of Network

above. It could be got right, where agents had internal parallel structure, by appropriate connections between

these different processes making up a given identity. Pragmatically, however, it is usually better to rely on the

intruder as a medium between an agent and himself (via take and fake), just as we did between all processes

when there was no comm channel.

90 CHAPTER 2. MODELLING SECURITY PROTOCOLS IN CSP

Chapter 3

Expressing protocol goals

Protocols are designed to achieve particular security properties in the presence of

particular kinds and levels of threat. It should thus be part of the specification of the

protocol to make explicit the kind of threat that it is designed to counter. For example,

protocols for communication over satellite links might assume that a message can be

overheard, that spoof messages can be generated, but that messages cannot be blocked.

Alternatively, protocols might be designed for protection against an external intruder,

but might rely on the assumption that all principals are honest. The threat models we

have discussed are fairly generic, and for secrecy and authentication we will implicitly

assume (unless stated explicitly) the threat model encapsulated by the intruder process

introduced in the previous chapter: that attacks can be mounted by principals as well

as external agents, and that messages can be intercepted, redirected, duplicated, altered

and created by the intruder. Whether or not a protocol meets its goals may well be

dependent on the threat model. Alternative threat models will be discussed throughout

the chapter. These can usually be described simply by changing the intruder’s initial

knowledge IK, or his capabilities through adjusting the ⊢ relation, or by restricting

what can be provided to the agents on the receive channels.

This chapter concentrates much of its attention on secrecy and authentication

properties. These are safety properties, in the sense that they require that bad things

should not happen – that a data item is not leaked and that an agent does not incorrectly

accept the identity of another agent. Liveness issues, such as the concern that the

protocol might not terminate, will not be addressed explicitly. Other properties –

anonymity and non-repudiation – will also be discussed.

The emphasis in this chapter is on explicitness. Security properties will be defined

by introducing additional information into protocol descriptions to enable a description

of what is expected of the system at particular points during a run of the protocol. This

information, in the form of messages, might be thought of as capturing the intention of

the designers of the protocol.

• Secrecy – If a particular data item m is intended to be secret at the end of the

protocol run, then a message Claim secret will be inserted at the end of the

description of the protocol run. The secrecy property will state that the intruder

91

92 CHAPTER 3. EXPRESSING PROTOCOL GOALS

Figure 3.1: Adding a secrecy claim

cannot obtain m during a run of the protocol whenever its secrecy is claimed.

This is illustrated in Figure 3.1.

• Authentication – An authentication protocol should establish particular

guarantees when it has completed, concerning the party it has apparently been

running with. These are often of the form that if the run has completed then

the other party has also been involved in the protocol run. The completion of a

run of the protocol will be marked by a Commit event, and authentication will

require that the occurrence of such an event must mean that a corresponding

Running event must previously have been performed by the other party. The

way in which these events must match will characterize the authentication

property. This is illustrated in Figure 3.2.

Specification events, or signals, simply make understanding the requirements on

the system easier. Any specification that can be expressed in terms of such events can

also be expressed on the bare system without them, but perhaps in a less transparent

way.

This means that additional signal channels are added to the model of the system.

These do not reflect what the agents do, but rather enable the expression of particular

properties by identifying points in the protocol run to which we wish to refer in

specifying properties. Hence signals are not facts. We will use Signal to denote the set

of all possible signals that can be introduced in the model of the system. This set is

disjoint from the set of facts: Signal ∩ Fact = ∅.

The information that appears on the signal channels will be a claim, a sequence

of users, and a fact. The claim will correspond to a stage that the signalling agent

is currently at; the sequence of users will describe the agents that the signalling

agent associates the protocol run with; and the fact will contain some information

93

Figure 3.2: Adding an authentication claim

that the claim is about, usually including facts used in that protocol run. Note that

since concatenation of facts yields another fact, so the fact component of a signal can

comprise a sequence of atomic facts.

The introduction of these additional messages aids clarity, but at the cost of

introducing some complexity into the automated and machine-assisted analysis of

protocols. Later chapters will consider equivalent but more concise versions of the

properties, optimizing protocol descriptions for model-checking at the expense of

explicitness by reducing the number of messages. These optimizations are justified by

the theory of CSP, and analysis of the resulting descriptions gives results about the

original protocol descriptions. The different ways of expressing protocol goals depend

on different motivations:

• we want to be as explicit as possible, so we can be confident that the descriptions

capture what we intend;

• we want them to be as simple as possible (in CSP terms) since this makes

verification easier;

• we want them to be expressed as processes with as few states as possible, to

make model-checking more feasible.

In fact, we will need to ensure that different expressions of the property should be

equivalent for the system under analysis, so that two specifications (S(tr) and T(tr),
say) have that (System sat S(tr)) ⇔ (System sat T(tr)). This can be the case even if

S(tr) and T(tr) are not equivalent on all processes.

94 CHAPTER 3. EXPRESSING PROTOCOL GOALS

3.1 The Yahalom protocol

Recall the Yahalom protocol:

Message 1 a→ b : a.na

Message 2 b→ s : b.{a.na.nb}ServerKey(b)

Message 3 s→ a : {b.kab.na.nb}ServerKey(a).{a.kab}ServerKey(b)

Message 4 a→ b : {a.kab}ServerKey(b).{nb}kab

In itself, this description does not state what the protocol aims to achieve. The

expectation that it provides authentication of each of its participants to the other

must be made explicit, as must the requirement that the key kab distributed to the

participants must be secret. The property that the nonce nb should be secret at the end

of the protocol can also be expressed. This may or may not be a requirement of the

protocol, depending on its intended use.

The CSP description of the protocol was given in Chapter 2. The individual runs

of the initiator and responder are:

Initiator(a, na) =
env?b : Agent→ send.a.b.a.na →

✷
kab ∈ Key

nb ∈ Nonce

m ∈ T

(
receive.J.a.{b.kab.na.nb}ServerKey(a).m→

send.a.b.m.{nb}kab → Session(a, b, kab, na, nb)

)

Responder(b, nb) =

✷
kab ∈ Key
a ∈ Agent

na ∈ Nonce

receive.a.b.na →
send.b.J.b.{a.na.nb}(ServerKey(b) →
receive.a.b.{a.kab}(ServerKey(b).{nb}kab →
Session(b, a, kab, na, nb)

The Yahalom protocol can then be described as the combination of the users and the

server. This is expressed as the Yahalom process:

Yahalom = UserAnne ||| UserBob ||| Jeeves

and the system that is to be investigated runs the protocol in the environment provided

by the intruder:

System = Yahalom ‖ Intruder

Explicit events reflecting specific claims about the system will be inserted at

particular stages in the protocol. These amended protocol descriptions will be

expressed as primed versions of the original, so for example the amended Yahalom

will be Yahalom′.

Although claims are often expressed in anthropomorphic terms, concerning the

state of mind of the protocol agent, or particular beliefs of the agent, we will express

protocol requirements purely in terms of relationships between these events.

3.2. SECRECY 95

Properties can be expressed either as trace specifications S(tr) or as CSP processes

Spec. However, the property is also dependent on the description of Intruder, which

encapsulates the threat model. The protocol as described by Yahalom′ is correct with

respect to threat Intruder and specification S(tr) if

Yahalom′ ‖ Intruder sat S(tr)

3.2 Secrecy

In order to formalize secrecy properties, it is natural to use an event

signal.Claim Secret.a.b.s

at the point in a’s run of the protocol with b where we believe the protocol guarantees

that Yves cannot obtain the secret value s. It expresses that expectation that the intruder

cannot be in possession of s. It may be understood to mean: ‘The value s used in the

run apparently between a and b initiated by a should be secret for the entire protocol

run’. For example, the Yahalom protocol aims to ensure that the key kab received by a

in the third message is secret. This expectation is expressed by introducing the signal

message into the description of the general initiator run Initiator(a, n) as follows:

Initiator(a, na) =
env?b : Agent→ send.a.b.a.na →

✷
kab ∈ Key

nb ∈ Nonce
m ∈ T

receive.J.a.〈b.kab.na.nb}ServerKey(a).m→

send.a.b.〈m.{nb}kab →
signal.Claim Secret.a.b.kab → Session(a, b, kab, na, nb)

The property will require that the intruder cannot know kab in any run in which this

signal is emitted. In order to express this, we can observe whether or not kab can ever

appear on the say channel.

This extra use of the say channel has no impact on the attacks that Intruder can

mount, since its use does not change the state S of the intruder. It is used purely to

provide information about whether the intruder is in possession of particular messages.

To separate this specification use of the say channel from its more common use of

providing messages to protocol agents, we introduce a new leak channel to accept

outputs from the say channel. The resulting network is illustrated in Figure 3.3.

Secrecy will be expressed as the requirement that if an agent claims that a message

is secret, then the intruder should not be able to leak it. Naı̈vely this might be expressed

as

signal.Claim Secret.a.b.m in tr ⇒ ¬(leak.m in tr) (3.1)

However, the characterization of secrecy as protection from Intruder means that some

care must be taken in the expression of this property. In order to express the secrecy

requirement, we can in fact only require the value m to be secret in cases where a

runs the protocol with another honest agent, since it is inappropriate to send a secret

message to Yves and then expect the intruder not to know it.

96 CHAPTER 3. EXPRESSING PROTOCOL GOALS

Anne Jeeves Bob

send

take.Anne.y

reveice

send

learn

send
reveice

say
leak

Yves

reveice

fake.x.Bob

Figure 3.3: Introducing a leak channel

In fact, the secrecy property we require is that: ‘m is secret provided a’s

communication partner is honest and uncompromised’.

If the set Honest is the set of agents that are honest and uncompromised (in the sense

that the intruder does not have their secret keys), then we can express the property that

the intruder should not be in possession of m provided it is claimed to be a secret as a

result of a run with an honest user. The event is introduced into the CSP description,

and the property will require that if j ∈ Honest then m should not be able to appear on

leak when it is claimed to be secret.

The responder is treated in an entirely similar way, with the same possibilities

for introducing the signal event into the model. There is no particular need to

distinguish between initiator and responder of the protocol, so exactly the same events

signal.Claim Secret.i.j.kab can be used to indicate that at the end of a run the key kab

that j has accepted is intended to be secret. These events can be introduced into the

protocol in exactly the same way, as follows:

Responder(b, nb) =

✷
kab ∈ Key
a ∈ Agent

na ∈ Nonce

receive.a.b.a.na →
send.b.J.b.{a.na.nb}ServerKey(b))→
receive.a.b.〈a.kab}ServerKey(b), {nb}kab → Session(b, a, kab, na, nb)

The resulting system, consisting of the enhanced initiator and responder

descriptions, will be denoted System′.

3.2. SECRECY 97

Trace specification

The specification therefore requires only that Yves should not obtain the secret s in

cases where the run is with an agent outside his control. This may be expressed as the

following trace specification:

Secreta,b(tr) = (3.2)

∀m • signal.Claim Secret.a.b.m in tr ∧ a ∈ Honest ∧ b ∈ Honest

⇒ ¬(leak.m in tr)

The system with the initiator above meets this specification Secreta,b(tr).
It is now possible to express the complete secrecy property in terms of the signals

that have been added to the protocol:

If a has completed a protocol run apparently with b, and b is honest and

uncompromised, then the key accepted during that run by a is not known to anyone

other than b. Similarly, if b has completed a run with honest and uncompromised a

then the key accepted by b is not known to anyone other than a.

This covers the secrecy requirements of both initiator and responder, since either

of them can claim that a key is secret. There is no reason in the Yahalom protocol to

distinguish between initiator and responder claims of secrecy.

Alternative approach

The discussion above was concerned with secrecy with respect to our default threat

model including dishonest agents. It is clear that in such cases secrecy can only be

obtained if the other party is not going to compromise the intended secret – the protocol

has no control over how the intended secret is to be used afterwards. In order to capture

the property as one that can be verified of the protocol, it is important to make this

assumption explicit. We chose above to do this within the trace property. However,

an alternative approach was available to us: the introduction of the Claim Secret

event could have been more restricted, so that it is signalled only in cases where the

protocol has been run with an honest party. Since the event signal.Claim Secret.a.b.s
is introduced into the protocol purely for specification and verification purposes, we

can restrict when it can be performed. We can simply ensure that Claim Secret signals

are only performed on protocol runs that are not with compromised agents from the set

CS. This will embody the caveat that ‘s is secret provided a’s communication partner

is honest’. The Yahalom protocol initiator’s description would then be described as

follows:

Initiator(a, na) =
env?b : Agent→ send.a.b.〈a, na〉 →

✷
kab ∈ Key

nb ∈ Nonce
m ∈ T

receive.J.a.〈b.kab.na.nb}ServerKey(a).m→

send.a.b.m.{nb}kab →
if b ∈ Honest

then signal.Claim Secret.a.b.kab → Session(a, b, kab, na, nb)
else Session(a, b, kab, na, nb)

98 CHAPTER 3. EXPRESSING PROTOCOL GOALS

The requirement will then be as it was in line 3.1: simply that if a secret is claimed,

then the intruder should not be able to leak it. The honesty of the parties is now folded

into the introduction of the signal event.

External threat

In the case where the only threat is external, the secrecy property is much easier

to capture. It is automatic in this threat model that all agents are honest and

uncompromised, and hence the requirement that s should not appear on leak does not

need to be qualified. The trace property in this case is again simply that in line 3.1:

Secret′a,b(tr) = ∀ s • signal.Claim Secret.a.b.s in tr ⇒ ¬(leak.s in tr)

In fact this is a special case of the general threat model, in which the intruder has no

keys or any identity of his own: so Yves is not a name, and the initial knowledge of the

intruder IK does not contain any private keys of any agent. In this case the set of honest

agents Honest is the set of all users. The specification Secret′ here is simply a special

case of the specification given in line 3.2, since b ∈ Honest will always be true.

Observe that employing this threat model is equivalent to modelling protocol agents

who are only prepared to initiate and respond to runs with honest users. However, this

is different from (and strictly weaker than) the analysis for the internal threat model

above, in which we are only concerned with secrecy in cases where an agent has

engaged in a run with an honest agent. The internal threat model is concerned with

Anne’s claim of secrecy after a run with honest Bob, but allows for the possibility that

Bob might be involved in a run with Yves: Anne can interact with agents who are

honest but lack judgement. The external threat model, and the requirement that all

agents only run with honest agents, do not allow for this possibility: Anne can only

interact with agents who are both honest and have good judgement.

Process-oriented specification

The secrecy properties Secret(tr) expressed as a property on traces can also be captured

as CSP specification processes.

We can use the following specification to capture the requirement that a’s state of

mind is correct (for all a) concerning s:

Secret Spec0(s) =̂
signal.Claim Secret?a?b.s→
(if b 6∈ Honest then Secret Spec0(s) else Secret Spec1(s))
✷

leak.s→ Secret Spec0(s)

Secret Spec1(s) =̂
signal.Claim Secret?a?b.s→ Secret Spec1(s)

The intruder Yves should only be able to perform the event leak.s if no honest agent

has previously signalled that they believe that s is a secret shared with an honest agent

(via an event signal.Claim Secret.a.b.s for b ∈ Honest).

3.3. AUTHENTICATION 99

Of course, there may be several potential secrets; we will write ALL SECRETS for

the set of all these secrets. We can write a single specification testing whether all these

secrets really do remain secret as expected:

Secret Spec =̂ |||
s:ALL SECRETS

Secret Spec0(s)

This specification is in terms of only leak and signal events, so if we hide all other

events:

SystemS =̂ System \ (Events \ {| leak, signal.Claim Secret |})

we can test whether the protocol guarantees secrecy by testing the refinement:

Secret Spec ⊑tr SystemS

There is one point we have not yet considered, as it does not arise in the Yahalom

protocol: at what point in the protocol should the honest agents perform the signal

events? We can identify two scenarios:

• The secret in question might have significance outside of the protocol itself; for

example, the secret is provided as input to the protocol, and one goal of the

protocol is to transfer the secret from an agent a to another agent b. In this case,

the secret should not be leaked to the intruder under any circumstances, so the

signal event should occur as soon as it makes sense: the process representing

a would presumably have s in its state initially, so should perform the signal

immediately; the process representing b should perform its signal as soon as it

actually receives the secret. We will call this strong secrecy.

• Alternatively, the secret might be created within the protocol run and only used

if the run is successfully completed; for example, a session key would be freshly

invented, but if the run does not complete successfully then presumably the key

would be discarded, and so a leak of this key would not matter. In this case, the

signal event can be placed at the end of the protocol run.

The sooner the Claim Secret event appears in the run, the stronger the require-

ment.

3.3 Authentication

Entity authentication is concerned with verification of an entity’s claimed identity. An

authentication protocol provides an agent b with a mechanism to achieve this: an

exchange of messages that establishes that the other party a has also been involved

in the protocol run. This provides authentication of a to b: an assurance is provided to

b that some communication has occurred with a.

Signal Commit.b.a events will be introduced into the description of b’s run of the

protocol to mark the point at which authentication of a to b is taken to have been

achieved. Occurrence of Commit.b.a in b’s protocol run means simply that

100 CHAPTER 3. EXPRESSING PROTOCOL GOALS

Agent b has completed a protocol run apparently with a.

Events of the form Running.a.b in a’s run of the protocol are introduced to mark the

point that should have been reached by the time b performs the Commit.b.a event.

Occurrence of Running.a.b in a’s protocol run means simply that

Agent a is following a protocol run apparently with b.

If a Running.a.b event must always have occurred by the time the Commit.b.a event is

performed, then authentication is achieved. Further information ds associated with the

protocol run, such as the values of nonces or keys, is also included as components of

the Commit and Running events. For example, in the Yahalom protocol, there are two

nonces and a key associated with any particular run. An event Commit.b.a.na.nb.kab in

b’s run would be appropriate to mean that

Agent b has completed a protocol run apparently with a, and with nonces

nb, na, and with key kab.

A corresponding event Running.a.b.na.nb.kab would be used to denote that

Agent a is following a protocol run with b, with nonces na, nb, and with

key kab.

The details to include will depend on the protocol (in terms of what data will be

associated with particular protocol runs) and also on the point at which the events are

introduced (since only some of the information might be available at particular points

during the protocol).

This pattern is a scheme for authentication properties, but it allows the different

flavours of authentication to be expressed by introducing different requirements on the

correspondence between the Commit and Running events within this scheme:

1 One agent b might require simply that the other agent a is alive and has not failed.

This is ensured if Commit.b.a.ds provides evidence simply that a has participated

in some recent communication: an occurrence of Running.a.c.ds′ with any c and

any data ds′ will suffice.

2 Agent b might require authentication that a participated in a run in which a took

b to be the other participant. In this case, occurrence of the event Commit.b.a.ds

will guarantee that Running.a.b.ds′ occurred previously, though the information

ds and ds′ need not be the same.

3 Agents a and b might further be required to agree on the additional information

ds specific to the particular run. This will authenticate to b that a was involved

in that particular run.

Some protocols aim to provide authentication for each of the parties: that each

party receives an assurance about the identity of the other. The Yahalom protocol is

one such example: it aims to provide to each of the parties involved some assurance

about the identity of the other. In this case, two properties will need to be specified:

authentication of the initiator to the responder, and authentication of the responder to

3.3. AUTHENTICATION 101

Figure 3.4: Placing signals into a protocol

the initiator. Thus each party will introduce a Commit event to indicate when it has

reached the point where authentication is claimed, and a Running signal to correspond

to the other party’s Commit signal. The Commit signal will usually be inserted at

the end of the protocol run, since authentication is generally considered to have been

achieved when the run is completed. The corresponding Running signal will usually

be inserted either right at the beginning of the corresponding protocol to verify that the

other party began a corresponding run; or just before the last message sent out by the

agent that precedes the Commit, which is the latest possible point that can potentially

be guaranteed by the protocol. Within the context of the protocol, this provides the

strongest possible information about the progress that has been made.

Figure 3.4 illustrates the general situation where B commits to the run with A after

receipt of message m which should be sent by A. In this case the Running signal should

be inserted into the description of A’s run at some point before m is transmitted, and

it can be at the point immediately before. If the occurrence of Commit really does

guarantee that the corresponding Running signal must previously have occurred, then

B’s receipt of message m must guarantee that A transmitted it. To see this, consider the

contrapositive: if B can receive m without A having sent it (perhaps because an attack

on the protocol is possible), then B can receive m without A having performed the

Running signal (since the performance of that signal affects nothing that B can do), and

so B can then perform Commit without A having performed the corresponding Running

signal.

In general, when there are more than two parties involved in the protocol, one of

the parties other than A might have been involved in the transmission of m. In this case,

the Running signal will need to be inserted at a point in A’s run at a point causally prior

to the Commit signal. Figure 3.5 illustrates a situation in which B’s receipt of message

m2 is intended to provide an assurance that A transmitted m1 earlier in the protocol.

Authentication for the initiator of a protocol run will establish that the

responder has reached a particular point in his run of the protocol. Conversely,

authentication for the responder will establish that the initiator has reached a

(different) particular point in his run. It is therefore appropriate to distinguish

102 CHAPTER 3. EXPRESSING PROTOCOL GOALS

Figure 3.5: Placing signals into a protocol

commitment of the initiator from commitment of the responder by introducing

the events signal.Commit Initiator.a.b and signal.Commit Responder.b.a,

and the Running events signal.Running Responder.b.a and signal.Running

Initiator.a.b which correspond. Authentication (of type (2) above) for the

initiator will then be expressed by the requirement that whenever signal.Commit

Initiator.a.b is performed for honest agent b, then b must previously have performed

signal.Running Responder.b.a, signalling that he is engaged in a run of the protocol

with a, in the role of responder, and that he has reached the particular point specified.

Authentication for the responder is described in a similar way: that the signal

signal.Commit Responder.b.a must be preceded by signal.Running Initiator.a.b.

Trace specification

The requirement that one kind of event e should precede another d is easy to express

as a trace specification: that whenever d appears in the trace then e must appear

beforehand:

tr′ 〈̂d〉 6 tr ⇒ e in tr′

This states that if tr′̂ 〈d〉 is a prefix of the trace tr, then e should appear in tr′ – the

part of the trace before d. To make its relationship to authentication explicit, we will

abbreviate this specification as

e precedes d

to state that the occurrence of d in tr guarantees that e has previously appeared in tr.

In fact this specification is equivalent on processes to the specification

d in tr ⇒ e in tr

because the set of traces corresponding to any system must be prefix closed: if a

sequence of events is a trace, then so too are all of its prefixes. This means that the

prefix ending in d must be a trace, and hence must also contain e; and so e must appear

before d in the trace.

In the context of authentication, we require that if Commit appears in the trace, then

a corresponding Running event must also be present: authentication has the general

form Running precedes Commit.

3.3. AUTHENTICATION 103

Yahalom: authentication of initiator by responder

A run of the Yahalom protocol between a and b involves two nonces na and nb, and a

key kab that is obtained by each party. We will first consider the protocol from the point

of view of the responder. If agreement is required on some or all of this information, (as

in authentication of type (3) above) then the signal event at the end of the responder’s

run should be signal.Commit Responder.b.a.na.nb.kab and it should follow an event

signal.Running Initiator.a.b.na.nb.kab in the initiator’s run.

The authentication property of initiator by responder will require that

a ∈ Honest ⇒ signal.Running Initiator.a.b.na.nb.kab

precedes signal.Commit Responder.b.a.na.nb.kab

Since the intruder does not provide signals (even when following the protocol), we

can only guarantee that the corresponding Running signal has occurred provided we

assume that the initiator is honest: that a ∈ Honest.

We must decide where to place these authenticating signals in the CSP descriptions

of the protocol. Figure 3.6 contains a message sequence chart of the protocol. It shows

that the responder is not even in possession of all the information (and in particular kab)

until receipt of the last message, so the only possible place for the commit message is

right at the end of the protocol. Similarly, the initiator is not in possession of all the

information until just before its final message, so the Running signal should either

precede or follow that message. However, it must causally precede the responder’s

Commit message, and so it must be inserted before transmission of the final message.

Thus we obtain the following enhanced descriptions of the protocol:

Initiator(a, na) =
env?b : Agent→ send.a.b.〈a, na〉 →

✷
kab ∈ Key

nb ∈ Nonce
m ∈ T

receive.J.a.{b.kab.na.nb})ServerKey(a).m →

signal.Running Initiator.a.b.na.nb.kab →
send.a.b.m.{nb}kab

)→ Session(a, b, kab, na, nb)

Responder(b, nb) =

✷
kab ∈ Key
a ∈ Agent

na ∈ Nonce

receive.a.b.a.na →
send.b.J.b.{a.na.nb}ServerKey(b) →
receive.a.b.{a.kab}ServerKey(b).{nb}kab

→
signal.Commit Responder.b.a.na.nb.kab →
Session(b, a, kab, na, nb)

Yahalom: authentication of responder by initiator

Since the Yahalom protocol aims to establish authentication in both directions, we

must also introduce signals to describe the initiator authenticating the responder. The

first attempt at this will insert the event signal.Commit Initiator.a.b.na.nb.kab at the

end of the initiator’s run. Then authentication will require that the occurrence of such

an event confirms earlier performance of the corresponding responder Running event

104 CHAPTER 3. EXPRESSING PROTOCOL GOALS

Figure 3.6: Authentication for the responder in the Yahalom protocol

with the same information. However, there is a local difficulty with this. Examination

of the protocol in Figure 3.7 reveals that the last message sent by b is the second

message of the protocol, so the Running signal must be inserted before that. By this

stage, the two nonces have been provided to b, but the key to be issued in message 3
cannot be known at that time to agent b. Thus the signal to introduce can be at most

Running Responder.b.a.na.nb, with no mention of the key.

On reflection this situation is expected. The protocol does not provide any

guarantees to a that b ever obtains the key. The last message between a and b could be

intercepted after a has finished the protocol run, and no earlier messages to b contain

the key. The protocol does ensure that if b accepts a key, then it must be the same key

that a has accepted (since the key in b’s Commit matches the key in a’s Running);

but a has a weaker authentication than b, since a can never confirm that b did indeed

accept the key.

The strongest authentication property for authenticating the responder to the

initiator is the following:

b ∈ Honest ⇒ signal.Running Responder.b.a.na.nb

precedes signal.Commit Initiator.a.b.na.nb.kab

Provided the other agent b is honest, any commitment should establish that a

corresponding Running event has previously occurred. This assurance is independent

3.3. AUTHENTICATION 105

.

Figure 3.7: Authentication of the responder by the initiator in the Yahalom protocol

of the key that the initiator has committed to, but it does require agreement on the

nonces.

This requirement can be expressed and the points at which the Commit event is

inserted into the protocol specifies the stage at which a is provided with a guarantee

about the fact that b has reached the corresponding stage.

The CSP description of the protocol is decorated as follows:

Initiator(a, na) =
env?b : Agent→ send.a.b.〈a, na〉 →

✷
kab ∈ Key

nb ∈ Nonce
m ∈ T

receive.J.a.{b.kab.na.nb}ServerKey(a).m→

send.a.b.m.{nb}kab
→

signal.Commit Initiator.a.b.na.nb.kab → Session(a, b, kab, na, nb)

Responder(b, nb) =

✷
kab ∈ Key
a ∈ Agent

na ∈ Nonce

receive.a.b.〈a, na〉 →
signal.Running Responder.b.a.na.nb →
send.b.J.b.{a.na.nb}ServerKey(b) →
receive.a.b.{a.kab}ServerKey(b).{nb}kab

→
Session(b, a, kab, na, nb)

106 CHAPTER 3. EXPRESSING PROTOCOL GOALS

Weaker authentication

In fact weaker authentication requirements can be expressed by relaxing the

correspondence between Commit and Running signals, so that they do not need to

agree on all of their information. For example, if b only requires evidence that a

has been running the protocol with him and that they agree on the key kab, then

signal.Commit Responder.b.a.na.nb.kab simply needs to authenticate that there are

some nonces n and n′ such that signal.Running Initiator.a.b.n.n′.kab must previously

have occurred. Alternatively, this expresses that some element of

signal.Running Initiator.a.b.NONCE.NONCE.kab

must have occurred.

This leads to a generalization of the authentication trace property: that if some

element of a set D of events has appeared in a trace tr, then this provides a guarantee

that some element of some other set E has previously appeared in tr. In this case we

say that E precedes D, defined as follows:

E precedes D = d ∈ D ∧ tr′ 〈̂d〉 6 tr ⇒ tr′ ↾ E 6= 〈〉

This states that if some prefix of tr finishes with some event from D, then there must

be some event from E already in that prefix (i.e. the projection of tr′ on to E is not

empty). When D and E are singleton sets then the set brackets may be elided to obtain

the notation introduced earlier for authentication between events.

If b requires authentication with regard to the key but not the nonces, then the

requirement is captured as the trace specification

a ∈ Honest⇒ signal.Running Initiator.a.b.NONCE.NONCE.kab

precedes signal.Commit Responder.b.a.NONCE.NONCE.kab

The requirement authenticating the responder to the initiator, where the value of

the key kab is ignored, can also be expressed as follows:

b ∈ Honest⇒ signal.Running Responder.b.a.na.nb

precedes signal.Commit Initiator.a.b.na.nb.KEY

Process-oriented specification

Signal events can also be used to specify authentication requirements in a process-

oriented way.

We can capture the requirement that d authenticates e by providing a specification

process in which d can occur only if the e has previously occurred:

Precedes(e, d) = e→ Run({d, e})

More generally, if the set D authenticates the set E, then we require that some element

from E must occur before any element of D. This generalizes the process Precedes as

follows:

Precedes(E, D) = e : E → Run(D ∪ E)

3.3. AUTHENTICATION 107

Then the various flavours of authentication can be given as particular instances of these

processes:

• If a as initiator is to authenticate b as responder, where a has particular data dsa

in its Commit signal, and b has corresponding data dsb in its running signal, then
we can define

Init Auth Spec0(a, b, dsa, dsb) =

Precedes(signal.Running Responder.b.a.dsb, signal.Commit Initiator.a.b.dsa)

We will write dsa ↔ dsb to state that the information in the signals dsa and dsb

correspond.

• Similarly, a definition can be given for b as responder authenticating a as
initiator:

Resp Auth Spec0(b, a, dsb, dsa) =

Precedes(signal.Running Initiator.a.b.dsa, signal.Commit Responder.b.a.dsb)

If we want to specify that all initiators are correctly authenticating honest

responders, we can combine several copies of the above specification together:

Init Auth Spec =̂ |||
a:Agent,b:Honest,dsa↔dsb

Init Auth Spec0(a, b, dsa, dsb)

And similarly for the responders:

Resp Auth Spec =̂ |||
b:Agent,a:Honest,dsb↔dsa

Resp Auth Spec0(b, a, dsb, dsa)

And we can test whether the appropriate restriction of the system refines this

specification:

Init Auth Spec ||| Resp Auth Spec ⊑ SystemS

where

SystemS =̂ System \ (Events \ {| signal.Honest.Honest |})

We focus attention only on authentication of honest users to and by each other, in the

same way as the conditions that a ∈ Honest and b ∈ Honest restricted the specification

only to honest users. The intruder does not perform signal events (and could not be

relied upon to, even if they were available to him) and so it is inappropriate to try to

authenticate that these have occurred.

Duplicate runs

The above specifications allow b to complete several runs of the protocol for only

a single run of a. In some instances (for example, financial transactions) a stronger

requirement might be appropriate, that different occurrences of Commit events

108 CHAPTER 3. EXPRESSING PROTOCOL GOALS

correspond to different occurrences of Running events. One can specify a one-one

correspondence between the runs with the additional requirement that

tr ↓ signal.Commit Responder.b.a.dsa.dsb

6 tr ↓ signal.Running Initiator.a.b.dsa.dsb

This states that the number of responder Commit signals with respect to the

information in any run must be no greater than the number of initiator Running

signals – in other words, that there cannot be more protocol runs completing than

starting. This additional requirement is called injective authentication, in contrast to

non-injective authentication which requires only that completion of a run indicates

that there is some corresponding start to the run.

Injective authentication can also be captured as a process-oriented specification as

follows:

Init Auth Spec0(a, b, dsa, dsb) =̂
signal.Running Initiator.a.b.dsa.dsb →
(signal.Commit Responder.b.a.dsa.dsb → Stop

||| Init Auth Spec0(a, b, dsa, dsb))

However, the above process is infinite state, so would be impractical for model-

checking purposes. In this case, if there is some bound n on the number of runs a can

perform, then one can use a specification like the following:

Init Auth Spec0(a, b, dsa, dsb) =̂
signal.Running Initiator.a.b.dsa.dsb →
signal.Commit Responder.b.a.dsa.dsb → Stop

Init Auth Spec1(a, b, dsa, dsb) =̂
Auth Spec0(a, b, dsa, dsb) ||| . . . ||| Auth Spec0(a, b, dsa, dsb)︸ ︷︷ ︸

n

The data dsa or dsb often contains nonces, and so typically the bound n will be 1, since

different runs of the protocol should make use of different nonces.

3.4 Non-repudiation

Non-repudiation protocols are used to enable agents to send and receive messages,

and provide them each with evidence so that neither of them can successfully deny at

a later time that the message was transmitted or received. Participants aim to collect

evidence to prove that the other party did send or receive the message (as appropriate).

Non-repudiation evidence can be generated for one party or for both parties. A

protocol designed to achieve this is generally required to provide the property of

correctness of the evidence: that the evidence really is strong enough to guarantee

what the holder requires of it. Evidence is often in the form of signed messages, which

provide guarantees concerning their originator.

In some cases where evidence is provided to both parties, the protocol might also

aim to provide fairness: that no party should be able to reach a point where they have

the evidence or the message that they require without the other party also having their

3.4. NON-REPUDIATION 109

required evidence. Fairness is not required for non-repudiation, but it may be desirable

in some cases from the point of view of the participants.

In contrast to authentication and key-exchange protocols, non-repudiation

protocols are not concerned with communication in the presence of an intruder

between two parties who trust each other. Instead they are used when a communi-

cation is required between two agents who require protection from each other and

who do not entirely trust each other to behave honourably in the future. They are

typically proposed in the context of a passive communication medium that cannot be

manipulated by either party or by other agents, but which may nevertheless have some

unreliable behaviour.

In analysis, the system must be modelled from the point of view of the environment

of the system that would be used to arbitrate in the case of a dispute. Correctness is

concerned with whether the environment, which cannot know a priori which agents are

honest, must accept evidence as guaranteeing that the message was sent. This concerns

the nature of evidence: an agent might himself know that a message was sent, and yet

not be in a position to prove this to anyone else.

This means that for the modelling and analysis of non-repudiation protocols, a

different threat model must be used. In deciding whether a particular message has been

sent, neither of the participants can be trusted to behave according to the protocol,

and the possibility that either or both of them do not behave honestly must be allowed.

However, it will generally have to be assumed that trusted third parties (which are

sometimes used in non-repudiation protocols) do behave according to the protocol.

Although the threat model is different, non-repudiation properties are expressed

in a similar way to authentication: that the occurrence of some event guarantees that

some previous message was sent. The provision of a certain piece of evidence should

guarantee that a particular message was previously sent by a particular party.

A non-repudiation protocol is thus concerned with the creation of evidence for the

parties involved. Correctness will be concerned with the suitability of the evidence,

and the analysis (given the altered threat model) will have to take into account the

fact that the participants might not behave in accordance with the protocol. These

parties are therefore modelled almost as the intruder is for secrecy and authentication

analysis: that they can behave in any way in line with their capabilities, apart from

some elementary security requirements, for example that they do not give away their

private keys. Their capabilities with these assumptions built in will be encapsulated

into a relation ⊢a, which is essentially the same as ⊢ except that a’s private keys cannot

appear as part of any fact on the right-hand side: we assume that the agent will never

give out his own private key in any form.

The behaviour of an arbitrary user of the network is therefore described by the CSP

process description Agenta:

Agenta(S) =

✷
b∈Agent,m∈S

send.a.b.m→ Agenta(S)

✷ receive?b.a?m→ Agenta(close⊢a
(S ∪ {m}))

✷ ✷
m∈S

evidence.a.m→ Agenta(S)

110 CHAPTER 3. EXPRESSING PROTOCOL GOALS

An agent with information S is able to send any data in S, and can also present any such

information as evidence. He can also receive any message m (which will increase S)

from the medium.

Depending on the context of the protocol, the medium might be considered to be

under the control of an intruder, or it may be considered simply to be an unreliable

medium. Which of these models to use depends on the threat model that is deemed to

be realistic: whether we will be concerned with the possibility that evidence is correct

in the presence of an external intruder who might have interfered with the protocol, or

whether the medium is not considered to be so actively hostile but simply unreliable.

Furthermore, the unreliability of the medium (or the power of participating agents

over the medium) might conceivably make a difference, particularly on issues such

as whether messages can be delivered to the wrong address.

The system is then described in the usual way, as follows:

System = (|||
a∈Agent

Agenti(IKa)) ‖ Medium(IKm)

The initial knowledge of the agents IKa will include their own private keys, and

possibly keys shared with other agents. The initial knowledge of the medium will

depend on the model of the medium. If it is simply an unreliable medium then it will

simply hold messages that are passed to it, and hence its initial knowledge will be

empty. However, if the medium can behave as a more active intruder then there may

be some specific initial information, such as the private keys of compromised agents.

The non-repudiation property can require that occurrence of evidence.a.m
(presented to the environment) provides a guarantee that some other message m′ must

previously have been produced by b. This may be expressed as follows:

evidence.a.m in tr ⇒ b sent m′

Since b cannot be relied upon to behave in accordance with the protocol, the message

m′ might not have been issued by b directly as a complete message. However, m should

still provide evidence that m′ was somehow issued by b, even if it was in a different

form than the protocol expects.

For example, if a has the message {m}Private Key(b) which has been signed by b

using a private key unavailable to any agent other than b, then a is in possession of

evidence that b issued m in some sense. However, it may have been sent as a component

of a larger message or under further encryption, so the fact {m}Private Key(b) might not

have been transmitted as a message itself. The notation b sent m′ will be used to mean

that m′ was transmitted by b, possibly as a component of a larger message (and not

necessarily to the agent presenting the evidence):

a sent m = ∃M : Fact; b : Agent • (send.a.b.M in tr ∧ M contains m)

where the contains relation is defined as follows: For all messages m, m′, and m′′, and

keys k:

• m contains m

• m′ contains m⇒ m′′.m′ contains m

3.4. NON-REPUDIATION 111

• m′ contains m⇒ m′.m′′ contains m

• m′ contains m⇒ k(m′) contains m

In the face of the threat model we are considering, this appears to be the strongest

property that can be expressed for a non-repudiation protocol. In some sense if the

message sent by b is going to be taken as evidence then it is incumbent upon b to issue

it with care, and it would be unusual in practice for b to transmit it in any other form

(though he should take care to ensure this does not occur by accident).

Example: the Zhou-Gollmann protocol

We will consider the modelling of a particular non-repudiation protocol. In fact this

makes use of some additional features that require extensions to the model described

above. The aim is for a to send a message m to b, and for the parties to obtain evidence

that the message was sent and received. This protocol also aims to achieve fairness.

The message m is transferred in two stages: an encrypted form is first sent directly

to b under some key k, and after a has received evidence of receipt from b the key k

itself is sent via a trusted server. The server makes the key available via ftp, and both a

and b have the responsibility to retrieve the key and the evidence that it was deposited

by a.

Agent b should not be able to extract m until both of these messages have been

received.

A cut-down version of the protocol, with the unsigned parts of the message omitted,

is described as follows:

Message 1 a→ b : {fNRO.b.l.c}SKa

Message 2 b→ a : {fNRR.a.l.c}SKb

Message 3 a→ j : {fSUB.b.l.k}SKa

Message 4 b↔ j : {fCON .a.b.l.k}SKj

Message 5 a↔ j : {fCON .a.b.l.k}SKj

Zhou and Gollmann explain the elements of the protocol as follows:

• a: originator of the non-repudiation exchange.

• b: recipient of the non-repudiation exchange.

• j: on-line trusted server providing network services accessible to the public.

• m: message that is to be sent from a to b.

• c: commitment (ciphertext) for message m, e.g. m encrypted under a key k. The

point is that c in itself is not enough to identify the message m, but that c together

with k is.

• k: message key defined by a.

112 CHAPTER 3. EXPRESSING PROTOCOL GOALS

• l is a label used to identify a particular protocol run. It should be unique to a

single protocol run.

• fNRO, fNRR, fSUB and fCON are flags used to identify the step of the protocol in

which a particular message was generated.

• SKi is a private signature key known only to its owner i; and SKj is the server’s

private signature key.

The steps of the protocol are explained as follows:

1 With the first message, a sends a signed combination of c = k(m), a label l, and

the recipient’s name b. b will use this as evidence that k(m) was sent in a run

identified with l.

2 b responds with a signed record that c has been received in run l. This will provide

evidence for a that k(m) was received.

3 a then sends the key k to the trusted server together with the label l. If a tries to cheat

by sending the wrong key, then he will not obtain the evidence he requires, since

k(m) and k′ will not provide evidence that m was sent.

4 & 5 Each of a and b can retrieve, by means of an ftp-get, a signed record from s that

the key k associated with protocol run l has been deposited. Responsibility for

retrieving this information rests with the agents themselves, to nullify a possible

future claim that ‘the message was never received’. Thus both a and b can obtain

evidence that the key k was made available to b.

The server only needs to handle relatively small messages, and make them available by

ftp, so this protocol is appropriate even if the messages themselves are extremely large,

since the server never has to handle them directly.

At the end of the protocol run, if a wishes to prove that the message has been

received, he presents {fNRR.a.l.c}SKb
and {fCON .a.b.l.k}SKj

: the first piece of evidence

confirms that b received c, and the second piece confirms that the key was deposited

with the server, which means that b has access to it, and hence to the message. The

label l in both pieces of evidence connects the two items k and c as being associated

with the same protocol run. This reasoning is really concerned with two pieces of

evidence, and is thus captured as two requirements on the system:

evidence.a.{fNRR.a.l.c}SKb
in tr ⇒ b sent (fNRR.a.l.c)

evidence.a.{fCON .a.b.l.k}SKj
in tr ⇒ receive.a.j.{fSUB.b.l.k}SKa

in tr

The non-repudiation of receipt property NRR(tr) is taken as the conjunction of these

two implications. If the system provides both of these properties, then a has only to

present his evidence to prove that b did indeed have access to the message m. The

honest operation of the server means that a need only present evidence that the server

received the correct message. The system then guarantees that this information is also

available to b.

3.4. NON-REPUDIATION 113

Figure 3.8: Network for the Zhou-Gollmann non-repudiation protocol

If b wishes to prove that the message was sent by a, he presents both pieces of

evidence SKa(fNRO.b.l.c) and SKj(fCON .a.b.l.k): the first provides evidence that c was

sent, and the second provides evidence that k was also sent, to the server. This treatment

of evidence is again expressed as two trace requirements:

evidence.b.{fNRO.b.l.c}SKa
in tr ⇒ a sent fNRO.a.l.c

evidence.b.{(fCON .a.b.l.k)}SKj
in tr ⇒ a sent fSUB.b.l.k

The non-repudiation of origin property NRO(tr) is defined as the conjunction of these

two trace properties.

The CSP model of the system will have to include at least the two participants in

the protocol and the server. It is also reasonable to allow the presence of other agents

who are potential protocol participants, since the protocol is expected to be correct

even in the presence of other users of the network. The ftp connection can be modelled

as another channel ftp directly between the server and the participants. In fact this

does not make any difference to correctness with respect to the properties above, but it

justifies the informal argument that messages are available to the agents once they have

arrived at the server, and underpins the claim that the properties above are appropriate.

The entire network is the parallel combination of these components:

Network =

(|||
a∈Agent

Agenta(IKa)) ‖
{|ftp|}

Server) ‖
{|send|}∪{|receive|}

Medium(∅)

This is illustrated in Figure 3.8.

114 CHAPTER 3. EXPRESSING PROTOCOL GOALS

The description of the participating agents is extended to permit receipt of facts

along the ftp channel from Jeeves:

Agenta(S) =

✷
b∈Agent,m∈S

send.a.b.m→ Agenti(S)

✷ receive.a?b?m→ Agenta(close⊢a
(S ∪ {m}))

✷ ftp.a.Jeeves?m→ Agenta(close⊢a
(S ∪ {m}))

✷ ✷
m∈S

evidence.a.m→ Agenti(S)

The server described by process Server accepts signed messages of the form of step

3 of the protocol, and makes them available via ftp. It is assumed that the server acts in

accordance with its role in the protocol. It is therefore modelled as follows:

Server(S) = receive?a.Jeeves?SKa(fSUB.b.l.k)→ Server(S ∪ {SKj(fCON .j.b.l.k)}

✷

✷
a∈Agent,m∈S

ftp.a.Jeeves.m→ Server(S)

The server guarantees that any messages retrieved from it via ftp correspond to

receipt of an appropriately signed fSUB message in accordance with the protocol.

The correctness requirements on the entire system are then

System sat NRO(tr)

and

System sat NRR(tr)

The protocol itself is not modelled explicitly within CSP. The descriptions of the agents

allow correct execution of the protocol as possible behaviour. If the system meets

these properties, then it proves that the evidence is sufficient to provide the guarantees

we require, in the context of the server. The protocol can be seen as a pragmatic

suggestion for how the participants might obtain the evidence they require, but the

security property of the protocol rests more on the nature of the evidence than on the

participants following the protocol itself.

3.5 Anonymity

Anonymity is concerned with protecting the identity of agents with respect to

particular events or messages. In this case, unlike secrecy, the messages themselves

need not be protected, only their association with particular agents. Hence it is natural

to model events in the system as consisting of two components: the identity of the

agent performing that event, and the content itself. For anonymity, we consider events

of the form a.x, where a is the identity of the agent and x is the content of the event.

An anonymity protocol will be designed to achieve some kind of transaction or

exchange of messages without revealing the identity of some or all of the participants.

This means not only that the name of the participants should not appear directly, but

3.5. ANONYMITY 115

also that the identities of the participants should not be deducible from the information

that is available. The threat is often considered to be more passive than for secrecy

and authentication: that agents are not actively working to subvert the protocol, but

are simply observing the occurrence of events and making deductions about the

participants. Thus an anonymity protocol will generally be over a fairly reliable

medium. However, such protocols can also be analyzed in the presence of stronger

threats or a more unreliable medium (which might misdeliver messages for example)

to see if their anonymity properties still hold.

The principle of anonymity is that a data item that could have originated from one

agent could equally have originated from any other (perhaps any other from some given

set of users). Hence we wish our definition to capture the notion that any message of

the form i.x could equally well have been of the form j.x. If the set Anonusers consists

of the set of all users whose identities should be masked by the system in providing

anonymity, then the set of messages we wish to confuse for a given piece of information

x is given by the set A:

A = {a.x | a ∈ Anonusers}

Rather than deal directly with the identity of users, we can capture anonymity by

requiring that whenever any event from the set A occurs, it could equally well have

been any other event. In terms of agent identity and content, this means that if an

observer has access only to the content of the message then it is not possible to deduce

the identity of the agent associated with it.

A protocol described as a CSP system P will provide anonymity on the set A if any

arbitrary permutation pA of the events in A, applied pointwise to all of the traces of the

system, does not alter the set of possible traces of the system. This means that the other

events from A that can appear in the trace are independent of the identity of the agent

performing events from A. If A is of the form above (a set of possible users associated

with a piece of information) then permutations will correspond to permutations on

agents.

Anonymity is often relative to particular observers or particular viewpoints. In

other words, anonymity is provided in cases where an observer has access only

to certain kinds of information, and might not be provided in cases where more

information is available. For example, a donation to a charity or a political party

would be anonymous if the only information available is details of the amounts of

money passing through particular accounts, but might not be anonymous if all details

of particular transactions are available.

In general, an observer does not have complete access to all the events occurring in

a system, but has only limited or no direct access to some events. The events that an

observer has access to could be captured as another set B.

It is an immediate requirement for anonymity that A ∩ B = ∅. If an observer has

direct access to the very events that we wish to mask, then it will always be possible to

tell some events in A (in particular, those also in B) from some others.

The events that are not in B are those events that the observer does not have direct

access to. From the point of view of modelling the system in order to analyze for

anonymity, the events other than A and B should be abstracted, since the system to be

analyzed for anonymity should encapsulate the information available to the observer.

116 CHAPTER 3. EXPRESSING PROTOCOL GOALS

Figure 3.9: Analyzing P for anonymity

If C is the set of events that are to be abstracted from P, then the system to be

analyzed is AbsC(P), where AbsC is an abstraction mechanism such as hiding, masking,

or renaming. This situation is pictured in Figure 3.9. In each case the requirement will

be to check for any arbitrary permutation on A, lifted to apply to events and thus to

traces, that

pA(AbsC(P)) = AbsC(P)

The dining cryptographers

We will consider the toy example of the dining cryptographers protocol. This is

concerned with a situation in which three cryptographers share a meal. At the end of

the meal, each of them is secretly informed by their organization whether or not she is

paying. Either at most one is paying, or else the organization is itself picking up the

bill.

The cryptographers would like to know whether it is one of them who is paying, or

whether it is their organization that is paying; but they also wish to retain anonymity

concerning the identity of the payer if it is one of them. They will use the following

protocol to achieve this.

They each toss a coin, which is made visible to them and their right-hand neighbour.

Each cryptographer then examines the two coins that they can see. There are two

possible announcements that can be made by each cryptographer: that the coins agree,

or that they disagree. If a cryptographer is not paying then she will say that they agree

if the results on the coins are the same, and that they disagree if the results differ; a

paying cryptographer will say the opposite.

If the number of ‘disagree’ announcements is even, then the organization is

paying. If the number is odd, then one of the cryptographers is paying. The two

cryptographers not paying will not be able to identify the payer from the information

they have available.

The protocol is modelled in CSP as the parallel combination of cryptographers and

coins, and a master process dictating who pays, as illustrated in Figure 3.10. The events

3.5. ANONYMITY 117

pays.0

MASTER

CRYPT0

CRYPT2 CRYPT1

Coin0

look.1.1

look.1.2
look.2.2

look.2.0

look.0.0 look.0.1

Coin1

Coin2

out.0

out.2
out.1

notpays.0

notpays.1
notpays.2

pays.2
pays.1

Figure 3.10: Components of the protocol

of the form pays.i and notpays.i are the instructions from the organization concerning

payment. Events of the form look.i.j.x model cryptographer i reading value x from coin

j. The channels out.i are used for the cryptographers to make their declaration.

The Master process nondeterministically chooses either to pay, or one of the

cryptographers to pay.

Master = (⊓
i:Cryptnames

pays.i → notpays.((i + 1) mod 3)
→ notpays.((i + 2) mod 3)→ Stop)

⊓ notpays.0→ notpays.1→ notpays.2→ Stop

Each cryptographer process follows the protocol. This is described in CSP as

follows:

Crypt(i) = notpays.i→ look.i.i?x→ look.i.((i + 1) mod 3)?y→

(if (x = y) then (out.i.agree→ STOP)
else (out.i.disagree→ STOP))

✷ (pays.i→ look.i.i?x→ look.i.((i + 1) mod 3)?y→

(if (x = y) then out.i.disagree→ STOP

else out.i.agree→ STOP))

118 CHAPTER 3. EXPRESSING PROTOCOL GOALS

Each coin is modelled as a choice between reading heads and reading tails:

Coin(i) = Heads(i) ⊓ Tails(i)

Heads(i) = look.i.i.heads→ Heads(i)

✷ look.((i− 1) mod 3).i.heads→ Heads(i)

Tails(i) = look.i.i.tails→ Tails(i)

✷ look.((i− 1) mod 3).i.tails→ Tails(i)

The master either sends a pay message to one of the cryptographers and a do-not-

pay to the other two or a do-not-pay message to all of them.

The system is constructed from the cryptographers and coins, which are two

collections of independent processes.

Crypts = Crypt(0) ||| Crypt(1) ||| Crypt(2)

Coins = Coin(0) ||| Coin(1) ||| Coin(2)

They must synchronize on the events representing the examination of coins and the

Master decides who is paying.

Meal = ((Crypts ‖
{|look|}

Coins) ‖
{|pays|}∪{|notpays|}

Master)

It is also possible to provide a parametric description of the system for an arbitrary

number n of cryptographers; but automatic verification via model-checking will be

possible only once a particular n is chosen.

Analysis

There are a number of parameters that dictate the precise form of anonymity available

to the dining cryptographers:

• the events A for which anonymity is provided;

• the events B of the system that can be observed;

• the way the remaining events Σ \ (A ∪ B) are abstracted.

If anonymity is to be provided with respect to the environment of Meal (for example,

an observer on another table), then the set A for anonymity to be provided is simply

{pays.i | 0 6 i 6 2}: the observer should not be able to distinguish the paying

cryptographer from the others. Such an observer should only see the publicly

announced values on out: occurrences of the notpays and look events should be

abstracted. In this situation, the parameters are as follows:

• A = {| pays |}

3.5. ANONYMITY 119

• B = {| out |}

• the remaining events will be hidden: this means that the observer does not even

know whether and how often these events occur.

The system under consideration will be

Meal \ {| look, notpays |}

and the question of anonymity will be whether or not

pA(Meal \ {| look, notpays |}) = Meal \ {| look, notpays |}

for an arbitrary permutation pA.

It might be plausible to expect that look events can be observed, simply requiring

that the particular values associated with them are abstracted. In this case a renaming

abstraction is more appropriate, using the following alphabet renaming:

flook(look.i.j.v) = look.i.j

The system flook(Meal) allows the occurrence of user i inspecting coin j to be observed,

but abstracts the information given by the coin. If this form of abstraction is instead

used (with notpays events remaining completely hidden) then the equivalence to be

checked for anonymity is

pA(flook(Meal) \ {| notpays |}) = flook(Meal) \ {| notpays |}

The cryptographers themselves are privy to more information than an outsider

watching the protocol running. They have access to the values of coins, and also

they know whether they themselves are paying or not. In principle this additional

information might be enough to break anonymity, and indeed anonymity on the set A

is trivially not provided, since cryptographer i can distinguish pays.i from pays.j for

some other j: pays.i is in both A and B.

In this case, the requirement is that anonymity is provided for each cryptographer

against the other two. In other words, if a particular cryptographer is paying then each

of the other two should not know whether it is her or the third cryptographer. From the

point of view of each cryptographer, this means that the other two pays events should

be indistinguishable.

Since the situation is symmetric, we will consider anonymity with respect to

cryptographer 0. In this case we have the following parameters defining the anonymity

property. A is the set of events that must be indistinguishable, and B is the set of events

that are available to cryptographer 0:

• A = {pays.1, pays.2}

• B = {pays.0, notpays.0} ∪ {| look.0 |} ∪ {| out |}

• C = Σ \ (A ∪ B)

120 CHAPTER 3. EXPRESSING PROTOCOL GOALS

There is in fact only one permutation pA to consider: swapping pays.1 and pays.2.

The equivalence to check is that

pA(Meal \ C) = Meal \ C

This equivalence holds, and hence the protocol is correct.

The threat model considered above is benign: the participants all behave as they

should, and we consider whether this allows any information to leak out. However,

we may also consider situations where attempts are made to subvert the protocol. For

example, a cryptographer might have access to the value on the third coin. This can

be captured by allowing the cryptographer access to one of the look events at that third

coin. For example the set B that cryptographer 0 has access to might include events of

the form look.2.2.

In this case anonymity is lost. In the configuration

• A = {pays.1, pays.2}

• B = {pays.0, notpays.0} ∪ {| look.0, look.2.2 |} ∪ {| out |}

• C = Σ \ (A ∪ B)

we find that

〈pays.2, notpays.0, look.0.0.heads, look.0.1.heads, look.2.2.heads, out.2.disagree〉

is a trace of Meal \ C but that it is not a trace of pA(Meal \ C). In other words,

heads on all three coins are observed and so out.2.disagree is consistent with pays.2.

However, it is not consistent with pays.1: if pays.2 is replaced by pays.1 then the rest

of the trace is not consistent with that change. This means that the rest of the trace

contains enough information to distinguish pays.1 from pays.2, and hence break the

anonymity required for cryptographers 1 and 2.

It is instructive to consider this example when look.2.2 is not available. In this case

we have

〈pays.2, notpays.0, look.0.0.heads, look.0.1.heads, out.2.disagree〉

as the equivalent trace of Meal \ C. But now this is also a trace of pA(Meal \ C):
the rest of the trace is consistent with pays.1, since the value of Coin(2) could be tails,

leading to out.2.disagree. If the value of Coin(2) is not available then anonymity is

again obtained.

3.6 Summary

This chapter has considered how authentication and secrecy properties can be

captured by enhancing CSP descriptions of protocols with the introduction of

‘specification events’ into the descriptions of honest agents. These events do not

affect the interactions between the components of the protocol, and so they do not

change the attacks that are possible on a protocol. They allow the intentions of the

3.6. SUMMARY 121

protocol designer or specifier to be expressed explicitly in terms of what should have

been achieved when a protocol participant reaches a particular state. Requirements

on protocols are captured by the introduction of appropriate specification events

at particular points of the CSP protocol description, and then by describing the

requirements on these events.

If Claim Secret signals are introduced into the CSP description only for runs with

honest protocols, then secrecy requirements on protocols tend to take the form

signal.Claim Secret.a.b.s ∈ tr ⇒ ¬(leak.s in tr)

so that when an honest agent a claims that s is a secret value, then the intruder should

not be in possession of it – leak.s can occur only when the intruder has s.

Alternatively, the assumption that the agents are honest might be captured more

explicitly within the property, as the fact that a ∈ Honest b ∈ Honest.

signal.Claim Secret.a.b.s in tr ∧ a ∈ Honest b ∈ Honest⇒ ¬(leak.s in tr)

In this case, the signal event is always possible at the end of the protocol run, and the

requirement is that only in the appropriate cases should this be taken to indicate secrecy

of s.

These secrecy properties can also both be expressed as process-oriented

specifications, enabling model-checking.

Authentication properties are expressed in terms of the relationship between a

Commit signal and a Running signal: that the performance of a Commit signal by

one agent must guarantee that the other agent has already performed a corresponding

Running signal, such as in the following property:

signal.Commit.b.a.ds in tr ⇒ signal.Running.a.b.ds in tr

The Commit signal is introduced into the protocol description at the point where the

protocol designer expects the protocol to have achieved authentication for that agent of

the other party. It is required to correspond to the other party having reached a particular

stage in their part of the protocol. Although the other party need not have committed,

they should at least have done something, and so the Running signal is introduced to

mark the point they must have reached. Early approaches to authentication and secrecy

[84, 61, 86, 57] expressed properties on the bare protocols without the introduction

of signal events. The approach favoured in this book prefers signal events to enable

clearer expression of the properties required.

We have also considered non-repudiation properties [44], where evidence is

introduced; and anonymity, where we require that permutations of the agents requiring

anonymity does not affect the visible parts of the system. These approaches were

first presented in [88] and [85]. The full Zhou-Gollmann non-repudiation protocol is

described in [102]. The dining cryptographers example was first described in [21].

Chapter 4

Overview of FDR

FDR is a commercial tool1 designed to establish results about concurrent and reactive

systems described in CSP. (In fact, the same underlying ‘engine’ can be applied to

a range of other notations that admit similar semantic interpretations; but CSP will

suffice for this discussion.)

With one or two exceptions,2 FDR obtains its results by comparing two descriptions

in a common universe of discourse: a specification and an implementation; in order to

determine if the latter is a refinement of the former. If a check is successful, it means

that the implementation is a reasonable candidate for substitution into the role of the

specification: no observation of any single run of the implementation can tell that it

is not, in fact, the specification resolving any nondeterministic choices it may have in

some particular way.

The most obvious use for such a checking capability is when the specification

is an abstract description of a system, perhaps ‘obviously correct’ by construction

or relatively easily established to meet the (probably informal) requirements on the

system, while the implementation is a (typically more complex) process with some

desired efficiencies or structural properties (such as parallel composition with a

‘narrow’ interface, making it suitable for realization on distributed hardware). This

turns out not to be the most common case, however.

A second, closely related way of using refinement is when the specification

describes some interface protocol, and the implementation is an appropriate view

of a component that should obey that protocol. In fact, with appropriate choices of

specification and viewpoint, perhaps augmented by judicious instrumentation of the

implementation process, a wide range of properties of the implementation can be

encoded in this way; FDR can be used as a ‘theorem prover’ to establish that the

implementation satisfies the logical specification captured in the specification process.

The other paradigm of use turns this neatly on its head; instead of describing

some desirable property of the implementation in the specification, you can challenge

it by denying that some desirable outcome can be achieved. For example, if the

implementation describes a puzzle, with events marking the moves or manipulation

1A product of Formal Systems (Europe) Ltd: visit www.formal.demon.co.uk for details.
2For example, determinism checking.

123

124 CHAPTER 4. OVERVIEW OF FDR

of pieces and with constraints so that it can perform the event done only when the

solution has been reached (see, e.g., [76] and [15.1]), then specify that done cannot

occur. If this is true, then the puzzle is insoluble; but if it is not, FDR will exhibit a

counterexample. This counterexample contains precisely the directions for reaching

the solution from the given starting position, and so tells you how to solve the problem

for real.

The use we make in the crypto-protocol work lies somewhere between these

last two: we might hope that the protocol works, and that we can extend the

absence of counterexample on the small, fixed system analyzed to a proof that there

are no vulnerabilities within the powers of the intruder we have modelled, using

data-independence techniques discussed in Chapter 10.

But in many cases we will find that there are apparent vulnerabilities: the

counterexample gives the sequence of events the intruder must arrange to occur (or

take advantage of, when they are outside his control) in order to breach the specified

security property. This can be related back to the real-world messages that are being

modelled, to decide if it is something serious that needs to be fixed.

We will return to the specifically crypto-protocol-related modelling in the next

chapter, but here we look in more detail at the mechanics of performing the refinement

check in general. Besides its intrinsic interest, this may give insights into why the

CSP that Casper generates does things one way rather than another, and why some

superficially innocuous scripts behave rather badly, in performance terms. Anyone

interested only in interaction with Casper may skip this chapter, at least at first reading.

4.1 Comparing processes

The relationships between processes that FDR calculates are denotational properties:

what is of interest is a comparison of their observable behaviours (in particular, for

refinement, that every observation possible of the implementation should also be

possibly observed of the specification), not the internal evolution that gives rise to

them. What constitutes an observable behaviour depends on the kind of property one

is interested in:

• Traces, the finite sequences of visible events a process may engage in, give

the coarsest useful comparison; refinement in the traces model corresponds to

language inclusion in automata theory, and to Hennessy’s ‘may’ testing [40].

Assuming that the specification describes what is ‘good’ behaviour, traces

refinement means ‘nothing bad happens’ in the implementation.

• Failures and divergences give further information about a process,3 if we allow

ourselves to observe them: this can be, after each trace, which choices can be

made by its environment and which are at the whim of the process; and when the

process may engage in unbounded internal activity (livelock), and so not provide

any further observation of it doing (or choosing not to do) anything. This has

been regarded as the standard model since the early 1980s, since in addition to

3And the name to the tool: FDR stands for Failures-Divergences Refinement.

4.1. COMPARING PROCESSES 125

the pure safety conditions expressible in traces it allows one to specify that a

process will eventually be prepared to engage in some set of events after a given

trace: the only ways it could fail to do so being to reach a stable state where it is

(perhaps nondeterministically) unwilling to (which is a property of its failures),

or never to reach a stable state at all (which is to say that the trace is a divergence).

Divergence is treated as catastrophic in this model: once a process might diverge,

we assume nothing about its subsequent behaviour.

• Failures from stable states alone, together with traces, give a model that treats

divergence as rather benign, and so allows further investigation of a process that

reaches a stable state despite the potential for divergence. This has interesting

applications in its own right, but also proves (as we shall discuss below) to

be a relation more efficiently tested than the failures/divergence one. The

models agree, of course, on divergence-free processes; and so if a process can

once be checked for livelock-freedom (or is known to be so, by construction

or otherwise), then failures-model checks give the same results as in the

failures/divergences model, but faster and smaller.

For crypto-protocol analysis the traces model generally suffices, but testing resilience

to denial-of-service attacks requires the richer models, as does the CSP characterization

of information flow [80] and related topics.4

The relationships and properties, then, are described in terms of the denotational

models. The mathematical values associated with processes are quite complex

structures (pairs of sets of pairs of sequences and sets of events with sets of sequences,

in the case of failures/divergences), however; and worse, for mechanical treatment, in

general they are infinite. FDR therefore does not manipulate the denotational values

directly; rather it exploits the congruences between the denotational and operational

semantics of CSP [76] to calculate the properties based on an operational realization

of the processes in question.

In order for this to be practical we require that any process P we consider be finite

state: the set of distinct P/s (the state reached by P after performing trace s) as s ranges

over traces(P) must be finite,5 and moreover we must be able to find a finite operational

representation of P. Once we have this we can complete a check in finite time, provided

we can recognize states – or rather, in general, pairs of states – we have visited before.

This problem is one shared by all state exploration tools, and the various solutions

employed distinguish them as much as the more obvious issues of language and

specification style. Intimately related with state storage are exploration strategies

and performance goals. The primary dichotomy is between implicit and explicit

4In fact, recent research [59] suggests the need for models making finer discrimination than these:

denying information flow while allowing nondeterminism in the interface to the potential recipient requires

notions of correlation and consistent refinement of nondeterministic choices; but an underlying design

decision for the CSP models is that when nondeterminism is resolved should not matter to the observer
5This condition is actually excessively restrictive: all that we require is that there is no need to explore

more than a finite set of states in any given check and that there is some finite representation of the system.

The exploration strategy and infrastructure of FDR are in principle quite capable of checking that any finite

capacity buffer is a refinement of the (infinite-state) most general buffer of that type, for example; and such

specifications have been experimentally hand-coded in terms of internal data structures. It is another matter,

however, to make a compiler capable of generating efficient recipes of this sort in the general case.

126 CHAPTER 4. OVERVIEW OF FDR

state storage: on the one hand we have ‘symbolic’ model-checking systems based on

(Ordered) Binary Decision Diagrams (BDD), which can represent large sets of states

by, hopefully, relatively small logical formulæ. These have met with considerable

success, particularly in hardware verification [62, 17], where the regularity in the

designs tends to allow a substantially compacted representation; they have also been

applied to CSP refinement checking [101]. The transition relation of the system in

question is encoded as some kind of predicate transformation, and can be applied to

find all the possible next (or previous) states connected with a given set. This lends

itself to analyzing whether an identified set of ‘bad’ states is reachable from the ‘good’

initial states, searching either forwards or backwards or from both ends towards the

middle.

The alternative is explicit-state exploration, where each individual state visited is

recorded in some way. This has the advantage that it is not necessary to calculate the

entire transition relation in advance: it can be evolved piecemeal, ‘on-the-fly’. It is

not enough to record states that have been seen; it is important to be able to consult

those records efficiently: a brute-force search yields an overall exploration that is at

best quadratic in the number of states, which itself has to be measurable in millions, at

least, to address most real-world problems at even a minimal level of detail. Most tools

use some form of sorting or hashing to address this problem.

Hashing has the advantage of near constant-time lookup, as long as the table is

relatively empty. As the table fills, depending on the precise mechanism employed for

resolving clashes, there may be a logarithmic or linear penalty on both insertions and

lookups. But when the size of the data structures exceeds available physical memory,

the constant factors grow to dominate, and effectively bring the exploration to a halt:

a good hash function, by its very nature, will produce essentially random indirections,

and random access into paged virtual memory places an intolerable load on to disk

subsystems and kernel paging strategies. Hashing can accommodate both depth-first

and breadth-first searching, but is particularly well suited to the former: a separate list

of states on the current path both eliminates the need to record back-links in order to

be able to report the trace to an error, and facilitates the detection of loops (and so, in

particular, divergences in the CSP context).

Using a separate listing of the current path, a variation on hashing is possible: rather

than recording the states visited in the hash table, one can simply mark whether the hash

value has been encountered; this allows a single bit to be used in place of the bit vector

that naturally represents the state – which has length logarithmic in the a priori bound

on the number of states, rather than the number actually reachable – and eliminates

any overhead associated with the data structures used to represent the contents of hash

buckets. The relatively small improvement this bitstate hashing offers has a dramatic

impact when it brings a problem within the capabilities of the machine it is run on; but

at a cost. Now, any clash in hash values has the potential to excise substantial sections

of the transition graph, as all entry points may be believed, incorrectly, to have been

visited already. Worse, there is no way to detect when such a fault may have given

rise to a false positive result. The supertrace algorithm [42] improves slightly on this

approach: by using two independent hash functions (and a bit for each value) one is

able to make a better estimate of the likelihood of hash clashes, since a clash in only

one hash is detectable. Nonetheless, these approaches cannot guarantee more than a

4.2. LABELLED TRANSITION SYSTEMS 127

randomized partial search; this may uncover flaws, but can give only limited statistical

value to the failure to find any.

FDR prefers to try and complete the exploration, using secondary storage when

necessary, based on sorting rather than hashing. Maintaining sorted structures has

essentially logarithmic complexity for at least one of insertion or lookup; and a

depth-first search runs into similar performance difficulties when the size of the

data exceeds physical memory. But breadth-first search offers scope for more

storage-friendly strategies: we do not need to know immediately whether a successor

state has been seen before. We can therefore maintain a separate collection of

successors of the current ply in the search, sort them at the end of the ply,6 and then

merge them into the seen set, determining in the process which were new and so

require exploration. Early versions of FDR used linked lists of sorted blocks of virtual

memory for the main state storage, but recent versions have used B-trees [7] with

filestore backing; advances in processor speed and disk capacities, combined with

reductions in memory and disk-cost, mean that virtual-address space limitations had

become a significant consideration, which the new architecture circumvents.

Breadth-first exploration is undoubtedly preferable from an engineering point of

view, too. In particular, the fact that the shortest path to a fault is returned as a

counterexample is a significant advantage for human comprehension and debugging

compared with the corresponding trace from a depth-first exploration. The one thing

breadth-first exploration is not good at, however, is loop detection; so FDR in fact

uses a hybrid search strategy in failures/divergences checks. The main exploration is

breadth-first, as described; but we maintain a separate hash-based cache of divergence

information for all unstable states (of a single process, not pairs of states) encountered

during the check, which allows a depth-first scan of the space of states connected by

internal transitions to be executed incrementally. This does add an overhead, in space as

well as time, to the exploration of checks in this model – which explains why failures-

model checks are to be preferred when the system is known to be free of divergence,

or trace checks when that model suffices.

4.2 Labelled Transition Systems

The classic operational representation of a CSP process is as a Labelled Transition

System (LTS) [75]: a set of nodes representing the states of the process are connected

by directed arcs, labelled with either a visible event or the internal action τ , which

describe how one state can evolve into another. There is a structured operational

semantics for CSP [14] and more particularly for CSPm [83], which allow these arcs

to be deduced between nodes representing process terms – or rather closures, terms

together with bindings for their free identifiers – and this operational semantics forms

the basis of the compilation strategy for purely sequential or recursive terms. One

of the components of the FDR tool is a compiler that takes the CSPm script supplied

by the user (or written by Casper) and a number of process terms in the vocabulary

this establishes. Unless the provisions of the next section apply, an LTS labelled

6Or whenever convenient: FDR mixes random-access sorting of reasonable-size pools with merges of the

resulting sorted arrays.

128 CHAPTER 4. OVERVIEW OF FDR

with closures on the vertices is calculated from the inference rules of the operational

semantics; nodes are identified when they are evidently equal (with functions and

processes, for instance, compared by closure, not value). This LTS is transferred to

the refinement engine with a simple numbering of the nodes, together with the initial

node number corresponding to each term.

Each LTS comes with a distinguished initial node. The initial nodes of the

specification and implementation processes are used to seed an explorer object that

provides four abstract operations:

complete() : bool

take() : Pair〈Node, Node〉

add(Node) : unit

path(Pair〈Node, Node〉) : Seq〈Pair〈Node, Node〉〉

Hidden behind this interface are all the mechanisms necessary to implement the

efficient breadth-first search. Alternative search strategies and implementations could

be slotted in instead, if desired, provided only that they support this interface.

In terms of these operations the core of the refinement-checking algorithm is very

straightforward:

initialise explorer with pair of initial nodes;

while explorer is not complete

take a (fresh) pair of nodes from the explorer

if nodes are compatible in appropriate model

then add mutually reachable successor pairs to explorer

else return counterexample with explorer path to this pair

In the traces model, the local test to see if an implementation node is compatible with

the corresponding specification node is simply to check whether the visible events that

can be performed by that state of the implementation are a subset of those that can

happen in the specification at that point.

As an example of this procedure in practice, let us consider the process S

S = a→ S1

S1 = b→ S ✷ c→ S ✷ a→ S2

S2 = b→ S1 ✷ c→ S1

as a specification: informally, each a event enables either a b or a c, but at most two

can be outstanding. The LTS is pictured in Figure 4.1. As a putative implementation,

consider AB ||| AC, where AB = a → b → AB and AC = a → c → AC. As an LTS,

this has four states:

AA corresponding to AB ||| AC

BA corresponding to b→ AB ||| AC

AC corresponding to AB ||| c→ AC

BC corresponding to b→ AB ||| c→ AC

4.2. LABELLED TRANSITION SYSTEMS 129

Figure 4.1: Labelled Transition System for S

Figure 4.2: Labelled Transition System for AB ||| AC

The LTS forAA is illustrated in Figure 4.2. We seed the explorer with the pair (S,AA)
and proceed

? S ⊑T AB ||| AC ?
Checking Spec inits Impl inits Successors To check

(S,AA)
(S,AA) {a} {a} (S1,BA), (S1,AC)

(S1,BA) {a, b, c} {a, b} (S2,BC), (S,AA) (S1,AC)

(S1,AC) {a, b, c} {a, c} (S2,BC), (S,AA) (S2,BC)
(S2,BC) {b, c} {b, c} (S1,AC), (S1,BA)

where the underlined successor pairs are those that have not been encountered before;

these are appended (in some arbitrary order) to the list of pairs to check, by the breadth-

first search. After the four pairs listed have been checked, there are no new ones to

consider; the refinement holds.

If we prevent S from performing c events (for instance, by making it synchronize

on c with STOP), this will no longer be the case; the first two state-pairs continue

to match but AC is not compatible with S1 ‖{c} STOP . The events possible for the

130 CHAPTER 4. OVERVIEW OF FDR

Figure 4.3: Labelled Transition System for AB ||| AC \ {c}

specification state are {a, b}, while the implementation can perform c (as well as a).

The refinement does not hold, and this state pair gives rise to a counterexample as

described in Section 4.4.

If we hide c on the implementation side, we have the same four states, but now two

of the transitions are labelled with the internal event τ . This is pictured in Figure 4.3.

The difference that this makes is to the ‘mutually reachable’ successor state pair:

there is no event on the specification side corresponding to the τ , so the specification

state remains unchanged. This results in the following exploration

? S ⊑T AB ||| AC \ {c} ?
Checking Spec inits Impl inits Successors To check

(S,AA)
(S,AA) {a} {a} (S1,BA), (S1,AC)

(S1,BA) {a, b, c} {a, b} (S2,BC), (S,AA) (S1,AC)

(S1,AC) {a, b, c} {a, τ} (S2,BC), (S1,AA) (S2,BC)

(S2,BC) {b, c} {b, τ} (S1,AC), (S2,BA) (S1,AA)

(S1,AA) {a, b, c} {a} (S2,BA), (S2,AC) (S2,BA)

(S2,BA) {b, c} {a, b} —mismatch— (S2,AC)

Again, the refinement fails to hold. But note that in order to discover this we have had

to check states of the implementation against more than one state of the specification;

it really is, in general, the Cartesian product of the two state spaces that needs to be

explored!

This exploration strategy works nicely as long as the specification is operationally

deterministic: if it has no τ transitions and there is no more than one arc with any given

label from any node. But that is a necessary condition: let us try to perform our original

refinement check the other way round. When we come to check the pair (BA, S1) we

find that the implementation can perform a c that the specification cannot, and we are

inclined to declare a mismatch. But AC is a state of the specification, reachable on the

4.2. LABELLED TRANSITION SYSTEMS 131

same trace, which can do that event; it is impossible to form an accurate judgement

looking at only one of them.

This is obviously unsatisfactory; but fortunately, there is a way around the problem

by transforming the specification – a procedure called normalization. We need to

make the specification exhibit that operational determinacy, while preserving the

information about its nondeterminacy that is important for checks in the richer models.

The construction of a deterministic state machine with the same traces is well known

from automata theory, and adapts to this context: we need to work in the powerspace

of the original machines states.

1 The initial state of the normalized machine is the τ -closure of the original initial

state; that is, the set of all states reachable from it by a finite sequence of internal

transitions.

2 The events a superstate can perform are the union of the visible events its

elements can perform.

3 The successor superstate after any event is the union of the τ -closures of all the

possible successors of that event from any of its elements.

This gives rise to an LTS that is potentially exponentially larger than the original, but

that in practice is typically of comparable size, often smaller. But such an LTS does not

preserve the refusal and divergence information of the original, so we add a labelling

that records this to the nodes of the LTS:

4 The refusals of a superstate are the union of the refusals calculated from its

elements; a state that can perform τ contributes none, while one that cannot

contributes (any subset of) the visible events it cannot do. The label is an efficient

encoding of the resulting set.7

5 A superstate is marked as divergent if and only if there is an unbounded sequence

of τ transitions (in the original machine) from any of its elements.

As a final step in the normalization procedure, the resulting Generalized Labelled

Transition System (GLTS) is factored by a maximal bisimulation: nodes are identified

unless they differ in their labellings or possible events, or the corresponding successor

nodes after each event can (recursively) so be distinguished. This is not strictly

necessary, but it is clear that any exploration from bisimilar states will yield the same

results and so all but the first will be redundant.

To return to our example, the normalization of AB ||| AC turns out to have five

states: {AA}, {BA,AC}, {BC}, {BA} and {AC} shown in Figure 4.4. Now, when

7In fact, we calculate the dual attribute, acceptances, since (empirically) processes tend to have to do less

than they may refuse to; in either case it suffices to record only extremal sets (maximal refusals or minimal

acceptances).

132 CHAPTER 4. OVERVIEW OF FDR

Figure 4.4: Generalized Labelled Transition System for normal (AB ||| AC) (states

labelled with maximum refusals)

we seed the exploration with ({AA}, S) it proceeds:

? AB ||| AC ⊑T S ?
Checking Spec inits Impl inits Successors To check

({AA}, S)
({AA}, S) {a} {a} ({BA,AC}, S1)

({BA,AC}, S1) {a, b, c} {a, b, c} ({BC}, S2), (S, {AA})

({BC}, S2) {b, c} {b, c} ({AC}, S1), ({BA}.S1)

({AC}, S1) {a, c} {a, b, c} —mismatch— ({BA}, S1)

So we would have been correct to deny the refinement, but not at the point we first

suspected; it is only after both b and c have been available at the same time that we can

tell that whichever just happened cannot immediately happen again.

For the traces model, it is sufficient to look only at the initial events of each

component of a state pair. In the failures model, if the implementation state is stable

(has no τ -arcs) then, in addition, the visible events it cannot do must be contained

within a refusal of the specification state. Thus (S1,BA) in our original example

would be a cause for complaint in this model: the implementation refuses c, while the

specification cannot. When we come to explore more complex machines than simple

LTSs on the right-hand side of a refinement, this condition must be generalized to any

maximal refusal of the implementation being contained within a maximal refusal of the

specification.

In the failures-divergences model, we first check whether either state is divergent

for its process. If the specification node is, then since ⊥⊑ P for any process P, we can,

4.3. EXPLOITING COMPOSITIONAL STRUCTURE 133

in fact, take a short-cut in the check at this point and ignore any part of the state-space

reachable only through such nodes. But if the specification is not divergent at this point

and the implementation is, then this is an unwanted livelock that needs to be reported.

We will discuss the counterexamples further below, in Section 4.4.

Rather than code separate checking procedures for each of the three models, FDR

instead makes the processes tell white lies about their behaviour in order effectively to

change the model, by applying a wrapper to the objects that implement them. For the

failures model, any enquiry whether a state of the process is divergent is answered in the

negative; for the traces model, every set of maximal refusals (or minimal acceptances)

is empty. Careful use of this mechanism means that none of the algorithms in the tool

that manipulate process representations need be aware in the context of which model

they are being exercised.

4.3 Exploiting compositional structure

The classic problem in analyzing the behaviour of concurrent systems is the way the

states of component processes combine to form the state of the whole. The best general

bound on the number of states in the parallel composition of an M-state process with

an N-state process is M × N, although this is not always achieved: the requirement

for synchronization may make parts of the component state-spaces unreachable, and

synchronization may also impose a large degree of correlation between their states.

Nonetheless, systems that we want to analyze, including those arising in the present

context, tend to be large; to the extent that keeping track of the visited states is the

principal limiting factor on the complexity of problem that can be tackled.

If storing the states is a problem, then storing the transition relation as an explicit

GLTS is unthinkable: its size would be, in general, quadratic in the number of states

and multiplied by a factor reflecting the size of the alphabet; in the worst case, complex

nondeterminism can require an exponential number of minimal acceptances. Worse,

the exploration strategy described above requires reasonably efficient random access

to the operational semantics, which precludes the storage-friendly tricks used for state-

pair storage.

The solution is to take advantage of the structure of the composition that gave rise

to the complexity in the first place, in order to generate the full transition relation ‘on-

the-fly,’ as and when required. The existence of this structure also enables a number of

other techniques for combating the combinatorial explosion, both representational and

algorithmic.

The basic idea is very simple: rather than calculate the transition relation for the

whole system at one go, use the rules governing the operational semantics of the various

language constructs to infer the behaviour local to a particular configuration of the

system when needed. In practice, a compromise approach is used: calculate it for

simple subcomponents, and remember how these are to be combined to give the overall

behaviour.

This is precisely what the output of the CSPM compiler is: when the user asks FDR

to check an assertion its first task is to obtain such a representation for the process

terms involved. The script describing the problem has already been loaded and parsed,

134 CHAPTER 4. OVERVIEW OF FDR

and the compiler is ready to handle requests for the operational semantics of a process

term. On receiving such a request, it calculates8 an LTS for any recursive subprocess –

during this it reports in the status window the number of transitions added or the terms

under consideration, according to option settings – and constructs a tree reflecting the

operators by which they are combined, suitably parametrized by synchronization sets,

renaming relations, and the like, with references to the LTSs at the leaves. (Early

versions of FDR imposed a strict division between low-level constructs – basically

sequential, which were flattened into an LTS – and high-level ones – parallel, hiding

and renaming, which went into the tree – but the modern compiler determines from

context when it is desirable to shift an operator from one role to the other, so the

sequential composition of two parallels will generally be represented in the tree.) This

is the raw material on which the refinement engine operates.

It is possible to use this representation directly, with states represented by structures

dictated by the shape of the operator tree and their place in any high-level sequential

constructs. To determine what the possible initial events or the minimal acceptances

are for such a state, the same question is asked, recursively, of the component states

of the immediate subprocesses and an encoding of the operational semantic rule for

the appropriate operator is applied to combine the results. To determine the successor

states after a given event, a similar recursive calculation is required, with the added

complication that it may correspond to a different event or a set of events in the

subprocess, if renaming or hiding is involved.

The disadvantage of this approach is that essentially the same combination of

operations is applied repeatedly, while the decomposition and recombination of

substates carries its own costs, to the extent that the inefficiency of simply running

the machine has a significant impact on overall performance. To combat this, FDR

by default applies a procedure called supercompilation, which flattens the tree of

natural-deduction inferences in the structured operational semantics into a single

super-rule for each way that each ‘shape’ of structured state can evolve. This allows

a state to be represented by a configuration number9 and a vector of leaf-process

states. The effect of each leaf process on the overall behaviour can be tabulated. For

each leaf we generate a bit-mask for each state which records (as zeros) which of the

ways the full process can possibly perform an event is inhibited by this leaf being

in that state (i.e. where the leaf has to be an active participant and this state cannot

perform the requisite component action). Now calculating the initial events of a state

in the full process can be accomplished by a simple bit-wise conjunction of the masks

corresponding to its component leaves, resulting in greatly improved performance.

The calculation of minimal acceptances requires the exact same inference from the leaf

minimal acceptances (another reason to prefer them to maximal refusals!). Each way

in which an event can occur yields a set of successors, formed by the cross-product of,

on the one hand, the sets of successors of each leaf actively involved in that rule after

its component action and, on the other, singleton sets of the (stationary) states of the

leaves not involved. The complete set of successors after an event is the union of these

8Incrementally; where a process evolves into or depends on one that has already been compiled, the

earlier work is re-used.
9If there are more than one; the classic high-low dichotomy yields systems with a single ‘shape’ and this

component is optimized away.

4.3. EXPLOITING COMPOSITIONAL STRUCTURE 135

products across all rules giving rise to it. In practice, it is not necessary to form the set

of all successors as a whole; it suffices to hand them off to the explorer as they are

calculated.

This representation is quite efficient and very general, but it is not as good as the

explicit tabulation of an LTS when that is sufficiently small to be tractable. This

is particularly the case where complex renamings may result in a large number of

different ways of an event arising (and these multiply, too, under parallel composition),

giving rise to very wide bit-masks; or where a large number of components synchronize

to a small number of states (if P(i) = c.0→ d.0→ P(i) ✷ c.i→ d.i→ P(i), then the

fully synchronized composition ‖
999

i=0
P(i) is equal to P(0), but it takes a thousand bits

to represent each state of the supercompiled machine, not one).

The user can direct the system to tabulate a particular subprocess10 by declaring

a transparent (semantics preserving) function explicate in the script and applying

it where desired. The compiler leaves such calls in the operator tree, and as the

refinement engine receives its output it applies a function that calculates a tabulation

of the argument process, which is used in place of the argument in subsequent

operations. The argument to be tabulated is itself supercompiled, so we get the best of

both worlds.

This change of representation is an example of a more general form of manipulation

of the process tree, but it is somewhat different from most of the other examples in that

its result has exactly the same number of states as its argument. In most cases, one

expects the result of applying such a transparent function to have the same denotational

behaviour, but a representation with fewer states; for this reason they are usually called

compression operators.

Commonly used examples of such functions are strong bisimulation (sbisim),

the same normalization as is applied to specifications (normal), and a manipulation

(diamond) that has a similar effect in eliminating τ -transitions but is guaranteed not

to expand the state space (unlike normal, which in pathological circumstances can

actually increase the number of states exponentially). Further details of the algorithms

involved can be found in [76].

Strong bisimulation is, in fact, routinely applied to each LTS at the leaf of an

operator tree, unless the appropriate option is deselected. This does not prevent further

compressions being applied to larger subtrees of the process composition; indeed,

the compressions may be applied hierarchically and, as the operator tree is in fact

a graph respecting shared subterms in the original process, more or less arbitrarily

complex descriptions of simple processes can, in favourable circumstances, be reduced

to tractable forms [79].

We remarked earlier that it is only in exceptional circumstances that it can pay to

apply a compression to the whole process; it is sometimes undesirable even to calculate

all of its result on a subprocess, if its context means that a substantial part of that

space is unreachable. In some circumstances, it is unavoidable: strong bisimulation,

for example, needs to know the entire transition graph in order to decide whether to

distinguish two nodes that are n-step similar (in a graph of diameter n+1). There

10It can rarely if ever be sensible to apply this procedure at the top level, since it will usually require as

much work and storage, or more, to do the tabulation as to operate on the original representation.

136 CHAPTER 4. OVERVIEW OF FDR

are, however, some operators that can be calculated lazily; rather than calculating a

tabulated machine which is referred to by a pruned operator tree, they insert a recipe

that builds up the table gradually, as entries are demanded. This has the disadvantage

that the bit-masks for the supercompiled machine cannot be precomputed, and that the

size of the subcomponent (and so the number of bits to reserve for it in the vector

representation) is not known in advance; but in the right situation the benefits more

than outweigh these problems.

A classic example is the specification that a given set of events must have

occurred before another particular event. This has the unfortunate property that it

has an (irreducible) number of states exponential in the size of the set it is looking

for. If this set is even moderately large, then both compilation and normalization

become infeasible, by the obvious routes. The compilation problem can be solved by

well-known techniques, recasting the process as a parallel composition of recognizers

for each element of the set followed by (and synchronized on) the target event,

but allowing FDR to use its usual normalization strategy will still typically exceed

resources. The solution is to apply the lazynorm ‘compression’ to produce the

annotated determinized transition system that the first phase of normal (before the

strong bisimulation) generates, on demand. (The resulting state machine is marked

by its place in the class hierarchy as being in prenormal form in this way; so FDR

‘knows’ not to normalize it any further.) We may expect the implementation to be

restricted as to the order in which it can perform the guarding events; in this case, since

the state of the specification is a function of the trace performed, if the implementation

can be handled at all then only a relatively small part of the specification need be

explored.

There is another operator that uses similar lazy explication of a transformed state

machine: chase, which resolves and collapses sequences of internal events. Unlike the

other functions, which preserve the denotational value of their argument (which is why

they are called ‘transparent’), this external function may not; in general, its result may

be a strict refinement of its argument. In some circumstances (for instance, when its

argument is denotationally deterministic and so is maximal in the refinement order) this

is not possible, and chase can be used in the same way as other compressions, often

to dramatic effect. We will see more of this operator when we come to implement the

model of the intruder (Section 6.2).

4.4 Counterexamples

When the exploration encounters a pair of states that are not compatible in the model

of the check, this is a witness that the refinement does not hold. It remains to cast this

into a counterexample that is informative to the user.

The first step is to determine how we got to this point. Each pair is stored with

a reference to the pair (or the first of possibly many) from which it was reached

during the exploration. Thus it is possible to build up (backwards) a path through

the plies of the breadth-first search leading from the initial pair of start states up

to the witness. Because this steps forward a ply at a time, it is guaranteed to be

minimal in length among such paths, leading to a counterexample with no unnecessary

4.4. COUNTEREXAMPLES 137

noise.

The path of states is not itself presentable as the counterexample; in general, states

have no designation that the user would recognize. But we know that they arise through

a possible evolution of the two processes, synchronizing on all visible events. We can

always find an explanation for the next state pair: a visible event that allows each

machine to make its corresponding transition, or a τ -transition that moves one forward

while the other remains stationary. (Because of the normalization of the specification,

τ -transitions invariably belong to the implementation side.) This augmented trace (in

(Σ∪{τ})∗) is enough to tell the user the trace that is part of the denotational behaviour

present in the implementation but not the specification. The other part depends on the

type of mismatch detected.

If the initials of the implementation state are not contained within those of the

specification, a trace is all that is required: all but its last element is the possible

evolution of both processes just described, but an additional event, taken from the

difference, is appended to give the illicit trace it performs. If the implementation is

too nondeterministic, it has a minimal acceptance that does not wholly include any of

those of the specification; the complement of this, paired with the trace, is an unwanted

refusal. If the implementation diverges while the specification does not, then the trace

is an unwanted divergence, on its own. The FDR debugger is able to present each of

these kinds of counterexample. An example of a trace possible for the implementation

S but not the specification AB ||| AC, provided by the debugger, is 〈a, a, c, c〉.
These top-level behaviours may be enough to diagnose the problem (or to extract

the solution, in puzzle mode); but it often helps to be able to examine the contribution

of the component processes. To this end the debugger also offers a folding view on to a

tree of subprocesses: in fact, the very operator tree that the compiler produces prior to

supercompilation. Clicking on a node in this tree displays a projection of the top-level

behaviour on to that subprocess.

This projection is not always trivial: in passing through renaming or hiding the

events may change (but not their number or relative position; this is a reason for leaving

the τs visible in the debugger traces). There are also three new kinds of behaviour

that need to be presented. It is possible that a subprocess plays no part at all in

the unwanted evolution: the right-hand-side of a sequential composition whose left-

hand-side misbehaves, for example. (This non-behaviour is also what appears at top

level if a successful check is debugged.) Alternatively, a subprocess may not actively

contribute to the unwanted feature at the end of the trace, yet still be complicit in

arriving at that state; this too is simply a trace, which the process allows. Finally, if the

implementation diverges there is a loop of τ -transitions; this typically corresponds to a

repeated sequence of hidden events that become visible – and reported – when we look

inside the hiding operator.

The situation becomes more complicated when there are compressions involved.

These do not appear explicitly in the debugger’s view of the operator tree; rather the

node corresponding to the argument is coloured red and does not automatically unfold

when the unfold-all action is invoked. This is because there is potentially a significant

amount of work involved in finding a behaviour of the uncompressed machine that

corresponds to the compressed behaviour to hand: there are typically changes in

representation to cope with, a many-one relationship between uncompressed and

138 CHAPTER 4. OVERVIEW OF FDR

compressed states, and possibly a number of intermediate states that the compression

had eliminated to reinvent. Fortunately, these problems are not insurmountable,

and some compressions admit a clever inversion; in the worst case, we can frame a

specification for the uncompressed machine to which the behaviour we are looking for

is the only minimal counterexample, and run a subsidiary refinement check.

FDR allows the user to request multiple counterexamples to an assertion, but care

must be taken to avoid confusion as what it does and does not find as additional cases.

The request is passed to the refinement engine, which accumulates a counterexample

behaviour for each noncompliant state-pair it encounters, while not attempting to

search downstream of such pairs. This means that it will not report multiple traces

leading to essentially the same discrepancy and will not discover errors masked

by preceding ones: STOP ⊑ a→ STOP ✷ b→ STOP generates only one

counterexample, as does a→ STOP ⊑ b→ STOP ✷ a→ b→ STOP .

140 CHAPTER 4. OVERVIEW OF FDR

Chapter 5

Casper

In previous chapters we have seen how to produce CSP descriptions of security

protocols, and how to analyze them using FDR. However, producing the CSP by hand

is a rather time-consuming and error-prone process. We have therefore produced a

compiler, called Casper, to help produce the CSP description. The user produces

an input script – typically only about one page long – describing the protocol, in an

abstract notation similar to that used to describe protocols earlier; Casper compiles

this into CSP code, suitable for checking using FDR.

In this chapter, we give an overview of Casper, and how to use it to model protocols

and different protocol features. The intricacies of the FDR encoding will be discussed

in more detail in Chapter 6.

The reader is recommended to download a copy of Casper, and to experiment with

it while reading this chapter. Casper is available from the book’s website, as are all the

Casper scripts that appear in this chapter.

5.1 An example input file

In this section, we give a gentle introduction to the Casper syntax by explaining an

example input script, and showing how to use Casper to compile the script into CSP,

and then interpret the output from FDR.

Overview of input file

As we have seen in Chapter 4, FDR operates by explicitly enumerating and then

exploring the state space of the system in question, and so this method can only be

used to check a particular (typically fairly small) system running the protocol, for

example, with a single initiator and a single responder, rather than being able to check

an arbitrary system with an arbitrary number of initiators and responders; similarly,

FDR can only deal with systems where the underlying atomic datatypes – for example,

the types of nonces or keys – are themselves finite. For these reasons, the Casper input

141

142 CHAPTER 5. CASPER

file must define not only the operation of the protocol, but also the particular system to

be checked. Therefore, the input file contains two distinct parts:

• A definition of the way in which the protocol operates, describing the messages

passed between the agents, the tests performed by the agents, the types of the

data items used, the initial knowledge of the agents, a specification of what the

protocol is supposed to achieve, and a definition of any algebraic equivalences

over the types used.

• A definition of the actual system to be checked, defining the agents taking part

in the actual system and the roles they play, the actual datatypes to be used, and

the intruder’s abilities.

The first part can be thought of as a function that returns a model of a system running

the protocol; the second part can then be thought of as defining a particular image of

that function, by instantiating the parameters of the protocol.

We will illustrate how one produces a Casper description of a protocol by

considering the following example protocol, a slight adaptation of the Yahalom

protocol:

Message 1 a→ b : na

Message 2 b→ s : {a.na.nb}ServerKey(b)

Message 3a s→ a : {b.kab.na.nb}ServerKey(a)

Message 3b s→ b : {a.kab}ServerKey(b)

Message 4 a→ b : {nb}kab

User b’s key delivery message is sent directly to him, rather than being forwarded

via a as in the original Yahalom protocol; we will consider the standard version of the

protocol in the next section, but this adaptation will simplify our explanation.

Casper scripts are split into a number of sections; each section is headed by a line

beginning with #. Comments may be added to the file by beginning the relevant lines

with --. Any logical line may be split across two or more physical lines by preceding

any non-logical linebreak by a backslash (\).

Defining the protocol

The protocol description

The protocol description section of a Casper script describes the sequence of messages

making up a protocol run. The entire Casper input script and output CSP is included in

5.1. AN EXAMPLE INPUT FILE 143

Appendix B. Here is that section for the version of the Yahalom protocol, above:

#Protocol description

0. -> a : b

1. a -> b : na

2. b -> s : {a, na, nb}{ServerKey(b)}

3a. s -> a : {b, kab, na, nb}{ServerKey(a)}

3b. s -> b : {a, kab}{ServerKey(b)}

4. a -> b : {nb}{kab}

Each step of the protocol is defined using an ASCII representation of the normal

notation. We write {m}{k} for m encrypted with k, i.e. {m}k.

The message 0 is included to start the protocol run, informing a of the identity of

the agent b with whom he should run the protocol. One can think of this as a message

from a user, or the environment, including b’s identity. The absence of a sender field in

the above line represents that this message is sent by the environment. We assume that

such messages cannot be overheard by the intruder; neither can they be faked.

Free variables

The types of the variables and functions that are used in the protocol definition

are defined under the heading ‘#Free variables’; for the example protocol, this

definition takes the following form:

#Free variables

a, b : Agent

s : Server

na, nb : Nonce

kab : SessionKey

ServerKey : Agent -> ServerKeys

InverseKeys = (kab, kab), (ServerKey, ServerKey)

The first four lines simply declare the types of the free variables. When modelling a

protocol in Casper, one can choose any names for the types – Casper has no notion of

what a nonce is, for example; however, we will adopt standard names.

The fifth line declares the type of the function ServerKey, which takes an agent’s

identity, and returns a key of type ServerKeys.

The final line is a definition of which keys are inverses of one another. kab is its own

inverse; and the function ServerKey returns keys that are self-inverse (i.e. ServerKey(a)
is self-inverse, for every agent’s identity a).

Processes

The #Processes section gives various information about the agents running in the

protocol. The names of the CSP processes representing the agents are defined as below:

144 CHAPTER 5. CASPER

#Processes

INITIATOR(a,na) knows ServerKey(a)

RESPONDER(b,s,nb) knows ServerKey(b)

SERVER(s,kab) knows ServerKey

These lines have several tasks:

• They give names to the roles played by the different agents (here Initiator,

Responder and Server). These names are also used as the names of the CSP

processes that represent the agents. In each case, the first argument represents

the identity of the agent, as used in the protocol description. For example, the

agent represented by a in the protocol description will be represented by a CSP

process Initiator(a, na), in the style described in Chapter 2.

• The parameters in parentheses, and the variables following the keyword

‘knows’, define the knowledge that the agent in question is expected to have

at the beginning of the protocol run. For example, the initiator a is expected

to know his own identity a, the nonce na, and the key ServerKey(a) that he

shares with the server. Similarly, the server s knows the key function ServerKey,

which means he can obtain all the server keys (in an implementation, he would

probably look up the keys in some table).

This information is used to check that the protocol definition is feasible, in the

sense that agents only send messages that they could be expected to create and

only receive messages that they can decrypt (we make this precise below).

• Later (under the #System heading, below) we will define a system by

instantiating the parenthesized parameters with actual values, so as to define

the data values that each agent should use in their runs. Thus the parenthesized

parameters should be ones that can be instantiated in this way, whereas those

parameters in the ‘knows’ list will be ones for which the same value (possibly

depending on the identity of the agent) will be used in every run.

For example, suppose we define a system with a particular initiator Anne

performing several runs: that is, the system contains several instances of the

Initiator process, with the variable a instantiated with the value Anne. Then we

would expect that Anne would use different nonces in each run: that is na would

be instantiated with different values in each run. On the other hand, the data item

ServerKey(a) does not appear as a parameter, because we would expect the same

value to be used in every run (ServerKey(a), depending upon the identity a).

Whenever an agent sends a message, it should be the case that the agent knows

the recipient’s identity and possesses all the components necessary to produce it;

for example, b is able to send message 2 because he knows a and na (learnt from

message 1), s and nb (from his parameter list), and ServerKey(b) (from his ‘knows’

list). Similarly, if it is the intention that an agent should decrypt an encrypted

component that he receives, then he should possess the decrypting key; for example, b

is able to decrypt message 4, because he has learnt the key kab from message 3b. (We

5.1. AN EXAMPLE INPUT FILE 145

consider the case where an agent is not expected to be able to decrypt a message he

receives in the next section.)

An agent will accept a message he receives if all fields represented by variables

already in the agent’s knowledge contain the expected values; for example, in

message 3a above, a will accept any values for kab and nb, but will only accept

the values for b and na that match the values in his current state (that is, the same

values that a sent in message 1), and will only accept a message that is encrypted

with ServerKey(a) (the key he shares with the server).

Specifications

The ‘#Specification’ section is used to specify the requirements of the protocol.

There are two sorts of specifications dealt with by Casper: secrecy and authentication.

Specifications may be declared as below:

#Specification

Secret(a, kab, [b,s])

Secret(b, kab, [a,s])

Agreement(b, a, [na,nb])

Agreement(a, b, [kab])

The lines starting Secret specify that certain data items should be secret. The first

secret specification above may be paraphrased as: ‘a thinks that kab is a secret that can

be known to only himself, b and s’. Of course, if b or s happens to be the intruder then

there is nothing to prevent him passing the secret on to others. However, this line will

cause a CSP specification to be generated with the meaning: if a completes a run of

the protocol, apparently with b and s, and b and s are not the intruder, then the intruder

will never learn the value of kab.

This is the secrecy specification Secreta,b given in Section 3.2 of Chapter 3, with the

Claim Secret signal inserted at the end of the protocol run. It is also possible to make

strong secret specifications, for example writing StrongSecret(a,kab,[b,s]). The

specification Secreta,b is used in both cases, but for strong secrecy Casper places the

Claim Secret signal earlier in the run, yielding a stronger requirement on the protocol.

The lines starting Agreement are agreement authentication specifications; the first

one specifies that b is authenticated to a in the following (injective) sense:

If a completes a run of the protocol, apparently with b, then b has been

running the protocol, apparently with a; further, the two agents agree upon

the roles each took and upon the values of the nonces na and nb; and there

is a one-one relationship between such runs of a and those of b.

As we have observed, in this particular protocol a cannot be assured that b agrees

upon the value of the key k, or even that b received a key, because b does not send any

message after receiving the key in message 3b. If one were to include a specification

line

Agreement(b, a, [kab])

in the script, then Casper would detect, by static analysis, that there is no way this

specification could be met, and would report this fact.

146 CHAPTER 5. CASPER

The system definition

The second part of the input file deals with the actual system to be checked.

Type definitions

The datatypes used in the actual system to be checked are defined in a similar way to

the types of the free variables, for example:

#Actual variables

Anne, Bob, Yves : Agent

Jeeves : Server

Kab : SessionKey

Na, Nb : Nonce

InverseKeys = (Kab, Kab)

Thus we will be dealing with a system with three agents (Yves will be the intruder), one

server, two nonces, and one session key. The session key is declared to be self inverse.

The server keys of these agents are defined in the #Functions section, as below.

Functions

Any functions used by the agents in the protocol description, and declared in the free

variables section, have to be defined under the #Functions heading:

#Functions

symbolic ServerKey

The above defines the function ServerKey to be symbolic: this means that Casper

produces its own values to represent the results of function applications.

It is also possible to give explicit definitions of functions, but this technique is now

largely deprecated.

The system

The most important part of the system definition covers which agents should be present

in the system to be checked. This is done by listing the agents, with the parameters

suitably instantiated, as follows:

#System

INITIATOR(Anne, Na)

RESPONDER(Bob, Jeeves, Nb)

SERVER(Jeeves, Kab)

Here we consider a system with a single initiator, Anne (taking the role of a in the

protocol description), a single responder, Bob, and a single server, Jeeves, who can

each run the protocol once. Anne uses nonce Na (taking the place of na in the protocol

description); Bob uses Jeeves as the server, and uses nonce Nb; Jeeves uses key Kab.

The types of the parameters of the processes should match the types of the parameters

of the corresponding processes defined under the #Processes heading.

5.1. AN EXAMPLE INPUT FILE 147

The intruder

Finally, the operation of the intruder is specified by giving his identity, and the set of

data values that he knows initially:

#Intruder Information

Intruder = Yves

IntruderKnowledge = {Anne, Bob, Yves, Jeeves, ServerKey(Yves)}

The above defines the intruder’s identity to be Yves, and defines that the intruder

initially knows all the agents’ identities, and his own key ServerKey(Yves).

Using Casper

For details about obtaining Casper, see the notes at the end of this chapter.

Casper is written in the functional programming language Haskell. It is distributed

with a shell script that starts up the Haskell interpreter and loads in the Casper files. If

the input script is stored in a file Yahalom.spl, typing

compile "Yahalom"

at the prompt will cause Casper to read in the file, check it, and if correct write the

CSP description of the system to the file Yahalom.csp. This CSP script can then be

checked using FDR; in this case FDR finds no attack.

Consider, now, the following adaptation of the Yahalom protocol discussed in [20]:

Message 1 a→ b : na

Message 2 b→ s : nb.{a.na}ServerKey(b)

Message 3a s→ a : nb.{b.kab.na}ServerKey(a)

Message 3b s→ b : {a.kab.nb}ServerKey(b)

Message 4 a→ b : {nb}kab

where we have again redirected some messages, so that s sends the key delivery

message direct to b. In this version, nb is sent in the clear in the second message, and

is returned to b once it has been encrypted by S. This protocol can be modelled by

changing the #Protocol description section of the script to:

#Protocol description

0. -> a : b

1. a -> b : na

2. b -> s : nb, {a, na}{ServerKey(b)}

3a. s -> a : nb, {b, kab, na}{ServerKey(a)}

3b. s -> b : {a, kab, nb}{ServerKey(b)}

4. a -> b : {nb}{kab}

Note that this is the only change necessary to model the new protocol.

If we model a system with a single initiator Anne and a single responder Bob, then

no attack is found. However, if we change the #System section to the following:

148 CHAPTER 5. CASPER

#System

INITIATOR(Anne, Na1)

RESPONDER(Anne, Jeeves, Na2)

SERVER(Jeeves, Kab)

so that Anne can run the protocol as both initiator and responder, then FDR finds an

attack, showing that the responder Bob is not correctly authenticated to the initiator

Anne. At the top level of the system definition, only those events necessary to capture

the specification are included. To obtain the actual sequence of messages performed,

the FDR debugger should be used to descend two levels, as discussed in Chapter 6,

where the following trace is found:

env.Anne.(Env0,Bob,<>)

send.Anne.Bob.(Msg1,Na1,<>)

receive.Bob.Anne.(Msg1,Na1,<>)

send.Anne.Jeeves.

(Msg2,Sq.<Na2,Encrypt.(ServerKey.Anne,<Bob,Na1>)>,<>)

receive.Anne.Jeeves.

(Msg2,Sq.<Na1,Encrypt.(ServerKey.Anne,<Bob,Na1>)>,<>)

send.Jeeves.Bob.

(Msg3a,Sq.<Na1,Encrypt.(ServerKey.Bob,<Anne,Kab,Na1>)>,<>)

send.Jeeves.Anne.

(Msg3b,Encrypt.(ServerKey.Anne,<Bob,Kab,Na1>),<>)

receive.Jeeves.Anne.

(Msg3a,Sq.<Na2,Encrypt.(ServerKey.Anne,<Bob,Kab,Na1>)>,<>)

send.Anne.Bob.(Msg4,Encrypt.(Kab,<Na2>),<Na1,Jeeves>)

To make the output from FDR easier to understand, Casper includes a function

interpret that takes the raw trace and converts it into the standard style for describing

attacks:

0. -> Anne : Bob

1. Anne -> I_Bob : Na1

1. I_Bob -> Anne : Na1

2. Anne -> I_Jeeves : Na2, {Bob, Na1}{ServerKey(Anne)}

2. I_Anne -> Jeeves : Na1, {Bob, Na1}{ServerKey(Anne)}

3a. Jeeves -> I_Bob : Na1, {Anne, Kab, Na1}{ServerKey(Bob)}

3b. Jeeves -> I_Anne : {Bob, Kab, Na1}{ServerKey(Anne)}

3a. I_Jeeves -> Anne : Na2, {Bob, Kab, Na1}{ServerKey(Anne)}

4. Anne -> I_Bob : {Na2}{Kab}

The notation I_Bob on the right-hand side of the arrow (->) represents the intruder

intercepting a message intended for Bob; the notation I_Bob on the left-hand side of

the arrow represents the intruder faking a message, making it appear to come from

Bob. In this attack, the intruder uses the responder run of Anne to create an appropriate

message 2 to send to the server; the intruder then uses the message 3b produced by the

server in order to create a message 3a to send to the initiator run of Anne, so as to make

Anne falsely believe that she has completed a run with Bob.

5.2. THE %-NOTATION 149

5.2 The %-notation

It will often be the case that the sender and receiver of a message treat that message

somewhat differently. For example, in many protocols an agent receives an encrypted

message that it does not decrypt; instead the agent simply forwards the message to a

third party. This is the case in the standard Yahalom protocol:

Message 1 a→ b : a.na

Message 2 b→ s : b.{a.na.nb}ServerKey(b)

Message 3 s→ a : {b.kab.na.nb}ServerKey(a).{a.kab}ServerKey(b)

Message 4 a→ b : {a.kab}ServerKey(b).{nb}kab

a does not decrypt the second component of message 3, but simply forwards it to b in

message 4.

As a default, Casper treats agents receiving messages as if they are able to decrypt

them (this helps to trap many user errors); hence when this is not possible we need some

way of indicating to Casper that messages really are not intended to be decrypted: this

is the role of the %-notation. We write m%v, where m is a message and v is a variable, to

denote that the recipient of the message should not attempt to decrypt the message m,

but should instead store it in the variable v. Similarly, we write v%m to indicate that the

sender should send the message stored in the variable v, but the recipient should expect

a message of the form given by m.

For example, we would model the standard Yahalom protocol using a script with

Protocal descriptions sectionas follows (the rest of the script would be as in the

previous section):

#Protocol description

0. -> a : b

1. a -> b : na

2. b -> s : b,{a, na, nb}{ServerKey(b)}

3 . s -> a : {b, kab, na, nb}{ServerKey(a)}, \

{a, kab}{ServerKey(b)} % v

4. a -> b : v % {a, kab}{ServerKey(b)}, {nb}{kab}

(Recall that a backslash – as in message 3 – is used to split a single logical line across

two physical lines.) a stores the second component of message 3 in the variable v and

forwards it to b in message 4.

In an implementation, the agents would not be able to tell whether the message

they receive is of the expected form, without some further information such as typing

information. The Casper model of the agents therefore allows agents to be described so

that they accept an arbitrary message of the expected type, or a special value Garbage

representing a random sequence of bits invented by the intruder.

The %-notation and public keys

The %-notation can be used not only for the case where a message is simply forwarded

without decryption, but, more generally, wherever the sender and receiver treat the

150 CHAPTER 5. CASPER

message differently. For example, consider the seven-message version of the Needham-

Schroeder-Lowe Public-Key protocol:

Message 1 a→ s : b

Message 2 s→ a : {b.PK(b)}SK(s)

Message 3 a→ b : a.b.{na.a}PK(b)

Message 4 b→ s : a

Message 5 s→ b : {a.PK(a)}SK(a)

Message 6 b→ a : b.a.{na.nb.b}PK(a)

Message 7 a→ b : a.b.{nb}PK(b)

The purpose of message 2 is for a to obtain b’s public key. However, writing PK(b)
in the protocol description is rather misleading: a should be willing to accept any key,

call it pkb, in this message, and then use that key pkb for the rest of the protocol. We

hope that the form of message 2 ensures that the key that a receives really is PK(b),
but this is something we need to check in our analysis; for example, this would not be

the case if b’s identity were removed from the encrypted component of this message.

The following Casper protocol description treats PK(b) (and PK(a)) as required:

#Protocol description

0. -> a : b

1. a -> s : b

2. s -> a : {b, PK(b) % pkb}{SK(s)}

3. a -> b : {na, a}{pkb % PK(b)}

4. b -> s : a

5. s -> b : {a, PK(a) % pka}{SK(s)}

6. b -> a : {na, nb, b}{pka % PK(a)}

7. a -> b : {nb}{pkb % PK(b)}

The server s sends the correct value PK(b) in message 2; a is willing to accept an

arbitrary value pkb, which it uses in messages 3 and 7; b is only willing to accept

messages 3 and 7 if they are indeed encrypted with PK(b).

Tickets and key certificates

Some protocols are designed to establish a shared key that can be reused in subsequent

exchanges; therefore one agent, say a, should end up with some evidence that it can

send to the other agent, b, so as to re-establish the key; this evidence is known as a

ticket.

For example, the Kehne-Langendörfer-Schönwälder protocol has two phases:

• an initial exchange between a and b, which establishes a ticket of the form

{a.kab}Private(b) where kab is a session key, and Private(b) is a key known only

to b;1

1In the original version of the protocol, the ticket included a timestamp, which we omit here for simplicity.

5.3. CASE STUDY: THE WIDE-MOUTHED-FROG PROTOCOL 151

• a re-authentication phase, where the ticket is re-used to re-establish

authentication.

The %-notation can be combined with environment messages to model an agent

retrieving a ticket from wherever it is stored. For example, the re-authentication phase

of the Kehne-Langendörfer-Schönwälder protocol can be modelled as follows:

#Protocol description

0. -> a : b, Shared(a,b) % kab, \

{a, Shared(a,b)}{Private(b)} % tickb

1. a -> b : na, tickb % {a, kab}{Private(b)}

2. b -> a : nb, {na}{kab}

3. a -> b : {nb}{kab}

The agent a receives three things in message 0:

• the identity of the agent b with whom a will run the protocol, as normal;

• the key kab to be used in the exchange, which we model as the result of a function

application Shared(a, b);

• a ticket of the form {a.Shared(a, b)}Private(b) which a stores in the variable tickb.

One can think of an environmental message such as this as representing an agent

retrieving information from wherever it is stored.

Some protocols make use of a public-key certificate: an electronic certificate

linking an agent with his public key, normally signed2 by a trusted third party or a

certification authority. A typical certificate might be of the form {a.PK(a).t}CASK(ca),

where CASK(ca) is the private key of certification authority ca, and t is a timestamp

giving the expiry date of the public key. Such key certificates can be handled

similarly to tickets, for example, using an environment message of the form: 0. →
a:b,{a,PK(a), t}{CASK(ca)}certA.

5.3 Case study: the Wide-Mouthed-Frog protocol

In this section we consider the example of the Wide-Mouthed-Frog protocol:

Message 1 a→ s : {ts1.b.kab}ServerKey(a)

Message 2 s→ b : {ts2.a.kab}ServerKey(b)

Here the server shares keys ServerKey(a) and ServerKey(b) with a and b, respectively;

the protocol aims to establish a session key kab between a and b, and to authenticate a

to b. The agent a invents a session key and sends it to s along with a timestamp ts1; s

then forwards the key to b along with a new timestamp ts2.

Timestamps are used so that agents receive evidence that the messages they

receive were created recently. We note in passing that for this mechanism to work it is

2Signatures and private keys are identified here.

152 CHAPTER 5. CASPER

necessary for the different agents’ clocks to be synchronized; each agent’s clock has

become critical to the security of the protocol.

By considering this protocol, we will explain how time can be modelled in Casper.

We also introduce a couple of other features of the Casper syntax.

Further, we discuss the pragmatics of choosing the system to check. We will

consider four different systems running the protocol. FDR finds that there is no attack

upon the first system, but finds three different attacks on the other systems. Larger

systems require considerably more time to check, so a pragmatic approach is to start

with a small system, and work up, which is what we do here. The fourth system we

check has, admittedly, been tailored slightly to enable a particular attack; however, the

first three systems are examples of systems that one should always consider.

Modelling the protocol

Most of the modelling of the protocol is straightforward; we discuss a few points below.

#Free variables

a, b : Agent

s : Server

ServerKey : Agent -> ServerKeys

kab : SessionKey

ts1, ts2 : TimeStamp

InverseKeys = (ServerKey, ServerKey)

The distinguished type TimeStamp represents timestamps; most names of types in

Casper scripts can be chosen by the user, but this is an exception.

Timestamps are modelled in Casper by natural numbers. The modelling of time in

the CSP description follows the approach described in Section 1.6. In order to be as

general as possible, we make no assumptions about the size of a time unit compared

with the time taken to send a message: several messages may occur within the same

time unit, or several time units may elapse between consecutive messages.

#Processes

INITIATOR(a,s,kab) knows ServerKey(a)

RESPONDER(b) knows ServerKey(b)

SERVER(s) knows ServerKey

#Protocol description

0. -> a : b

1. a -> s : {b, ts1, kab}{ServerKey(a)}

[ts1==now or ts1+1==now]

2. s -> b : {a, ts2, kab}{ServerKey(b)}

[ts2==now or ts2+1==now]

We assume that when the agents in the Wide-Mouthed-Frog protocol receive a

message, they check that the timestamps they receive are recent. Checks such as these

5.3. CASE STUDY: THE WIDE-MOUTHED-FROG PROTOCOL 153

are represented in Casper scripts by lines within square brackets; they are performed

by the agent who receives the preceding message; if the check fails (evaluates to false),

the agent aborts the run. In this particular case, the agents compare the timestamps

they receive with the distinguished variable now, which represents the current time;

they abort the run if the timestamp is more than one time unit old.

The specification we use is a timed version of the agreement specifications.

#Specification

TimedAgreement(a,b,2,[kab])

The specification is that if a responder b completes a run of the protocol, apparently

with a, then a should have been running the protocol within the previous two time

units; further, the two agents should agree on the value of kab, and there should be

a one-one relationship between the runs of a and the runs of b. The tests performed

on the timestamps each allow for a delay of one time unit, apparently making for a

maximum possible delay of two time units.

In order for this specification to have any chance of holding, there needs to be

a negligible delay between s checking message 1 and sending message 2; we will

formalize this assumption below, where we will specify that each agent’s run lasts for

a negligible amount of time.

First system

We now consider the modelling of the system. There are many (in fact infinitely many)

systems that one could model, but it is normally a good idea to start off by checking a

small system, because more often than not this will uncover any attacks. We therefore

consider a system with a single initiator, Anne, and a single responder, Bob, each of

whom can run the protocol once; we take all the datatypes to be as small as possible,

consistent with this system.

Most of the definition of the actual variables is straightforward; the only new feature

here is how we model time:

#Actual variables

Anne, Bob, Yves : Agent

Jeeves : Server

Kab : SessionKey

TimeStamp = 0 .. 0

MaxRunTime = 0

The line ‘TimeStamp = 0 .. 0’ defines the set of timestamps used to be the singleton

set {0}; choosing a small set like this will speed up the model checking, but risks

missing attacks that require more time; we will consider a larger time domain later.

The line ‘MaxRunTime = 0’ means that the maximum time any agent spends

running the protocol will be 0 time units; if any run lasts for longer than this time,

then the agent involved will timeout and abort the run. Again, we choose a small value

so as to speed up the model checking. One point to note is that if we chose a larger

value, we would have to adapt the time parameter in the authentication specification,

154 CHAPTER 5. CASPER

appropriately; if we did not include any limit on the running time, then no timed

authentication specification would be satisfied.

The rest of the system definition is straightforward:

#System

INITIATOR(Anne, Jeeves, Kab)

RESPONDER(Bob)

SERVER(Jeeves)

#Functions

symbolic ServerKey

#Intruder Information

Intruder = Yves

IntruderKnowledge = {Anne, Bob, Yves, Jeeves, ServerKey(Yves)}

We implicitly assume that the intruder can produce all timestamps; they do not have to

be included in the intruder’s initial knowledge.

When the above file is compiled using Casper, FDR fails to find any attack upon

the resulting small system.

Second system

We now consider a slightly different system, where the agent Anne can run the protocol

once as initiator and once as responder, possibly concurrently. We suppose that Bob is

absent, so doesn’t run the protocol. Many protocols can be attacked when one agent is

able to adopt both roles, so it is normally a good idea to consider a system such as this

one:

#System

INITIATOR(Anne, Jeeves, Kab)

RESPONDER(Anne)

SERVER(Jeeves)

Note that this change to the system involves changing precisely one line of the input

file.

When we check either system, FDR discovers that the protocol does not correctly

authenticate the initiator Bob to responder Anne. Using the FDR debugger and the

interpret function, we find that the attack takes the following form:

Message α.1 Anne→ Jeeves : {Bob.0.Kab}ServerKey(Anne)

Message β.2 IJeeves → Anne : {Bob.0.Kab}ServerKey(Anne)

The intruder simply replays Anne’s first message back at her, which she interprets as

being message 2 of a run initiated by Bob. This attack can be prevented by including

some directional information in the messages, so a message from Anne cannot be

passed off as a message to her.

5.3. CASE STUDY: THE WIDE-MOUTHED-FROG PROTOCOL 155

Third system

We will now consider a slightly different system, where the responder Bob can run the

protocol twice, sequentially:

#System

INITIATOR(Anne, Jeeves, Kab)

RESPONDER(Bob) ; RESPONDER(Bob)

SERVER(Jeeves)

Again, many protocols can be attacked if an agent can run the protocol more than once;

often the intruder can use information from the first run in order to fake a second run.

In the above system the runs are sequential; one could similarly allow the runs to be

concurrent, by writing the instances on different lines:

#System

INITIATOR(Anne, Jeeves, Kab)

RESPONDER(Bob)

RESPONDER(Bob)

SERVER(Jeeves)

The latter is more general than the former (i.e. any attack found by the former system

will also be found by the latter system), but the state space of the latter will be larger,

because there are more ways of interleaving the runs.

When we check either system, FDR tells us that Anne is not correctly authenticated.

The debugger and interpret can be used to exhibit the following attack, which

violates the injective authentication property:

Message α.1 Anne→ Jeeves : {Bob.0.Kab}ServerKey(Anne)

Message α.2 Jeeves→ Bob : {Anne.0.Kab}ServerKey(Bob)

Message β.2 IJeeves → Bob : {Anne.0.Kab}ServerKey(Bob)

The problem is that Bob thinks he has completed two runs of the protocol, while Anne

only wanted to perform a single run. The intruder simply replays the message from

Jeeves to Bob, so that Bob thinks that Anne is trying to establish a second session.

Fourth system

We now seek an attack that breaks the two-time-unit limit, i.e. an attack where Bob

completes a run more than two time units after the corresponding run of Anne. To do

this, we clearly need to consider a larger time domain:

TimeStamp = 0 .. 3

We will consider a system where initiator Anne and responder Bob each run the

protocol once, but where the server can run the protocol three times:

156 CHAPTER 5. CASPER

#System

INITIATOR(Anne, Jeeves, Kab)

RESPONDER(Bob)

SERVER(Jeeves) ; SERVER(Jeeves) ; SERVER(Jeeves)

When this system is checked, FDR finds that initiator Anne is not authenticated

according to the above timed specification. Using the debugger and interpret, we

can find that the attack takes the following form:

Message α.1 Anne→ Jeeves : {Bob.0.Kab}ServerKey(Anne)

Message α.2 Jeeves→ IBob : {Anne.0.Kab}ServerKey(Bob)

tock

Message β.1 IBob → Jeeves : {Anne.0.Kab}ServerKey(Bob)

Message β.2 Jeeves→ IAnne : {Bob.1.Kab}ServerKey(Anne)

tock

Message γ.1 IAnne → Jeeves : {Bob.1.Kab}ServerKey(Anne)

Message γ.2 Jeeves→ IBob : {Anne.2.Kab}ServerKey(Bob)

tock

Message δ.1 IJeeves → Bob : {Anne.2.Kab}ServerKey(Bob)

Each tock represents one unit of time passing. The intruder repeatedly replays instances

of message 2 at the server, and has them interpreted as instances of message 1. The

effect of this is that the timestamp is updated each time, and so remains recent enough

to be accepted. Eventually, the intruder allows a message to reach Bob, but only

after the two-time-unit limit has been passed. It should be obvious how the intruder

could continue such an exchange for longer, so as to break a timed specification with

a weaker time constraint. This attack could also be prevented by including directional

information in the messages.

Discussion

We have considered several different systems running the protocol. More generally,

when analyzing a protocol, the following scenarios are a reasonably complete list of

the checks that are worth making:

• an initiator Anne, and a responder Bob;

• an initiator Anne, and a responder Anne;

• an initiator Anne, a responder Anne, and an initiator Bob;

• an initiator Anne, a responder Anne, and a responder Bob;

• an initiator Anne, and two responders Bob;

• two initiators Anne, and a responder Bob.

5.4. PROTOCOL SPECIFICATIONS 157

In each case the check is made with either one or two servers (subject to the limitations

imposed by the hardware on which the checks are performed). Our experience is that

these checks will find nearly all attacks.

5.4 Protocol specifications

Casper supports a number of different forms of specification for protocols, some of

which we have seen before. The complete list is as follows:

• Secret(A, s, [B1,...,Bn]) specifies that in any completed run A can

expect the value of the variable s to be a secret; B1, . . . , Bn are the variables

representing the roles with whom the secret is shared. This specification fails if

A can complete a run, where none of the roles B1, . . . , Bn is legitimately taken

by the intruder, but the intruder learns the value A gives to s.

• StrongSecret(A, s, [B1,...,Bn]) is similar to Secret(A, s, [B1,...,

Bn]), except it also includes incomplete runs. Thus, this specification fails if A

can take part in a run – complete or not – where none of the roles B1, . . . , Bn is

taken by the intruder, but the intruder learns the value A gives to s. This form of

secrecy is appropriate when the secret is significant outside of the protocol.

These specifications are both similar in form to Secretab of Chapter 3, though here a

secret can be shared by more than two parties. Both of these properties require that if

signal.Claim Secret.s occurs then leak.s should not. The difference between them is

that in the former the Claim Secret signal occurs at the end of the protocol run, and in

the latter it occurs at the start.

• Agreement(A, B, [v1,...,vn]) specifies that A is correctly authenticated

to B, and the agents agree upon v1, . . . , vn; more precisely, if B thinks he has

successfully completed a run of the protocol with A, then A has previously been

running the protocol, apparently with B, and both agents agreed as to which roles

they took, and both agents agreed as to the values of the variables v1, . . . , vn, and

there is a one-one relationship between the runs of B and the runs of A.

• The specification NonInjectiveAgreement(A, B, [v1,...,vn]) means

that if B thinks he has successfully completed a run of the protocol with A, then

A has previously been running the protocol, apparently with B, and both agents

agreed as to which roles they took, and both agents agreed as to the values of

the variables v1, . . . , vn. In this case several runs of B may correspond to the

same run of A.

• The specification WeakAgreement(A, B) means that if B thinks he has

successfully completed a run of the protocol with A, then A has previously been

running the protocol, apparently with B. Note that A and B may disagree as to

which role each was taking.

158 CHAPTER 5. CASPER

• The specification Aliveness(A, B) means that if B thinks he has successfully

completed a run of the protocol with A, then A has previously been running

the protocol. Note that A may have thought she was running the protocol with

someone other than B.

• The specification TimedAgreement(A, B, t, [v1,...,vn]) is a timed

version of Agreement(A, B, [v1,...,vn]) where, in addition, A’s run

was within the previous t time units of B completing his run; by contrast, the

Agreement specification macro places no constraints on the amount of time

between the runs.

• Similarly, the specifications

TimedNonInjectiveAgreement(A, B, t, [v1,...,vn]),

TimedWeakAgreement(A, B, t) and TimedAliveness(A, B, t) are timed

versions of

NonInjectiveAgreement(A, B, [v1,...,vn]),

WeakAgreement(A, B) and Aliveness(A, B).

All of the authentication properties are concerned with the requirement that Commit

signals should follow Running signals. The difference between them is the degree to

which the information on the signals should agree. In the case of Agreement, there

is also a required relationship between the number of occurrences of each of these

signals. When time is introduced, relationships between the times on the signals are

also incorporated into the properties.

We include several different forms of authentication specification because

different protocols satisfy different specifications. When a protocol claims to provide

authentication, it is not always clear precisely what is meant; by experimenting with

these different specifications, it is possible to find out.

5.5 Hash functions and Vernam encryption

Hash functions can be used in a Casper script by declaring them as having the type

HashFunction in the #Free variables section. If f is declared in this way, then

f (m) represents the application of f to message m. For example:

3. a -> b : {f(nb)}{PK(b)}

In such cases, both the sender and the recipient should be able to create f (m); the

recipient will only accept a value for this message if the value received matches the

value he calculates for himself. It is assumed that all hash functions are known to all

agents.

For example, consider the following, somewhat simplified, version of the

Needham-Schroeder Signature protocol:

Message 1 a→ b : m

Message 2 a→ s : b.{f (m)}ServerKey(a)

Message 3 s→ b : {a.f (m)}ServerKey(b)

5.6. SUMMARY 159

a wants to transmit a message m to b in an authenticated manner; it sends a hash of

the message to server s, encrypted with a key shared between a and s (message 2); s

forwards the hash to b (message 3), thus acting as a key translation service.

The protocol can be modelled as follows:

#Protocol description

0. -> a : b

1. a -> b : m

2. a -> s : b, {f(m) % v}{ServerKey(a)}

3. s -> b : {a, v % f(m)}{ServerKey(b)}

Note that s does not know m and so should be willing to accept any value for f (m);
we use the %-notation to specify this. Note, though, that b will only accept the expected

value in message 3, namely the hash of the message he received in message 1.

Recall from Chapter 0 that the Vernam encryption of two messages m1 and m2,

written m1 ⊕ m2, is their bit-wise exclusive-or; it can be produced by an agent who

knows both m1 and m2; and an agent who sees this message and who knows m1 can

extract m2 (or vice versa).

In Casper, this Vernam encryption is written m1 (+)m2. The receiver of a message

containing a Vernam encryption should be able to create at least one of m1 and m2 so

as to obtain the other.

For example, consider the TMN protocol:

Message 1 a→ s : b.{ka}pks

Message 2 s→ b : a

Message 3 b→ s : a.{kb}pks

Message 4 s→ a : ka⊕ kb

where pks is the public key of server s, ka and kb are session keys, and the intention

is to establish a new session key kb shared between a and b. This protocol can be

modelled using Casper as follows:

#Protocol description

0. -> a : b

1. a -> s : b, {ka}{pks}

2. s -> b : a

3. b -> s : a, {kb}{pks}

4. s -> a : kb (+) ka

There are a number of attacks on this protocol with respect to different properties;

the reader might like to use Casper and FDR to discover them, and then consider how

they can be prevented.

5.6 Summary

This chapter has introduced the protocol compiler Casper, and shown how it can be

used to model security protocols and produce scripts for analysis in FDR with respect

to a variety of secrecy and authentication properties.

160 CHAPTER 5. CASPER

Casper, and all the scripts used in this chapter, can be obtained from this book’s

web page.

Casper was first described in [56] and in [58], although the Casper input language

has evolved since those papers. A report on a number of case studies carried out using

Casper and FDR appears in [26]. A recent extension to Casper, to include support for

the data independence techniques discussed in Chapter 10, appears in [13].

The Kehne-Langendörfer-Schönwälder protocol of Section 5.2 first appeared

in [46]; attacks upon this protocol have appeared in [43] and [55]. The Wide-Mouthed-

Frog protocol of Section 5.3 was first described in [20], and the ping-pong attack from

Section 5.3 was described by Anderson and Needham in [5]. The Needham-Schroeder

Signature protocol of Section 5.5 first appeared in [68]. The TMN protocol of

Section 5.5 is from [99]; an attack upon this protocol was first reported in [93]; this

protocol was the subject of a case study using CSP and FDR – in which ten different

attacks were found – in [61].

The different authentication specifications supported by Casper are discussed in

more detail in [57].

Chapter 6

Encoding protocols and

intruders for FDR

We have seen in Chapter 5 how protocols are described to Casper, and in Chapter 2 we

have given an abstract overview of how the systems described can be realized in CSP.

This chapter examines the result of the translation in rather more detail, discusses some

of the features of the implementation designed to achieve a model that can be explored

in reasonable time, and looks at some alternative design choices.

Small excerpts from the result of translating the Yahalom protocol through Casper

illustrate the text. The complete script that results can be found in Appendix B.

6.1 CSP from Casper

As we have seen in Chapter 2, it is reasonably straightforward to encode the trustworthy

principals involved in an execution of a crypto-protocol. Leaving aside the intruder

until Section 6.2, the more complicated issues arise in keeping the data involved both

finite and manageably sized.

The recursive datatype fact1 described in Chapter 2 is naturally infinite. FDR is

quite happy to accept such definitions, and even channels that can carry any value of

the type; but it does require that inputs be constrained to offer finite choices and equally

that synchronization sets be finite. In practice, typically, both the time to explore the

system and the fixed space needed to hold the representation of the transition system

increase linearly with the number of events; the compilation time also increases. So it

pays to minimize the size of these sets.

The datatype used by Casper draws from two sources: the constants introduced

in the ‘actual variables’ section of the input script, which are particular to the protocol

being studied; and a generic arsenal of constructions, which cover the range of protocol

features supported by the tool. This may include constructions that are not used in the

script in question, but it allows the supporting functions to be defined unconditionally

and a large part of the CSP programming to be independent of the protocol. This not

1Casper calls this Encryption.

161

162 CHAPTER 6. ENCODING PROTOCOLS AND INTRUDERS FOR FDR

only simplifies the task for the implementor, but also reduces the potential for a coding

error to manifest in one protocol model and not the others.
For the Yahalom protocol, the resulting definition is:

datatype Encryption =

Anne | Bob | Yves | Jeeves | Na | Nb | Kab | Garbage |ServerKey.Agent|

Sq.Seq(Encryption) | Encrypt.(ALL_KEYS,Seq(Encryption)) |

Hash.(HashFunction, Seq(Encryption)) | Xor.(Encryption, Encryption)

Here the first line is the protocol-specific values, the second the part of the generic

framework relevant to the protocol (Garbage models all data that is recognizably not in

any other form, for example the result of decrypting with the wrong key), and the third

line supports features not used in the protocol.

The Sq branch provides for compound messages, such as message 3 and message 4

in Yahalom, where there is no cryptographic glue holding the parts together. It is

arguably redundant, since we could always recast the protocol with the parts of these

messages sent separately, as discussed in Chapter 5:

Message 3a s→ a : {b.kab.na.nb}ServerKey(a)

Message 3b s→ b : {a.kab}ServerKey(b)

and so on. This reduces the number of different messages that need be modelled (it

becomes the sum, rather than the product, of the number of possible submessages

that this message contributes to the total) at the expense of some extra states in the

implementation of the agents due to the additional communication. This optimization

could be implemented automatically, but the choice is currently left to the user.
The sets Agent, ALL KEYS and HashFunction which appear in the definition are in

fact subsets of the main type; again, the particular subset depends on the protocol. For
Yahalom, we have:

Agent = {Anne, Bob, Yves}

ALL_KEYS = Union({SessionKey, ServerKeys})

SessionKey = {Kab}

ServerKeys = {ServerKey(arg_1) | arg_1 <- Agent}

HashFunction = {}

Other relevant subsets are also defined:

Server = {Jeeves}

Nonce = {Na, Nb}

This datatype provides the carrier set from which the payload of the messages between

the principals is built. The set of message bodies that a trustworthy principal is willing

to accept or can be persuaded to generate, under any circumstances, is quite constrained

at each stage of the protocol. Even when some component of a message is opaque to

its recipient, as in the second half of message 3, it is straightforward to establish that

unless it is a value that some other participant may accept at some point, it may as well

be Garbage.

Thus, for each message in the protocol, we can define the set of payloads it is

worth considering in the analysis; and we might expect to declare the channels that

6.1. CSP FROM CASPER 163

the principals use for input and output to carry the union of these sets. There are two

reasons why this is not precisely the case: one an implementation issue, and one a

matter of design. First, for technical reasons, the CSP compiler requires that the (CSP)

protocols on channels be ‘rectangular’; that is, that the set it carries must be expressible

as the Cartesian product (under the ‘.’ constructor). One is not allowed to constrain

correlation between dotted components in the channel declaration itself. The way in

which this restriction is circumvented is to tuple together the body of a message with

a tag describing to which message it belongs; such tuples are atomic from the point of

view of the dotted construction.

This coding trick also simplifies capturing desired properties in the specifications.

As well as the tag and the message payload, we can include a component reflecting

the ‘state of mind’ of the participant: the believed identity of its correspondent, values

of nonces and keys, and so on, as far as they are not immediately obvious from the

message data itself. This information is not made available to the other players, but

can be renamed to indicate beliefs of secrecy or commitments of the kind required by

authentication specifications. The resulting set of triples is now suitable for forming

the message bodies on the channels used by the models of the principals.

For Yahalom, this is also appropriate for the channels between components, but

there is another layer of complexity required for some protocols, where values that are

distinct in the free datatype need to be identified. This may either be to reflect the extra

power the intruder acquires through being able to reinterpret combinations of data, or

even to allow the protocol to work properly at all. A case in point is Diffie-Hellman key

exchange, which relies on algebraic properties of exponentiation and multiplication to

succeed: one participant uses (ga)b as part of his key; the other (gb)a. The fact that

these are equal is essential.

The user instructs Casper on the laws that need to be taken into account; the result

is a set of equivalent pairs, axiomatizing the algebra. When equivalent values are

compounded, equivalent composites arise; and equivalence is transitive. Extending

the supplied atomic equivalences to the entire domain of interesting messages proved

to be a bottleneck in early experiments, when expressed in the functional language

of CSPm. The solution is to push the manipulation of these equivalences into

external operators – essentially new language primitives – of CSPm. The operator

mtransclose takes a set of pairs and a set of values, and returns the partitioning of the

latter induced by the former, each component paired with a canonical representative

(chosen by some undisclosed mechanism). The return value is conceptually used in a

renaming comprehension, so that only the canonical representatives are used in global

communications; in fact, this is mediated by functions defined in terms of the external

operators relational image and reverse relational image (which are carried, to take

the relation and return a function mapping element to the sets they are related to). This

accounts for the prevalence of the rmb function (for renaming message bodies) in the

CSP output by Casper; but for Yahalom it is the trivial identity. We return to consider

more examples of algebraic equivalence in Section 6.5.

164 CHAPTER 6. ENCODING PROTOCOLS AND INTRUDERS FOR FDR

6.2 Modelling the intruder: the perfect spy

Recall from Section 2.3 that we need to model a malicious intruder, bent on acquiring

information that should be maintained secret among the agents, or on sowing confusion

among them so as to undermine their trust in one another.

The intruder has two major tasks: information gathering, by overhearing or

destructively capturing messages; and misinformation, by faking messages from data

in his possession. The only restriction we usually impose is that he should not be able

to manipulate cryptographically protected message components without access to the

appropriate keys. These two tasks have to be connected by an information repository,

storing data items that have either been learnt directly, or are deduced (possibly

recursively) by analysis or synthesis from knowledge gained earlier.

It is this component that makes the most substantial demand on state-space storage,

since there are typically hundreds or thousands of potentially relevant ‘facts’ that must

be recorded. The implementation of the function close, which takes a set of facts and

returns all facts deducible from them, and even of the parameter to the Intruder process,

which models the set of all its current knowledge, becomes a significant challenge.

Modelling issues

One of the perennial problems with model-checking approaches, especially those

using primarily explicit state-exploration algorithms, is state-space growth. Earlier

work sought to keep this within bounds by limiting the intruder’s ‘memory’ to

only a few data items, but even very tight limits typically left this as a limiting

factor on the complexity of problem that could practically be addressed. Simple

experiments verified the intuition that significant performance benefits could

be gained by exploring only those possible behaviours of an intruder that are

reachable given the specific history of values observed in a sequence of protocol

runs, rather than compiling the whole of the intruder’s possible behaviour.

Indeed, exploiting such a ‘lazy intruder’ implemented as an extension to FDR

allowed (and positively benefited from) relaxing the limitations on the intruder’s

memory.

An intellectually attractive decomposition might provide a two-state process for

each possible ‘fact’, essentially representing the boolean value, whether it is available

to the intruder or not. This would then need some mechanism added to implement the

inferences. Our initial intuition was that this was perhaps beyond the point of sensible

decomposition, but it has turned out to be the case that in most of the classes of example

we are considering it is not only practical but highly desirable to decompose the system

in this manner.

First, we can observe that there is no advantage to keeping track of all possible

data items. Messages and their larger subcomponents that are constructed from

simpler pieces of information essentially by catenation are known if and only if all

the subcomponents are. This purely structural deduction can be encoded by making

the communication of the compound message equivalent to the communication of all

its atomic components (that is, plaintext atoms and all encrypted subcomponents).

This generally reduces the number of facts that must be tracked to be the sum, rather

6.2. MODELLING THE INTRUDER: THE PERFECT SPY 165

than the product, of the size of the atomic types involved. This makes practical the

following construction.
Given the set Messages of possibly interesting message payloads described above

(essentially, those with the form of messages that are sent in the protocol, but not
necessarily respecting any internal or external invariants), and a function components,
mapping the elements of this set to their immediately accessible subcomponents, we
can form the converse function, yielding all messages involving a given fact f :

messages(f) = { m | m <- Messages, member(f,components(m)) }

Similarly, given a set Deductions of (conclusion,antecedents) pairs that axiomatize the
inference system, we can identify those yielding or requiring a given fact:

inferences(f) = { (c,a) | (c,a) <- Deductions, f == c }

implications(f) = { (c,a) | (c,a) <- Deductions, member(f,a) }

Casper actually calculates all three of these sets and caches them as extra parameters

of the processes below, for efficiency.
Essentially, the intruder’s knowledge within a given domain (of, say, N facts)

is represented by N two-state processes, called Knows and Ignorant, each of which
represents a given fact that is known or unknown. Transitions from unknown to known
are possible by one of two events for each fact f . One possibility is that the fact is
a component in ‘clear’ of a message that can be overheard; the other that it is the
consequent of an inference from other facts known to the intruder:

IGNORANT(f) =

hear?_:messages(f) -> KNOWS(f)

[]

infer?_:inferences(f) -> KNOWS(f)

Once a fact f is known, the process will permit further events representing any
inferences that use f as an antecedent, as well as allowing messages containing f to
be synthesized. In addition, if f has been said to be a secret, its disclosure can be
signalled:

KNOWS(f) =

hear?_:messages(f) -> KNOWS(f)

[]

say?_:messages(f) -> KNOWS(f)

[]

infer?_:implications(f) -> KNOWS(f)

[]

member(f,ALL_SECRETS) & leak.f -> KNOWS(f)

The activity of an intruder performing deductions is thus represented by the occurrence

of these infer events, and no additional process is required. The deductions thus make

no additional contribution to the state space of the intruder. The two ways of learning

the event are treated differently once it is known: the inference events naturally want to

be concealed from the rest of the system, so if they could be repeated this would lead

to the possibility of infinite chatter; in contrast, the hear events must not be inhibited,

as further messages involving f can quite legitimately form part of the protocol. The

166 CHAPTER 6. ENCODING PROTOCOLS AND INTRUDERS FOR FDR

requirement for non-repetition of infer events can be met by blocking those deductions

that involve the conclusion among the antecedents of the axiom, which are in any case

tautological.
Synchronizing parallel composition is used to combine these two-state processes

in such a way that an inference event can only occur when all of its antecedents are
known and its conclusion is not already known, and that hearing and saying compound
messages involves the participation of all their components:

INTRUDER =

(|| f : ATOMIC_FACTS @

[Union {

{ hear.m, say.m | m <- messages(f) },

{ infer.d | d <- diff(inferences(f),implications(f)) },

{ infer.d | d <- diff(implications(f),inferences(f)) },

{ leak.f | member(f,SECRETS) }

}

]

if member(f,INTRUDER_INITIAL_KNOWLEDGE)

then KNOWS(f)

else IGNORANT(f)

) \ {|infer|}

There is a further slight optimization possible by separating out the facts that are known

at the start, since there is no point in working out what might allow them to be inferred;

equally, they can be trimmed from the antecedents of all the other deductions. So the

Casper implementation composes a process for each fact in the difference with a single

Say Known that acts like the composition of all the Knows for facts deducible from the

intruder’s initial knowledge.

Managing the deduction system

Although this structure of intruder model does have significant advantages, it does

have a crucial practical drawback if implemented directly as described. Because of

the way the CSP semantic models treat internal τ -actions, in order to establish the

normal refinement properties of a protocol composed with an intruder it is necessary to

consider all possible combinations of reachable states. For example, if two deductions

may occur that do not depend on one another, there are four configurations of the

intruder’s memory that need to be tested, even though in our application the exact

order of deductions will make no difference to the final outcome. This combinatorial

explosion is clearly undesirable, and is made worse if the trustworthy principals can

engage in some events without the co-operation of the intruder: each such event further

increases the number of interleaved paths by which the intruder can complete the

deductive process.

In the case of crypto-protocol analysis, however, intruders of the type described

above have specific properties of which we may make use. Since the deduction system

is, in semantic fact, deterministic despite the internal actions, we can use a kind of

partial-order technique to optimize the exploration. Each state of the intruder has

a unique final τ -successor; our approach to simplifying the exploration of systems

6.3. WIRING THE NETWORK TOGETHER 167

containing an intruder is thus to consider not the parallel process described in the

previous section, but the state machine that results from replacing any intruder

state by its ultimate τ successor; and eliminate the internal actions of the intruder

from our representation of the process altogether. In effect we evaluate the effect

of internal actions of the intruder before considering the intruder’s interaction

with the environment. This eager evaluation of transitions out of a single state

does not, of course, prevent our exploring the actual state space itself in a lazy

fashion.

FDR provides a highly flexible interface for adding transformations on state

machines, and the τ -removal scheme described above has been implemented using

this facility. The resulting transformation is available as an external function chase

in the FDR input language. As we remarked in the previous chapter, chase differs

from the regular transparent compression functions, in that in general its result may

be a strict refinement of its argument. When its argument is, as here, denotationally

deterministic and so maximal in the refinement ordering, the resulting machine must

indeed be denotationally equivalent, but its operational representation is dramatically

smaller.

6.3 Wiring the network together

The legitimate principals of the system are coded so that all of their interactions with
the rest of the system are programmed using channels input and output:

ALL_PRINCIPALS = Union({Agent, Server})

channel input : ALL_PRINCIPALS.ALL_PRINCIPALS.INPUT_INT_MSG_BODY

channel output : ALL_PRINCIPALS.ALL_PRINCIPALS.OUTPUT_INT_MSG_BODY

The first index represents the purported sender of the message, and the second the

intended receiver, and the data components are the union of the unfactored message-

body tuples discussed above.
Rather than simply wire these channels point-to-point between the principals, the

parallel composition of the system needs to allow for the potential actions of the
intruder. This is mediated by two or three additional channels of the same type, take
and fake:

channel take: ALL_PRINCIPALS.ALL_PRINCIPALS.OUTPUT_MSG_BODY

channel fake: ALL_PRINCIPALS.ALL_PRINCIPALS.INPUT_MSG_BODY

These carry the message bodies factored by equivalence, and a single renaming both
brings the events into this network view and identifies equivalent values. Thus, for
example, the initiator ends up being coded:

INITIATOR_0(a, na) =

[] b : Agent @ env.a.(Env0, b,<>) ->

output.a.b.(Msg1, na,<>) ->

[] kab : SessionKey @ [] nb : Nonce @ [] s : Server @

[] v : addGarbage({ Encrypt.(ServerKey(b), <a,kab>)

| a <- Agent, b <- Agent, kab <- SessionKey}) @

168 CHAPTER 6. ENCODING PROTOCOLS AND INTRUDERS FOR FDR

input.s.a.(Msg3, Sq.<Encrypt.(ServerKey(a), <b,kab,na,nb>), v>,<>) ->

output.a.b.(Msg4, Sq.<v, Encrypt.(kab, <nb>)>,<na, s>) ->

SKIP

INITIATOR(a, na) =

INITIATOR_0(a, na)

[[input.s.a.m <- fake.s.a.rmb(m) |

s <- Server, m <- INPUT_INT_MSG3_BODY]]

[[output.a.b.m <- take.a.b.rmb(m) |

b <- Agent, m <- OUTPUT_INT_MSG1_BODY]]

[[output.a.b.m <- take.a.b.rmb(m) |

b <- Agent, m <- OUTPUT_INT_MSG4_BODY]]

The intruder’s hear and say channels are also renamed to this network view:

INTRUDER_1 =

chase(INTRUDER_0)

[[hear.(second(m)) <- take.A.B.m |

m <- OUTPUT_MSG_BODY, A <- SenderType(m), B <- ReceiverType(m)]]

[[say.(second(m)) <- fake.A.B.m |

m <- INPUT_MSG_BODY, A <- SenderType(m), B <- ReceiverType(m)]]

and, in the currently implemented solution, the interleaving of the legitimate agents is

synchronized with the intruder, who also acts as the medium. That is, messages are

correctly delivered by the accident of the intruder choosing to fake the same message

he has just intercepted on the take channel. All the dastardly cunning possible to the

intruder is captured by the simple expedient of exploring the effect of every random

sequence of communications available to him by which he might try to inject a spanner

into the works!
It is unproblematic to implement the alternative wiring scheme discussed at the end

of Chapter 2, where the legitimate principals also have a direct connection. We would
declare:

channel comm: ALL_PRINCIPALS.ALL_PRINCIPALS.MSG_BODY

and use renaming to present a choice of external event when a principal engages in an

input or output.

At the intruder’s end, hear events are renamed to give a choice between the comm

between two principals (modelling simple overhearing) and the corresponding take

event (modelling complete capture).2 This requires more complex synchronizations,

along the lines of:

SYSTEM =

INTRUDER_1 [[take<-take, take<-comm]]

[| {| comm, take, fake |} |]

|| id : LEGITIMATE_PRINCIPALS

[{| comm.id, take.id, comm.a.id, fake.a.id |

a <- ALL_PRINCIPALS |}]

2In both cases, we must take care that a legitimate principal is involved as the sender; otherwise the

intruder could learn facts from overhearing himself!

6.4. EXAMPLE DEDUCTION SYSTEM 169

AGENT(id) [[take.id<-comm.id, take.id<-take.id,

fake.a.id<-comm.a.id, fake.a.id<-fake.a.id |

a <- ALL_PRINCIPALS]]

The renaming of one event to several means that which happens is at the choice of the

environment, while the process within the renaming has no way of telling which way

this has been resolved. If we now hide the comm, take and fake channels, the choice

becomes nondeterministic.

As well as the perhaps more natural presentation, with shorter counterexample

traces, that this alternative offers there is also greater scope for modifying the potency

of the intruder. It would be straightforward, for instance, to model an intruder

without the power to prevent message delivery (which is certainly an unreasonably

pessimistic assumption for some media); all we need do is block (top-level) take

events, by making them synchronize with STOP . Equally, the direct connection

is necessary if any analysis of liveness is desired: if the intruder is responsible for

all delivery of messages, then it is hardly possible to preclude a denial-of-service

attack!

The advantage of the scheme currently implemented is the greater simplicity of

treatment of the ‘extra’ information in the third component of the message-body

tuples, where the clear distinction between transmission and reception simplifies the

recognition and signalling of significant milestones in the running of the protocol.

6.4 Example deduction system

Recall that Messages is the finite subset of the Encryption datatype that includes all the

bodies of messages of the forms used in the protocol that are type-correct (have nonces

in the right place, use keys as the key in encryptions, and so on). We can decompose

these using the components function discussed above, to give the set Fact (of which the

set KnowableFact over which we replicate the intruder’s knowledge cells is a subset).
There are standard axioms concerning encryption that will apply whenever the

relevant type of encryption is part of the protocol:

EncryptionDeductions =

{(Encrypt.(k,fs), unknown(union({k}, set(fs)))) |

Encrypt.(k,fs) <- Fact}

DecryptionDeductions =

{(f, unknown({Encrypt.(k,fs), inverse(k)})) |

Encrypt.(k,fs) <- Fact, f <- unknown(set(fs))}

These sets represent the ways in which the intruder can deduce new facts by performing

encryptions and decryptions. They contain pairs of the form (f, S) to represent that f

can be deduced from S, together with the intruder’s initial knowledge. The function

unknown (T) simply removes the intruder’s initial knowledge from T, to make the

implementation more efficient. The function inverse returns the inverse of a key: for

symmetric encryption, it is the identity function; for public-key encryption, it maps

public keys to the corresponding private key, and vice versa. For many systems these

will be all the deductions that we need to model.

170 CHAPTER 6. ENCODING PROTOCOLS AND INTRUDERS FOR FDR

CSP is not an appropriate vehicle either for describing encryption algorithms or for

devising methods of deciphering coded messages. That involves a lot of sophisticated

mathematics in number theory, algebra, etc. It is often the case that a use of encryption

fails not because of vulnerability of the cipher in use, but because of the way it is used,

which is the scenario we have been addressing so far. All too frequently it is possible

to defeat protocols using and supporting encryption even under the assumption that

the encryption method used is unbreakable. In other cases, however, the combination

of weaknesses in the precise encryption method and the shape of messages in the

protocol allow additional attacks; if these weaknesses are made known as axioms in

the inference system, then FDR can search out the attacks.

Examples of the kind of weakness that are straightforward to model include

schemes such as block ciphers where (subject to alignment of the data items) knowing

the encryption of a sequence of data items is tantamount to knowing their encryptions

under the same key individually, without needing to know the key! Cipher-block

chaining exhibits a similar if less fatal property, in that the encryption of prefixes of a

sequence can be inferred from the encryption of the whole.

Algebraic attacks on low-exponent RSA have been exhibited by Franklin, Reiter

and others ([34], for example). If this is the form of public-key encryption used, then

we can add deductions to reflect the additional fragility:

LowRSAdeductions =

Union (

{

{ (x,{Encrypt.(PublicKey.k,<a,x>),Encrypt.(PublicKey.k,<x>),a})

| Encrypt.(PublicKey.k,<a,x>) <- Fact,

member(Encrypt.(PublicKey.k,<x>),Fact) },

{ (x,{Encrypt.(PublicKey.k,<x,a>),Encrypt.(PublicKey.k,<x>),a})

| Encrypt.(PublicKey.k,<a,x>) <- Fact,

member(Encrypt.(PublicKey.k,<x>),Fact) },

{ (x,{Encrypt.(PublicKey.k,<a,x>),Encrypt.(PublicKey.k,<b,x>),a,b})

| Encrypt.(PublicKey.k,<a,x>) <- Fact, b <- Fact, b != a

member(Encrypt.(PublicKey.k,<b,x>),Fact) },

{ (x,{Encrypt.(PublicKey.k,<a,x>),Encrypt.(PublicKey.k,<x,b>),a,b})

| Encrypt.(PublicKey.k,<a,x>) <- Fact, b <- Fact,

member(Encrypt.(PublicKey.k,<x,b>),Fact) },

{ (x,{Encrypt.(PublicKey.k,<x,a>),Encrypt.(PublicKey.k,<b,x>),a,b})

| Encrypt.(PublicKey.k,<x,a>) <- Fact, b <- Fact,

member(Encrypt.(PublicKey.k,<b,x>),Fact) },

{ (x,{Encrypt.(PublicKey.k,<x,a>),Encrypt.(PublicKey.k,<x,b>),a,b})

| Encrypt.(PublicKey.k,<x,a>) <- Fact, b <- Fact, b != a

member(Encrypt.(PublicKey.k,<x,b>),Fact) }

})

These deductions capture the simplest linear cases of the identified weaknesses; further

axioms could be added to deal with multivariate polynomial relationships between

the bodies of messages encrypted with the same key, where this gives rise to feasible

attacks.

The CSP generated by Casper uses a set of deductions based on the basic

encryption axioms given above; similar ones deal with Vernam encryption and

6.5. ALGEBRAIC EQUIVALENCES 171

decryption (using exclusive-or) and with the construction of hash values (with no

corresponding decryption law!), together with user-defined laws such as those just

exhibited.

6.5 Algebraic equivalences

We have already discussed the mechanisms by which Casper allows the resulting

CSP to take account of equivalences between terms such that the semantic value

that they represent is in fact identical. Further examples include the commutativity

and cancellation properties of exclusive-or, and the commutativity of many forms of

public-key encryption.

These not only serve positive ends, as in Diffie-Hellman key exchange (where, as

well as the arithmetic identities we have discussed, commutativity of the operation

used to combine the two resulting half-keys is also a necessary feature), but they also

give rise to a range of attacks. Notorious examples include the commutativity and

associativity of RSA yielding signing-after-encryption problems
We generally prefer the renaming approach to encoding the equivalence as

deductions which can take place even within opaque encrypted terms, and then relying
upon the intruder to take one principal’s view of the value and fake the other’s. Where
the intruder can gain access to additional values by moving outside the normal space
of terms used in the protocol – as for instance, exploiting

Xor.Xor.a.b.Xor.c.b = Xor.a.c

while the protocol never Xor’s Xor’s together – then there are two equally possible

solutions. Either such additional equivalences can be coded in as deductions; or Fact

can be expanded to give the intruder licence to use a suitable larger language, and the

renaming should then take care of it once more.

This technique of modelling algebraic equivalences can also be used to weaken the

type system, so that an agent may be fooled into thinking a key is a nonce, for example,

and perhaps be persuaded to decrypt it.

6.6 Specifying desired properties

The claims from the ‘specification’ part of the Casper description of the protocol give
rise to assertions in the CSP script. These are in terms of processes over the signal and
leak channels and a view of the system in which all other events have been renamed
(to yield the appropriate signals) or hidden. The channel signal is defined to carry the
types of information needed by the specification processes:

datatype Signal =

Claim_Secret.ALL_PRINCIPALS.ALL_SECRETS.Set(ALL_PRINCIPALS) |

Running1.ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce |

Commit1.ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce |

Running2.ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey |

Commit2.ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey

channel signal : Signal

172 CHAPTER 6. ENCODING PROTOCOLS AND INTRUDERS FOR FDR

Secrecy

The Secret claim generalizes the property given in Chapter 3. It asserts that whenever

the principal, which is its first argument, has completed a protocol run with only

legitimate principals, its second argument is known only to that principal and those

listed in the third argument. In Yahalom, for the initiator, the ClaimSecret signal is

identified with its reception of message 4; for the responder, with its transmission of

that message. The extra information in the message tuple, describing the agents’ state

of mind, is needed in this case to identify the correct server in the set of those allowed

in on the secret (there is, of course, only one candidate in the subtype here, but the

mechanism is quite general).

Given that the point at which the secrecy is recognized and the various parameters
are correctly computed, the specification itself is quite simple. Once the claim has
been made, then any leak of the secret should be flagged as an error (unless it has been
admitted that the intruder is in on the secret, in which case anything goes).

SECRET_SPEC_0(s) =

signal.Claim_Secret?A!s?Bs ->

(if member(Yves, Bs) then SECRET_SPEC_0(s) else SECRET_SPEC_1(s))

[]

leak.s -> SECRET_SPEC_0(s)

SECRET_SPEC_1(s) = signal.Claim_Secret?A!s?Bs -> SECRET_SPEC_1(s)

It may seem a little strange to allow the secret to be leaked before the claim is made;

but if it is genuinely known to the intruder, he can always repeat the leak afterwards, so

it does not matter. There is also research into using techniques from data independence

to sanction the recycling of short-term secrets (see Section 10.8), allowing unbounded

multiple sequential runs of the protocol, and this is the appropriate coding in that

scenario, too.

Detecting failure of authentication

The implementation of agreement and authentication follows a similar line: simple
processes demand that Commit signals, indicating a belief that the other principal is
indeed running the protocol with a given set of parameters, should not occur before the
Running signal that indicates this is true:

AuthenticateRESPONDERToINITIATORAgreement_na_nb(b) =

signal.Running1.RESPONDER_role.b?a?na?nb ->

signal.Commit1.INITIATOR_role.a.b.na.nb -> STOP

AuthenticateINITIATORToRESPONDERAgreement_kab(a) =

signal.Running2.INITIATOR_role.a?b?kab ->

signal.Commit2.RESPONDER_role.b.a.kab -> STOP

For this example, these four signals correspond (respectively) to

• responder sending message 2

6.6. SPECIFYING DESIRED PROPERTIES 173

• initiator sending message 4

• initiator sending message 4

• responder receiving message 4.

Counterexamples as attacks

When these assertions fail to hold, the FDR debugger is available to explore why (there

is also a utility as part of Casper that can do this for the user, largely mechanically). At

the top level, the example will not be very illuminating: for secrecy specifications, a

sequence of τs bracketing a solitary ClaimSecret signal will be followed by a leak; for

agreement, a sequence of τs ends in a Commit with no preceding Running. The interest

lies in what is behind the τs.

The process tree in the debugger shows that the root node of the operator tree

is a hiding \ ; this is where most of the events are abstracted. Double-clicking on

that node reveals that the argument process is a renaming [[. . .]] , which is where the

signals are recognized. Double-clicking again, on the newly revealed node, exposes

the communicating parallel composition [| . . . |] , which is the SYSTEM before it was

manipulated for the purposes of the specification. Clicking on that should show the

sequence of takes and fakes that led to the problem.

Further exploration is possible, to see what each principal contributed to the run,

and even to see what sequence of inferences allowed the intruder to generate the fatal

message that broke the protocol. All the gory details are available, for those who wish

to know, but the quintessential attack is that displayed at the SYSTEM level.

174 CHAPTER 6. ENCODING PROTOCOLS AND INTRUDERS FOR FDR

Chapter 7

Theorem proving

The analysis and verification techniques discussed in previous chapters make use of

model-checking methods to analyze protocols. In order to do this they must make

various finitary restrictions to enable the model-checking to terminate. Using these

restrictions flaws can be quickly identified. Furthermore, data-independence results

permit general protocol correctness to be deduced in some cases from correctness of

the checked finite system.

This chapter is concerned with the development of a general proof technique

built upon the traces model of CSP. Properties of the Yahalom protocol will be

verified as a running example. In Chapter 2 we introduced a general CSP model of

protocols and intruders, and in Chapter 3 we defined various security properties such

as authentication and secrecy, in terms of the CSP trace semantics. It is therefore

a well-defined and precise question to ask whether a particular CSP description of

a protocol over a network (which has a well-defined semantics) meets a particular

property. This is true even when the system can engage in arbitrarily many interleaved

runs of the protocol, when the space of facts is infinite, and when the number of users

is unbounded.

Secrecy and authentication properties are concerned with the fact that certain

messages should not occur, or should occur only under particular circumstances. We

are therefore concerned with providing theories for establishing the impossibility of

particular combinations of events.

The following two specifications are particularly important:

R precedes T = tr ↾ R = 〈〉 ⇒ tr ↾ T = 〈〉

no R = tr ↾ R = 〈〉

In fact ‘no R’ can be defined as ‘∅ precedes R’, but it is useful to write this special

case separately.

A number of proof rules based upon the CSP traces model can be derived for

establishing that CSP processes meet these specifications. Such rules are useful for

showing that CSP descriptions of protocol runs have particular properties.

For example, if we have a collection of interleaved components such that each

of them either satisfies R precedes T or no T , then their combination also satisfies

175

176 CHAPTER 7. THEOREM PROVING

Rule precedes.stop

STOP sat R precedes T

Rule precedes.prefix.1

[a ∈ R]
a→ P sat R precedes T

Rule precedes.prefix.2

P sat R precedes T
[a 6∈ T]

a→ P sat R precedes T

Rule precedes.choice

∀ j • Pj sat R precedes T

✷
j
Pj sat R precedes T

Figure 7.1: Proof rules for precedes: prefix and choice

R precedes T:

∀ i • (Pi sat R precedes T) ∨ (Pi sat no T)

|||
i
Pi sat R precedes T

This rule means that to show that an interleaved composition of protocol runs satisfies

R precedes T , it is enough to show that each of the runs either satisfies that same

specification, or else can never perform T . There are proof rules to assist in establishing

each of these possibilities. Figures 7.1 and 7.2 provide compositional proof rules for

precedes: they enable results of the form P sat R precedes T to be derived from

results about the component processes of P. Figure 7.3 provides proof rules for P sat

no R, and Figure 7.4 provides proof rules for combining the two.

For example, to show that

down→ on→ off → STOP sat {on} precedes {off}

we use Rule precedes.prefix.1 (since on ∈ {on}) to establish directly that

on→ off → STOP sat {on} precedes {off}

and then use Rule precedes.prefix.2 (since down 6∈ {off}) to establish that

down→ on→ off → STOP sat {on} precedes {off}

7.1. RANK FUNCTIONS 177

Rule precedes.parallel

P sat R precedes T
[T ⊆ A]

P ‖
A

Q sat R precedes T

Rule precedes.interleaves.1

P sat R precedes T

Q sat R precedes T

P ||| Q sat R precedes T

Rule precedes.interleaves.2

P sat R1 precedes T

Q sat R2 precedes T

P ||| Q sat R1 ∪ R2 precedes T

Figure 7.2: Proof rules for precedes: parallel

7.1 Rank functions

We will provide a number of results based on CSP traces that can be used in protocol

verification of secrecy and authentication properties. These properties are concerned

with conditions under which particular facts become available to the intruder. In the

case of secrecy, we require that a particular fact is never obtained by the intruder.

In the case of authentication, we are concerned that a fact (the authenticating event)

should only be possible after some other fact (the authenticated event) has already

been provided.

In both cases we are therefore concerned to establish that (in particular

circumstances) a fact is not available to the intruder. In order to establish this, we will

aim to show that all the facts that can be generated within the network (by the agents

running the protocol, by the other agents, and by the intruder) must have a particular

characterizing property, and that the facts that the intruder should not be able to obtain

do not have that property. The aim of the verification is to identify the property that

enables the proof to succeed.

To achieve this, we will assign a value or rank to each fact, with the intention that

only facts with strictly positive rank can ever circulate within the system. The ranks

that are assigned will, of course, depend on the protocol itself, the initial knowledge

and the capabilities of the intruder, as well as the facts that we wish to show cannot be

obtained by the intruder (which must not have positive rank).

178 CHAPTER 7. THEOREM PROVING

Rule absent.stop

STOP sat no R

Rule absent.prefix

P sat no R
[a 6∈ R]

a→ P sat no R

Rule absent.choice

∀ j • Pj sat no R

✷
j
Pj sat no R

Rule absent.parallel

P sat no R
[R ⊆ A]

P ‖
A

Q sat no R

Rule absent.interleaves

P sat no R

Q sat no R

P ||| Q sat no R

Figure 7.3: Proof rules for absence of events

DEFINITION 7.1.1 (RANK FUNCTION) A rank function ρ is a function ρ : Fact ∪
Signal→ Z which maps facts and signals to integers. ✷

New facts can be generated by the intruder and by any of the agents in the network.

In order to ensure that only facts of positive rank can circulate, and only signals of

positive rank produced, it is necessary to ensure that each of these participants cannot

introduce anything of non-positive rank.

For the intruder, this means that two checks have to be made:

• that all of the facts initially known by the intruder must be of positive rank;

• that the ⊢ relation respects positive rank – in other words, that only facts of

positive rank can be generated from sets of facts of positive rank.

Since the description of the intruder is independent of the protocol under analysis, this

is essentially a check on the initial state of the intruder, and a check on the deductions

that can be made under the ⊢ relation.

7.1. RANK FUNCTIONS 179

Rule precedes.absent.1

P sat R precedes T

P sat no R

P sat no T

Rule precedes.absent.2

P sat R precedes T

Q sat no T

P ||| Q sat R precedes T

∀ i • (Pi sat R precedes T) ∨ (Pi sat no T)

|||
i
Pi sat R precedes T

Figure 7.4: Precedes and absence

The protocol description will be encapsulated within the CSP descriptions of the

protocol participants Usera. (Recall from Chapter 2 that Usera is an interleaving of

initiator and responder runs.) Any trusted server is also considered as a particular agent

following a particular role within the protocol, and can be treated in the same way as

the other agents. We will need to show that the steps of the protocol followed by Usera

cannot introduce any facts of non-positive rank. In other words, if it has accepted only

messages of positive rank on its receive channel, then the messages sent out on its send

channel must only be of positive rank.

This requirement can be expressed as a trace specification ‘maintains positive rank’,

which states that if all messages received have positive rank, then all messages sent

must also have positive rank. This is more easily expressed as the contrapositive: if

some message with non-positive rank is sent, then some message with non-positive

rank must have been received.

DEFINITION 7.1.2 (MAINTAINS POSITIVE RANK) The trace property maintains

positive ρ(tr) is defined as follows:

maintains positive ρ(tr)⇔

(send.a.b.m in tr ∨ signal.c.a.b.m in tr) ∧ ρ(m) 6 0⇒
∃ receive.a′.b′.m′ in tr • ρ(m′) 6 0

✷

This is a special case of precedes: any output message of non-positive rank must be

preceded by a received message of non-positive rank.

180 CHAPTER 7. THEOREM PROVING

Observe that the identity of the users does not need to appear in this definition – it is

appropriate for all users. In any particular case Usera sat maintains positive ρ(tr), the

send and receive channels used in the construction of Usera means that the only send

channel considered here is of the form send.a.j.m and the only possible receive channel

is of the form receive.i′.a.m′. Thus the correct instantiations for a occur naturally

whenever maintains positive ρ(tr) is used.

Clearly the suitability of a rank function will depend crucially on the protocol

itself, since whether or not Usera sat maintains positive ρ(tr) depends on the match

between the description Usera and the rank function ρ.

The key result that provides the basis for the verification method is that if these

requirements all hold, then no fact of non-positive rank can ever be introduced into the

system. This means that such facts cannot be obtained (and thus leaked) by the intruder.

More formally, if

• ∀m ∈ IK • ρ(m) > 0

• ((∀ s ∈ S • ρ(s) > 0) ∧ S ⊢ m)⇒ ρ(m) > 0

• ∀ a ∈ Agent • Usera sat maintains positive ρ

then it follows that no messages of rank 0 or less can ever appear:

(|||
a∈Agent

Usera ‖ Intruder(IK)) sat no {c.m | ρ(m) 6 0}

This result enables a proof obligation of this form on the entire system to be reduced

to proof obligations on the individual components of the system. The key step in the

development of a proof that builds on this result is the identification of a suitable rank

function ρ.

There are a number of rules for establishing the maintains positive ρ specification.

These are given in Figures 7.5 and 7.6. They will be used in establishing that the users

maintain positive rank.

Informally, their soundness can be justified as follows. Rule stop is sound because

STOP is unable to violate maintains positive ρ since to do so requires an output of a

message of non-positive rank, and STOP can perform no such output. Rule output

states that if the first output provided by a process has positive rank, then the process

satisfies maintains positive ρ provided the behaviour after this first output does not

violate it.

Rule input is concerned with the behaviour of a process subsequent to an input.

The requirement to maintain positive rank is concerned that if messages coming in

have positive rank, then the messages going out should also have positive rank. For a

particular incoming message, there are therefore two cases to consider: if the input

message f (x) has rank 0 or less, then the subsequent behaviour is irrelevant since

responsibility for maintaining positive rank is no longer required; if the message f (x)
input has positive rank, then the subsequent process P(j, x) should maintain positive

rank. Hence the rule states that the input process rec.i?j?f (x) → P(j, x) satisfies

maintains positive ρ whenever P(j, x) does so after an input of positive rank. The

form of the input f (x) describes the pattern matching implicit in the input process: f

describes the input patterns allowed.

7.2. SECRECY OF THE SHARED KEY: A RANK FUNCTION 181

Rule stop.positive ρ

STOP sat maintains positive ρ

Rule output.positive ρ

P sat maintains positive ρ
[ρ(m) > 0]

send.a.b.m→ P sat maintains positive ρ

Rule input.positive ρ

∀ b, x • (ρ(f (x)) > 0⇒
(P(b, x) sat maintains positive ρ))

receive?b.a?.f (x)→ P(b, x) sat maintains positive ρ

Figure 7.5: Proof rules for maintains positive ρ: input and output

Rules choice and interleave state that if each of its component processes

maintains positive rank, then so does the entire process.

Finally, a special case is given by Rule absence: if Ua cannot send any message

of non-positive rank at all, then it must maintain positive rank.

7.2 Secrecy of the shared key: a rank function

As our example, we will consider the description of the Yahalom protocol discussed in

Section 3.1, with the Claim Secret signal inserted. We wish to prove that

Yahalom ‖ Intruder(IK) sat Secrecy(tr)

This means that for any two users a and b, Secretab(tr) must hold. Hence we can

consider for arbitrary A and B the requirement

Yahalom ‖ Intruder(IK) sat SecretAB(tr)

where Secrecy and SecretAB are defined as in Section 3.2. In other words, if A claims

that s is a secret shared with B, and B is honest, then leak.s should not appear in the

trace tr.

Thus we aim to show for some arbitrary A, B, and s, that

Yahalom ‖ Intruder(IK) sat signal.Claim Secret.A.B.s in tr

∧ A ∈ Honest ∧ B ∈ Honest

⇒ ¬(leak.s in tr)

If A 6∈ Honest or B 6∈ Honest then there is nothing to prove. If they are both honest,

then the only secrets that are claimed by honest agents A and B concern the key received

182 CHAPTER 7. THEOREM PROVING

Rule choice.positive ρ

∀ j • Pj sat maintains positive ρ

✷
j
Pj sat maintains positive ρ

Rule interleave.positive ρ

∀ j • Pj sat maintains positive ρ

|||
j
Pj sat maintains positive ρ

Rule absence.positive ρ

U sat no ({send.a.b.m | ρ(m) 6 0} ∪ {signal.c.a.b.m | ρ(m) 6 0}

U sat maintains positive ρ

Figure 7.6: Proof rules for maintains positive ρ: other operators

c?m→ P(m) = ✷
m

c.m→ P(m)

a→✷
i
Qi = ✷

i
(a→ Qi)

P |||✷
i
Qi = ✷

i
(P ||| Qi)

|||
i
(✷

j
P(i, j)) = ✷~ji

(|||
i
P(i, ji))

Figure 7.7: CSP algebraic laws for distributing choice

during the protocol. So s will be some arbitrary key kAB. We are therefore aiming to

prove that

Yahalom ‖ Intruder(IK) sat signal.Claim Secret.A.B.kAB in tr ⇒ ¬(leak.kAB in tr)

There are essentially two cases to consider: either kAB is not a key issued by the

server, or it is. We consider each of these cases in turn – each will make use of a

different rank function.

Case kAB 6∈ KEYSServer

If kAB is a key that is not issued by the server (kAB 6∈ KEYSServer), then it must be

assumed to be known to the intruder. However, in this case the intruder will not be able

to incorporate kAB into a message that will persuade either A or B to believe that it is

a secret shared with the other. This is established by use of the rank function given in

Figure 7.8. We have to check the following:

7.2. SECRECY OF THE SHARED KEY: A RANK FUNCTION 183

ρ(u) = 1

ρ(n) = 1

ρ(k) =

{
0 if k = ServerKey(A) or k = ServerKey(B)
1 otherwise

ρ({m}k) =

0 if {m}k = {a.kAB.na.nb}ServerKey(A)

or {m}k = {b.kAB}ServerKey(B)

1 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Claim Secret.s) =

{
0 if s = A.B.kAB

1 otherwise

Figure 7.8: Rank function for secrecy of kAB in the Yahalom protocol I

• All facts of rank 0 or less are not initially known to the intruder. This is

reasonable, since the only such facts are the keys that A and B share with the

server, together with the key kAB encrypted within a message by such keys.

• ⊢ preserves positive rank. This is easily checked by examining the clauses that

define ⊢.

• Usera sat maintains positive ρ(tr) for all agents a. This is easily checked, since

no user ever produces a message of the form of those of rank 0.

• Serv(k) sat maintains positive ρ(tr) for all k ∈ KEYSServer. This is immediate,

since kAB never appears in a message (encrypted or otherwise) produced by

Serv(k).

It follows that neither UserA or UserB will ever issue a signal Claim Secret.A.B.kAB,

since to do so they first have to receive a message of rank 0, and this is not possible

(since if they can receive such a message then the intruder must also be in possession

of it). Hence in this case:

Yahalom ‖ Intruder(IK) sat ¬(signal.Claim Secret.A.B.kAB in tr)

and the specification can be weakened to obtain

Yahalom ‖ Intruder(IK) sat signal.Claim Secret.A.B.kAB in tr ⇒ ¬(leak.kAB in tr)

Case kAB ∈ KEYSServer

The other case to consider is when kAB is a key issued by the server (i.e. kAB ∈
KEYSServer). In this case Server can be considered as a choice over which agents should

184 CHAPTER 7. THEOREM PROVING

be associated with key kAB. It turns out that the other keys do not affect the correctness

property we are considering, and so the agents associated with them do not need to be

made explicit:

Serv′(k, a, b) = receive.b.Jeeves.?(b.{a.na.nb}ServerKey(b))→

send.Jeeves.a.({b.k.na.nb}ServerKey(a).{a.k}ServerKey(b) → STOP

Serv(k) = ✷
a,b:Agent

Serv′(k, a, b)

If the server allocates a particular key k0 to a pair of agents a and b, then the particular

description of Server that picks out this run will be described by

Server(k0, a, b) = (|||
k 6=k0

Serv(k)) ||| Serv′(k0, a, b)

Then for any particular key k0, the original server can be described as

Server = ✷
a,b

Server(k0, a, b)

The description of the Yahalom system we need to consider will pick out the key

kAB:

(UserA ||| UserB |||✷
a,b:Agent

Server(kAB, a, b)) ‖ Intruder(IK)

The choice can be brought out to the front by an application of the last algebraic law in

Figure 7.7.

✷
a,b

((UserA ||| UserB ||| Server(kAB, a, b)) ‖ Intruder(IK))

If each branch of the choice satisfies the secrecy requirement, then so too does the

entire choice, by Rule sat.extchoice of Figure 1.2. This allows each possibility for

a and b to be considered separately. In fact there are two subcases to consider: either

a = A and b = B, in which case kAB should never be disclosed (and hence should

have rank 0); or a 6= A or b 6= B, in which case kAB might become disclosed, but it

is not claimed to be secret. Each subcase will therefore use a different rank function

to show that its components maintain the rank, and we will thereby establish that each

case meets the required secrecy property.

Case a = A and b = B

In this case the appropriate rank function is given in Figure 7.9. We have to check the

following:

• All facts of rank 0 or less are not initially known to the intruder. This is

reasonable, since the only such facts are the keys that A and B share with the

server, together with the new key kAB.

• ⊢ preserves positive rank. This is easily checked by examining the clauses that

define ⊢.

7.2. SECRECY OF THE SHARED KEY: A RANK FUNCTION 185

ρ(u) = 1

ρ(n) = 1

ρ(k) =

{
0 if k = kAB or k = ServerKey(A) or k = ServerKey(B)
1 otherwise

ρ({m}k) =

{
1 + ρ(m) if k = kAB or k = ServerKey(A) or k = ServerKey(B)
ρ(m) otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Claim Secret.s) = 1

Figure 7.9: Rank function for secrecy of kAB in the Yahalom protocol II

• Usera sat maintains positive ρ(tr) for all users.

• Server(kAB, A, B) sat maintains positive ρ(tr). By Rule

interleave.positive ρ, it is sufficient to prove the following:

– Serv′(kAB, A, B) sat maintains positive ρ(tr). This is immediate, since the

only message that is sent has rank 1.

– Serv(k) sat maintains positive ρ(tr) when k 6= kAB. This is immediate,

since kAB never appears in a message of Serv(k) (encrypted or otherwise).

The last two items together yield that Server(kAB, a, b) sat maintains positive ρ(tr),
from Rule interleave.positive ρ from Figure 7.6.

Case a 6= A or b 6= B

In this case the messages that the server dispatches will contain names different to

those required by A and B to claim that kAB is a secret shared with the other. The rank

function in this case will establish that A and B will never receive such messages. It

is given in Figure 7.10. Observe that in this case the key kAB has rank 1: it cannot be

expected to remain secret if the server can send it to other users (who might not be

honest). In this case the correctness of the protocol rests on the fact that kAB is never

claimed to be a secret between A and B.

The signal Claim Secret.A.B.kAB can occur only if UserA as initiator or UserB as

responder perform it.

In the first case, inspection of InitiatorA reveals that if signal.Claim Secret.A.B.kAB

occurs, then previously receive.Jeeves.A.({B.kAB.na.nb}ServerKey(A).y) must have

occurred for some y, and hence that {B.kAB.na.nb}ServerKey(A) will have been available

to the intruder. If there is a rank function that gives this message a rank of 0 then this

case is not possible.

186 CHAPTER 7. THEOREM PROVING

ρ(u) = 1

ρ(n) = 1

ρ(k) =

{
0 if k = ServerKey(A) or k = ServerKey(B)
1 otherwise

ρ({m}k) =

0 if {m}k = {B.kAB.na.nb}ServerKey(A)

or {m}k = {A.kAB}ServerKey(B)

1 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Claim Secret.s) =

{
0 if s = A.B.kAB

1 otherwise

Figure 7.10: Rank function for secrecy of kAB in the Yahalom protocol III

In the second case, if signal.Claim Secret.A.B.kAB occurs, then inspection of

ResponderB reveals that previously receive.A.B.{A.kAB}ServerKey(B).{n}kAB
must have

occurred for some nonce n. If there is a rank function that gives a rank of 0 to

{A.kAB}ServerKey(B) when this case is not possible.

Since these two cases are the only two possibilities to consider, the rank function

given in Figure 7.10 establishes that neither A nor B will claim that kAB is a secret

shared between them. We have only to check for this rank function that it meets the

conditions required to show that facts of rank 0 cannot appear in the system:

• All facts of rank 0 or less are not initially known to the intruder. This is

reasonable, since the only such facts are the keys that A and B share with the

server, and some messages encrypted under those keys.

• ⊢ preserves positive rank. This is easily checked by examining the clauses that

define ⊢.

• Usera sat maintains positive ρ(tr) for all users. This is immediate, since the

messages sent out by the users do not even have the form of the messages of rank

0.

• Serv′(kAB, a, b) sat maintains positive ρ(tr) when a 6= A or b 6= B. This is

immediate, since the only message that is sent has rank 1, since its two parts

both have rank 1. (They would only have rank 0 if a = A and b = B.)

• Serv(k) sat maintains positive ρ(tr) when k 6= kAB. This is immediate, since

kAB never appears in a message (encrypted or otherwise) and the messages of

rank 0 include kAB as a component.

7.3. SECRECY ON NB 187

The last two items together yield that Server(kAB, i, j) sat maintains positive ρ(tr).

Hence in the case where a 6= A or b 6= B we have that

Yahalom(a, b) ‖ Intruder(IK) sat

¬(signal.Claim Secret.A.B.kAB in tr)

and so

Yahalom(a, b) ‖ Intruder(IK) sat

signal.Claim Secret.A.B.kAB in tr ⇒ ¬(leak.kAB in tr)

We also have from the case a = A ∧ b = B that

Yahalom(A, B) ‖ Intruder(IK) sat ¬(leak.kAB in tr)

and hence that

Yahalom(A, B) ‖ Intruder(IK) sat

signal.Claim Secret.A.B.kAB in tr ⇒ ¬(leak.kAB in tr)

In all cases, Yahalom(a, b) ‖ Intruder(IK) satisfies the desired specification. Hence

from Rule sat.extchoice it follows that ✷
a,b

Yahalom(a, b) ‖ Intruder(IK) also

satisfies it:

Yahalom ‖ Intruder(IK) sat

signal.Claim Secret.A.B.kAB in tr ⇒ ¬(leak.kAB in tr)

Observe that secrecy of the nonce nB is not required to establish secrecy of kAB.

The nonce nB could have been known to the intruder, since it had rank 1 in the rank

function of Figure 7.10.

7.3 Secrecy on nB

We can also consider whether the nonce nB is kept secret if the intruder does not know

it. The specification in this case introduces an arbitrary fixed nonce NB into the claimed

secret. Agents will claim that both the distributed key and the nonce issued by the

responder are secrets. The following is the property to check, for honest agents A and

B:

signal.Claim Secret.A.B.k.NB in tr ⇒ ¬(leak.NB in tr)

If a claims that NB is a secret, this is in response to receiving it as part of his own

run. If b claims it, this is because b issued it.

We separate the protocol runs of the user in order to analyze them separately. We

will again use the rules of Figure 7.6 to combine the results of the separate analyses.

188 CHAPTER 7. THEOREM PROVING

Here is an initiator run with a particular value of kab and nb, which are both claimed

to be secret:

Initiator′a(kab, na, nb) = ✷
b

send.a.b.(a.na)→
receive.Jeeves.a.({b.kab.na.nb}ServerKey(a).y)→

send.a.b.(y.{nb}kab
)→

signal.Claim Secret.a.b.kab.nb → STOP

so

Initiator′a(na) = ✷
kab,nb

Initiator′a(kab, na, nb)

We also consider a responder run with nonce nb engaging in a run with a, and the

revised declaration of a secret:

Responder′b(a, nb) = receive.a.b?(a.na)→

send.b.Jeeves.(b.{a.na.nb}ServerKey(b))→

receive.a.b?({a.kab}ServerKey(b).{nb}kab
)→

signal.Claim Secret.a.bkab.nb → STOP

So

Responder′b(nb) = ✷
a∈Agent

Responder′b(a, nb)

So a user can be described as follows:

User′a = |||
n∈Initnoncea

Initiator′a(n)

|||

|||
n∈Responcea,n6=nb

Responder′a(n)

|||

✷
b∈Agent

Responder′a(b, nb)

Thus we separate out B’s run with nonce NB in the following description:

Yahalom = User′A ||| Server |||

Initiator′B ||| |||n6=NB

Responder′B(n)

|||

✷
a∈Agent

Responder′B(a, NB)

Once again, we bring the choice to the head of the process description:

Yahalom = ✷
a∈Agent

(User′A ||| Server |||

Initiator′B ||| |||n6=NB

Responder′B(n)

||| Responder′B(a, NB)

7.3. SECRECY ON NB 189

We can thus check for each branch of the choice that it satisfies the required secrecy

property:

signal.Claim Secret.A.B.kAB.NB in tr ⇒ ¬(leak.NB in tr)

The two cases to consider are a 6= A and a = A. In the first case the initiator will

never claim that NB is a secret shared between initiator A and responder B, since the

initiator of the run involving NB will be some agent other than A. And A will not claim

it either. Furthermore, the responder will not claim this either, since the only claim of

the responder involving NB is that it is shared with a and not with A. In the second case

we will show that NB is actually secret, by exhibiting a suitable rank function that gives

it a rank of 0. The CSP verification makes this argument rigorous.

Case a 6= A

We firstly consider the network in the case where a 6= A. In this case the rank

function of Figure 7.11 will establish that the Claim Secret.A.B.NB signal cannot occur.

Observe that NB has a rank of 1, since it may become known to the intruder in this case.

We are not concerned with the disclosure of NB in this case, only with the fact that it is

not claimed to be secret.

We must first check that all the parallel components of the resulting network

preserve positive rank:

• The only facts with rank 0 are the two keys shared between A and B and the

server, and messages involving the new nonce NB encrypted with these keys. It

is therefore reasonable to expect that none of these appear in IK, and hence that

all facts in IK have positive rank.

• The ⊢ relation preserved positive rank. Messages of rank 0 cannot be generated

from messages of purely positive rank.

• UserA does not generate any messages containing NB (though it may pass one on

without changing it).

• Initiator′B maintains positive rank.

• Responder′B(n) maintains positive rank when n 6= NB since it does not generate

any message containing NB.

• Responder′B(a, NB) maintains positive rank when a 6= A.

• Each Serv(k) maintains positive rank: it can only generate a message of rank 0 if

it previously receives one of rank 0. (This is the reason for assigning a rank of 0
to messages of the form {A.n.NB}ServerKey(B) – to capture the fact that Server can

never receive them).

B will never claim this secret is shared with A (irrespective of the rank function).

This is because each interleaved Responder′b(n) will not claim that secret: those with

n 6= NB will not claim anything about NB, and the run with NB will claim the secret is

shared with a and not with A.

190 CHAPTER 7. THEOREM PROVING

ρ(u) = 1

ρ(n) = 1

ρ(k) =

0 if k = ServerKey(A)
or k = ServerKey(B)

1 otherwise

ρ({m}k) =

0 if {m}k = {B.k0.n.NB}ServerKey(A) for some k0

or {m}k = {A.n.NB}ServerKey(B)

1 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Claim Secret.s) =

{
0 if s = A.B.NB

1 otherwise

Figure 7.11: Rank function for Yahalom secrecy of NB I

The rank function of Figure 7.11 establishes that A will never receive a message of

the form {B.k.n.NB}ServerKey(A) for any key k and nonce n, since any such message has

rank 0. Examination of the definition of UserA shows that a message of this form is a

prerequisite for A to claim that NB is a secret shared with B – it must appear earlier in

the protocol run. Thus A will never signal Claim Secret.A.B.NB.

Case a = A

In this case we expect the nonce NB to be secret.

To consider this case we will need to make explicit the agents associated with each

key that is distributed by the server. Serv(k, a, b) is the server distributing key k to users

a and b.

Serv(k, a, b) = receive.b.Jeeves?(b.{a.na.nb}ServerKey(b))→

send.Jeeves.a.({b.k.na.nb}ServerKey(a).{a.k}ServerKey(b) → STOP

Then Serv(k) = ✷
a,b

Serv(k, a, b).

Then all the choices can be brought outside the interleaving using the algebraic

identity in Figure 7.7, with the infinite choice ranging over vectors of users ~ak and ~bk

indexed by k ∈ KEYSServer:

Server = |||
k

Serv(k)

= |||
k
✷

a,b
Serv(k, a, b)

= ✷
~ak,~bk
|||

k
Serv(k, ak, bk)

7.3. SECRECY ON NB 191

So since we are considering the case where a = A we have

User′A ||| Server |||

Initiator′B ||| |||n 6=NB

Responder′B(n)

||| Responder′B(A, NB)

= User′A ||| (✷ak,bk
|||

k
Serv(k, ak, bk)) |||

Initiator′B ||| |||n 6=NB

Responder′B(n)

||| Responder′B(A, NB)

= ✷
~ak,~bk

User′A ||| Serv(k, ak, bk |||

Initiator′B ||| |||n 6=NB

Responder′B(n)

||| Responder′B(A, NB)

We will establish the required result for each branch of the choice, corresponding to

each possible choice of ~ak, and ~bk.

The rank function of Figure 7.12 will establish that NB is secret. This rank function

assigns a rank of 0 to any message containing NB or a key to be shared between A and

B, apart from those expected in a correct protocol run. Thus it will establish that NB

can occur only where it is expected.

We must check that each of the components of the network maintains positive rank:

• IK will only contain items of positive rank: the intruder cannot initially be in

possession of NB or keys in KEYSServer since these are new facts to be generated

by B and the server respectively.

• ⊢ preserves positive rank.

• If n 6= NB then Responder′B only sends out one message, and it does not contain

NB (or kab); it thus has positive rank.

• Responder′B(A, NB) sends out one message, and the rank function has been

constructed specifically so that this message has rank 1.

• Initiator′B maintains positive rank: if it only receives messages of positive rank

then it cannot obtain NB, and so it will never send it out (under any key) as its

final protocol message. Hence any message it sends out will have rank 1.

• UserA as responder (i.e. ResponderA) only ever sends out messages in response

to receipt of a nonce. If this nonce has positive rank (i.e. it is not NB), then so

too is the response message (since ResponderA will never generate NB).

• UserA as initiator (i.e. InitiatorA) also preserves positive rank. Whenever a

message 3 of positive rank is received encrypted with ServerKey(A), either the

contents has positive rank (and so cannot contain either NB or a key generated

for A and B) in which case the response in message 4 must have positive rank; or

the contents is a message of the form B.k.n.NB in which the key k has rank 0, in

which case the response in message 4 again has positive rank.

192 CHAPTER 7. THEOREM PROVING

ρ(u) = 1

ρ(n) =

{
0 if n = NB

1 otherwise

ρ(k) =

0 if k ∈ KEYSServer ∧ ak = A ∧ bk = B

or k = ServerKey(A)
or k = ServerKey(B)

1 otherwise

ρ({m}k) =

1 if m ∈ A.Nonce.NB ∧ k = ServerKey(B)
or m ∈ B.k0.Nonce.NB ∧ ak0 = A ∧ bk0 = B

∧ k = ServerKey(A)
or m = A.k0 ∧ ak0 = A ∧ bk0 = B ∧ k = ServerKey(B)
or m = NB ∧ ak = A ∧ bk = B

ρ(m) otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Claim Secret.s) = 1

Figure 7.12: Rank function for Yahalom secrecy of NB II

• Serv(k, ak, bk) maintains positive rank: if ak = A and bk = B then any message

it sends out will have rank 1, both in the case where it contains NB and in the

case where it does not; if ak 6= A or bk 6= B then by its definition Serv(k, ak, bk)
cannot accept a message containing NB and so the response it gives out must

have positive rank.

Thus NB has rank 0, and so it can never appear on leak. Since this is true for every

branch of the choice, it must be true for the entire choice, as required.

7.4 Authentication

Authentication can also be established using the rank function approach. We want to

establish that R precedes T . This can be achieved by restricting R and showing that T

cannot occur in the resulting system. This works because

P sat R precedes T ⇔ P ‖
R

STOP sat tr ↾ T = 〈〉

Hence we simply have to show that System ‖
R

STOP sat tr ↾ T = 〈〉, which we can do

using rank functions: simply find an appropriate rank function for which all facts in T

7.4. AUTHENTICATION 193

have rank 0.

Furthermore, the restriction of R can be distributed to the various components of

System. Since R will actually be a set of signal events associated with one particular

agent, this means that most of the system description will be unaffected by this

restriction.

To establish

(|||
a

Usera) ‖ Intruder(IK) sat R precedes T

it is therefore enough to find a rank function that is strong enough to establish the

following properties of the individual components of this network:

• ∀m ∈ IK • ρ(m) > 0

• ((∀ s ∈ S • ρ(s) > 0) ∧ S ⊢ m)⇒ ρ(m) > 0

• ∀m ∈ T • ρ(m) 6 0

• ∀ a ∈ Agent • Usera ‖
R

STOP sat maintains positive ρ

Process equivalences

The traces model for CSP supports a number of algebraic equivalences on processes,

whose soundness follows from the trace semantics. These are often useful in

manipulating process descriptions into a form that is easier to reason about. There are

many laws expressing useful identities. We will be interested in the effect of restricting

particular events of a parallel combination P ‖
R

STOP . This process restricts all of P’s

occurrences of events from R, so it has precisely those traces of P that do not contain

any event from R. The equations are given in Figure 7.13.

Rule restrict.1 states that restricting a process on a set of events R that it cannot

perform has no effect. Rule restrict.2 states that restricting a process on a set of

events distributes over interleaving.

Rules restrict.3 and restrict.4 are concerned with the effect of a restriction

on inputs and outputs.

These equations are used throughout this chapter whenever a process of the form

UserA ‖
R

STOP is expanded. They will not be referred to explicitly when used, in

order to avoid cluttering proofs.

Yahalom: authentication

Authentication of the initiator to the responder was expressed by introducing the

additional signals Running and Commit into the protocol description, as given on

page 103.

In order to verify that

A ∈ Honest ⇒ signal.Running Initiator.A.B.NA.NB.KAB

precedes signal.Commit Responder.B.A.NA.NB.KAB

194 CHAPTER 7. THEOREM PROVING

Rule restrict.1

If σ(P) ∩ R = ∅ then P ‖
R

STOP = P

Rule restrict.2

(P ||| Q) ‖
R

STOP = (P ‖
R

STOP) ||| (Q ‖
R

STOP)

Rule restrict.3

(c?x : T → P(x)) ‖
R

STOP = c?x : U → (P(x) ‖
R

STOP)

where U = T \ {t | c.t ∈ R}.

Rule restrict.4

(c!v→ P) ‖
R

STOP =

{
c!v→ (P ‖

R

STOP) if c.v 6∈ R

STOP if c.v ∈ R

Figure 7.13: Equations for restricted parallel combinations

we restrict the system so that no signal signal.Running Initiator.A.B.NA.NB.KAB

can be performed, and then check that the resulting system is unable to perform

signal.Commit Responder.B.A.NA.NB.KAB. The restriction on the entire system is

achieved by restricting each component of the system. However, only one component

(InitiatorA(NA)) will be affected by the restriction, since the remaining components

cannot perform the signal being restricted in any case.

InitiatorA(NA) ‖
signal.Running Initiator.A.B.NA.NB.KAB

STOP simplifies to

✷
b

send.A.b.(A.NA)→
receive.Jeeves.a?({b.k.NA.n}ServerKey(A).y)→

if b = B ∧ k = KAB ∧ n = NB

then STOP
else signal.Running Initiator.A.b.NA.n.k→

send.A.b.(y.{n}k)→ STOP

The description of the responder that receives nonce na is given by

Responderb(nb, na) = receive?a.b?(a.na)→

send.b.Jeeves.(b.{a.na.nb}ServerKey(b))→

receive.a.b?({a.kab}ServerKey(b).{nb}kab
)→

signal.Commit Responder.b.a.na.nb.kab → STOP

In InitiatorA(NA) there are two cases to consider for possible values of b: that it is

the user B, and that it is some other user.

7.4. AUTHENTICATION 195

Case b = B

If A is using the nonce NA in a run with B, then there are three possibilities to consider

concerning the server’s run that distributes the key KAB. It is useful to consider the

server as

Server = |||
k 6=KAB

Serv(k)

|||

✷
a′,b′,n′a,n

′

b

Serv0(KAB, a′, b′, n′a, n′b)

where Serv0 describes a single run with its parameters:

Serv0(k, a, b, na, nb) =

receive.b.Jeeves.(b.{a.na.nb}ServerKey(b))→

send.Jeeves.a.({b.k.na.nb}ServerKey(a).{a.k}ServerKey(b) → STOP

The choice can be brought outside the interleaving, to yield

Server = ✷
a′,b′,n′a,n

′

b

|||
k 6=KAB

Serv(k)

||| Serv0(KAB, a′, b′, n′a, n′b)

Each of the branches of the choice can be considered separately. The categories to

consider are:

• a′ and b′ are A and B, and the nonces n′a and n′b are NA and NB;

• a′ 6= A or b′ 6= B;

• n′a 6= NA or n′
b 6= NB

We will consider each of these cases in turn. Each uses a different rank function to

establish the authentication requirement.

Subcase 〈a′, b′, n′a, n′b〉 = 〈A, B, NA, NB〉

Then {NB}KAB
is prevented from happening by the restriction. The appropriate rank

function is given in Figure 7.14. Each of the components of the network need to be

checked:

• IK will not contain anything of rank 0.

• ⊢ maintains positive rank.

• UserA ‖
signal.Running Initiator.A.B.NA.NB.KAB

STOP maintains positive rank.

• UserB maintains positive rank: it cannot produce the message {NB}KAB
without

first being provided with a message of rank 0.

• Serv(k) maintains positive rank when k 6= KAB.

196 CHAPTER 7. THEOREM PROVING

ρ(u) = 1

ρ(n) = 1

ρ(k) =

0 if k = KAB

or k = ServerKey(A)
or k = ServerKey(B)

1 otherwise

ρ({m}k) =

0 if {m}k = {NB}KAB

or {m}k = {b.KAB.n.NB}ServerKey(a)

∧ (b 6= B ∨ n 6= NA ∨ a 6= A)
1 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Running Initiator.s) = 1

ρ(Commit Responder.s) =

{
0 if s = B.A.NA.NB.KAB

1 otherwise

Figure 7.14: Rank function for authentication of the Yahalom protocol I

• Serv(KAB, A, B, NA, NB) maintains positive rank, since its only possible output is

of rank 1.

Thus in this case nothing of rank 0 can be performed. This means that UserB can never

receive {NB}KAB
, and hence will never commit to a run with those facts.

Subcase a′ 6= A or b′ 6= B

Then {A.KAB}ServerKey(B) cannot occur, so the Commit signal will not occur. This is

established by the rank function of Figure 7.15.

Subcase n′a 6= NA or n′b 6= NB

If n′
a 6= NA, then the commit signal Commit Responder.B.A.NA.NB.KAB will not occur.

Otherwise n′a = NA: in this case no message of the form {A.n0.NB}ServerKey(B) is

possible for n0 6= NA. Hence no message of the form {b.KAB.n0.NB}ServerKey(a) will

be provided by Serv0(KAB, a, b, n1, n2), for any n0, a, or b (even if n0 = NA). Hence

no user can produce {NB}KAB
, a prerequisite for user B to produce his Commit signal.

This is established by the rank function of Figure 7.16.

7.4. AUTHENTICATION 197

ρ(u) = 1

ρ(n) = 1

ρ(k) =

0 if k = KAB

or k = ServerKey(A)
or k = ServerKey(B)

1 otherwise

ρ({m}k) =

{
0 if {m}k = {A.KAB}ServerKey(B)

1 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Running Initiator.s) = 1

ρ(Commit Responder.s) =

{
0 if s = B.A.NA.NB.KAB

1 otherwise

Figure 7.15: Rank function for authentication of the Yahalom protocol II

Case b 6= B.

Only in a run of ResponderB(NB, NA) can the Commit Responder.B.A.NA.NB.KAB

signal claim possibly be made. All other ResponderB process runs cannot make that

particular claim.

We can also assume that the choice of agents and nonces made in Serv(KAB) is

of the form Serv0(KAB, A, B, na, nb), since otherwise {A.KAB}ServerKey(B) cannot be

produced, which again means that the commit signal will not occur.

Subcase na 6= NA: then Serv(KAB, A, B, na, nb) will not give any response, since

it cannot be provided with an acceptable input: ρ({A.na.NB}ServerKey(B)) = 0. Hence it

cannot produce {A.KAB}ServerKey(B), which again means that the commit signal will not

occur.

Subcase na = NA: in the case where nb = NB, we observe that

InitiatorA(n) will never produce {NB}KAB
when n 6= NA, since it can never receive

{b.kAB.n.NB}ServerKey(A); and neither can InitiatorA(NA, b). The point is that any other

message of the form {b.KAB.na.NB}ServerKey(A) must have rank 0. It can only have rank

1 when b = B and na = NA.

If nb 6= NB then the server will not produce {B.kAB.n.NB}ServerKey(A); and so

ρ({B.KAB.n.NB}ServerKey(A)) = 0 for any nonce n, and so ρ({NB}KAB
) = 0. Yet receipt

of this message is a prerequisite for b to produce its commit signal, so we have again

established that this cannot occur.

All of this reasoning is encapsulated within the rank function of Figure 7.17. In all

cases considered, positive rank is maintained.

198 CHAPTER 7. THEOREM PROVING

ρ(u) = 1

ρ(n) = 1

ρ(k) =

0 if k = KAB

or k = ServerKey(A)
or k = ServerKey(B)

1 otherwise

ρ({m}k) =

0 if {m}k = {A.n.NB}ServerKey(B) ∧ n 6= NA

or {m}k = {b.KAB.n.NB}ServerKey(a)

or {m}k = {NB}KAB

1 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Running Initiator.s) = 1

ρ(Commit Responder.s) =

{
0 if s = B.A.NA.NB.KAB

1 otherwise

Figure 7.16: Rank function for authentication of the Yahalom protocol III

7.5 Machine assistance

In practice, the identification of suitable rank functions can be difficult, and (as

the previous case study has shown) the verification proofs can generate an almost

overwhelming amount of detail to keep track of. Two forms of mechanical support

that address this problem are currently available for the rank function verification

technique.

The first form of mechanical assistance is provided by the general purpose theorem

prover PVS (Prototype Verification System) [91]. This interactive theorem prover

allows theories to be constructed and verified in a hierarchical fashion, making use

of previously verified theories. A theory for the trace semantics of CSP has been

provided, and then more specialized theories about rank functions, maintaining of rank

functions, authentication, and secrecy, have been provided on top of this basic theory,

initially in [27], with further developments in [15] and [29]. For example, the proof

rules given in Figures 7.1 to 7.6 are included (and their soundness established) within

the theory files. The result is a proof environment for proposing rank functions and

verifying protocol descriptions. Furthermore, by providing a ‘blank’ rank function

to the theorem prover, it is possible to generate all of the constraints that must be

true of any rank function that is to be maintained by the protocol agents. If these are

contradictory, then the contradiction may correspond to a protocol flaw (see e.g. [29]).

Conversely, the conditions may naturally suggest a rank function.

7.6. SUMMARY 199

ρ(u) = 1

ρ(n) = 1

ρ(k) =

0 if k = KAB

or k = ServerKey(A)
or k = ServerKey(B)

1 otherwise

ρ({m}k) =

0 if {m}k = {NB}KAB

or {m}k = {b.KAB.n.NB}ServerKey(a)

∧ (b 6= B ∨ n 6= NA ∨ a 6= A)
1 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(Running Initiator.s) = 1

ρ(Commit Responder.s) =

{
0 if s = B.A.NA.NB.KAB

1 otherwise

Figure 7.17: Rank function for authentication of the Yahalom protocol IV

The second form of mechanical assistance is provided by RankAnalyser, a tool that

automatically constructs a rank function for a protocol. It makes use of results [39] that

allow the space of facts involved in a protocol to be partitioned into a finite number of

equivalence classes. It then constructs a ‘minimal’ rank function by identifying those

facts that must have positive rank, and gives a rank of 0 to all the others – all facts

in an equivalence class will have the same rank, so a rank need only be computed

once for each class. If the resulting rank function meets all the conditions required for

correctness of the protocol, then the verification is complete. However, some message

that is deduced to have positive rank might also be required to have rank 0, and this

gives a contradiction and establishes that no suitable rank function can exist. In this

case, the contradiction might indicate an attack.

One advantage of the rank function approach is that it does not suffer from

the state explosion problem. Both forms of mechanical assistance mentioned here

are appropriate for verifying networks of arbitrary size, and with arbitrarily many

concurrent executions of the protocol.

7.6 Summary

This chapter has introduced the rank-function technique, initially given in [86]. This

technique is used for establishing that certain events in a protocol execution cannot

occur, or can only occur under particular circumstances. The idea is to provide a

200 CHAPTER 7. THEOREM PROVING

function that assigns a value or rank to facts and to signals, such that only those

with positive rank can arise in a protocol execution: if agents only receive facts of

positive rank, then they can only ever produce facts and signals of positive rank. Thus

verification of the overall protocol is reduced to proof obligations on each of the

components separately.

The laws of CSP allow different cases to be considered separately, and hence to

be verified with different rank functions. The different cases often reflect the kind of

informal reasoning that might be made about the various cases to be considered, and

the CSP proof can be seen as making the argument precise. There is also PVS support

for the construction of proofs.

Construction of a rank function can provide some insight into why a protocol is

correct, and perhaps what might go wrong if aspects of the protocol are changed.

Alternatively, it might be possible to construct a rank function automatically. This

will be quicker, and also serves as a proof, but it provides less insight as to why the

protocol is correct, since the resulting rank function is given simply as an enumeration

of the ranks of all of the facts without any further structure. However, it will provide

confidence to underpin a search for the simplest rank function if further understanding

is required.

202 CHAPTER 7. THEOREM PROVING

Chapter 8

Simplifying transformations

In previous chapters we have seen how we can analyze small security protocols.

However, most commercial protocols are considerably more complicated than those

we have seen so far. For example, the CyberCash Main Sequence protocol is as in

Figure 8.1; those fields whose names finish with an underscore are abbreviations,

defined in Figures 8.2 and 8.3. This is a protocol for carrying out commercial

transactions over the internet between a customer and a merchant. It is designed

to provide many functions within a single protocol, including secrecy of sensitive

information (such as customer card numbers) and authentication for the involved

parties. This protocol contains dozens of fields, and in one place, six levels of nested

cryptography.

This extra complexity of such protocols makes analysis much more difficult: if we

try to use a model checker, the complexity leads to an explosion in the state space and

the message space; if we try to do a direct proof, the complexity makes the protocol

harder to understand – it is very hard to see how the protocol is supposed to work, let

alone verify it.

8.1 Simplifying transformations for protocols

However, it will often appear plausible that much of the complexity of a large protocol,

such as that given in Figure 8.1, could be removed without altering its security: some of

the fields and some of the nested encryption might appear to be irrelevant to security;

for example, in the CyberCash protocol, it appears as though the field representing

the customer’s postal code is not relevant to the secrecy of the customer’s credit card

number (we might require that the postal code be authenticated, but that is a different

question). If we could prove that this complexity is indeed not needed for the security

of the protocol, then it would be enough to analyze the protocol with this complexity

removed. This is the question we address in this chapter. We identify a number of

simplifying transformations on protocols that have the property that if there is an attack

upon the original protocol (i.e. it is insecure) then there is also an attack upon the

simplified protocol; we call transformations with this property ‘safe’ because they do

203

204 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

Message 1 M → C : Accepts . MerchantAmount . MerchantAmount2Optional .

MerchantCcId . MerchantOrderId . MerchantDate .

MerchantSwVersion . Note . Payload . PayloadNote . Type .

UrlCancel . UrlFail . UrlPayTo . UrlSuccess .

MD5(Payload) . MerchantSignedHashKey .

MerchantSignedHash

Message 2 C → M : CyberKey . Date . Id . MerchantCcId . MerchantDate .

MerchantSignedHashKey . OrderId . ServiceCategory .

Transaction . Type . PrHash . PrSignedHash .

OpaqPrefixCH1 . OpaqueCH1

Message 3 M → CB : CyberKey . MerchantCcId . MerchantCyberKey .

MerchantDate . MerchantTransaction . ServiceCategory .

OpaqPrefixCH1 . OpaqueCH1 .

MerchantOpaqPrefixCM1 . MerchantOpaqueCM1

Message 4 CB → M : MerchantCcId . MerchantTransaction . MerchantDate .

ServiceCategory . MerchantOpaqueCM6 . OpaqueCM6

Message 5 M → C : Date . MerchantCcId . MerchantDate . MerchantMessage .

MerchantResponseCode . MerchantSwVersion . Id .

ServiceCategory . Transaction . Type . PrHash .

PrSignedHash . OpaqueCM6

Figure 8.1: The CyberCash Main Sequence protocol

not hide any protocol flaws. They are safe from the point of view of protocol analysis.

It means that if we can verify the simplified protocol, we will have verified the original

protocol.

Note that the property of being safe is unidirectional: it is possible to apply

safe simplifying transformations in such a way as to introduce new attacks, by

oversimplifying the protocol. This will depend on the nature of the simplification, and

on the property we are concerned about. We need to use our experience and intuition

to avoid oversimplifying. To quote Albert Einstein: ‘Everything should be made as

simple as possible, but no simpler.’

The idea will be, starting from the original protocol, to apply as many safe

simplifying transformations as possible, trying to avoid introducing new attacks, and

then to analyze the simplified protocol. If the simplified protocol is secure, then so is

the original; if, however, our analysis discloses an attack upon the simplified protocol,

we have to consider whether there is a corresponding attack on the original protocol

(by effectively undoing all the simplifying transformations); if there is such an attack,

then clearly the original protocol is flawed; otherwise, we have oversimplified, so we

have to try again.

Our approach is to identify a function f on the facts of the original protocol P,

8.1. SIMPLIFYING TRANSFORMATIONS FOR PROTOCOLS 205

MerchantSignedHashKey =̂ MD5(PK(M)),

MerchantSignedHash =̂
{MD5(Accepts . MerchantDate . MerchantAmount . MerchantCcId .

MerchantOrderId . MerchantSignedHashKey . Note . Type .
UrlCancel . UrlFail . UrlPayto . UrlSuccess)}SK(M),

PrHash =̂
MD5(Accepts . Date . MerchantAmount . MerchantCcId .

MerchantOrderId . MerchantSignedHashKey . Note . Type .
UrlCancel . UrlFail . UrlPayTo . UrlSuccess),

PrSignedHash =̂ MerchantSignedHash ,

OpaqPrefixCH1 =̂ {kcs}PKCyberKey,

OpaqueCH1 =̂
{Amount . CardCIdOptional . CardCityOptional .
CardCountryOptional . CardExpirationDate . CardName .
CardNumber . CardOtherFieldsOptional . CardPostalCodeOptional .
CardPrefixOptional . CardSalt . CardStateOptional .
CardStreetOptional . CardType . SwVersion . MD5(PK(C)) .
SignatureCH1 }kcs,

SignatureCH1 =̂
{MD5(Amount . CardCIdOptional . CardCityOptional .

CardCountryOptional . CardExpirationDate . CardName .
CardNumber . CardOtherFieldsOptional .
CardPostalCodeOptional . CardPrefixOptional . CardSalt .
CardStateOptional . CardStreetOptional . CardType .
CyberKey . Date . Id . MerchantCcId .
MerchantSignedHashKey . OrderId . PrHash .
PrSignedHash . SwVersion . Transaction . Type)}SK(C),

MerchantOpaqPrefixCM1 =̂ {kms}PKCyberKey(Merchant),

MerchantOpaqueCM1 =̂
{Date . DescriptionListOptional . Id . MerchantAmount . MerchantDba .
MerchantLocationOptional . MerchantMessage .
MerchantSignedHashKey . MerchantSwMessageOptional .
MerchantSwServerOptional . MerchantSwVersion .
MerchantUrlOptional . OrderId . PrHash . PrSignedHash .
RetrievalReferenceNumberOptional . ServerDateMerchantOptional .
TerminalIdFuture . Transaction . TransactionDescriptionOptional .
Type . MD5(PKCyberKey(Merchant)) .
MerchantSignatureCM1 }kms,

Figure 8.2: Abbreviations in the CyberCash protocol

206 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

MerchantSignatureCM1 =̂
{MD5(CyberKey . Date . Id . MerchantAmount . MerchantCcId .

MerchantCyberKey . MerchantDate . MerchantTransaction .
OrderId . PrHash . PrSignedHash .
ServerDateMerchantOptional . Transaction . Type)}SK(M),

MerchantOpaqueCM6 =̂
{AcquirerRefDataOptional . ActionCode .

Addn1ResponseDataOptional . AuthorizationCode . AvsInfoOptional .
CardCIdOptional . CardCityOptional . CardCountryOptional .
CardExpirationDate . CardName . CardNumber .
CardPostalCodeOptional . CardPrefixOptional . CardStateOptional .
CardStreetOptional . CardType . Date . DebuggingInfoOptional . Id .
MerchantMessage . MerchantSignedHashKey .
MerchantSwMessageOptional . MerchantSwSeverityOptional .
OrderId . ProcessorErrorCodeFuture . PrHash . PrSignedHash .
MerchantResponseCode . ResponseDetailCodeFuture .
RetrievalReferenceNumberOptional . ServerDate . TerminalIdFuture .
Transaction . Type}kms,

OpaqueCM6 =̂
{Amount . AuthorizationCode . CardCIdOptional . CardCityOptional .

CardCountryOptional . CardExpirationDate . CardName .
CardNumber . CardOtherFieldsOptional . CardPostalCodeOptional .
CardPrefixOptional . CardSalt . CardStateOptional .
CardStreetOptional . CardTypeOptional . MerchantDba .
MerchantLocationOptional . MerchantUrlOptional .
Message . OrderId . ResponseCode . ServerDate . SwMessageOptional .
SwSeverityOptional . TransactionDescriptionOptional}kcs.

Figure 8.3: Abbreviations in the CyberCash protocol

describing how facts are simplified. We then lift this function to traces (i.e. finite

sequences of messages), by pointwise application. In order for the transformation

to be safe, we require that if tr is a trace representing an attack upon the original

protocol, then f (tr) is an attack upon the simplified version. Proving this for a particular

simplification f will consist of two things: proving that for every trace tr of P, f (tr) is

a trace of the simplified version of P; and that if a trace tr constitutes an attack upon P,

then f (tr) constitutes an attack upon the simplified version of P.

In the next section we describe a collection of simplifying transformations that

we are interested in, and describe safety conditions that are sufficient to establish

that a transformation is safe. In Section 8.3 we describe a number of simplifying

transformations that meet these conditions:

• removal of encryption;

8.2. TRANSFORMATIONS ON PROTOCOLS 207

• removal of hash function application;

• removal of some fields in protocol messages;

• renaming of atoms;

• swapping atoms;

• moving fields out of encryptions.

In Section 8.4 we describe further transformations, to split messages into smaller

components, and to redirect them. In Section 8.5 we illustrate our techniques by

applying them to the CyberCash protocol, simplifying the protocol to a stage where

we can apply standard model checking and rank function analysis techniques.

8.2 Transformations on protocols

In this section we formalize how we represent transformations upon protocols; we then

state a result, giving sufficient conditions for a transformation to be safe.

Formalizing transformations

A transformation will be defined via a function

f : fact→ fact

which defines how facts in the original protocol are replaced by facts in the simplified

protocol. In the following, we will overload f to apply to several different types of

arguments.

We lift the function f to events as follows:

f (send.a.b.M) =̂ send.a.b.f (M),

f (receive.a.b.M) =̂ receive.a.b.f (M),

f (signal.c.a.b.M) =̂ signal.c.a.b.f (M),

and lift it to traces by applying it pointwise to each event in the trace.

As in earlier chapters, we can build a CSP representation of a system running the

original protocol by modelling each honest agent a by a process Usera, modelling the

intruder by a process Intruder(IK) where IK is his initial knowledge, and then defining

the complete system by:

System =̂
(
|||

a∈Honest
Usera

)
‖ Intruder(IK)

We now define the CSP representation of an honest agent a in the transformed

system, corresponding to the process Usera in the original system. We need a

process that sends or receives the message f (m) whenever the process Usera sends

208 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

or receives m. We therefore define the new representation to be the process f (Usera)
obtained by applying the alphabet renaming f to the description Usera. As well

as describing honest agents sending and receiving transformed messages, this also

captures the appropriate tests that agents might perform on the messages they receive.

Although the protocol agents are transformed in this way, the intruder remains

the same, so the transformed protocol must still execute in the original environment.

However, we have to transform the initial knowledge of the intruder; we will let IK′ be

this transformed initial knowledge. In most cases we will take IK′ to be f (IK), but in

some cases (where f removes some information from facts that should not be removed

from IK) some additional information will need to be included.

The complete transformed system is modelled, therefore, by:

System′ =̂
(
|||

a∈Honest
f (Usera)

)
‖ Intruder(IK′)

A general result for safe transformations

We now present a general result that gives sufficient conditions under which a

transformation is safe. In the next section we give particular examples of such

transformations.

In order to show that a particular transformation f is safe, we need any attack

upon System to correspond to an attack upon System′. We firstly require that if tr ∈
traces(System) then f (tr) ∈ traces(System′). We then require that if tr is an attack on

System, then f (tr) is a corresponding attack on System′.

The trace contributions of the protocol agents are transformed through f by the

alphabet renaming, and so will correspond under f . On the other hand, the contribution

of the intruder process is still given by the original deduction rules, together with the

new initial knowledge IK′. To show that the transformed deductions are possible for

the intruder, we need the following conditions to hold:

1 Given any set of facts S and a fact m, if m can be generated from S (what the

intruder has seen on the network) together with IK (what the intruder starts with),

then f (m) can be generated from f (S) (what the intruder has seen on the network

running the simplified protocol) together with IK′. More formally:

S ∪ IK ⊢ m⇒ f (S) ∪ IK′ ⊢ f (m)

2 The intruder’s initial knowledge in the simplified system should include

transformations of all the initial knowledge in the original system:

f (IK) ⊆ IK′

These two properties are called the safe transformation conditions. The second

property tells us how to choose the initial knowledge for the intruder in the transformed

system, given his initial knowledge in the original system.

It is possible to show that if these two conditions hold, then any trace tr of System

will be such that f (tr) is a trace of System′. This means that every trace of the original

8.2. TRANSFORMATIONS ON PROTOCOLS 209

system is ‘matched’ by one in the new system. We want to show that every attack

on the original system is ‘matched’ by one on the new system. An attack is simply

a violation of a security requirement expressed as a predicate on traces S(tr). For the

properties we are interested in – secrecy and authentication – we need to know under

what conditions the failure of tr to meet S means that f (tr) also fails to meet S. In

other words, when an attack on the protocol corresponds to an attack on the simplified

version.

The secrecy property considered in Chapter 3 between agents a and b is defined as

follows:

Secreta,b(tr) =

∀m • signal.Claim Secret.a.b.m in tr ∧ a ∈ Honest ∧ b ∈ Honest

⇒ ¬(leak.m in tr)

The full secrecy property for the entire network is given by

Secrecy(tr) = ∀ a, b ∈ USER • Secreta,b(tr)

This property is violated only when some fact m is claimed to be a secret, and is also

leaked within a single trace tr. But then the fact f (m) is both claimed to be a secret

and is leaked in the corresponding trace f (tr), and so the attack is preserved by the

simplifying transformation f . Thus if the simplified version is free of attacks, then so

too is the original version of the protocol. The result is that

System′ sat Secrecy(tr) ⇒ System sat Secrecy(tr)

It is always sufficient to analyze the system transformed under a safe simplifying

transformation.

We now consider authentication. An authentication property has the form

Authm1,m2(tr) = signal.c1.a.b.m1 precedes signal.c2.a.b.m2

which states that some claim c2 concerning some fact m2 can occur only after some

previous claim c1 about some fact m1. The facts m1 and m2 often overlap in some of

the information they contain, and indeed are often identical.

The transformed protocol will firstly be using f (m1) and f (m2) in place of m1 and

m2, so we should consider a transformed version of the requirement:

Authf (m1),f (m2)(tr) = signal.c1.a.b.f (m1) precedes signal.c2.a.b.f (m2)

However, if tr fails to meet Authm1,m2
then it does not automatically follow that f (tr)

will fail to meet Authf (m1),f (m2). The reason is that signal.c2.a.b.m2 might be preceded

by some other event signal.c1.a.b.m3 in tr, rather than m1, (so Authm1,m2
is violated),

yet if f (m3) = f (m1) then f (tr) does meet Authf (m1),f (m2) since f (m1) does precede

f (m2) in f (tr).
The difficulty arises from the fact that f might map many of the facts on which

authentication is required on to a single fact, turning an attack into a non-attack by

introducing the authenticated signal from elsewhere.

210 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

The condition that prevents this requires injectivity on the authenticated fact: that if

f (m) = f (m1) then m = m1 for every fact m. This is called the safe transformation for

authentication condition. This is of course dependent on the authentication property

required. In general, an authentication property will be a conjunction of Authm1,m2

properties. In this case, injectivity on each of the authenticated facts is required.

If the simplifying transformation f meets the safe transformation for authentication

condition, then attacks on authentication will be preserved by simplifying the protocol.

The result is that

System′ sat Authf (m1),f(m2) ⇒ System sat Authm1,m2

The simplified protocol can be analyzed for authentication, and if the verification

succeeds then the original protocol is correct with respect to that property.

8.3 Examples of safe simplifying transformations

In this section we present a number of transformations that satisfy the conditions from

the previous section, and are hence safe.

Removing encryptions

We begin by defining a transformation that removes some of the encryptions from

the protocol. We identify a set Encs of encrypted messages such that all encrypted

components {m}k from Encs that appear in the protocol should be replaced with the

body m. The transformation function f is as follows:

f (a) =̂ a for a ∈ Atom,

f (m1.m2) =̂ m1.m2,

f ({m}k) =̂ f (m), if {m}k ∈ Encs,
{f (m)}k, otherwise,

f (g(|m|)) =̂ g(|f (m)|)

The interesting case is the case for {m}k with {m}k ∈ Encs, where the outermost

encryption is stripped off; most of the other cases simply apply the function recursively.

We define the intruder’s initial knowledge in the transformed protocol as the result

of applying the simplifying function to his knowledge in the original protocol:

IK′ =̂ f (IK)

It is straightforward to show that f satisfies the safe transformation conditions. Hence,

it follows from the previous sections that it is a safe transformation with respect to

secrecy. In other words, if s is a secret even with some encryptions removed, then it

must be secret in the original protocol.

Further, f is clearly injective on atoms and concatenations of them, so we can use

the safe transformation for authentication condition to deduce that this transformation

8.3. EXAMPLES OF SAFE SIMPLIFYING TRANSFORMATIONS 211

is a safe transformation with respect to agreement on sequences of atoms. For example,

in the Yahalom protocol, authentication requires agreement on na.nb.kab. This is a

sequence of atoms, so a verification could be attempted in a version of the protocol

simplified by using a transformation that removes encryption.

The way this simplifying transformation will be used in practice is to identify a

particular encryption in the protocol description that we think is unnecessary, and to

take f to be the function that removes this encryption; that is, we take Encs to be

the set of all instances of the encrypted component in question. Note though, that

if messages in Encs appear elsewhere in the protocol description – that is, another

encrypted component in the protocol has the same form as the one we are simplifying

– then they must also be simplified.

Removing some atomic or hashed fields

We now define a transformation that completely removes some fields from the protocol.

It turns out that we must restrict these fields to being either atoms that are not keys, or

the application of hash functions. Formally, we let

M ⊆ fact

be the set of such messages, and assume that every element in M is either an atomic

fact that is not a key, or of the form g(|m|) for some hash function g.

In order to define this transformation, we need to specify how it acts upon a message

that is to be removed, leaving an ‘empty message’. The fact datatype has no concept

of an ‘empty fact’, so we model such ‘empty facts’ by a distinguished atomic value nil.

We define the transformation as follows:

f (m) =̂ nil if m ∈ M,

f (a) =̂ a for a ∈ Atom,

f (m1.m2) =̂ f (m1), if f (m2) = nil,
f (m2), if f (m1) = nil,
f (m1).f (m2) otherwise,

f ({m}k) =̂ nil, if f (m) = nil,
{f (m)}k, otherwise,

f (g(|m|)) =̂ nil, if f (m) = nil,
g(|f (m)|), otherwise.

We adopt a convention from functional programming languages such as Haskell,

namely that the patterns in the definition are matched from top to bottom, so that a

definition further down the page will be applied only if no earlier definition applies.

Thus for messages m ∈ M the first line of the definition applies.

For composite messages, the definition gets applied recursively to the

subcomponents; if either member of a pair gets removed in this way, then we are

left with the other member of the pair; if all of the body of an encryption or a hash

function application gets removed, then the encryption or hash function is removed.

212 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

We define the intruder’s initial knowledge in the transformed protocol by:

IK′ =̂ f (IK) ∪ {nil}

Note that we assume the intruder can produce nil, i.e. an empty message.

Our definitions satisfy the safe transformation conditions. It follows that this is a

safe transformation with respect to secrecy. Note that the transformation is safe even

if we remove a field that we are trying to prove is secret; however, in this case the

secret will be renamed to nil, which is in the intruder’s initial knowledge, and so this

transformation will introduce a new attack: such a transformation is safe but useless.

If all the values upon which agreement is intended are atoms or their

concatenations, and none are removed, then the transformation satisfies the safe

transformation for authentication condition, and so we deduce that this is a safe

transformation with respect to agreement on such values. The above condition simply

states that if you want to be sure that the protocol guarantees agreement on a particular

field, then your simplification shouldn’t remove that field!

In practice, we will use this transformation to remove all fields of a particular type:

to remove one field we would have to define M to be all values with which that field

could be instantiated, i.e. all values of that type; this would have the effect of removing

all fields of the type.

For example, all the nonces could be removed from the description of the Yahalom

protocol, resulting in the following simplification:

Message 1 a→ b : a

Message 2 b→ s : b.{a}ServerKey(b)

Message 3 s→ a : {b.kab}ServerKey(a).{a.kab}ServerKey(b)

Message 4 a→ b : {a.kab}ServerKey(b)

This simplified protocol guarantees that the key kab is secret. Hence this secrecy

property is also true for the full Yahalom protocol.

Coalescing atoms

Our next transformation is one that coalesces certain pairs of atoms, replacing them by

the first. This is typically used to remove redundancy in the protocol description. We

define the transformation with respect to a set of pairs of atomic facts:

Pairs : P(Atom× Atom)

the idea being that for each (m1, m2) ∈ Pairs, any occurrence of the pair m1.m2 is

replaced by m1.

We need the following condition upon Pairs:

∀(m1, m2) ∈ Pairs • IK′ ∪ {m1} ⊢ m2

that is, the atom removed can be deduced from the atom remaining and the intruder’s

initial knowledge. If we did not have this condition, then removing the atom m2

8.4. STRUCTURAL TRANSFORMATIONS 213

would remove a possible source of information for the intruder, perhaps rendering

the simplified protocol secure where the original was not. We will therefore tend to

use this transformation in two situations: where the atom removed is in the intruder’s

initial knowledge, and where the atom removed is equal to the one remaining.

We formalize the transformation as follows:

f (a) =̂ a for a ∈ Atom

f (m1.m2) =̂ m1, if (m1, m2) ∈ Pairs,
f (m1).f (m2), otherwise,

f ({m}k) =̂ {f (m)}k,

f (g(|m|)) =̂ g(|f (m)|)

We define the intruder’s initial knowledge in the transformed system by:

IK′ =̂ f (IK)

Our definitions satisfy the safe transformation conditions. Hence we deduce that this is

a safe transformation with respect to secrecy. It also meets the safe transformation for

authentication condition provided f is injective on the messages upon which agreement

is intended.

Other transformations

There are a number of other safe transformations. They all meet the safe

transformation condition, and so they are all appropriate for investigating secrecy.

Furthermore, they all meet the safe transformation for authentication condition with

respect to any authentication requirement concerned only with atomic facts and their

concatenations (which is true for almost all authentication requirements in practice).

These transformations include the following:

• a transformation that removes some of the hash functions from the protocol: this

transformation is very similar to that for removing encryptions;

• a transformation that uniformly renames atoms in protocol messages, and is

injective on facts to be authenticated;

• a transformation that moves fields outside the body of encryptions;

• a transformation that swaps particular pairs of atoms when they appear next to

one another: this transformation is very similar to that for coalescing atoms.

8.4 Structural transformations

We now consider two classes of transformations that are not formed by simple

renaming of messages within the protocol, but instead change the structure of the

protocol: we consider a transformation that splits a single message into two, and

214 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

another that replaces two messages with a single message, redirecting a message that

is sent via a third party so that it is sent direct.

We begin by describing message-splitting transformations. The idea is that if we

have a fact m1.m2 that is transmitted in a protocol run, then we replace this with a pair

of facts, m1 and m2 respectively.

Such a transformation can be advantageous when model checking, because

it reduces the size of the message space (the number of distinct messages in the

model); however, there is a trade-off, because it increases the size of the state space;

our experiences using the model-checker FDR suggests that it is a worthwhile

transformation for moderately large messages. It is perhaps more useful when used in

combination with a redirecting transformation, defined later in this section.

We define the transformation with respect to a set Pairs of pairs of messages, the

idea being that Pairs represents those messages that should be split.

We can define a process User′A representing the behaviour of an agent A,

corresponding to the process UserA in the original system. Whenever the

process UserA sends or receives a message m1.m2 from Pairs, the process User′A will

send or receive the two messages m1 and m2 one after the other.

The net effect of this is to split messages in the protocol into a number of smaller

messages that are sent one after the other. For example, messages 3 and 4 of the

Yahalom protocol could be divided in this way, to yield:

Message 1 a→ b : a.na

Message 2 b→ s : b.{a.na.nb}ServerKey(b)

Message 3a s→ a : {b.kab.na.nb}ServerKey(a)

Message 3b s→ a : {a.kab}ServerKey(b)

Message 4a a→ b : {a.kab}ServerKey(b)

Message 4b a→ b : {nb}kab

We now consider a class of transformations that we call redirecting

transformations. In many protocols, some information is to be sent from an agent a

to another agent b; however, rather than sending this message direct, the message is

sent via some third party c; c does nothing with this message except forward it. For

example, consider the protocol:

Message ac A→ C : M

Message cb C → B : M

(where ac and cb are message numbers; the names are intended as mnemonics for the

sender and receiver). The redirecting simplification will adapt the protocol so that this

message is sent direct:

Message ab A→ B : M

Such a transformation produces very significant gains when model checking,

because in the original protocol it is possible to interleave c’s events with a’s and b’s in

many different ways; further, c should be willing to accept any message for m, because

it performs no checks on this message, which markedly increases the state space. An

8.5. CASE STUDY: THE CYBERCASH MAIN SEQUENCE PROTOCOL 215

experiment applying this transformation to the Otway-Rees protocol reduced the time

FDR took to analyze a system from 7 minutes to 7 seconds.

For example, in combination with the previous transformation, the Yahalom

protocol can be transformed to the following (which we considered in Chapter 5):
Message 1 a→ b : a.na

Message 2 b→ s : b.{a.na.nb}ServerKey(b)

Message 3a s→ a : {b.kab.na.nb}ServerKey(a)

Message 3b s→ b : {a.kab}ServerKey(b)

Message 4b a→ b : {nb}kab

Both these transformations can be formally defined on CSP protocol descriptions.

It is then possible to obtain results about the preservation of attacks. Since facts are not

renamed by either of these transformations, the signals in the transformed protocol are

exactly the same as in the original. It turns out that if tr is a trace of the original protocol

violating a secrecy or authentication property, then there is a corresponding trace tr′

in the transformed protocol that violates the same property. The intruder can mount

essentially the same attack since he still has access to essentially the same information

(though he might obtain it in a different way). Hence both of the above restructuring

transformations preserve attacks on both secrecy and authentication specifications.

One point to note is that the placement of the signal events in the transformed

protocol should correspond to their placement in the original protocol, although this

might not be the natural placement for the signals in the transformed protocol. For

instance, consider the case of testing whether s is authenticated to b in the example

protocol above. The normal placement for s’s running signal would be just before

message 3b in the transformed protocol; but this does not correspond to the natural

placement of the signal in the original protocol, which would be before message 3a.

We will see a concrete example of this when we consider the CyberCash protocol in

the next section.

8.5 Case study: The CyberCash Main Sequence

protocol

We illustrate our simplifying transformations by sketching how they can be used to

simplify the CyberCash Main Sequence protocol.

The protocol is designed to allow credit-card purchases to take place securely

between a customer and merchant, with the aid of CyberCash who acts as a trusted

third party. The customer and merchant each generate a session key, which they encrypt

with CyberCash’s public key; they then use this session key to encrypt data sent to

CyberCash, for secrecy. They each sign some data with a secret key, for authentication.

CyberCash verifies the transaction, and sends acknowledgements to each, encrypted

with the appropriate session key.

The goals of the protocol are not well documented, but it is reasonable to assume

that the credit card number is intended to remain secret, that the customer and merchant

should agree on the details of the transaction and the amount payable, and that the

customer and merchant should be authenticated to CyberCash.

216 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

In order to make the simplifying transformations easier to apply (particularly the

swapping and coalescing pairs transformations), we have produced tool support as an

extension to Casper. The tool takes in a description of the complete protocol and a

specification of a sequence of transformations, and applies them in order.

Tool support

The syntax for the protocol description is precisely as in Casper; we describe the syntax

for defining the transformations below.

The transformations in Section 8.3 were defined using values; however, protocols

are normally described in terms of variables, which can be instantiated with different

values (of the appropriate types) in different runs. We want to define transformations

that are applied uniformly, independent of the values with which variables are

instantiated. Therefore, the tool supports transformations defined in terms of types,

and applies these transformations to all variables and values of the appropriate types.

Here are some examples of simplifying transformations as they should appear in

the input file:

#Simplifications

RemoveFields [Nonce, TimeStamp]

RemoveEncryption {Nonce, Agent}{PublicKey}

RemoveHash f(Nonce, Nonce, TimeStamp)

Coalesce (Agent, Agent)

SwapPairs (Nonce, Agent)

The effect of these transformations is as follows:

RemoveFields [Nonce, TimeStamp] This removes every variable of type Nonce

or TimeStamp from the protocol description; it corresponds to the transformation

of Section 8.3.

RemoveEncryption {Nonce, Agent}{PublicKey} This transformation removes

a level of encryption from the protocol description, removing the encryption

from all messages of the form {N.A}K for N in Nonce, A in Agent and K in

PublicKey (represented by the notation ‘{Nonce, Agent}{PublicKey}’).
This is the transformation of Section 8.3 where Encs is taken to be this set.

RemoveHash f(Nonce, Nonce, TimeStamp) This transformation removes some

hash functions from the protocol description, replacing every hashed message of

the form f(N.N′.T) for N, N′ in Nonce, T in TimeStamp by the corresponding

unhashed message.

Coalesce (Agent,Agent) This transformation coalesces adjacent pairs of agent

identities. This is the transformation described in Section 8.3 where Pairs is

taken to be the set of all pairs of agent identities.

SwapPairs (Nonce, Agent) This transformation swaps adjacent pairs of nonces

and atoms.

8.5. CASE STUDY: THE CYBERCASH MAIN SEQUENCE PROTOCOL 217

Simplifying the protocol

The complete protocol contains dozens of fields, but very few seem directly relevant

to the security of the protocol. Many fields are included solely for reasons of

functionality (e.g. CardCityOptional). Our first simplification is therefore a ‘remove

fields’ simplification, to remove all atomic fields other than those that we believe

are necessary: the fields that are retained are the price of the transaction according

to each agent (Amount and MerchantAmount), the customer’s credit card number

(CardNumber), agents’ identities, keys, and transaction numbers (which act as a kind

of run identifier). (If we were testing whether the protocol guarantees timeliness, we

would want to retain the timestamps.)

The protocol description contains many occurrences of the fields PrSignedHash

(also known as MerchantSignedHash) and PrHash . These seem to duplicate

security already present, and so appear unnecessary. Several hashes of public keys are

passed around by the protocol; these similarly seem to be unnecessary for the security

of the protocol. Our second transformation is to remove all these fields, using the

transformation of Section 8.3.

The next simplification is to remove all applications of the hash function MD5,

using the transformation of Section 8.3; this hash function is simply used to reduce the

size of messages, for efficiency.

This produces the following simplified version of the protocol:

Message 1 M → C : MerchantAmount . MerchantCcId

Message 2 C→ M : Id . MerchantCcID . Transaction . MerchantAmount .

MerchantCcId . {kcs}PKCyberKey . OpaqueCH1

Message 3 M → CB : MerchantCcId . MerchantTransaction .

{kcs}PKCyberKey . OpaqueCH1 .

{kms}PKMerchantCyberKey . MerchantOpaqueCM1

Message 4 CB→ M : MerchantCcId . MerchantTransaction .

{CardNumber . MerchantAmount .

MerchantCcId . Id . Transaction}kms .

{CardNumber . Amount}kcs

Message 5 M → C : MerchantCcId . Id . Transaction . MerchantAmount .

{CardNumber . Amount}kcs

where

OpaqueCH1 =

{ Amount . CardNumber .
{ Amount . CardNumber . Id . MerchantCcId .

MerchantAmount . MerchantCcId . Transaction

}SK(C)

}kcs

218 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

MerchantOpaqueCM1 =

{ Id . MerchantAmount . MerchantAmount . MerchantCcId . Transaction .
{ Id . MerchantAmount . MerchantCcId .

MerchantAmount . MerchantCcId . Transaction

}SK(M)

}kms

There is still nested encryption within OpaqueCH1 and MerchantOpaqueCM1 :

an encryption with a private, asymmetric key, and an encryption with a symmetric

shared key. The encryption with the asymmetric key acts as a signature to provide

authentication, whereas the encryption with the symmetric key is to ensure the secrecy

of fields such as CardNumber. Both these encryptions are essential to the security of

the protocol. However, if we consider the two security properties separately, we can

perform different simplifications for each, in each case removing one encryption while

retaining the other.

Simplifying for secrecy analysis

In order to simplify the protocol for secrecy analysis, we begin by removing

the signatures. In the resulting protocol, several fields are repeated within some

encryptions. By swapping pairs of atoms around we can bring together like atoms,

which can then be coalesced to a single atom. Doing this produces the following

protocol:

Message 1 M → C : MerchantCcId . MerchantAmount

Message 2 C→ M : Id . MerchantAmount . MerchantCcId .

Transaction . {kcs}PKCyberKey .

{Amount . CardNumber . MerchantCcId . Id .

MerchantAmount . Transaction}kcs

Message 3 M → CB : MerchantCcId . MerchantTransaction . {kcs}PKCyberKey .

{Amount . CardNumber . MerchantCcId . Id .

MerchantAmount . Transaction}kcs .

{kms}PKMerchantCyberKey .

{Id . MerchantAmount . MerchantCcId .

MerchantTransaction . Transaction}kms

Message 4 CB→ M : MerchantCcId . MerchantTransaction .

{CardNumber . MerchantAmount . Id .

MerchantCcId . Transaction}kms .

{CardNumber . Amount}kcs

Message 5 M → C : MerchantCcId . MerchantAmount . Transaction . Id .

{CardNumber . Amount}kcs

8.5. CASE STUDY: THE CYBERCASH MAIN SEQUENCE PROTOCOL 219

Note that the term

{kcs}PKCyberKey .
{Amount . CardNumber . MerchantCcId . Id . MerchantAmount . Transaction}kcs

appears in both messages 2 and 3. We can use the swapping pairs and splitting

transformations to transform these messages to:

Message 2a C → M : Id . MerchantAmount . MerchantCcId . Transaction

Message 2b C → M : {kcs}PKCyberKey .

{Amount . CardNumber . MerchantCcId . Id .

MerchantAmount . Transaction}kcs

Message 3a M → CB : {kcs}PKCyberKey .

{Amount . CardNumber . MerchantCcId . Id .

MerchantAmount . Transaction}kcs

Message 3b M → CB : MerchantCcId . MerchantTransaction .

{kms}PKMerchantCyberKey .

{Id . MerchantAmount . MerchantCcId .

MerchantTransaction . Transaction}kms

We can then use a redirecting transformation to replace messages 2b and 3a by a single

message from C to CB. Similarly, we can use a combination of swapping, splitting and

redirecting so that the term {CardNumber . Amount}kcs is sent directly from CB to C.

This gives the following fully simplified version of the protocol:

Message 1 M → C : MerchantCcId . MerchantAmount

Message 2a C → M : Id . MerchantAmount . MerchantCcId . Transaction

Message 2b C → CB : {kcs}PKCyberKey .

{Amount . CardNumber . MerchantCcId . Id .

MerchantAmount . Transaction}kcs

Message 3 M → CB : MerchantCcId . MerchantTransaction .

{kms}PKMerchantCyberKey .

{Id . MerchantAmount . MerchantCcId .

MerchantTransaction . Transaction}kms

Message 4a CB→ M : MerchantCcId . MerchantTransaction .

{CardNumber . MerchantAmount . Id .

MerchantCcId . Transaction}kms

Message 4b CB→ C : {CardNumber . Amount}kcs

Message 5 M → C : MerchantCcId . MerchantAmount . Transaction . Id

Simplifying for authentication analysis

In order to simplify the protocol for authentication analysis, we remove the encryptions

using the symmetric keys kcs and kms. We can continue to simplify the protocol

220 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

as above, using the swapping pairs and coalescing pairs transformations to remove

duplicated atoms, and then using the splitting and redirecting transformations to send

certain terms direct. This produces the following version of the protocol:

Message 1 M → C : MerchantCcId . MerchantAmount

Message 2a C → M : Id . MerchantAmount . MerchantCcId .

Transaction . Amount . CardNumber

Message 2b C → CB : {kcs}PKCyberKey .

{Amount . CardNumber . MerchantCcId . Id .

MerchantAmount . Transaction}SK(C)

Message 3 M → CB : MerchantCcId . MerchantTransaction .

{kms}PKMerchantCyberKey . Id .

MerchantAmount . Transaction .

{Id . MerchantAmount . MerchantCcId .

MerchantTransaction . Transaction}SK(M)

Message 4a CB→ M : MerchantCcId . MerchantTransaction .

{CardNumber . MerchantAmount . Id .

MerchantCcId . Transaction}kms

Message 4b CB→ C : {CardNumber . Amount}kcs

Message 5 M → C : MerchantCcId . MerchantAmount . Transaction . Id

Analysis of the simplified protocol

We analyzed the simplified version of the Main Sequence protocol using Casper

and FDR, testing whether the protocol kept the customer’s credit card number and

the session keys secret, and testing whether the two agents were authenticated to

CyberCash and to one another with agreement on the amount of the transaction.

We found a rather weak authentication attack upon the simplified protocol, where

the intruder watches a run of the protocol up until message 4b, intercepting message 4a,

and then fakes the message 5 from what he has seen in previous messages. This

can be traced back to an attack on the full protocol, where the intruder intercepts

message 4 and fakes message 5. The customer thinks he has completed the protocol

run successfully, but the merchant thinks the run was broken off after message 3. It

is arguable whether this should be classified as an attack; however, it is certainly a

behaviour of which we should be aware. We are, however, able to verify that whenever

the customer completes a protocol run, the merchant has progressed at least as far as

message 3.

Our analysis has revealed some hidden assumptions about the operation of the

protocol; without these assumptions, the protocol is insecure.

1 The identity numbers – the fields Id and MerchantCdId – are known to all

agents, and so when an agent receives another’s identity number, he can tell

whether it is the correct number. If certificates were used, these could be used

8.6. SUMMARY 221

to link the identities to the identity numbers. Without this assumption, there

are attacks where the intruder replaces one identity number with another. In

one attack the merchant sells to the intruder, and the intruder begins another

run impersonating the merchant and selling to the customer; the result is that

CyberCash believes the transaction is between the merchant and customer and

so debits the customer’s account, but the intruder receives the goods. In the other

attack the customer tries to buy from the intruder, and the intruder impersonates

the customer in a run with the real merchant; CyberCash believes the transaction

is between the real merchant and customer, and the merchant will deliver the

goods to the customer; it is hard to see what the intruder gains from this attack,

but it is a behaviour of which we should be aware.

2 The keys PKMerchantCyberKey and PKCyberKey are not public keys, known

by everyone, but are in fact private, shared, asymmetric keys: CyberCash shares

a PKMerchantCyberKey with each merchant, and a PKCyberKey with each

customer. This is important, as these keys are used as part of the authentication

mechanism.

Failure to find an attack using a model-checker does not necessarily imply that the

protocol is secure: there might be attacks upon systems running the protocol that are

larger than those analyzed; however, the model-checking results certainly improve our

confidence in the security of the protocol. It is then possible to carry out a rank function

analysis of each simplification of the protocol so as to prove the security properties

noted above; for example, the rank function appropriate for proving the claimed secrecy

property is in Figure 8.4. The full rank function analysis of both simplifications of the

protocol is included in Appendix C, establishing that the secrecy and authentication

properties indeed hold for the protocol.

The overall effect of these simplifications is to reduce the protocol to versions that

can be easily understood with respect to the properties under consideration. The main

aspects of the protocol have in each case been retained to ensure that it still meets its

original requirement, yet it is simple enough to apply standard analysis techniques.

8.6 Summary

In this chapter we have introduced the notion of safe simplifying transformations:

transformations that have the property of preserving attacks. We have produced

sufficient conditions for a transformation to be safe and used this result to show that

a number of transformations are indeed safe. We have illustrated these techniques by

applying them to a large commercial protocol, simplifying this down to a size that can

be modelled and analyzed. Attacks that are found can be traced back to the original

protocol to see if they are feasible.

The theory of safe simplifying transformations was originally presented in [60].

In order to make the simplifying transformations easier to apply (particularly the

swapping and coalescing pairs transformations), we have produced tool support as an

extension to Casper [58]. The tool takes in a description of the complete protocol and

a specification of a sequence of transformations, and applies them in order.

222 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

ρ0(u) = 1

ρ0(t) =

{
0 if t = CardNumber0
1 otherwise

ρ0(pk) =

{
0 if pk = pkCyberKey(mr) for mr ∈ HM

1 otherwise

ρ0(sk) =

{
0 if sk = skCyberKey(mr) for mr ∈ HM or sk = skCyberKey

1 otherwise

ρ0(shk) =

{
0 if shk ∈ KEYScu0

or shk ∈ KEYSmr for mr ∈ HM

1 otherwise

ρ({m}k) =

1 if k = pkCyberKey

or k = KEYSmr for some mr ∈ HM

or ρ(m) = ρ(k) ∧ (ρ(k) = 0 ∧ m = am.cn.mci.cu.ma.tr
⇒ merchant(mci) ∈ HM)

0 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

Figure 8.4: Rank function for verification of Simplified CyberCash Protocol Secrecy

property

The description of the CyberCash main sequence protocol is taken from the

description given in [12].

224 CHAPTER 8. SIMPLIFYING TRANSFORMATIONS

Chapter 9

Other approaches

9.1 Introduction

That security protocols required careful analysis was recognized very early on. It

was also realized that just eyeballing a design until you got bored and had failed to

spot an attack does not provide any good assurance that the design is sound. In this

chapter we provide an overview of approaches that have been proposed to make the

reasoning about security protocols more systematic and in many cases more formal

and automated.

We make no claim that this is an exhaustive survey but seek to give what we hope is

a representative sampling of techniques and give a flavour of the historical development

of the subject. The descriptions will necessarily be rather shallow, but we hope that this

will provide the reader with enough of an impression to pursue topics further if any take

their fancy.

In recent years the area has seen an explosive growth, with numerous formalisms

being brought to bear. Broadly speaking they fall into four main categories:

• logic-based

• model-checking, state enumeration

• proof-based

• cryptographic (provable security).

There has been a trend more recently to try to combine these. For example, bringing

together model-checking and proof-based techniques and tools looks to be a very

fruitful way to go, not just for security protocols but for the evaluation of critical

systems in general. Similarly, some recent work attempts to bring together the strengths

of formal and cryptographic techniques.

Security protocols were introduced with the 1978 paper of Needham and Schroeder

‘Using encryption for authentication in large networks of computers’ [68]. In this paper

the authors describe the use of symmetric and asymmetric cryptographic mechanisms

225

226 CHAPTER 9. OTHER APPROACHES

to achieve authentication and key distribution over a network and propose a number of

protocols, including early versions of their secret and public-key protocols. The paper

concludes with the remarkably prescient paragraph:

Protocols such as those developed here are prone to extremely subtle

errors that are unlikely to be detected in normal operation. The need for

techniques to verify the correctness of such protocols is great, and we

encourage those interested in such problems to consider this area.

The challenge has been taken up by many researchers and the problems posed

by these fascinating objects has stimulated the development of new conceptual

frameworks and tools. Even now, after over 20 years of intense study, security

protocols still conceal traps for the unwary and present us with open research

challenges.

9.2 The Dolev-Yao model

A significant early step in the development of the subject was the 1983 paper of Dolev

and Yao [25]. This laid the conceptual foundations of the subject by presenting the

basic intruder model that has been used in virtually all the work since, including our

own. Here the idea of an intruder with the ability to manipulate messages passing over

the system – deleting, replaying, faking, redirecting, and so on, limited only by the

cryptographic constraints – was set out. The paper also introduced the idea of viewing

the problem as a form of word problem.

9.3 BAN logic and derivatives

The BAN logic of authentication due to Burrows, Abadi and Needham [20] was

one of the first attempts to make the reasoning about the properties of security

protocols more systematic. The basic idea is to reason about the states of belief of

the (legitimate) agents involved. This involves understanding how such beliefs evolve

as new information is received. To this end, initial knowledge, assumptions and the

steps of the protocol are mapped into formulae in the logic in a process known as

idealization. It must be stressed that the BAN logic really is about authentication.

This seems obvious, given that the authors clearly describe it as such, but it is a fact

that often seemed to have been overlooked. Many researchers seem to have fallen into

the trap of ascribing more to the logic than was intended; in particular, to assume that

secrecy properties also fall out of a BAN analysis. We should also observe that the

BAN authors do not define the term authentication and indeed they quite explicitly

state that they are not defining it.

Another important point to stress is that BAN explicitly assumes that all principals

are honest. This is clearly not a universally applicable assumption, but a valid one

in some contexts. It was certainly appropriate for the client-server type context the

authors originally had in mind. It is however less appropriate in the distributed network

9.3. BAN LOGIC AND DERIVATIVES 227

environments prevalent today. If BAN is applied outside such contexts the results can

be seriously misleading, as exemplified by the Lowe attack on NSPK.

In a curious twist of history the authors did not use the term ‘belief’ in their original

writings. However they were urged to suggest a pronunciation of the triple turnstile

symbol |≡, and came up with ‘believes’. As a result, there has been a widespread

misconception about what the BAN authors had in mind.

The BAN logic provides an elegant and comparatively easy formalism to use. It has

proved to be a very useful tool in the design and analysis of protocols and, to borrow a

phrase from Roger Needham, ‘it has plenty of scalps under its belt’. Here we outline

the approach.

Examples of the formulae include:

P |≡ X

which is pronounced ‘P believes X’. More precisely it should be interpreted as meaning

that P has good reason to believe X. Another formula is

P
K
←→ Q

which is interpreted as: ‘the key K is good for communication between P and Q’. This

should be interpreted as meaning that K is only and will only be known to P and/or Q

(assuming always that P and Q do not compromise K). The formula

♯(X)

is pronounced ‘the term X is fresh’. The notion of freshness is delicate and has been

hotly debated. It is not really about how old the value is. BAN has a very weak

notion of time, with only the past and present epochs being distinguished. The present

means from the start of the current run under consideration. Note that some subtleties

lurk here: in an asynchronous universe the time at which a run starts is not necessarily

globally well-defined. Freshness is really more like the motion of ‘uniquely originated’

of the Strand Spaces approach (see below). That is, ♯(X) is really asserting, to quote

the BAN authors, ‘that X has not been sent in a message before the current protocol

run’.

P ⊳ X

‘P sees X’. Roughly P receives X. X might be a term inside a compound term and

might require decryption by P, in which case it is assumed that P has the appropriate

key.

P |∼ X

‘P once said X’. That P has in the past sent a message that contained X and furthermore

believed X at the time of sending.

Examples of the inference rules include:

P |≡ (P
K
←→ Q)

P ⊳ {X}K

P |≡ (Q |∼ X)

228 CHAPTER 9. OTHER APPROACHES

This should be interpreted as saying: if P believes that K is good for communication

with Q and he sees a message comprising X encrypted under K, then he is entitled to

believe that Q at some time uttered X. Note that the logic assumes that principals can

identify their own messages.

Or a rather more obvious, structural rule:

P |≡ (X, Y)

P |≡ X

This simply asserts that if P believes the concatenation of X and Y then he should

believe X.

Further rules deal with the notion of jurisdiction, which concern when agents have

the authority to make statements.

The protocol goals can also be formulated in the logic. For example, a key

establishment protocol would typically aim to achieve:

A |≡ (A
K
←→ B)

and

B |≡ (A
K
←→ B)

i.e. that A believes that K is good for communication with B and similarly for B. Some

protocols will strive to achieve more, for example:

A |≡ (B |≡ (A
K
←→ B))

i.e. that A believes that B believes K is good for communication between them.

A goal such as:

A |≡ (B |≡ X)

can be interpreted as A believes that B recently sent X. In particular it encodes the

weak notion of authentication: that B has recently been online. Here ‘recently’ should

be interpreted as since the beginning of the protocol run.

The idea then is to see if the protocol goals can be derived using the inference

rules from the formulae representing the initial assumptions and the protocol

steps. Failure to reach the required goals can indicate the need to change details

of the protocol or the need for further assumptions. Alternatively, the analysis

can sometimes identify places where the assumptions are unnecessarily strong

or the protocol is over-engineered, for example an unnecessary encryption of a

term.

The BAN logic has proved itself highly effective in this sense. However, for high-

assurance applications, the precise interpretation of a successful BAN analysis is not so

clear. The original semantics justifying the rules were found to be problematic, raising

questions like ‘can a principal believe something that is false?’ Improved semantics

have been provided subsequently, but the fact remains that it can still be quite difficult

to interpret the results of a BAN analysis.

The difficulties are exemplified by the Lowe attack on the Needham-Schroeder

Public-Key protocol. This protocol was given a clean bill of health by a BAN analysis

9.3. BAN LOGIC AND DERIVATIVES 229

and yet was much later found to harbour a serious vulnerability in the form of the

Lowe attack. There has been much debate since about whether this vulnerability is

a real attack and what it really tells us about BAN. In fact the protocol does support

an, albeit rather weak, form of authentication and it is this that the proof establishes:

namely Bob is assured that Anne is online recently, what is often referred to as entity

authentication.

It should also be stressed that the authors of the logic are careful to state that they

are assuming that protocol participants are honest and that, in particular, they do not

leak secrets. Of course in the Lowe scenario one of the players, namely Yves, does not

play by the rules, despite being a recognized user. But in fact the same attack will work

if the private key of an honest agent is compromised.

In many ways the BAN honesty of principals assumption is very natural and indeed

you have to make an assumption rather like this to get anywhere. At the very least, an

agent will have to assume that the party with whom he believes that he is interacting

will play by the rules. He presumably can determine whether he himself is playing

by the rules. Thus Bob, when he receives a message from Anne saying that she wants

to communicate with him, will assume that she will not cheat in this. But note that

we have to be very careful here: firstly Bob has to be able to authenticate messages

purporting to be from Anne. Secondly it should be the case that it is in Anne’s interests

to play by the rules if she is trying to communicate with Bob.

We see that we have to be very careful how these assumptions are framed: they

must be strong enough that we can establish the goals but not so strong that they

overlook vulnerabilities. The BAN trust assumption turns out to be too strong for some

applications: it is fine in a closed environment, like an operating system, in which it

may well be reasonable to assume that all principals will play by the rules. It is not

appropriate in an open environment, like the internet, in which principals may well

be both capable and motivated to cheat. Note that in Lowe’s scenario Anne and Bob

are both playing by the rules and it is with Anne (who is honest, but misguided about

whom she runs protocols with) that Bob thinks that he is running the protocal. Making

clear whom you are assuming to be honest in a situation in which the identities of other

remote principals is itself in question is rather delicate. Our assumptions are in danger

of getting mixed up with our proofs if we are not careful: we are trying to establish

results about the reliability of authentication and yet the assumptions we are relying on

depend on correctly establishing identities. We are thus in danger of establishing that

‘we have authentication as long as we have authentication’.

There are many subtle issues here and we refer the reader to the excellent papers

by Gollmann [35, 36] that discuss them in detail. For the moment it is sufficient to

note that there is a danger of misinterpreting the implications of a BAN analysis. In

particular there has been a tendency amongst later researchers to read too much into

a BAN analysis, for example to assume that the analysis of the NSPK protocol shows

that Bob can legitimately assume that the nonces Na and Nb remain secret to Anne and

Bob and go on to use them for re-authentication or key establishment.

Another observation is that the BAN logic takes the viewpoint of the legitimate

players: we study how their beliefs evolve as the protocol unfolds. Arguably a healthier

mindset from the point of view of trying to probe the protocol for flaws is to take

the hostile point of view. What really matters is what Yves can discover, not what

230 CHAPTER 9. OTHER APPROACHES

Anne and Bob suppose that he can or cannot discover. The situation is analogous

to the evaluation of a cryptographic algorithm: you need to adopt the mindset of the

cryptanalyst: assume that the algorithm can be broken and set about it, rather than

assume that it should be secure and try to construct a proof that it is. Indeed this is

reminiscent of the dilemma of being faced with a mathematical conjecture and having

to decide whether it is more effective to seek a counterexample or a proof.

A corollary of this observation is to notice that the intruder’s capabilities are never

explicitly defined in the BAN approach; they are implicit in the choice of inference

rules. By assuming that if Bob receives a message X encrypted under a key he believes

good for communication with Anne, then he should suppose that Anne said X, you are

in effect implicitly assuming that Yves cannot fabricate such a message. This is fine

up to a point, but if you want to tailor your model of Yves’s capabilities, for example

by allowing him to break keys after a certain time or being able to exploit algebraic

identities of the crypto algorithm, it becomes rather tricky.

The BAN logic is primarily about authentication. If you need to reason about other

properties, for example secrecy, anonymity, non-repudiation and so on, you need to

extend the logic or develop a new one. Similarly, if you want to incorporate new

cryptographic mechanisms you need to extend the rule set. An example of this is the

situation in which a key is formed as a function of a pair of values believed to be secret

– quite common in key establishment protocols. The original rules do not allow you to

establish formally that the derived key will be secret if the input values are. Indeed such

a rule is actually not trivial as it also depends on the nature of the combining function.

A constant function, to take an extreme example, would not do.

Various extensions have been proposed to deal with such situations, but

clearly you are unlikely ever to get a complete logic able to deal with all possible

security properties and mechanisms. Indeed, many of the extensions are found to

be too unwieldy for practical use. There are also issues of establishing that the

extensions do not introduce contradictions. Technically this requires extensions

to the underlying semantics to show consistency and completeness and so

on.

In summary, the BAN logic is undoubtedly seminal and has been highly influential

in the field. It has scored many successes and continues to be a useful tool in the

design and debugging of security protocols. It is, however, rather limited in its range

of applicability and for high-assurance applications and for more exotic properties and

mechanisms it is inappropriate. Abadi and Tuttle provided an early semantics for the

BAN logic in [3]. Notable extensions to the logic and its semantics include the GNY

and SVO logics [37, 98]. Automated support for BAN and related logics have been

provided by, for example, Brackin’s HOL-based tool [11].

9.4 FDM and InaJo

The earliest attempt to apply mainstream formal methods is due to Kemmerer in the

early 1980s [47] based on some earlier work of his on testing formal specifications. He

applied the formal method FDM with the formal specification language InaJo to the

problem. FDM treats the problem as a state machine, with conditional transition rules

9.5. NRL ANALYSER 231

corresponding to the protocols steps. Axioms can also be incorporated to represent

known properties of the encryption algorithms, for example the usual decryption

inverse to encryption property. The security properties were encoded as predicates on

the states, allowing secrecy properties in particular to be conveniently coded.

The approach had tool support in the form of a symbolic simulator called Inatest,

which allowed the user to exercise the specification and potentially find states that

violate the security invariants. In principle it is possible to perform inductive style

proofs that invariants are preserved under the various transitions of the system though

this seems not to have been done, presumably due to poor proof support at the time.

The approach met with rather limited success, mainly due to the immaturity of

such formal methods at that time. The tool support available then was not really up

to dealing with the subtlety and complexity associated with the analysis of security

protocols.

In more recent work, Kemmerer and colleagues apply a model-checker they

developed for the real-time concurrent system specification language ASTRAL for the

analysis of cryptographic protocols [48].

9.5 NRL Analyser

One approach that has been around for some time and is still going strong is Meadows’

NRL Analyser. This, too, breaks away from the logic-based approaches and treats the

problem, in the first instance at least, as a form of word problem. The steps of the

protocol are represented as conditional rewriting rules, along with various reduction

rules that correspond to the usual identities of the data-types (decryption inverse to

encryption and so on). The goals of the protocol are formalized as unreachability

theorems. This works very nicely for secrecy properties, where the problem can be

couched in terms of whether or not the intruder can deduce certain sensitive words.

For more subtle security properties, for example key agreement, the basic re-writing

approach has to be enhanced by representations of local state variables that serve to

encode the knowledge or beliefs of the principals. Thus the goal of key establishment

can be coded in terms of being able to reach a state in which Anne and Bob both know

the key. Of course, you also need to show the secrecy property – that the system cannot

reach a state in which Yves acquires knowledge of this key.

In essence then, the NRL Analyser is an equational re-writing tool, written in

Prolog. It also incorporates automated support to assist the user in proving certain

unreachability theorems that serve to prune the search space, typically discarding

infinite chunks of potential state space. Running the tool involves backward search

from some insecure state to see if the state could be reached from the initial state. The

search is partly automatic, but allows for user interaction to guide the search.

Running the tool tends to require quite a high level of user expertise. The rules of

the protocol have to be accurately coded, the insecure states from which the search is

to be driven have to be identified. The search typically needs a high level of expert user

interaction. That said, the tool has been getting increasingly automated over the years

and so more accessible.

At the time of writing the tool is not widely available and is restricted to government

232 CHAPTER 9. OTHER APPROACHES

use. It is nonetheless an important milestone in the development of the subject.

The underlying philosophy is similar to the CSP approach, except that it does use

a specially tailored framework and tool rather than the generic formal method of the

CSP/FDR approach.

Meadows has used the Analyser to great effect in uncovering flaws in a number

of protocols. Another tool-based approach along rather similar principles, called the

Interrogator, was developed somewhat earlier by Millen, then at MITRE. This, as well

as the NRL tool and Kemmerer’s approach, described earlier, can all be found described

in [49].

9.6 The B-method approach

In the early 1990s Abrial applied his B-method to an analysis of the Needham-

Schroeder Secret-Key protocol. This provides another and more recent example of

the application of a main-stream formal method to the problem. The results were

promising and indeed this work was inspirational to the authors of this book in that

it did show that an established, generic formal method could be used effectively to

model and analyze security protocols.

The protocol is formalized in the Abstract Machine Notation (AMN) of the B-

method and the security properties represented in terms of invariants.

The main, rather elegant, idea is to perform the proof of the protocol’s security

properties by a process of step-wise refinement. At the top-most level of abstraction

the goal of the protocol is expressed as a single ‘magic’ step. For the NSSK protocol,

for example, we suppose that the system starts in a state in which Anne and Bob share

long-term keys with the server but do not share a session key. We then postulate a

high-level transition, after which the system has magically ended up in a state in which

Anne and Bob both know a fresh key K and furthermore this key is not known to Yves.

We now progressively refine this top-level step towards the actual protocol steps, all

the while showing that appropriate invariants are preserved. In this case the invariants

assert that the session key never becomes known to Yves.

The approach is developed further by Bieber and others, for example in [10].

9.7 The non-interference approach

In the mid 1990s Gorrieri et al. started applying the process algebra CCS (Calculus

of Communicating Systems [66]) to information security, first to formalizing notions

of secrecy in the form of non-interference [32] and then to the analysis of security

protocols [31].

They introduce an extension to the CCS language to allow for action hiding, that

they call SPA (Secure Process Algebra). Non-interference can be expressed as the

property that a process with high level events hidden is equivalent to the process with

high level events blocked. In other words, the view at the low level is unable to tell

whether or not high level activity has occurred. Different notions of equivalence—

traces, may and must testing, flavours of bisimulation—give rise to different strengths

9.8. STRAND SPACES 233

of non-interference, and a catalogue of the relationships between them is provided.

Requriements on security protocals are couched in terms of non-interference: that

an intruder cannot interfere with the progress of the protocal as far as the legitimate

users are concerend. This requires that the protocal running with the intruder active

allows no more behaviours than with the intruder blocked. This is expressed via the

introduction of various signals, similar to the way that such events are used in this book.

For example, an authentication property would use a Running and a Commit signal.

Correct protocal runs always have Running preceding Commit, so non-interference

requires that Commit cannot occure before (or without) Running. Thus the net result is

similar in spirit to our approach.

They have developed an automated tool called CoSec [33] based on the CCS

Workbench. More recently they have developed a higher level language and compiler

that is analogous to Casper: it takes a description of the protocol and its goals and

produces SPA code that can be fed to the CoSec tool. Casting the checks in terms of

non-interference allows a whole raft of properties to be checked at once.

9.8 Strand spaces

The strand spaces approach has been developed fairly recently by Guttman et al. from

MITRE. Roughly speaking, a strand represents the sequence of actions in which a

particular protocol principal may participate. For an honest principal this encodes the

expected sequence of send and receive messages associated with a particular role of

the protocol. Agents can play multiple roles simultaneously. Thus for the (corrected)

Needham-Schroeder-Lowe Public-Key protocol the initiator strand is:

〈+{Na.a}PKb
,−{Na.Nb.b}PKa

,+{Nb}PKb
〉

The + and − signs signify whether the term is transmitted or received respectively by

the agent in question. Thus the initiator, a in this case, starts by transmitting the nonce

Na along with his identity a, all encrypted under b’s public key. The next term of the

strand indicates the reception of Na, Nb and b under a’s public key and so on. Similarly

the responder strand reads:

〈−{Na.a}PKb
,+{Na.Nb.b}PKa

,−{Nb}PKb
〉

A number of strands represent the intruder’s possible interactions. These correspond

to the possible intruder actions you will already have seen in our models and so

correspond to the usual Dolev-Yao model. Of course, these can be adjusted if we want

to tailor the intruder capabilities. We use the strand-space terminology for these types

of strand. This differs in places from ours. The intruder strands are parameterized by

Kp: the set of keys initially known to him.

Text message: 〈+t〉 for some term t ∈ T (the atomic terms)

Concatenation: 〈−g,−h,+gh〉

Separation: 〈−gh,+g,+h〉

234 CHAPTER 9. OTHER APPROACHES

Key: 〈+K〉 where K ∈ Kp

Encryption: 〈−K,−h,+{h}K〉

Decryption: 〈−K−1,−{h}K ,+h〉

The first rule represents the possibility that the intruder may emit a message containing

an atomic term. Similarly with the fourth rule he can emit a key that is in the set known

to him. The second corresponds to his receiving two terms and emitting a message

containing their concatenation and so on. Notice that addressing information is not

included in these rules. The intruder can receive from or transmit to whoever he wants.

In particular he can transmit back to himself. In this way we see how this framework

can mimic the inference system we associate with the intruder. He can thus arrive at

all derivable terms by transmitting back to himself all intermediate terms

Strands may, of course, interact or intertwine according to the ways in which nodes

can interact by the exchange of messages. Thus a term transmitted by one agent

may correspond to that received by another agent. Similarly, the intruder strands can

intertwine with other strands.

We introduce a partial order on the space. Two kinds of edge are introduced,

indicated by single and double arrows: −→ and =⇒. These represent the two possible

causal relationships between nodes of a bundle. The double arrow connects successive

nodes of a strand. Thus a pair of nodes ni and ni+1 on a strand would be linked thus:

ni =⇒ ni+1

This corresponds to the causal ordering of actions under the control of the principal in

question. In the case of a legitimate agent it corresponds to the order in which he will

perform actions in accordance with the protocol. In the case of the intruder it represents

the causal constraints on his behaviour. The single arrow indicates the causal ordering

that arises from the transmission and subsequent reception of a message. Thus if we

have a term +t at the node of one strand and the corresponding reception term −t at

the node of another strand, then we link these by a single arrow. Thus, if n1 = +t and

n2 = −t then we write:

n1 −→ n2

Any pair of nodes with an arrow between them will be said to be causally linked.

Analysis in a strand space is carried out on a particular structure: bundles. A bundle

is a causally connected set of nodes.

A bundle must also be causally well-founded: whenever it contains a reception

node −t then it also contains a unique transmission node +t. On the other hand

a transmission node might correspond to many reception nodes or none. The latter

possibility corresponds to a kill action by the intruder. Bundles thus take on the

structure of acyclic, ordered graphs.

For the strand corresponding to the principal of a given protocol run, we construct

all possible bundles containing nodes of the strand. Together, this set of bundles

encodes all possible interactions of the environment with that principal in a given run

of the protocol.

9.8. STRAND SPACES 235

Reasoning now takes place on this set of bundles. You can think of this as giving

the set of all possible worlds consistent with a particular agent’s experience of run of

the protocol. In particular, notice the highly agent-centric viewpoint: we want to get

a handle on what a particular, agent can confidently deduce about relevant but remote

events. This is similar in spirit to Bella’s notion of ‘goal availability’ that we will

discuss in the next section.

With this framework in place we can go on to prove various security properties

of protocols. A number of useful lemmata can also be proved that turn out to have

general utility in such proofs. The key to the approach is the fact that bundles form

finite, well-founded sets under the causal (partial) ordering and so the standard proof

techniques for such structures can be applied. Many of the proofs you will see in the

strand spaces literature will look fairly familiar to anyone who has done courses such

as set theory and number theory: plenty of induction, plenty of consider-the-smallest-

element-of-the-set style reasoning, and so on.

A powerful idea to emerge from this approach is the notion of an authentication

test [38]. This is basically a formalization of the basic challenge-response style

primitive that is a building block for so many protocols. Thus an agent transmits

a uniquely originating term and later receives back another term that is some

transformation of the original term. That he gets anything back at all will indicate that

he is not entirely alone in the universe, but of course we would like to establish rather

more than this. Thus the transformation is usually so designed that it could only be

affected by some known entity or maybe set of entities. Typically Anne might transmit

a nonce Na and get back {Na}SKb
. Assuming that she can reliably associate PKb,

Bob’s public key with Bob, she can verify the returned term. Hence she can, subject to

the usual assumptions, conclude that the transformation Na −→ {Na}SKb
could only

have been done by Bob. Alternatively, she could transmit {Na}PKb
and when she gets

Na back be confident that only Bob could have extracted Na, again under the usual

assumptions that Bob has not compromised his private key and so on. Anne can thus

assure herself that Bob is alive and well. More generally, the local knowledge that

certain fragments of strand have occurred allows an agent to deduce the occurrence of

other, remote fragments of strands.

This kind of reasoning is, of course, quite standard in designing and analyzing

security protocols, but the strand-spaces framework allows it to be fully formalized

and so put on a firm footing. Another important development in this approach is to

address the problem of protocol interactions. It has long been recognized that having

a number of different protocols running on a single system can give rise to security

problems. In some cases it can give rise to functional problems too of course – so-

called feature interactions. The problem is particularly virulent if such protocols share

keys. This can give rise to attacks in which Yves uses steps of one protocol as an

oracle to provide information or terms that he can use to undermine another protocol.

It has been common folklore in the community that if protocols do not share keys then

such interactive attacks cannot arise. More precisely if two, different protocols are

separately shown to be secure and they do not share any cryptographic material then

it should be the case that running them both on a single network does not give rise to

any new attacks. Recently, precise statements and proofs have been provided using the

strand space framework [30].

236 CHAPTER 9. OTHER APPROACHES

A number of protocols have been analyzed using this framework, in some cases

revealing new vulnerabilities, in others shedding fresh light on the working of the

protocols. The mechanics of the proof tend to be quite intricate and not necessarily

easy to follow. On the other hand the approach is very intuitive and does help achieve

a deeper understanding of what really makes security protocols tick.

Recently a tool has been developed based of the strand-spaces model called

Athena [95]. It is a mix of model-checker and theorem prover. Basing it on the

strand-spaces model sidesteps much of the state-space explosion that arises in most

model-checking tools due to the interleaving of independent events, though this is

is usually handled using partial-order type techniques. The strand-spaces model

sidesteps the interleaving problem by not explicitly representing the full traces of the

system.

9.9 The inductive approach

In 1996 Paulson [70] introduced the inductive approach with automated support

provided by his Isabelle proof assistant. In several respects the underlying, conceptual

framework is similar to that of the CSP approach. The key elements are traces:

sequences of events that could occur as the protocol agents execute in a hostile

environment. Traces are defined inductively from a set of rules that correspond to the

possible actions of the agents, including spies. The approach does not involve state

enumeration and so the numbers of agents and spies can be regarded as unbounded –

and indeed each agent can be allowed to play multiple roles simultaneously.

Security properties such as secrecy and authentication can be stated as predicates

over the traces, in a fashion similar to the CSP approach. That a certain property holds

of all possible traces for a certain protocol can be proved inductively. This is similar

to the rank-function approach, though the mechanics of the proofs are rather different.

This does of course mean that as it stands the approach really only works for safety

properties, i.e. properties that can be formulated as predicates on traces. However,

as we have previously discussed, this works well for most properties of interest, and

indeed the CSP approach also concentrates on trace properties.

The approach also allows the incorporation of compromised agents who share their

knowledge with the intruder and so-called ‘oops’ events that model the compromise of

a session key.

The original formulation by Paulson did not explicitly model reception events for

the legitimate agents as he was initially only interested in reasoning about secrecy,

and reception events are not necessary for this purpose as long as the intruder is

allowed to monitor all traffic. Omitting them makes the models and reasoning simpler.

However, in order to reason about honest agents’ knowledge, for example to establish

key confirmation properties, it is necessary to model such events. Thus, for example,

suppose that you want to be able to establish that after participating in a certain

sequence Bob can be confident that Anne knows a session key K and associates it with

communication with him. For this you need to be able to model and reason about the

reception of corresponding events by Anne. In his recent thesis, Bella [8] extends the

original approach explicitly to model reception events to allow such reasoning. He

9.10. SPI CALCULUS 237

also introduces some further extensions to allow reasoning about time and timestamps,

as well as modelling smart cards.

Bella also advances what he calls the principle of ‘goal availability’. If a certain

security goal is available to an agent this means that the protocol is so designed to

ensure that the agent can reach a point at which he has sufficient evidence to infer

that the goal has been achieved. In practice, of course, it is typically necessary to

rely on some extra assumptions, for example that his peer acts honestly and has not

compromised his keys. These are referred to as the minimal-trust assumptions. Clearly

it is desirable to so design the protocol to reduce these trust assumptions to the absolute

minimum. It is equally clear, however, that in a distributed environment some trust will

have to be vested in remote components that are not under your direct control. Indeed,

as technology gets ever more sophisticated with mobile code and agents, identifying

what exactly is local to any individual and under their control gets steadily more

obscure.

Arguably the notion of goal availability has been ‘in the air’ for some time. You

find it implicit in our approach, strand spaces and indeed in the BAN logic. It seems

not, however, to have been spelt out explicitly until now.

9.10 Spi calculus

The spi-calculus is another fairly new and rather elegant framework for modelling and

reasoning about security protocols. It was introduced by Abadi and Gordon in [1]. It

is an extension of Milner’s π-calculus designed to deal with cryptographic primitives.

The π-calculus is a development of process algebra CCS (Calculus of Communicating

Systems). CCS, rather like CSP, deals with fixed topologies of interacting processes.

That is to say the processes and network topology are established at the outset and

do not change as the interactions unfold. In CSP the topology is established by

fixing the alphabets or channels of the various processes. Thus a pair of processes

that share an alphabet will have a channel of communication. Conversely, processes

with no elements of their alphabets in common will not have any (direct) channels

of communication. This is fine for many applications, but increasingly systems

allow the establishment of new channels on the fly. The π-calculus allows for such

possibilities by allowing channel names to be communicated as well as simple values.

Communicating the name of a channel to a process that previously was not aware of

this channel allows it to start communicating on that channel. This process is known

as scope extrusion.

The behaviour and properties of security protocols can be modelled at a high level

of abstraction in the π-calculus. In particular the secrecy of values passed over a

channel known only to certain processes can be captured in terms of the π-calculus’s

scope rules. Furthermore the process of setting up a new channel can be captured

by scope extrusion. This can be thought of as a very abstract representation of the

process of setting up a new secret channel by establishing cryptographic keys across

the channel.

Already we can formalize some security properties. Authentication can be coded

in terms of a specification process in which the receiver process ‘magically’ knows

238 CHAPTER 9. OTHER APPROACHES

what message to receive from the transmitter process. This is reminiscent of Abrial’s

high-level ‘magical’ specifications. We then assert that an implementation that satisfies

the authentication property should be equivalent to the ‘magical’ specification process.

Secrecy is coded in a slightly different way, but again using process equivalence.

Here we assert that a protocol maintains secrecy if two instantiations, one with a value

M and another with M′ transmitted, are indistinguishable to the environment. This is

really a form of non-interference: altering the high-level inputs does not result in any

observable change at the low-level interface. For both properties, process equivalence

is in terms of may-testing.

At this level of abstraction we do not have any representation of the cryptographic

primitives that are used to implement the protocols. To be able to reason about the

cryptographic primitives Abadi and Gordon extend the syntax and correspondingly

the semantics of the π-calculus to express cryptographic terms. They also use new-

name creation to model the generation of new nonces and session keys. Now a private

channel can be thought of as implemented as a cryptographic channel and channel

extrusion as implemented by a suitable key establishment protocol. The notion of

equivalence has to be handled rather delicately, just as it must when formalizing secrecy

as a non-interference property in the presence of cryptographic channels. This is

because strictly speaking there is a causal flow from high to low: different high inputs

do lead to different ciphertexts, so the notion of equivalence has to be finessed to avoid

processes being distinguished on this basis. The details are rather technical and outside

of the scope of this overview. In essence, external tests cannot give different results

depending on the value of ciphertexts that they cannot decrypt, and so all encrypted

messages are treated as equivalent.

The framework can handle various primitives: symmetric encryption, asymmetric

encryption, cryptographic hash functions and signatures.

Currently the approach lacks tool support and the representation of protocols

and proofs can be fairly elaborate. One pleasing feature is the way the intruder is

modelled simply as an arbitrary environment able to perform any test definable within

the language to try to distinguish instantiations of the protocol. This avoids the need to

define explicitly the intruder’s capabilities and so, arguably, avoids dangers of missing

capabilities. On the other hand, limitations on the intruder’s capabilities are implicitly

coded into the expressiveness of the framework and in particular the richness of the

space of tests that can be constructed. It could be argued that for some applications it

is better to have an explicit representation of the intruder’s capabilities. This allows

it to be evaluated more directly and tailored to specific scenarios, for example to

situations in which only passive and no active attacks are possible (maybe on certain

channels).

9.11 Provable security

Up until now all the frameworks we have discussed have abstracted away from the

details of the cryptographic algorithms and primitive.

There are some well-known ways to characterize the security of cryptographic

primitives. These involve probability and complexity theory and are quite technical.

9.11. PROVABLE SECURITY 239

We will not go into the details here but refer the reader to, for example [9] and [71].

Interestingly they typically boil down to a sort of process equivalence, or at least

approximate equivalence. The intruder is thought of as being able to perform an

unbounded number of tests, for example by asking for the encryption of some piece

of text of his choice. He can do this repeatedly, possibly basing his choice of text

on the outcome of previous tests. This is intended to capture what is thought to be

the most powerful attack strategies open to the intruder: adaptive chosen-plaintext

attacks. Finally he submits two different texts and tries to guess which of the resulting

ciphertexts corresponds to which plaintext. If he can do this reliably with significantly

better-than-even odds then the system is deemed insecure, otherwise it is deemed

secure. Strictly speaking the intruder is deemed to have only ‘negligible advantage’.

This amounts to placing a tight bound on how much better-than-even odds he can

achieve as a function of the amount of work he performs in terms of tests and

computation. Again the details are rather technical and outside the scope of this book.

Various attempts have been made to adapt this style of reasoning to cryptographic

protocols, as opposed to cryptographic primitives. In essence they boil down

to reduction-style arguments: that breaking the protocol would be equivalent to

breaking the underlying primitive. Thus, for example, for a Diffie-Hellman style

key-establishment protocol one would show that breaking it would imply the ability

to solve the Diffie-Hellman problem. The Diffie-Hellman problem is a variant of the

discrete log problem: calculating the value of gxy from the knowledge of gx and gy. It

is currently thought to be intractable, though this has not been proved.

Ideally one would like to combine both styles of analysis: formal and

cryptographic. It is clear, however, that a framework that encompassed the aspects

of both, says the modelling capability of CSP with the probability and complexity

theory of cryptography would almost certainly be intractable. It seems better therefore

to be able to relate the results of the two styles of analysis. For examples it would

be useful to be able to establish rigorously what is a faithful abstraction of the

cryptographic primitives for inclusion in a formal analysis. Alternatively, as suggested

by Pfitzmann et al. [71], one could try establishing ‘cryptographic semantics’ to

underpin a formal framework.

240 CHAPTER 9. OTHER APPROACHES

Chapter 10

Prospects and wider issues

10.1 Introduction

In this chapter we discuss some of the broader issues, open problems and directions for

future research.

10.2 Abstraction of cryptographic primitives

Most of the formal approaches in this area take a very abstract view of the

cryptographic primitives. That is to say that they typically treat the cryptographic

functions – hashes and so on – as primitives of the data types of messages, for

example, and do not concern themselves with any structure they may have or algebraic

identities they may satisfy. Of course where the algorithms are known to satisfy

certain identities, for example that Vernam encryption is self-inverse, or that RSA is

multiplicative, we can incorporate these in our analysis.

By and large cryptographic functions, expecially hash functions and block ciphers,

are deliberately constructed to avoid any such simple structure. Structure can so easily

be turned to advantage by the cryptanalyst. The most powerful ciphers are those with

minimal structure, namely one-time-pads that are pure random.

Thus such assumptions are a reasonable approximation, but clearly only an

approximation. In effect we are treating the structure as a free algebra and in particular

making implicit assumptions along the lines of:

{M}k = {M′}k′ ⇒ M = M′ and k = k′

In other words: two different plaintexts enciphered with different keys could never

give the same ciphertext. This clearly is not true. On the other hand it is a good

approximation in a statistical sense: if we were to choose a pair of keys and a pair of

plaintexts at random it highly unlikely that the resulting ciphertexts will be equal.

The obvious response is to incorporate the definitions of the cryptographic

functions in the models. This is not an attractive course. Firstly, it would vastly

241

242 CHAPTER 10. PROSPECTS AND WIDER ISSUES

complicate the models and certainly in a model-checking context it would render them

totally intractable. Second, it would make the analysis highly specific to the particular

algorithms under analysis and so it would have to be totally redone if we wanted to

substitute alternative algorithms.

A source of difficulty is that our framework, in common with all other practical

frameworks for analyzing security protocols, does not deal with probabilities.

Furthermore it is very difficult to see how one could introduce probabilities into our

framework without rendering it totally intractable.

At the moment the best that our framework and others can do is to incorporate

known identities in the models. The problem is knowing that we have identified all the

identities, or at least all the relevant identities. Put differently, how do we know that

the abstractions of the cryptographic primitives are faithful with regard to the security

properties of interest? How do we know that there is not some subtle structure of

the cryptographic function that interacts with the protocol in such a way as to give an

exploitable vulnerability? Currently there is no good solution to this problem.

10.3 The refinement problem

Another way of thinking of this is as a manifestation of the so-called refinement

problem for security. It has long been recognised that secrecy tends not to be preserved

by refinement, at least not by refinement in the conventional ‘safety’ sense.

When we say that design P is a refinement of design Q we are asserting that in some

sense P is ‘better’ than Q and in particular if Q was acceptable as a component of a

system then P will be too. The term ‘better’ here usually means: ‘is more predictable’.

This is entirely appropriate for safety-style properties where we are concerned with a

system not performing certain harmful behaviours, like falling out of the sky. If we

know that everything that Q does is acceptable in a certain context then if P is more

predictable than Q then it should also be acceptable.

Unfortunately, security is a rather more subtle concept to deal with. To prevent

unwanted information flows, predictability is often the last thing that we want. Suppose

that Q is high-grade stream cipher. According to the conventional canons of refinement

a perfectly acceptable replacement component P would be a device that generates the

all-zero stream. This is certainly vastly more predictable than Q and from a functional

point of view would be fine: we could still communicate successfully. However, it

would clearly blow any security we had right out of the water.

10.4 Combining formal and cryptographic styles of

analysis

We have already alluded in Chapter 9 to the desirability of bringing together in some

way the formal and cryptanalytic styles of analysis. An alternative approach is to note

that there is in fact a convergence of concepts between the two approaches: both are

starting to use notions of (testing) equivalence. For example, in the cryptographic

camp we see definitions of cryptographic secrecy in terms of tests that a an intruder

10.4. COMBINING FORMAL AND CRYPTOGRAPHIC STYLES OF ANALYSIS243

may perform. Informally the intruder is allowed to submit plaintexts of his choice

to the crypto system and observe the encrypted outputs. He uses this information to

try to make deductions about the key material. His choice of texts to submit can be

influenced by previous observations, the so-called adaptive chosen plaintext attack.

Eventually the intruder submits a pair of chosen plaintexts to the encryption engine.

The corresponding ciphertexts are then returned to him in arbitrary order. If the intruder

is unable to guess which is which with significantly better-than-even odds then the

encryption is deemed secure. The exact definition of ‘significantly better’ is couched

in terms of complexity theory and need not concern us here.

In the formal approaches, also, people are increasingly thinking of secrecy in terms

of various flavours of process equivalence, see for example [82]. More precisely the

notion of non-interference is used to characterize the absence of information flow. Non-

interference in turn is formulated in terms of process equivalence, often in terms of a

suitable testing equivalence. This suggests that the notion of testing equivalence might

form a possible point of contact between the two styles of analysis.

However, the issue of characterising the secrecy of an encrypted channel in

non-interference terms remains problematic. Such channels obviously do not satisfy

standard forms of non-interference as the high-level plaintext clearly does influence

the ciphertext visible to the low-level user. Furthermore Low can test for equality of

ciphertexts even if they are unintelligible to him. The difficulty is that non-interference

forbids any causal influence from high to low. It is, however, possible to have causal

flows that do not represent any semantic or information flow, as is the case with a

secure encrypted channel.

The situation here turns out to be closely related to the idea of data-independence

with equality testing that has been developed in the model-checking community,

see [51]. A process is said to exhibit such data-independence in a given data type if the

only operation the process can perform on variables in the data type is equality testing.

Thus the absolute values of variables in the data type are irrelevant. This concept has

been successfully exploited to reduce the checking of infinite classes of systems and

specifications to a finite number of checks with finite models. This is discussed in

Section 10.8.

We see though that the concept is actually applicable also to the encryption

problem. From Low’s point of view a system with a secure encryption over a channel

visible to him can be thought of as being having data-independence with equality

testing in the data type of that channel. The actual values of the cipher stream are

meaningless to him (assuming good, uncompromised cryptography) but he can check

for equality of ciphertexts.

Hitherto data-independence (with equality testing) has been given purely syntactic

definitions in terms of the particular language in questions. Recent research [52],

however, gives a semantic definition of the concept of data-independence with equality

testing.

It would appear to be more appropriate for block ciphers where the cipher is in

effect performing a renaming permutation on blocks. We also note the similarity here

with the way we formalize anonymity.

This is cast as a notion form of bisimulation up to isomorphism, or more precisely

up to renaming of events of the appropriate type. This would appear to be precisely the

244 CHAPTER 10. PROSPECTS AND WIDER ISSUES

form of process equivalence appropriate to encode the notion of an encrypted channel

in non-interference terms.

10.5 Dependence on infrastructure assumptions

Great care must be taken in dealing with assumptions incorporated in the models

used in any analysis. Ideally we should try to be explicit about any assumptions

that the models depend upon. It is essential that engineers thinking of incorporating

a particular verified protocol in a real architecture understand these assumptions and

are able to check that the architecture does indeed guarantee the assumptions on which

the protocol depends.

A good example of the dangers of straying outside the modelling assumptions is

where the models assume that there is a suitable infrastructure to ensure that public

keys can be reliably associated with principals. Suppose further that we assume that

each principal has a unique private/public key pair. If the intruder can tamper with

the certification mechanism and fool a principal into associating the wrong public key

with another principal then most security properties will be undermined. In particular,

if Yves can persuade Bob that his public key is associated with Anne, then he can

impersonate Anne to Bob. More subtly, if a user may have several private/public key

pairs this may give Yves an extra degree of freedom to launch an attack.

It is not always easy to make all assumptions explicit. Often they are implicit in the

structure of the model and may not be obvious. They may also not be easy to express

explicitly.

10.6 Conference and group keying

Most of the key establishment protocols in the literature are concerned with setting

up secret communication between a pair of users. Some applications, secure group-

working for example, require a group (involving more than two participants) to share

a common key. Often the schemes are also required to be able to deal efficiently with

highly dynamic groups, with agents joining and leaving (or being ejected) frequently,

and often also to deal with the merging of groups. A number of protocols to achieve

this in a reasonably efficient way have been put forward, for example the papers by

Burmester and Desmedt [18, 19] and, more recently in the Cliques project [96]. Most

suffer from problems of authentication, performance and scaling.

The techniques and tools for the analysis of such protocols are stretched to deal

with the potentially large and undetermined number of agents, as well as the dynamic

nature of such schemes. Particularly for the model-checking approaches such as those

presented in this book this poses severe challenges. The data-independence techniques

described in this chapter may provide a line of attack. Alternatively theorem-proving

based approaches, such as the rank-function approach of this book or Paulson’s

inductive Isabelle-based approach-may be better placed to deal with the open-ended

nature of these schemes.

10.7. QUANTUM CRYPTOGRAPHY 245

10.7 Quantum cryptography

Besides the revolution in cryptography that has been wrought by public key

cryptography we should also mention what could in time become the next major

development, arguably even more profound than that of public-key cryptography.

Various techniques have been proposed for using quantum mechanical effects in

information security. By and large this are still restricted to laboratory experiments,

but some are reaching the stage at which real use is in prospect.

Using properties of quantum mechanics, a number of schemes have been proposed

to provide confidential communication, either directly by encrypting messages

or indirectly by allowing secure key establishment, which can then be used with

conventional cryptographic techniques. In some cases, given laws quantum physics

like the Heisenberg uncertainty principle, the security provided can be shown to be

absolute. The Heisenberg principle asserts, roughly, that any observation of a system

necessarily disturbs it. More precisely, the measurement of one system variable will

influence the conjugate variable. This can be put to use for security by noting that

any attempt to tap a line of communication constitutes an observation and so will

inevitably disturb the signals. If the scheme is so arranged as to be able to detect all

such disturbances then we can ensure that it is impossible to tap the signals without

detection.

This is in contrast to most conventional cryptography where, apart from a couple

of exceptions like one-time-pads, security is only ever conditioned.

These techniques exploit the phenomenon of quantum entanglement: correlations

between wave functions. One well-known scheme involves Anne generating pairs of

photons in such a way as to ensure that their polarizations are correlated. Anne and Bob

make measurements of the polarizations according to an ingenious and rather elaborate

scheme that ensures that they can detect any interference by Yves or, in the absence of

interference, arrive at a shared secret bit stream.

There are however limitations: authenticating quantum key exchange is still

problematic. Usually authentication has to take place over a separate, trusted channel.

Currently these techniques only work over rather small distances and under favourable

conditions. An overview can be found in [73].

The other side of the coin is quantum computation which, if it ever becomes

a serious prospect, threatens to undermine much of conventional cryptography.

In essence one can perform an arbitrary number of computations in parallel by

carefully manipulating super-positions of quantum states. This would blow many

of the complexity-theory assumptions underlying both symmetric and asymmetric

cryptography out of the water. At the time of writing such techniques still seem to

be quite a way off, but seem likely to eventually become feasible for large scale

calculations. Currently the record for the factorization of a composite number is 15.

10.8 Data independence

The pragmatics of running model-checkers such as FDR mean, unfortunately, that the

sizes of types, such as that of nonces, have to be restricted to far smaller sizes than

246 CHAPTER 10. PROSPECTS AND WIDER ISSUES

the types they represent in implementations. Usually they have to be kept down to

single figures if the combinatories of how they can create messages of the protocol is

not to take other types that have to be considered, such as the overall alphabet size

and the set of facts that a potential intruder might learn, beyond the level that can be

managed. The models that have been crafted by hand, and which are produced by

Casper, therefore allocate a small finite number of these values to each node that has

to ‘invent’ them during a run, so that each time a nonce (say) is required, a node takes

one of those remaining from its initial allocation or, if there are none left, simply stops.

This use of agents with the capacity for only a finite number of runs means that, while

model checkers are rightly regarded as extremely effective tools for finding attacks on

protocols, they can only be used to prove that no attack exists on the assumption that

each node only engages in a very finite amount of activity. While there are often good

intuitive reasons for believing that the limited check would find any attack, these are

generally difficult to formalize into a component of a complete proof, and theorem-

proving such as the use of rank functions is required to verify the protocol.

This problem has been addressed [77, 78] by the application of data-independence

techniques [51, 53]. A process P (which makes use of events or messages of type T)

is data-independent in the type T if it places no constraints on what T is: the latter

can be regarded as a parameter of P. This will be the case if P passes members of the

type around, but does not constrain what the type is and may only have its control-flow

affected by members of the type in tightly defined ways. The ways in which the CSP

models of protocols use types such as keys, nonces and agent identities fall within the

scope of this theory.

The techniques are concerned with the mapping of results between processes with

different instantiations for T . In particular, they establish conditions on T (generally

concerning a lower bound on its size) and on P that allow results concerning P(T) to

be deduced for any T ′ of larger size, even infinite. This means that a relatively small

instance of a protocol description, with a particular number of nonces, keys, and users,

can be verified on a model-checker, allowing the same results to be concluded for the

same model of the protocol instantiated with arbitrarily many nonces, keys, and users.

Furthermore, the CSP models of the protocols themselves can be made more

general. Techniques inspired by those used in data independence justify the adaptation

of CSP descriptions of protocol models so that agents can perform arbitrarily many

protocol runs, one after the other, by cleverly reusing values. The result of these

transformations is that values from type T are continually shifted around, and carefully

identified with each other, to create room for another value to be created that the

program will treat exactly as though it were fresh. For example, once a protocol run

has completed, any nonce n used in that run can be ‘forgotten’ by all of the parties in

the network (including the intruder, which has n remapped to a special value oldnonce)

and can thus be reused as if it is fresh. This is done without curtailing the ability

of the intruder to generate attacks (though it may in some circumstances introduce

some artificial attacks that are not really possible). Where no attack is found on such

a system, it is much easier to argue that the protocol under examination is free from

attacks that could be constructed within the model, than it was with the earlier class

of limited-run models. However, in practice transforming a CSP model of a protocol

in this way by hand is a detailed, time-consuming and error-prone task, and so Casper

10.8. DATA INDEPENDENCE 247

includes a facility for introducing these transformations automatically [13].

The theory of data independence imposes some conditions on the process P

for these results to be applicable. The most important of these is the condition

PosConjEqT [51], which is a requirement about the results of equality testing. This

condition is concerned with the flow of control within the program when a condition is

evaluated as part of a conditional statement. It requires that whenever two values are

checked for equality, the program should behave as STOP if the equality test fails.

For example, of the following two processes, P1 meets this condition, but P2 does not.

P1 = in?x : T → in?y : T → if (x = y) then (a→ Stop)
else Stop

P2 = in?x : T → in?y : T → if (x = y) then (a→ Stop)
else (b→ Stop)

For processes meeting this condition, reducing the size of the type T does not remove

any behaviours. This is important for our purposes, since we want to be sure that an

analysis of a system with a small instantiation for T will cover all the possibilities

present when T is larger. In the case of P2, which does not meet the condition, when

T is of size 1 then b is not possible, but it is possible for larger T . Thus increasing the

size of T introduces some new possibilities for P2.

This kind of condition is normally met by the CSP models of protocol agents with

which we are concerned. Agents will often need to check that an incoming value is

equal to one they are expecting (such as the response to a nonce challenge). In the

presence of this condition we simply model the agent as refusing to participate any

further if the incoming value fails the equality check.

In fact a slightly weaker condition is appropriate. The protocol might have to

check that some incoming value is not equal to some constant value, such as the

agent’s own name. Given a set C of such constants involved in inequality checks,

the condition PosConjEqT′
C allows non-STOP results for equality tests involving at

least one member of C. This will tend to increase the minimum size of an instantiation

for T which is sufficient to prove correctness for all larger instantiations T , and hence

increase the size of the system that needs to be model-checked.

This condition must also be met by the Intruder process. What this means in

practice is that there are restrictions on the set of initial knowledge, and on the generates

relation ⊢:

• The initial knowledge set of the intruder can only contain inequality tests

(explicit or implicit) of members of our type T with the constants C. For

example, if C = {Anne, Bob}, then allowing all private keys except Anne’s and

Bob’s is allowed, but allowing all except Anne’s, Bob’s, and Carol’s is not.

• The deductions that can be made by the intruder must be positive – they cannot

rely on facts in their antecedent being different. For example, a rule that states

m1 6= m2, m1, m2, {m1}k, {m2}k ⊢ k

is not positive. On the other hand, the rules we have used in this book are all

positive.

248 CHAPTER 10. PROSPECTS AND WIDER ISSUES

Provided these conditions hold, the Intruder also meets the PosConjEqT′
C condition.

One limitation on the result is that it does not normally allow for Anne or Bob to

run more than one session at a time. If it is realistic that they might, then an appropriate

number of copies of each should be included in the network. This would in turn

increase the number of values required in our types and hence increase the size of

the state space to be explored.

In summary, the data-independence techniques give conditions on the CSP protocol

descriptions (which will normally be met naturally) that allow results about secrecy and

authentication to be established in general by establishing them for a relatively small

‘threshold’ system. The theory gives limits on how small the system to be checked can

be; this will be dependent on the details of the protocol under analysis.

Appendix A

Background cryptography

In this appendix we provide some further number theoretic and cryptographic

background. We omit most of the proofs, since they can be found in any good

reference on cryptography or number theory, for example [100].

A number a divides b if there exists a k such that a.k = b. In this case we say that

a is a factor of b.

A prime number is a number greater than 1 divisible only by 1 and itself, for

example 3, 5 ,7, etc. It has been known since Euclid that there exists an infinity of

primes. Their distribution amongst the integers follows no known pattern, though

certain statistical facts are known in the form of the well-known prime number theorem.

This states that the number of primes less than or equal to n grows roughly as n/ ln(n).
A number that is not prime is composite and can be written as a unique (up to order)

product of prime factors.

The greatest common divisor (gcd) of two numbers m and n is the largest number

that is a divisor of both m and n. An efficient algorithm for determining gcds has been

known since Euclid, and is named after him.

We also need the idea of modular arithmetic, or arithmetic performed modulo n

given number n. Here numbers that have the same remainder when divided by n are

regarded as equivalent. For any number a and modulus n we define a mod n as the

unique number r between 0 and n− 1 such that a can be written as:

a = r + k.n

for some k. r is thus the remainder when a is divided by n. For example, suppose that

we are working modulo 7, then

17(mod 7) = 10(mod 7) = 3

Arithmetic operations are reduced modulo n. Thus for example we have:

3.5(mod 7) = 15(mod 7) = 1

In effect we perform arithmetic on the quotient space of the natural numbers over

the appropriate equivalence relation. That such arithmetic is well defined can be

249

250 APPENDIX A. BACKGROUND CRYPTOGRAPHY

shown easily and it obeys analogues of the usual laws of arithmetic: commutativity of

addition and multiplication, associativity, distribution laws, and so on. Generalizations

of Euclid’s algorithm for finding gcds in modular arithmetic are also well known.

The key theorems of modular arithmetic that we need is Fermat’s Little Theorem.

Fermat’s theorem states that for p prime and a 6= 0 mod p:

a(p−1) = 1(mod p)

To see this, consider the set

{a.i(mod p) | 1 6 i 6 (p− 1)}

where a 6= 0(mod p). This is simply the same as the set

{i | 1 6 i 6 (p− 1)}

To see this, we note that if i 6= j(mod p) then a.i 6= a.j(mod p) for a 6= 0(mod p). In

other words, multiplying a by the numbers 1, . . . , (p − 1) modulo p simply permutes

the elements. The product of the elements of these sets must therefore be the same:

Π
(p−1)
i=1 i = Π

(p−1)
i=1 a.i = a(p−1).Π

(p−1)
i=1 i(mod p)

and so dividing through by (Π
(p−1)
i=1 i) yields that a(p−1) = 1(mod p).

If n is the product of two distinct primes p and q, then for any number a and any r

we find that

a(r(p−1)(q−1))+1 = a(mod n) (A.1)

To prove this, we first observe for any s that

as = a(mod p) ∧ as = a(mod q) ∧ gcd(p, q) = 1⇒ as = a(mod pq) (A.2)

This follows from the fact that p divides (as − a) and q divides (as − a), and so their

product pq must also divide as − a.

Now by Fermat’s Little Theorem we have for a 6= 0(mod p) that

ap−1 = 1(mod p)

and so

(a(p−1))(r(q−1)) = 1(mod p)

Hence multiplying through by a we have for all a (including a = 0(mod p) that

a(r(p−1)(q−1))+1 = a(mod p)

By similar reasoning the same equation holds modulo q, and so by the observation in

line A.2 it holds modulo pq, and the result given in line A.1 follows. For example, if

n = 15, then (p − 1)(q − 1) = 8. We find that 29 = 512 = 2, and 39 = 19 683 = 3,

all modulo 15.

We now have the prerequisites to present the RSA and ElGamal schemes.

A.1. THE RSA ALGORITHM 251

A.1 The RSA algorithm

1 Two ‘large’ primes p and q are chosen and their product n = pq computed.

2 An integer e is chosen that is relatively prime to (p− 1)(q− 1)

3 An integer d is found, for example by using the extension to modular arithmetic

of Euclid’s greatest common divisor algorithm, such that:

ed = 1(mod (p− 1)(q− 1) (A.3)

4 n and e are publicized whilst p, q and d are kept secret.

Encryption of a message m(mod n) can now be performed by anyone knowing the

public values n and e by computing:

c = me(mod n)

If the message does not encode to a number less than n then it must be chopped

into a suitable number of blocks such that each can be so encoded and each block is

enciphered separately.

Decryption is effected by taking the dth power modulo n of the ciphertext (number)

which from line A.1 equals the original message:

cd = med = m(mod n)

To see this, note that from line A.3 above we have:

ed = rϕ(n) + 1 (A.4)

for some r, but, by Euler’s theorem:

m(p−1)(q−1) = m(mod n)

and so from line A.4:

(me)d(mod n) = m(mod n)

For example, with p = 41 and q = 17, we compute n = 697 and (p− 1)(q− 1) =
640. Choosing e = 11, we find d = 291 is such that ed = 3201 = 1(mod 640).

The values n = 697 and e = 11 are published.

To encrypt a message m = 58 with e, we compute:

me(mod n) = 5811(mod 697) = 626

Knowledge of d is required to decrypt the message. The calculation is all modulo

n = 697:

626d = 626291 = 58(mod 697)

Raising the encrypted message to the power of d regains the original message.

252 APPENDIX A. BACKGROUND CRYPTOGRAPHY

All the operations described above are performed by the legitimate users, and

although computationally fairly intensive are quite tractable. Primes can be found

reasonably efficiently using various primality-testing algorithms. Besides, these

calculations only need to be performed on a once-off basis. Modular exponentiation

is quite easy, indeed is reducible to a sequence of multiplications and squarings (with

modular reduction at each step). Euclid’s algorithm requires very little computation.

On the other hand, finding a suitable d to perform the decryption without

knowledge of (p−1)(q−1) is thought to be intractable. In turn, finding (p−1)(q−1)
without knowledge of the factorization of n is also thought intractable. Finally, as long

as p and q are suitably chosen, the factorization of n is considered intractable. See for

example [100].

A.2 The ElGamal public key system

ElGamal’s scheme [28] is based on the difficulty of computing discrete logarithms.

This is currently considered to be intractable and comparable to the problem of

factoring large numbers that underlies RSA. It is quite easy to understand – really no

more complicated than RSA and probably about as easy to implement. As far as is

currently known (in the open world at any rate) it is cryptographically about as strong

as RSA.

A large prime p along with a primitive root a modulo p are made publicly available.

A primitive root is one that ‘generates’ the entire field, so taking successive powers of

a modulo p will yield all the integers from 1 to p − 1. For a prime p it can be shown

that there always exists a primitive root.

A user, Bob say, chooses (or is allocated) a private key x(b) where

1 6 x(b) 6 p− 1

The corresponding public key y(b) is given by:

y(b) := ax(b)(mod p)

Suppose Anne now wishes to send Bob a message that can be encoded as an integer M

in the interval (1, p− 1). To encrypt M ‘for Bob’s eyes only’ she proceeds as follows:

Anne chooses at random an integer k in the interval (1, p− 1) and computes:

Cl = ak mod p

K = (y(b))k mod p

C2 = KM mod p

She transmits the pair C1, C2.

In order to decrypt this Bob proceeds as follows:

He calculates K from:

K = y(b)k = ax(b)k = (ak)x(b) = C
x(b)
1 mod p

A.2. THE ELGAMAL PUBLIC KEY SYSTEM 253

M can now be recovered by solving:

C2 = KM mod p

In fact K−1 can be calculated directly from:

K−1 = C
(p−1)−x(b)
l mod p

To see this, consider

K.K−1 = C
x(b)
1 .C

(p−1)−x(b)
l mod p

= C
p−1
1 mod p

= 1 mod p

the last equality following from Fermat’s Little Theorem.

So M is given directly by:

M = C2.K
−1 mod p

As an example, suppose that the prime 71 is chosen for p and the primitive root 7
is chosen for a. Suppose further that Bob chooses for his private key:

x(b) = 29

Then

y(b) = 729 mod 71 = 35

So we have in summary:

p = 71, a = 7, x(b) = 29, y(b) = 35

Now suppose that Anne wants to send the message whose numerical representation is

M = 39 and that the ‘random’ k that she selects is 21. So:

M = 39, k = 21

She now computes:

Cl = 721 mod 71 = 46

K = 3521 mod 71 = 17

C2 = K.M mod p = 17.39 mod 71 = 24

And so she now sends (46, 24).
On receipt Bob first calculates K−1 from:

K−1 = C
(p−1)−x(b)
1 = 4641 mod 71 = 46

and thence:

M = C2K−1 mod p = 24.46 mod 71 = 39

254 APPENDIX A. BACKGROUND CRYPTOGRAPHY

We see that the legitimate users need do nothing more painful than taking exponents

in a finite field for which efficient algorithms exist. Indeed such exponentiation can be

reduced to a sequence of squarings and multiplications. For example:

721 = (((72)2)2)2.(72)2.7

Modular reductions can be performed at each step to keep the numbers manageable

throughout. The sequence of squarings and multiplications is simply related to

the binary representation of the exponent. The reader might like to determine this

relationship.

On the other hand it is clear that a malicious agent with a good algorithm for

taking discrete logarithms in a finite field would be able to crack the system. No such

algorithm is presently known. It has not yet been proven that cracking the ElGamal

system is equivalent to taking the discrete logs, but it is thought to be the case.

Note that the cryptogram is twice the length of the plaintext, which could be

regarded as a drawback. On the other hand associated with this is a potentially useful

probabilistic element in the encryption process, namely that a given plaintext would

probably not get enciphered to the same ciphertext twice. The benefit of this is that an

eavesdropper with a good guess as to the message cannot verify his guess against the

ciphertext without knowing k.

In particular a new k would presumably be chosen for each block where a message

needed to be broken up into blocks.

A.3 Complexity theory

We should say a few words about what is meant by a problem being tractable or

intractable. The key idea is, for a given algorithm to solve a particular problem, to

examine how fast the amount of computation required typically grows with the size of

the problem. Take for example Euclid’s algorithm for finding the gcd of two numbers,

m and n. It can be shown that the number of steps required grows roughly as the

log of larger of the two numbers. In fact we can go further and show that the worst

case occurs when the input numbers are two successive Fibonacci numbers, in which

case the number of steps is the Fibonacci index of the larger number. The Fibonacci

numbers grow roughly exponentially with the golden ratio.

Euclid’s algorithm is thus regarded as highly efficient – the amount of computation

grows roughly as the log on the size of the input. Indeed, any problem for which an

algorithm exists for which a polynomial bound can be placed on the rate of growth of

the amount of computation as a function of the size of the input is regarded as tractable.

Obviously the lower the order of the polynomial the better.

A well-known example of a problem for which even the best algorithms grow

exponentially in the size of the input is the travelling salesman problem: given an

arbitrary distribution of points on the plane find the shortest Hamiltonian path, that is

the shortest path that goes through each point exactly once. The best algorithms do

little better than exhaustive search, and the search space grows as the factorial of the

number of points. Algorithms that find good approximations more efficiently do exist,

but this is not relevant to us.

A.3. COMPLEXITY THEORY 255

In fact it is quite common for the search space of a problem to grow exponentially,

especially for problems of a combinatorial nature. Usually there is sufficient structure

to exploit to give some smarter strategy than exhaustive search. There is, however,

a class of problems for which there does not seem to be enough such structure to do

significantly better than exhaustive search. The travelling salesman, factorization, and

discrete logs all seem to fit in this class.

Appendix B

The Yahalom protocol in Casper

B.1 The Casper input file

#Free variables

a, b : Agent

s : Server

na, nb : Nonce

kab : SessionKey

ServerKey : Agent -> ServerKeys

InverseKeys = (kab, kab), (ServerKey, ServerKey)

#Processes

INITIATOR(a,na) knows ServerKey(a)

RESPONDER(b,s,nb) knows ServerKey(b)

SERVER(s,kab) knows ServerKey

#Protocol description

0. -> a : b

1. a -> b : na

2. b -> s : {a, na, nb}{ServerKey(b)}

3a. s -> a : {b, kab, na, nb}{ServerKey(a)}

3b. s -> b : {a, kab}{ServerKey(b)}

4. a -> b : {nb}{kab}

#Specification

Secret(a, kab, [b,s])

Secret(b, kab, [a,s])

Agreement(b, a, [na,nb])

-- Agreement(b, a, [kab])

Agreement(a, b, [kab])

257

258 APPENDIX B. THE YAHALOM PROTOCOL IN CASPER

#Actual variables

Anne, Bob, Yves : Agent

Jeeves : Server

Kab : SessionKey

Na, Nb : Nonce

InverseKeys = (Kab, Kab)

#Inline functions

symbolic ServerKey

#System

INITIATOR(Anne, Na)

RESPONDER(Bob, Jeeves, Nb)

SERVER(Jeeves, Kab)

#Intruder Information

Intruder = Yves

IntruderKnowledge = {Anne, Bob, Yves, Jeeves, ServerKey(Yves)}

B.2 Casper output

Casper produces the following FDR script from the above description of the protocol

and its requirements.

Data

datatype Encryption = Anne | Bob | Yves | Jeeves | Kab | Na | Nb |

Garbage | ServerKey.Agent | Sq.Seq(Encryption) |

Encrypt.(ALL_KEYS,Seq(Encryption)) | Hash.(HashFunction,

Seq(Encryption)) | Xor.(Encryption, Encryption)

ALL_KEYS = Union({SessionKey, ServerKeys})

HashFunction = {}

ATOM = {Anne, Bob, Yves, Jeeves, Kab, Na, Nb, Garbage}

encrypt(m,k) = Encrypt.(k,m)

decrypt(Encrypt.(k1,m),k) = if k == inverse(k1) then m else Garbage

decrypt(_,_) = Garbage

decryptable(Encrypt.(k1,m),k) = k == inverse(k1)

decryptable(_,_) = false

nth(ms,n) = if n == 1 then head(ms) else nth(tail(ms), n - 1)

addGarbage(S) =

if S=={} then {Garbage}

B.2. CASPER OUTPUT 259

else Union({S, {Garbage | Encrypt._ <- S},

{Garbage | Hash._ <- S},

{Garbage | Xor._ <- S}})

-- Types in actual system

Agent = {Anne, Bob, Yves}

Server = {Jeeves}

SessionKey = {Kab}

Nonce = {Na, Nb}

ServerKeys = {ServerKey(arg_1) | arg_1 <- Agent}

inverse(Kab) = Kab

inverse(ServerKey.arg) = ServerKey.arg

ServerKey(arg_1) = ServerKey.(arg_1)

Messages

datatype Labels =

Msg1 | Msg2 | Msg3a | Msg3b | Msg4 | Env0

INPUT_INT_MSG4_BODY =

{(Msg4, Encrypt.(kab, <nb>), <s>) |

s <- Server, kab <- SessionKey, nb <- Nonce}

INPUT_INT_MSG1_BODY =

{(Msg1, na,<>) |

na <- Nonce}

INPUT_INT_MSG2_BODY =

{(Msg2, Encrypt.(ServerKey(b), <a, na, nb>),<>) |

a <- Agent, b <- Agent, na <- Nonce, nb <- Nonce}

INPUT_INT_MSG3a_BODY =

{(Msg3a, Encrypt.(ServerKey(a), <b, kab, na, nb>),<>) |

a <- Agent, b <- Agent, kab <- SessionKey,

na <- Nonce, nb <- Nonce}

INPUT_INT_MSG3b_BODY =

{(Msg3b, Encrypt.(ServerKey(b), <a, kab>),<>) |

a <- Agent, b <- Agent, kab <- SessionKey}

INPUT_INT_MSG_BODY =

Union({

INPUT_INT_MSG1_BODY,

INPUT_INT_MSG2_BODY,

INPUT_INT_MSG3a_BODY,

INPUT_INT_MSG3b_BODY,

260 APPENDIX B. THE YAHALOM PROTOCOL IN CASPER

INPUT_INT_MSG4_BODY

})

OUTPUT_INT_MSG4_BODY =

{(Msg4, Encrypt.(kab, <nb>), <na, s>) |

na <- Nonce, s <- Server,

kab <- SessionKey, nb <- Nonce}

OUTPUT_INT_MSG1_BODY =

{(Msg1, na,<>) |

na <- Nonce}

OUTPUT_INT_MSG2_BODY =

{(Msg2, Encrypt.(ServerKey(b), <a, na, nb>),<>) |

a <- Agent, b <- Agent, na <- Nonce, nb <- Nonce}

OUTPUT_INT_MSG3a_BODY =

{(Msg3a, Encrypt.(ServerKey(a), <b, kab, na, nb>),<>) |

a <- Agent, b <- Agent, kab <- SessionKey,

na <- Nonce, nb <- Nonce}

OUTPUT_INT_MSG3b_BODY =

{(Msg3b, Encrypt.(ServerKey(b), <a, kab>),<>) |

a <- Agent, b <- Agent, kab <- SessionKey}

OUTPUT_INT_MSG_BODY =

Union({

OUTPUT_INT_MSG1_BODY,

OUTPUT_INT_MSG2_BODY,

OUTPUT_INT_MSG3a_BODY,

OUTPUT_INT_MSG3b_BODY,

OUTPUT_INT_MSG4_BODY

})

INPUT_MSG1_BODY = {rmb(m) | m <- INPUT_INT_MSG1_BODY}

INPUT_MSG2_BODY = {rmb(m) | m <- INPUT_INT_MSG2_BODY}

INPUT_MSG3a_BODY = {rmb(m) | m <- INPUT_INT_MSG3a_BODY}

INPUT_MSG3b_BODY = {rmb(m) | m <- INPUT_INT_MSG3b_BODY}

INPUT_MSG4_BODY = {rmb(m) | m <- INPUT_INT_MSG4_BODY}

OUTPUT_MSG1_BODY = {rmb(m) | m <- OUTPUT_INT_MSG1_BODY}

OUTPUT_MSG2_BODY = {rmb(m) | m <- OUTPUT_INT_MSG2_BODY}

OUTPUT_MSG3a_BODY = {rmb(m) | m <- OUTPUT_INT_MSG3a_BODY}

OUTPUT_MSG3b_BODY = {rmb(m) | m <- OUTPUT_INT_MSG3b_BODY}

OUTPUT_MSG4_BODY = {rmb(m) | m <- OUTPUT_INT_MSG4_BODY}

INPUT_MSG_BODY =

Union({

INPUT_MSG1_BODY,

INPUT_MSG2_BODY,

INPUT_MSG3a_BODY,

INPUT_MSG3b_BODY,

B.2. CASPER OUTPUT 261

INPUT_MSG4_BODY

})

OUTPUT_MSG_BODY =

Union({

OUTPUT_MSG1_BODY,

OUTPUT_MSG2_BODY,

OUTPUT_MSG3a_BODY,

OUTPUT_MSG3b_BODY,

OUTPUT_MSG4_BODY

})

MSG_BODY = union(INPUT_MSG_BODY,OUTPUT_MSG_BODY)

ENVMSG0_BODY =

{(Env0, b, <>) |

b <- Agent}

ENVMSG_BODY = ENVMSG0_BODY

SenderType ((Msg1,_,_)) = Agent

SenderType ((Msg2,_,_)) = Agent

SenderType ((Msg3a,_,_)) = Server

SenderType ((Msg3b,_,_)) = Server

SenderType ((Msg4,_,_)) = Agent

ReceiverType((Msg1,_,_)) = Agent

ReceiverType((Msg2,_,_)) = Server

ReceiverType((Msg3a,_,_)) = Agent

ReceiverType((Msg3b,_,_)) = Agent

ReceiverType((Msg4,_,_)) = Agent

ALL_PRINCIPALS = Union({Agent, Server})

channel input1:ALL_PRINCIPALS.ALL_PRINCIPALS.INPUT_INT_MSG_BODY

channel output1: ALL_PRINCIPALS.ALL_PRINCIPALS.OUTPUT_INT_MSG_BODY

channel fake: ALL_PRINCIPALS.ALL_PRINCIPALS.INPUT_MSG_BODY

channel intercept: ALL_PRINCIPALS.ALL_PRINCIPALS.OUTPUT_MSG_BODY

channel env : ALL_PRINCIPALS.ENVMSG_BODY

datatype ROLE = INITIATOR_role | RESPONDER_role | SERVER_role

ALL_SECRETS_0 = SessionKey

ALL_SECRETS = addGarbage(ALL_SECRETS_0)

262 APPENDIX B. THE YAHALOM PROTOCOL IN CASPER

datatype Signal =

Claim_Secret.ALL_PRINCIPALS.ALL_SECRETS.Set(ALL_PRINCIPALS) |

Running1.ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce |

Commit1.ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.Nonce.Nonce |

Running2.ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey |

Commit2.ROLE.ALL_PRINCIPALS.ALL_PRINCIPALS.SessionKey

channel signal : Signal

Definitions of agents

INITIATOR_0(a, na) =

[] b : Agent @ env.a.(Env0, b,<>) ->

output1.a.b.(Msg1, na,<>) ->

[] kab : SessionKey @ [] nb : Nonce @ [] s : Server @

input1.s.a.(Msg3a, Encrypt.(ServerKey(a), <b, kab, na, nb>),<>) ->

output1.a.b.(Msg4, Encrypt.(kab, <nb>),<na, s>) ->

SKIP

INITIATOR(a, na) =

INITIATOR_0(a, na)

[[input1.s.a.m <-fake.s.a.rmb(m) |

s <- Server, m <- INPUT_INT_MSG3a_BODY]]

[[output1.a.b.m <- intercept.a.b.rmb(m) |

b <- Agent, m <- OUTPUT_INT_MSG1_BODY]]

[[output1.a.b.m <- intercept.a.b.rmb(m) |

b <- Agent, m <- OUTPUT_INT_MSG4_BODY]]

RESPONDER_0(b, s, nb) =

[] a : Agent @ [] na : Nonce @ input1.a.b.(Msg1, na,<>) ->

output1.b.s.(Msg2, Encrypt.(ServerKey(b), <a, na, nb>),<>) ->

[] kab : SessionKey @

input1.s.b.(Msg3b, Encrypt.(ServerKey(b), <a, kab>),<>) ->

input1.a.b.(Msg4, Encrypt.(inverse(kab), <nb>),<s>) ->

SKIP

RESPONDER(b, s, nb) =

RESPONDER_0(b, s, nb)

[[input1.a.b.m <-fake.a.b.rmb(m) |

a <- Agent, m <- INPUT_INT_MSG1_BODY]]

[[input1.s.b.m <-fake.s.b.rmb(m) |

s <- Server, m <- INPUT_INT_MSG3b_BODY]]

[[input1.a.b.m <-fake.a.b.rmb(m) |

a <- Agent, m <- INPUT_INT_MSG4_BODY]]

[[output1.b.s.m <- intercept.b.s.rmb(m) |

s <- Server, m <- OUTPUT_INT_MSG2_BODY]]

B.2. CASPER OUTPUT 263

SERVER_0(s, kab) =

[] a : Agent @ [] b : Agent @ [] na : Nonce @ [] nb : Nonce @

input1.b.s.(Msg2, Encrypt.(ServerKey(b), <a, na, nb>),<>) ->

output1.s.a.(Msg3a, Encrypt.(ServerKey(a), <b, kab, na, nb>),<>) ->

output1.s.b.(Msg3b, Encrypt.(ServerKey(b), <a, kab>),<>) ->

SKIP

SERVER(s, kab) =

SERVER_0(s, kab)

[[input1.b.s.m <-fake.b.s.rmb(m) |

b <- Agent, m <- INPUT_INT_MSG2_BODY]]

[[output1.s.a.m <- intercept.s.a.rmb(m) |

a <- Agent, m <- OUTPUT_INT_MSG3a_BODY]]

[[output1.s.b.m <- intercept.s.b.rmb(m) |

b <- Agent, m <- OUTPUT_INT_MSG3b_BODY]]

Facts and deductions

Fact_1 =

Union({

{Garbage},

Nonce,

Agent,

SessionKey,

ServerKeys,

{Encrypt.(ServerKey(b), <a, na, nb>) |

a <- Agent, b <- Agent, na <- Nonce, nb <- Nonce},

{Encrypt.(ServerKey(a), <b, kab, na, nb>) |

a <- Agent, b <- Agent, kab <- SessionKey,

na <- Nonce, nb <- Nonce},

{Encrypt.(ServerKey(b), <a, kab>) |

a <- Agent, b <- Agent, kab <- SessionKey},

{Encrypt.(kab, <nb>) |

kab <- SessionKey, nb <- Nonce}

})

laws = {(Garbage, Garbage)}

external mtransclose

renaming = mtransclose(laws, Fact_1)

external relational_inverse_image

external relational_image

ren = relational_inverse_image(renaming)

264 APPENDIX B. THE YAHALOM PROTOCOL IN CASPER

-- renaming for facts

applyRenaming0(a) =

let S = ren(a)

within if card(S)==0 then a else elsing(S)

elsing({x}) = x

-- renaming for events

applyRenaming(Sq.ms) =

if member(Sq.ms, Fact_1) then applyRenaming0(Sq.ms)

else Sq.<applyRenaming0(m) | m <- ms>

applyRenaming(a) = applyRenaming0(a)

rmb((l,m,extras)) =

(l, applyRenaming(m), <applyRenaming(e) | e <- extras>)

domain = {a | (_,a) <- renaming}

applyRenamingToSet(X) =

union({elsing(ren(a)) | a <- inter(X,domain)}, diff(X, domain))

applyRenamingToDeductions(S) =

{(applyRenaming0(f), applyRenamingToSet(X)) | (f,X) <- S}

Intruder’s knowledge and deductions

unSq (Sq.ms) = set(ms)

unSq (m) = {m}

IK0 = {Anne, Bob, Yves, Jeeves, ServerKey(Yves), Garbage}

unknown(S) = diff(S,IK0)

Deductions_0 =

Union({SqDeductions, UnSqDeductions,

EncryptionDeductions, DecryptionDeductions,

VernEncDeductions, VernDecDeductions,

UserDeductions, FnAppDeductions, HashDeductions})

SqDeductions =

{(Sq.fs, unknown(set(fs))) | Sq.fs <- Fact_1}

UnSqDeductions =

{(f, unknown({Sq.fs})) | Sq.fs <- Fact_1, f <- unknown(set(fs))}

B.2. CASPER OUTPUT 265

EncryptionDeductions =

{(Encrypt.(k,fs), unknown(union({k}, set(fs)))) |

Encrypt.(k,fs) <- Fact_1}

DecryptionDeductions =

{(f, unknown({Encrypt.(k,fs), inverse(k)})) |

Encrypt.(k,fs) <- Fact_1, f <- unknown(set(fs))}

VernEncDeductions =

{(Xor.(m1,m2), unknown(union(unSq(m1), unSq(m2)))) |

Xor.(m1,m2) <- Fact_1}

VernDecDeductions =

{(m11, union(unknown(unSq(m2)), {Xor.(m1,m2)})) |

Xor.(m1,m2) <- Fact_1, m11 <- unSq(m1)}

UserDeductions = {}

FnAppDeductions = {}

HashDeductions = {(Hash.(f, ms), set(ms)) | Hash.(f, ms) <- Fact_1}

components((_, Sq.ms, _)) =

if member(Sq.ms, Fact_1) then {Sq.ms} else set(ms)

components((_, m,_)) = {m}

Close-up knowledge and deductions

subset(A,B) = inter(A,B) == A

Seeable = Union({unknown(components(m)) | m <- MSG_BODY})

Close(IK, ded, fact) =

let IK1 =

union(IK, {f | (f,fs) <- ded, subset(fs,IK)})

ded1 =

{(f,fs) | (f,fs) <- ded, not (member(f,IK)),

subset(fs,fact)}

fact1 = Union({IK, {f | (f,fs) <- ded}, Seeable})

within

if card(IK)==card(IK1) and card(ded)==card(ded1)

and card(fact)==card(fact1)

then (IK, {(f,diff(fs,IK)) | (f,fs) <- ded}, fact)

else Close(IK1, ded1, fact1)

Deductions_1 = {(f,fs) | (f,fs) <- Deductions_0,

266 APPENDIX B. THE YAHALOM PROTOCOL IN CASPER

not (member(f,fs))}

(IK1, Deductions, KnowableFact) =

Close(applyRenamingToSet(IK0),

applyRenamingToDeductions(Deductions_1),

applyRenamingToSet(Fact_1))

print IK1

print KnowableFact

print Deductions

The intruder

second((_,m,_)) = m

INTRUDER_MSG_BODY = {second(m) | m <- MSG_BODY}

dummyDeds = {(Garbage,{Garbage})}

Deductions’ = if Deductions=={} then dummyDeds else Deductions

-- Don’t you hate hacks like this?

channel leak : addGarbage(ALL_SECRETS)

channel hear, say : INTRUDER_MSG_BODY

channel infer : Deductions’

IGNORANT(f,ms,fss,ds) =

hear?m:ms -> KNOWS(f,ms,ds)

[]

([] fs : fss @ infer.(f,fs) -> KNOWS(f,ms,ds))

KNOWS(f,ms,ds) =

hear?m:ms -> KNOWS(f,ms,ds)

[]

say?m:ms -> KNOWS(f,ms,ds)

[]

infer?(f1,fs) : ds -> KNOWS(f,ms,ds)

[]

member(f,ALL_SECRETS) & leak.f -> KNOWS(f,ms,ds)

f_ms_fss_ds_s =

let rid = relational_image(Deductions)

within {(f,

{m | m <- INTRUDER_MSG_BODY, member(f,unSq(m))},

rid(f),

{x | x_@@(_,fs) <- Deductions, member(f, fs)}) |

f <- diff(KnowableFact,IK1)}

AlphaL(f,ms,fss,ds) =

B.2. CASPER OUTPUT 267

Union({(if member(f,ALL_SECRETS) then {leak.f} else {}),

{hear.m, say.m | m <- ms},

{infer.(f,fs) | fs <- fss},

{infer.(f1,fs) | (f1,fs) <- ds}})

transparent chase

INTRUDER_0 =

(|| (f,ms,fss,ds) : f_ms_fss_ds_s @

[AlphaL(f,ms,fss,ds)] IGNORANT(f,ms,fss,ds))

\ {|infer|}

INTRUDER_1 =

chase(INTRUDER_0)

[[hear.(second(m)) <- intercept.A.B.m |

m <- OUTPUT_MSG_BODY, A <- SenderType(m), B <- ReceiverType(m)]]

[[say.(second(m)) <- fake.A.B.m |

m <- INPUT_MSG_BODY, A <- SenderType(m), B <- ReceiverType(m)]]

SAY_KNOWN =

([] f : inter(IK1, ALL_SECRETS) @ leak.f -> SAY_KNOWN)

[]

([] m : {m | m <- OUTPUT_MSG_BODY, subset(components(m),IK1)} @

let ST = SenderType(m)

RT = ReceiverType(m)

within

(intercept?A:diff(ST,{Yves})?B:RT!m -> SAY_KNOWN))

[]

([] m : {m | m <- INPUT_MSG_BODY, subset(components(m),IK1)} @

let ST = SenderType(m)

RT = ReceiverType(m)

within

(fake?A:ST?B:RT!m -> SAY_KNOWN))

INTRUDER =

(INTRUDER_1 [|{|intercept.Yves|}|] STOP) ||| SAY_KNOWN

Process representing Anne

Alpha_INITIATOR_Anne =

Union({

{|intercept.Anne.A.m | A <- ALL_PRINCIPALS, m <- MSG1_BODY|},

{|intercept.Anne.A.m | A <- ALL_PRINCIPALS, m <- MSG4_BODY|},

{|fake.A.Anne.m | A <- ALL_PRINCIPALS, m <- MSG3a_BODY|}

})

268 APPENDIX B. THE YAHALOM PROTOCOL IN CASPER

INITIATOR_Anne = INITIATOR(Anne, Na)

Alpha_Anne = {|intercept.Anne.A, fake.A.Anne | A <- ALL_PRINCIPALS|}

AGENT_Anne =

INITIATOR_Anne

Process representing Bob

Alpha_RESPONDER_Bob =

Union({

{|intercept.Bob.A.m | A <- ALL_PRINCIPALS, m <- MSG2_BODY|},

{|fake.A.Bob.m | A <- ALL_PRINCIPALS, m <- MSG1_BODY|},

{|fake.A.Bob.m | A <- ALL_PRINCIPALS, m <- MSG3b_BODY|},

{|fake.A.Bob.m | A <- ALL_PRINCIPALS, m <- MSG4_BODY|}

})

RESPONDER_Bob = RESPONDER(Bob, Jeeves, Nb)

Alpha_Bob = {|intercept.Bob.A, fake.A.Bob | A <- ALL_PRINCIPALS|}

AGENT_Bob =

RESPONDER_Bob

Process representing Jeeves

Alpha_SERVER_Jeeves =

Union({

{|intercept.Jeeves.A.m | A <- ALL_PRINCIPALS, m <- MSG3a_BODY|},

{|intercept.Jeeves.A.m | A <- ALL_PRINCIPALS, m <- MSG3b_BODY|},

{|fake.A.Jeeves.m | A <- ALL_PRINCIPALS, m <- MSG2_BODY|}

})

SERVER_Jeeves = SERVER(Jeeves, Kab)

Alpha_Jeeves = {|intercept.Jeeves.A, fake.A.Jeeves |

A <- ALL_PRINCIPALS|}

AGENT_Jeeves =

SERVER_Jeeves

B.2. CASPER OUTPUT 269

Complete system

SYSTEM_0 =

(AGENT_Anne

|||

(AGENT_Bob

|||

AGENT_Jeeves))

SYSTEM = SYSTEM_0 [| {|intercept, fake|} |] INTRUDER

Systems specifications

Sigma = {|fake, intercept, env, leak|}

-- Secret specifications

SECRET_SPEC_0(s) =

signal.Claim_Secret?A!s?Bs ->

(if member(Yves, Bs) then SECRET_SPEC_0(s) else SECRET_SPEC_1(s))

[]

leak.s -> SECRET_SPEC_0(s)

SECRET_SPEC_1(s) = signal.Claim_Secret?A!s?Bs -> SECRET_SPEC_1(s)

AlphaS(s) =

union({|signal.Claim_Secret.A.s | A <- ALL_PRINCIPALS|}, {leak.s})

Alpha_SECRETS = {|leak, signal.Claim_Secret|}

SECRET_SPEC = (|| s : ALL_SECRETS @ [AlphaS(s)] SECRET_SPEC_0(s))

assert SECRET_SPEC [T= SYSTEM_S\ diff(Events,Alpha_SECRETS)

c

-- Authentication specifications

AuthenticateRESPONDERToINITIATORAgreement_na_nb(b) =

signal.Running1.RESPONDER_role.b?a?na?nb ->

signal.Commit1.INITIATOR_role.a.b.na.nb -> STOP

AlphaAuthenticateRESPONDERToINITIATORAgreement_na_nb(b) =

{|signal.Running1.RESPONDER_role.b.a,

signal.Commit1.INITIATOR_role.a.b |

a <- Agent|}

AuthenticateINITIATORToRESPONDERAgreement_kab(a) =

270 APPENDIX B. THE YAHALOM PROTOCOL IN CASPER

signal.Running2.INITIATOR_role.a?b?kab ->

signal.Commit2.RESPONDER_role.b.a.kab -> STOP

AlphaAuthenticateINITIATORToRESPONDERAgreement_kab(a) =

{|signal.Running2.INITIATOR_role.a.b,

signal.Commit2.RESPONDER_role.b.a |

b <- Agent|}

AuthenticateRESPONDERAnneToINITIATORAgreement_na_nb =

STOP

assert AuthenticateRESPONDERAnneToINITIATORAgreement_na_nb [T=

SYSTEM_1 \

diff(Events,

AlphaAuthenticateRESPONDERToINITIATORAgreement_na_nb(Anne))

AuthenticateRESPONDERBobToINITIATORAgreement_na_nb =

AuthenticateRESPONDERToINITIATORAgreement_na_nb(Bob)

assert AuthenticateRESPONDERBobToINITIATORAgreement_na_nb [T=

SYSTEM_1 \

diff(Events,

AlphaAuthenticateRESPONDERToINITIATORAgreement_na_nb(Bob))

AuthenticateINITIATORAnneToRESPONDERAgreement_kab =

AuthenticateINITIATORToRESPONDERAgreement_kab(Anne)

assert AuthenticateINITIATORAnneToRESPONDERAgreement_kab [T=

SYSTEM_2 \

diff(Events,

AlphaAuthenticateINITIATORToRESPONDERAgreement_kab(Anne))

AuthenticateINITIATORBobToRESPONDERAgreement_kab =

STOP

assert AuthenticateINITIATORBobToRESPONDERAgreement_kab [T=

SYSTEM_2 \

diff(Events,

AlphaAuthenticateINITIATORToRESPONDERAgreement_kab(Bob))

SYSTEM_1 = SYSTEM

[[intercept.b.s.rmb((Msg2, Encrypt.(ServerKey(b), <a, na, nb>), <>))

<- signal.Running1.RESPONDER_role.b.a.

applyRenaming(na).applyRenaming(nb),

B.2. CASPER OUTPUT 271

intercept.a.b.rmb((Msg4, Encrypt.(kab, <nb>), <na, s>))

<- signal.Commit1.INITIATOR_role.a.b.

applyRenaming(na).applyRenaming(nb) |

b <- Agent, s <- Server, a <- Agent, na <- Nonce, nb <- Nonce,

kab <- SessionKey]]

SYSTEM_2 = SYSTEM

[[intercept.a.b.rmb((Msg4, Encrypt.(kab, <nb>), <na, s>))

<- signal.Running2.INITIATOR_role.a.b.applyRenaming(kab),

fake.a.b.rmb((Msg4, Encrypt.(kab, <nb>), <s>))

<- signal.Commit2.RESPONDER_role.b.a.applyRenaming(kab) |

a <- Agent, b <- Agent, na <- Nonce,

s <- Server, kab <- SessionKey, nb <- Nonce]]

SYSTEM_S = SYSTEM

[[intercept.a.b.rmb((Msg4, Encrypt.(kab, <nb>), <na, s>))

<- signal.Claim_Secret.a.kab.{b, s},

fake.a.b.rmb((Msg4, Encrypt.(kab, <nb>), <s>))

<- signal.Claim_Secret.b.kab.{a, s}

| a <- Agent, b <- Agent, na <- Nonce,

s <- Server, kab <- SessionKey, nb <- Nonce]]

Appendix C

CyberCash rank function

analysis

In Chapter 8, a number of simplifications were applied tothe CyberCash main sequence

protocol. The overall effect of thesesimplifications is to reduce the protocol to versions

that can beeasily understood with respect to the properties underconsideration. The

main aspects of the protocol have in each case beenretained to ensure that the protocol

still meets its original requirement, yetit is simple enough to apply standard analysis

techniques. In thisappendix we use the rank-function technique to verify the protocol.

C.1 Secrecy

We first consider the secrecy property required of this protocol.Some details of the

transaction (such as its value) are available toeavesdroppers in the original protocol,

and hence are not required tobe kept secret. However, some care is taken to keep the

card numbersecret, and we will take this as the secrecy property that is requiredfor

the protocol: that if the customer interacts with an honestmerchant then the intruder

cannot learn cardNumber. (Clearly if thecustomer interacts with a dishonest merchant

or the intruder posing asa merchant then no guarantees can be expected concerning

secrecy ofthe card number.)We will provide a rank function that demonstrates that the

protocolindeed satisfies this property. To do this, we must consider the CSPdescriptions

of the protocol agents. These descriptions use variablesto hold the values expected

in the protocol. A list of thesevariables and the values they expect to hold is given

inFigure C.1.The CSP description of a single customer run of the simplifiedprotocol,

with merchant mr, session key kcs, amount am andcard number cn is as follows:

Custcu(mr, kcs, am, cn) =

receive.mr.cu?(mci.ma)→

273

274 APPENDIX C. CYBERCASH RANK FUNCTION ANALYSIS

am Amount

cn CardNumber

mci MerchantCcId

ma MerchantAmount

tr Transaction

mt MerchantTransaction

cu Id (= customer’s name)

mr MerchantId (= merchant’s name)

cb Cyberbank

kcs a customer’s session key

kms a merchant’s session key

pkCyberKey(cu) an assymetric key known only to customer cu, whose

inverse is known to Cyberbank
pkCyberKey(mr) an assymetric key known only to merchant mr, whose

inverse is known to Cyberbank

Figure C.1: Variables in the CSP description of CyberCash

if merchant(mci) = mr

then send.cu!mr! (id.ma.mci.tr.{kcs}pkCyberKey.{am.cn.mci.cu.ma.tr}kcs)
→ receive.mr.cu.(mci.ma.tr.cu.{cn.am}kcs)→ STOP

else STOP

The function merchant(mci) yields the merchant that the Cyberbankassociates with

mci. We assume that the customer has some way ofchecking that mci corresponds

to the merchant mr.A customer has a single card number for all the different runs.

Ageneral description of a customer cu (who interacts only with honestmerchants) is

therefore as follows:

Customercu(cardNumber) = |||
mr∈HM,kcs∈KEYScu,am

Custcu(mr, kcs, am, cn)

HM is the set of honest merchants, and KEYScu is the set ofsession keys cu has available

for use in this protocol with theCyberbank. There is one potential run for each of these

session keys.The behaviour of a single run of an honest merchant mr with sessionkey

kms is described as follows:

Merchantrunmr(kms) =

✷
cu,ma

send.mr!cu!(mci.ma)

→ receive.cu.mr?(cu.ma.mci.tr.x.y)

→ send.mr!cb! (mci.mt.x.y.{kms}pkCyberKey(mr).cu.ma.mci.mt.tr

→ receive.cb.mr? (mci.mt.{cn.ma.cu.mr.tr}kms.z

→ send.mr!cu!(mci.ma.tr.cu.z)→ STOP

Then a merchant’s behaviour is simply an interleaving of arbitrarily many runs:

Merchantmr = |||
kms∈KEYSmr

Merchantrunmr(kms)

C.1. SECRECY 275

KEYSmr is the set of session keys that merchant mr hasavailable to use with Cyberbank.

There is one potential run for eachof these.Finally, the Cyberbank’s role in the protocol

is described as follows:

Cyber =

|||
n∈N

✷
mr

receive.mr.cb?(mci.mt.{kcs}pkCyberKey.{am.cn.mci.cu.ma.tr}kcs.
{kms}pkCyberKey(mr).cu.ma.mci.mt.tr)

→ if mr = merchant(mci)
then send.cb.m!(mci.mt.{cn.ma.cu.mr.tr}kms.

{cn.am}kcs)
→ STOP

else STOP

As noted above, the function merchant(mci) yields the merchantassociated with mci.

The bank must check that this corresponds tothe signature on the incoming message,

since this provides theguarantee that the key kms was generated by that merchant.We

aim to prove that if CardNumber0 is customer cu0’s card number,then this can never

be obtained by the intruder. The secrecy property we will prove is

Secrecy(tr) = ¬(leak.CardNumber0 in tr)

To establish this, it is sufficient to exhibit a rank function that

• gives CardNumber0 a rank of 0;

• gives all the intruder’s initial knowledge a rank of 1;

• ensures that the set of positive-ranked messages is closed under the ⊢ relation;

• is such that the processes Customercu for any cu,Merchantmr for any mr, and

Cyber all maintain positive rank.

We will also need to use the fact that no two customers have the samecard number; so

no other customer will be able to divulgeCardNumber0.

Constructing the rank function

We now construct the rank function. In fact, every message need onlyhave rank 0
or 1. We begin by examining the messages that aretransmitted in the protocol. We

firstly observe that the plaintextCardNumber0 must have rank 0. However, it can

legitimatelyappear in runs of the protocol encrypted under session keys kms andkcs, so

such encrypted appearances must have rank 1 (or greater).To prevent the intruder from

decrypting these messages, we must ensurethat all such kms and kcs sessions keys are

not available to theintruder: they must have rank 0. This must be true for any sessionkey

of the customer cu0, and also for any session key of any honestmerchant. These

keys are sent, encrypted under pkCyberKey andpkCyberKey(mr), to the Cyberbank,

so it is essential that theintruder cannot decrypt these messages: the inverse keys

skCyberKeyand skCyberKey(mr) must have rank 0. (If any of them have rank1 then we

276 APPENDIX C. CYBERCASH RANK FUNCTION ANALYSIS

have e.g. that skCyberkey(mr) has rank 1. Since{kms}pkCyberKey(mr) also has rank 1 as a

legitimate messagein the protocol, and since {skCyberKey(mr), {kms}pkCyberKey(mr)} ⊢
kms, closure of positive rank under ⊢ requires that kms has rank 1, which we do

not want.)All other plaintext messages – all other information except keys – canhave

rank 1. Most plaintext can be transmitted unencrypted in thesimplified protocol.We

now consider the protocol participants. The customer creates twoencrypted messages,

which are both sent out as part of the secondmessage of the protocol. They must be

given rank 1 to ensure thatall customers preserve positive message rank:

• {kcs}pkCyberKey. We can ensure that this haspositive rank by stipulating that all

messages encrypted withpkCyberKey have positive rank, whatever the rank of

kcs.

• {am.cn.mci.cu.ma.tr}kcs. There are two possibilities: if kcs is one of cu0’s

session keys, then the message wasgenerated by Custcu0 and so it contains

CardNumber0 – bothkey and content have rank 0. The alternative is that neither

kcsnor the content of the message have rank 0. Hence we can give thismessage

a rank of 1 if either contents and key both have rank 0,or if they both have

rank 1. It will have rank 0 otherwise.Observe that if kcs is one of cu0’s session

keys then mci mustcorrespond to an honest merchant, since we assume that cu0

onlycommunicates with honest merchants. In considering the Cyberbankbelow

we will need to use the fact that a dishonest mci cannotappear in such a message

encrypted with kcs, and so such messageswill also have to be given rank 0.

The merchant only creates one encrypted message:{kms}pkCyberKey(mr). We must ensure

that this message alwayshas rank 1. If the merchant is honest, then kms has rank 0
andso does pkCyberKey(mr). If the merchant is not honest, then bothkeys have rank

1. Thus if both keys have the same rank then theircombination here can be given rank

1. Other combinations are notpossible, and so can be given rank 0.Finally, we consider

the Cyberbank. This receives a number ofencrypted message components, and then

transmits transformed versionsof them.If the messages it receives have rank 1, then the

components ittransmits must have rank 1. They are:

• {cn.am}kcs. Here we require that if cn = CardNumber0 then kcs has rank 0,

since otherwise the intruder could extractCardNumber0. Thus we again give

this message a rank of 1 if theranks of its contents and encryption key are the

same. We can provethat the Cyberbank maintains positive-message rank by

establishingthat CardNumber0 can indeed only be sent out encrypted under a

keywith rank 0. To see this, observe that one of the (positive-rank)messages

received is {am.CardNumber0.mci.cu.ma.tr}kcs. Sincethe content of this

message has rank 0 (since it containsCardNumber0), the key kcs must also have

rank 0.

• {cn.ma.cu.mr.tr}kms. If kms has rank 0 then we can give the encrypted

message rank 1 whatever the rank of thecontents, since the contents can

never be extracted. If kms hasrank 1 then we can expect that the contents

of the message can beextracted by the intruder. We would expect that only

contents withpositive rank should be encrypted by such keys. Hence we

C.1. SECRECY 277

ρ0(u) = 1

ρ0(t) =

{
0 if t = CardNumber0
1 otherwise

ρ0(pk) =

{
0 if pk = pkCyberKey(mr) for mr ∈ HM

1 otherwise

ρ0(sk) =

{
0 if sk = skCyberKey(mr) for mr ∈ HM or sk = skCyberKey

1 otherwise

ρ0(shk) =

{
0 if shk ∈ KEYScu0 or shk ∈ KEYSmr for mr ∈ HM

1 otherwise

ρ({m}k) =

1 if k = pkCyberKey

or k = KEYSmr for some mr ∈ HM

or ρ(m) = ρ(k) ∧ (ρ(k) = 0 ∧ m = am.cn.mci.cu.ma.tr
⇒ merchant(mci) ∈ HM)

0 otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

Figure C.2: Rank function for verification of Simplified CyberCash Protocol Secrecy

property

give thismessage positive rank if either kms has rank 0, or if the messagehas

positive rank. To establish that Cyber maintains positivemessage rank, we

consider a run in which this message is transmitted. If kms has rank 0, then

the transmitted encryptedmessage has positive rank. If kms has rank 1 then

since{kms}pkCyberKey(mr) has positive rank, it follows thatpkCyberKey(mr) has

positive rank and hence that mr 6∈ HM. Also, the boolean guard means that

mr = merchant(mcl) where is thevalue of another field in the received message.

However, one of the(positive-rank) message components received by Cyber

is{am.cn.mci.cu.ma.tr}kcs. If cn = CardNumber0 then thismessage must have

rank 0, sincemerchant(mci) 6∈ HM. (This is where we use the fact pointed

outearlier that the customer is assumed to interact only with honestmerchants.)

Hence cn cannot be CardNumber0. So the text insidethe transmitted message

has rank 1; and thus so does the entiretransmitted message.

The rank function resulting from these considerations is given inFigure C.2. It meets all

of the requiredconditions, and hence establishes that the simplified protocol ensuresthe

secrecy property. This means that the full CyberCash MainSequence protocol ensures

secrecy of the card number.

278 APPENDIX C. CYBERCASH RANK FUNCTION ANALYSIS

C.2 Authentication

There are a number of different authentication requirements we mightbe interested in,

at least one for each of the participants in theprotocol.We will focus on the following

three:

• The merchant is authenticated to the customer. This gives the customer an

assurance that the merchant he considers to be the otherparty in the protocol

is indeed the other party.

• The merchant authenticates the Cyberbank. This gives the merchant an

assurance that the transaction has passed through the Cyberbank andhence that

the transaction amount will be transferred.

• The Cyberbank authenticates the customer. This gives the Cyberbank an

assurance that the transaction really does involve the customermentioned in the

protocol, and hence that a transfer of funds fromthat customer is appropriate.

In each case, we insert additional Running and Commitspecification signals into the

protocol, in order to capture therequirement that Running signal must precede the

correspondingCommit signals. These are illustrated inFigures C.3, C.5and C.7. The

properties we will establish are:

• Running Cust.cu0.mr0.am0.ma0.cn0 precedes Commit

Cyber.cu0.mr0.am0.ma0.cn0

• Running Cyber.cu0.mr0.ma0.cn0 precedes Commit Merch.cu0.mr0.ma0.cn0

• Running Merch.cu0.mr0.ma0 precedes Commit Cust.cu0.mr0.ma0

The choices of the parameters on which agreement is requiredwill be discussed as the

properties are established in detail.

Authenticating the customer to the bank

We first consider the authentication of an arbitrary customer cu0to the Cyberbank:

the Cyberbank obtains a guarantee that the customermentioned in the transaction

really is involved. More precisely, itestablishes that if it is required to process a

transaction signed bycu0, then cu0 really did request that transaction.We insert

the signal Running Cust.cu.mr.am.ma.cn before customer cu’sfirst transmitted

message. To authenticate this message is toauthenticate that cu is running the protocol

apparently with mr,in order to make a payment of am on card cn.For the Cyberbank

to establish authentication, it will have to committo the transaction at some stage.

In fact it can be at any pointafter receipt of message 3 of the protocol. We place the

signalCommit Cyber.cu.mr.ma.am.cn before the response message (though itcould

equally well go after). The introduction of these twospecification signals is illustrated

inFigure C.3.Then the authentication property we aim to establish is that thesystem

C.2. AUTHENTICATION 279

Figure C.3: Inserting messages to authenticate C to CB

guarantees the following property for arbitrary cu0, mr0,am0, ma0, and cn0:

Running Cust.cu0.mr0.am0.ma0.cn0

precedes Commit Cyber.cu0.mr0.am0.ma0.cn0

The introduction of the appropriate signal is introduced into thedescription of an

individual customer run as follows:

Custcu(mr, kcs, am, cn) =

receive.mr.cu?{mci}SK(mr).ma

→ signal!Running Cust.cu.mr.am.ma.cn

→ send.cu!mr! cu.ma.mci.tr.{kcs}pkCyberKey.{{am.cn.mci.cu.ma.tr}kcs}SK(cu)

→ receive.mr.cu.(mci.ma.tr.cu.{cn.am}kcs)

→ STOP

The description of Cyber is also augmented with a signal, asfollows:

Cyber =

✷
mr

receive.mr.cb? mci.mt.{kcs}pkCyberKey.am.cn.
{{am.cn.mci.cu.ma.tr}kcs}SK(cu).
{kms}pkCyberKey(mr).cu.ma.mci.tr.
{cu.ma.mci.mt.tr}SK(mr)

280 APPENDIX C. CYBERCASH RANK FUNCTION ANALYSIS

→ if mr = merchant(mci)
then signal!Commit Cyber.cu.mr.am.ma.cn

→ send.cb.mr! mci.mt.
{cn.ma.cu.mr.tr}kms.{cn.am}kcs → STOP

else STOP

This version of the protocol is correct provided the merchant variablemr ranges over

honest names again (in other words, that themerchants Cyber deals with are honest).

If not, a dishonestmerchant can fool the customer into paying someone else (i.e.

cu0thinks he is paying mr0, but mr0 has signed mci1, whichbelongs to mr1, and so

the payment gets switched so that mr1gets paid instead of mr0). To establish that

the required authentication property holds in thiscase, it is sufficient to find a valid

rank function on the system inwhich a particular Running Cust.cu0.mr0.am0.ma0.cn0

is blocked andcannot occur. We require that Commit Cyber.cu0.mr0.am0.ma0.cn0

musthave rank 0: that it cannot occur if the signal it is authenticatingdoes not occur.

Constructing the rank function

We must find a rank function that meets the following conditions:

• gives Commit Cyber.cu0.mr0.am0.ma0.cn0 a rank of 0;

• gives all the intruder’s initial knowledge a rank of 1;

• ensures that the set of positive-ranked messages is closed under the ⊢ relation;

• is such that the processes Customercu0
maintains positive message rank when

blocked on performingRunning Cust.cu0.mr0.am0.ma0.cn0;

• is such that Customercu for any cu 6= cu0, Merchantmr for any mr, and Cyber all

maintain positive rank.

The rank function in this situation is quite straightforward toconstruct. Authentication

relies on the signature of the customercu0 on the appropriate message. Hence we firstly

give thesignature key SK(cu0) a rank of 0 to reflect the fact that thiskey is not available

to the intruder. Since Customercu0
isblocked on Running Cust.cu0.mr0.am0.ma0.cn0

we can give a rank of 0 toany messages signed by cu0 that have thus become

blocked. Thesewill be messages of the form{{am0.cn0.mci.cu0.ma.tr}kcs}SK(cu0) for

whichmerchant(mci) = mr0 (since the customer is assumed to be able tocheck that

mci and mr match). Such messages will be given a rankof 0. All other encryptions

simply retain the rank of theircontents. No other encryptions are relevant to this

authenticationproperty.The rank function of Figure C.4 is suitable to establishthis

property.It is clear that the Customer processes preserve message rank: theonly

messages of rank 0 that could have been generated are nowblocked.It is equally

clear that the Merchant processes preserve messagerank – they do not introduce any

messages of rank 0.Finally, if Cyber produces a signal Commit Cyber.cu.mr.am.ma.cn

then thismust follow receipt of a message{{am.cn.mci.cu.ma.tr}kcs}SK(cu) in which

we have merchant(mci) = mr. The only way the Cyberbank can produce a signal of

rank 0 isto have previously received a corresponding message that has rank0. Hence it

maintains positive-message rank.

C.2. AUTHENTICATION 281

ρ0(u) = 1

ρ0(t) = 1

ρ0(k) =

{
0 if k = SK(cu0)
1 otherwise

ρ({m}k) =

{
0 if k = SK(cu0) and m = am0.cn0.mci.cu0.ma0.tr

for some tr, merchant(mci) = mr0
ρ(m) otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)

ρ(signal) =

{
0 if signal = Commit Cyber.cu0.mr0.am0.ma0.cn0

1 otherwise
}

Figure C.4: Rank function for verification of Simplified CyberCash Protocol

Authentication property of Customer to Cyberbank

Authenticating Cyberbank to the merchant

Any particular merchant mr0 requires a guarantee by the end of theprotocol that

the transfer of funds from cu0 to mr0 has beenregistered by the Cyberbank. Hence

the merchant wishes the signalCommit Merch.cu0.mr0.ma0.cn0 to authenticate the

signalRunning Cyber.cu0.mr0.ma0, cn0 provided by Cyber after thethird message of

the protocol, as illustrated inFigure C.5.The Commit Merch signal is inserted into the

CSP description of Merchantas follows:

Merchantmr(cu, ma) =

send.mr!cu!mci.ma

→ receive.cu.mr?(cu.ma.mci.tr.x.am.cn.y)

→ send.mr!cb! mci.mt.x.am.cn.y.
{kms}pkCyberKey(mr).cu.ma.mci.mt.
{cu.ma.mci.mt.tr}SK(mr)

→ receive.cb.mr?(mci.mt.{cn.ma.cu.mr.tr}kms.z)

→ send.mr!cu!(mci.ma.tr.cu.z)

→ signal.Commit Merch.cu.mr.ma.cn→ STOP

and the Running Cyber signal that it authenticates is inserted into thedescription of

Cyber as follows:

Cyber =

✷
mr

receive.mr.cb? (mci.mt.{kcs}pkCyberKey.am.cn.
{{am.cn.mci.cu.ma.tr}kcs}SK(cu).
{kms}pkCyberKey(mr).cu.ma.mci.tr.
{cu.ma.mci.mt.tr}SK(mr))

→ signal!Running Cyber.cu.mr.ma.cn

282 APPENDIX C. CYBERCASH RANK FUNCTION ANALYSIS

Figure C.5: Inserting messages to authenticate CB to M

→ if merchant(mci) = mr

then send.cb.mr!(mci.mt.{cn.ma.cu.mr.tr}kms.{cn.am}kcs)→ STOP
else STOP

Then we wish to show that

Running Cyber.cu0.mr0.ma0.cn0 precedes Commit Merch.cu0.mr0.ma0.cn0

Constructing the rank function

We must find a rank function that meets the following conditions:

• gives Commit Merch.cu0.mr0.ma0.cn0 a rank of 0;

• gives all the intruder’s initial knowledge a rank of 1;

• ensures that the set of positive-ranked messages is closed under the ⊢ relation;

• is such that the process Cybermaintains positive-message rank when blocked on

performingRunning Cyber.cu0.mr0.ma0;

• is such that the processes Customercu for any cu 6= cu0, and Merchantmr for any

mr.

C.2. AUTHENTICATION 283

ρ0(u) = 1

ρ0(t) = 1

ρ0(pk) =

{
0 if pk = pkCyberKey(mr0)
1 otherwise

ρ0(sk) =

{
0 if sk = skCyberKey(mr0)
1 otherwise

ρ0(shk) =

{
0 if shk ∈ KEYSmr0

1 otherwise

ρ({m}k) =

1 if m ∈ KEYSmr0 and k = pkCyberkey(mr0)
0 if k ∈ KEYSmr0 and m = cn0.ma0.cu0.mr0.tr for some tr

ρ(m) otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(signal) =

{
0 if signal = Commit Merch.cu0.mr0.ma0.cn0

1 otherwise

Figure C.6: Rank function for verification of Simplified CyberCash Protocol

Authentication property of Cyberbank to merchant

Authentication here relies on the fact that the session keys shk ∈ KEYSmr0 are not

available to the intruder, and that the intrudercannot obtain them from the messages

that pass. These keys willtherefore have rank 0. A message encrypted under such a key

musttherefore have come from the Cyberbank, the only party other than themerchant

who is given the key.If the Running Cyber signal is blocked, then messages that

are ofthe form {cn0.ma0.cu0.mr0.tr}kms will not be produced byCyber. Since these

messages are used by Merchant to authenticatethe transaction, they should be given

rank 0. The rank function of Figure C.6 is then suitable toestablish this authentication

property. The Customer process clearly maintains positive-message rank, sinceit

only ever sends out messages of rank 1.To show that the Cyber process blocked

onRunning Cyber.cu0.mr0.ma0.cn0 maintains positive messagerank, we need only

to show that it cannot transmit any messages ofthe form{cn0.ma0.cu0.mr0.tr}kms.

And this follows immediately fromthe blocking of the Running Cyber signal.The

protocol messages transmitted by Merchant all have positiverank. To transmit

the signal Commit Merch.cu0.mr0.ma0.cn0 themerchant must previously have

received{cn0.ma0.cu0.mr0.tr}kms with kms ∈ KEYSmr0 (sincethe key must be the one

sent out). But this message received messagehas rank 0. Hence if Merchant only

284 APPENDIX C. CYBERCASH RANK FUNCTION ANALYSIS

Figure C.7: Inserting messages to authenticate M to C

receives messages of rank 1then it will only transmit messages of rank 1, and so it

maintainspositive-message rank.

Authenticating the merchant to the customer

Finally, we wish the protocol to enable an arbitrary cu0 toauthenticate mr0: that cu0

can be confident at the end of aprotocol run that mr0 has been involved in a run with

cu0, andthat they agree on the amount. The CSP description of the Custprocess will

therefore insert a Commit Cust.cu.mr.ma signal at theend of the protocol run, and the

Merchant process will insertRunning Merch.cu.mr.ma after the second message. As

observed above,receipt of the fifth message by the customer provides no guaranteesthat

the merchant has received or sent the fourth message. Hence thebest we can expect is

for the customer’s completion of the run toauthenticate that the merchant was involved

in the run at an earlierstage. These signals are inserted into the protocol as illustrated

inFigure C.7.The CSP descriptions are amended as follows:

Merchantmr(cu, ma) =

send.mr!cu!mci.ma

→ receive.cu.mr?(cu.ma.mci.tr.x.am.cn.y)

→ signal.Running Merch.cu.mr.ma

C.2. AUTHENTICATION 285

→ send.m!cb! (mci.mt.x.am.cn.y.
{kms}pkCyberKey(mr).cu.ma.mci.mt.
{cu.ma.mci.mt.tr}SK(mr))

→ receive.cb.mr?(mci.mt.{cn.ma.cu.mr.tr}kms.z)

→ send.mr!cu!mci.ma.tr.cu.z→ STOP

In the description of Merchantmr, we assume that the mcigenerated by the merchant is

a valid MerchantCcId for that merchant.In other words, merchant(mci) = mr.

Custcu(mr, kcs, am, cn) =

receive.mr.cu?{mci}SK(mr).ma

→ send.cu!mr! cu.ma.mci.tr.{kcs}pkCyberKey.
{{am.cn.mci.cu.ma.tr}kcs}SK(cu)

→ receive.mr.cu.(mci.ma.tr.cu.{cn.am}kcs)

→ signal!Commit Cust.cu.mr.ma

→ STOP

Then we are concerned with the property

Running Merch.cu0.mr0.ma0 precedes Commit Cust.cu0.mr0.ma0

for arbitrary customer cu0, merchantmr0, and merchant amount ma0.

Constructing the rank function

In this case it is best to split consideration of Customercu0
and consider the different

possibilities forCustcu0
(mr, kcs, am, cn) independently, as discussed inChapter 7.

Those cases in which mr 6= mr0 or ma 6= ma0 can never result in the signal

Commit Cust.cu0.mr0.ma0, and so they do not need to be furtherconsidered: the

protocol running with these cases trivially meets theauthentication property.We thus

focus on the case in which ma = ma0 and mr = mr0. Wemust find a rank function

that meets the following conditions:

• gives Commit Cust.cu0.mr0.am0 a rank of 0;

• gives all the intruder’s initial knowledge a rank of 1;

• ensures that the set of positive ranked messages is closed under the ⊢ relation;

• is such that the process Merchantmr0 maintains positive-message rank when

blocked on performing Running Merch.cu0.mr0.ma0;

• is such that the process Custcu(mr0, kcs, am0, cn), Customercu for cu 6= cu0,

Merchantmr for any mr 6= mr0, and Cyber all maintain positive message rank.

A suitable rank function is given in Figure C.8. Merchantmr0 blocked on

Running Merch.cu0.mr0.ma0 maintainspositive-message rank since it does not

286 APPENDIX C. CYBERCASH RANK FUNCTION ANALYSIS

ρ0(u) = 1

ρ0(t) = 1

ρ0(pk) =

{
0 if pk = PKCyberKey(cu0)
1 otherwise

ρ0(sk) =

{
0 if sk = SK(cu0) or sk = SK(mr0) or sk = SKCyberkey(cu0)
1 otherwise

ρ0(shk) =

{
0 if shk ∈ KEYScu0

1 otherwise

ρ({m}k) =

1
if k = SK(mr0) and m = mci

for some mci with merchant(mci) = mr0

1
if k = SK(cu0) and m = am.cn.mci.cu0.ma0.tr
for some am, cn, and mci and merchant(mci) = mr0

1 if k = pkCyberkey(cu0) and m ∈ KEYScu0

0
if k = SK(mr0) and m = cu0.ma0.mci.mt.tr
for some mci, mt, tr

0 if m = cn0.am0, and k ∈ KEYScu0

min{ρ(m), ρ(k)} otherwise

ρ(m1.m2) = min{ρ(m1), ρ(m2)}

ρ(signal) =

{
0 if signal = Commit Cust.cu0.mr0.ma0

1 otherwise

Figure C.8: Rank function for verification of Simplified CyberCash Protocol

Authentication property of merchant to customer

transmit anything of rank 0. Similarly, the other Merchant processes do notgenerate

anything of rank 0 to transmit.Customercu processes for which cu 6= cu0 only

generatemessages of positive rank.Custcu0(mr0, kcs, am0, cn0) maintains positive rank,

since thefirst messages it transmits have positive rank, and the signal canonly occur

after receipt of a message of rank 0.Cyber preserves positive-message rank if we can

show that it canonly transmit the rank 0 message {cn0.am0}kcs (with kcs ∈ KEYScu0
)

if it has received at least one message of rank 0.In order to transmit this message it

must have received messages ofthe form:

• {kcs}pkCyberKey(cu) (where kcs ∈ KEYScu0
)

• {am0.cn0.mci.cu.ma.tr}}SK(cu)

• {cu.ma.mci.mt.tr}SK(mr)

C.2. AUTHENTICATION 287

with merchant(mci) = mr. For the first of these messages to haverank 1, we must

have cu = cu0. Then for the second to have rank0, we must have ma = ma0 and

merchant(mci) = mr0. But thisgives the last message a rank of 0 since then mr = mr0
(sincemerchant(mci) = mr), cu = cu0, and ma = ma0. Hence Cybercannot transmit

that message without first receiving some message ofrank 0. Thus Cyber maintains

positive message rank.

Bibliography

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: the spi

calculus. Information and Computation, 148, 1999.

[2] M. Abadi and R.Needham. Prudent engineering practice for cryptographic

protocols. IEEE Transactions on Software Engineering, 22(1), 1196.

[3] M. Abadi and M. Tuttle. A semantics for a logic of authentication. Proceedings of

the 10th Annual ACM Symposium on Principles of Distributed Computing, 1991.

[4] R. Anderson, B. Crispo, J. H. Lee, C. Manifavas, V. Matyas Jr., and F. A. P.

Petitcolas. The Global Internet Trust Register. MIT Press, 1999.

[5] R. Anderson and R. Needham. Programming Satan’s computer. In J. van Leeuwen

(ed.) Computer Science Today, volume 1000 of LNCS. Springer, 1995.

[6] N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic

fair exchange. IEEE Symposium on Research in Security and Privacy, 1998.

[7] R. Bayer and E. McCreight. Organisation and maintenance of large ordered

indexes. Acta Informatica, 1, 1972.

[8] G. Bella. Inductive Verification of Cryptographic Protocols. PhD thesis,

Cambridge University, 2000.

[9] M. Bellare and P. Rogaway. Entity authentication and key distribution. CRYPTO

’93, number 773 in LNCS. Springer, 1994.

[10] P. Bieber and N. Boulahia-Cuppens. Formal development of authentication

protocols. BCS-FACS Sixth Refinement Workshop, 1994.

[11] S. Brackin. A HOL extension of GNY for automatically analyzing cryptographic

protocols. 9th IEEE Computer Security Foundations Workshop, 1996.

[12] S. Brackin. Automatic formal analysis of two large commercial protocols.

DIMACS Workshop on Design and Formal Verification of Security Protocols,

1997.

[13] P. Broadfoot, G. Lowe, and A. W. Roscoe. Automating data independence.

European Symposium on Research in Computer Security, number 1895 in LNCS.

Springer, 2000.

[14] S. D. Brookes, A. W. Roscoe, and D. J. Walker. An operational semantics for

CSP. Technical report, Oxford University, 1988.

289

290 Bibliography

[15] J. W. Bryans and S. A. Schneider. CSP, PVS, and a recursive authentication

protocol. DIMACS Workshop on Design and Formal Verification of Security

Protocols, 1997.

[16] J. A. Bull and D. J. Otway. The authentication protocol. Technical Report

DRA/CIS3/PROJ/CORBA/SC/1/CSM/436-04/03, Defence Research Agency,

1997.

[17] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation, 98(2),

1992.

[18] M. Burmester and Y. Desmedt. A secure and efficient conference key distribution

system. EUROCRYPT, 1994.

[19] M. Burmester and Y. Desmedt. Efficient and secure conference key distribution.

Security Protocols Workshop, 1996.

[20] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings

of the Royal Society of London, 426, 1989. A preliminary version appeared as

Digital Equipment Corporation Systems Research Center report No. 39, 1989.

[21] D. Chaum. The dining cryptographers problem: unconditional sender and

recipient untraceability. Journal of Cryptology, 1, 1988.

[22] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols.

Communicatins of the ACM, 24(8), 1981.

[23] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22, 1976.

[24] W. Diffie, P. C. van Oorschot, and M. J. Wiener. Authentication and authenticated

key exchanges. Designs, Codes and Cryptography, 2, 1992.

[25] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, 29(2), 1983.

[26] B. Donovan, P. Norris, and G. Lowe. Analyzing a library of security protocols

using Casper and FDR. Workshop on Formal Methods and Security Protocols,

Trento, Italy, 1999.

[27] B. Dutertre and S. A. Schneider. Embedding CSP in PVS. An application to

authentication protocols. Theorem proving in Higher Order Logics, number 1275

in LNCS. Springer, 1997.

[28] T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31, 1985.

[29] N. Evans and S. A. Schneider. Analysing time-dependent security properties

in CSP using PVS. European Symposium on Research in Computer Security,

number 1895 in LNCS. Springer, 2000.

[30] F. J. Thayer Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: why is a

security protocol correct? IEEE Computer Society Symposium on Security and

Privacy, 1998.

Bibliography 291

[31] R. Focardi, A. Ghelli and R. Gorrieri. Using non-inference for the analysis of

security protocols. In DIMACS Workshop on Design and Formal Verification of

Security Protocols, 1997.

[32] R. Focardi and R. Gorrieri. A classification of security properties for process

algebras. Journal of Computer Security, 3(1), 1995.

[33] R. Focardi and R. Gorrieri. The compositional security checker: a tool for

the verification of information flow properties. IEEE Transactions on Software

Engineering, 23(9), 1997.

[34] M. Franklin and M. Reiter. A linear protocol failure for RSA with exponent three.

CRYPTO ’95 Rump Session, 1995.

[35] D. Gollmann. What do we mean by entity authentication? IEEE Computer

Society Symposium on Research in Security and Privacy, 1996.

[36] D. Gollmann. On the verification of cryptographic protocols – a tale of two

committees. DERA/RHUL Workshop on Secure Architectures and Information

Flow, volume 32 of ENTCS, 1999.

[37] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic

protocols. IEEE Computer Society Symposium on Research in Security and

Privacy, 1990.

[38] J. D. Guttman and F. J. Thayer Fábrega. Authentication tests and the normal,

efficient penetrator. IEEE Computer Society Symposium on Research in Security

and Privacy, 2000.

[39] J. A. Heather and S. A. Schneider. Towards automatic verification of security

protocols on an unbounded network. 13th IEEE Computer Security Foundations

Workshop, 2000.

[40] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[41] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[42] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall, 1991.

[43] Tzonelih Hwang, Narn-Yih Lee, Chuan-Ming Li, Ming-Yung Ko, and Yung-

Hsiang Chen. Two attacks on Neuman-Stubblebine authentication protocols.

Information Processing Letters, 53, 1995.

[44] ISO/IEC JTC1. Information technology – open systems interconnection –

security frameworks in open system, part 4: Non-repudiation, 1995. ISO/IEC

DIS 10181-4, 1995.

[45] D. Kahn. The Code-Breakers. Simon & Schuster, 1997.

[46] A. Kehne, J. Schönwälder, and H. Landendörfer. A nonce-based protocol for

multiple authentications. Operating Systems Review, 26(4), 1992.

[47] R. Kemmerer. Using formal verification techniques to analyze encryption

protocols. IEEE Computer Society Symposium on Security and Privacy, 1987.

[48] R. Kemmerer and Z. Dang. Using the ASTRAL model checker for cryptographic

protocol analysis. DIMACS Workshop on Design and Formal Verification of

Security Protocols, 1997.

292 Bibliography

[49] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic

protocol analysis. Journal of Cryptology, 7(2), 1994.

[50] X. Lai. On the design and security of block ciphers. In J. L. Massey (ed.) EHT

Series in Information Technology, volume 1. Technische Hochschulke (Zurich),

1992.

[51] R. Lazić. A Semantic Study of Data Independence with Applications to the

Mechanical Verification of Concurrent Systems. D.Phil, Oxford University, 1998.

[52] R. Lazić and D. Novak. A unifying approach to data-independence. 11th

International Conference on Concurrency Theory, number 1877 in LNCS.

Springer, 2000.

[53] R. S. Lazić and A. W. Roscoe. A semantic study of data independence with

applications to model-checking. Submitted for publication, 1998.

[54] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using

FDR. Proceedings of TACAS, number 1055 in LNCS. Springer, 1996. Also in

Software – Concepts and Tools, 17:93–102, 1996.

[55] G. Lowe. Some new attacks upon security protocols. 9th IEEE Computer Security

Foundations Workshop, 1996.

[56] G. Lowe. Casper: A compiler for the analysis of security protocols. 10th IEEE

Computer Security Foundations Workshop, 1997.

[57] G. Lowe. A hierarchy of authentication specifications. 10th IEEE Computer

Security Foundations Workshop, 1997.

[58] G. Lowe. Casper: A compiler for the analysis of security protocols. Journal of

Computer Security, 6, 1998.

[59] G. Lowe. Defining information flow. Technical Report 1999/3, Department of

Mathematics and Computer Science, University of Leicester, 1999.

[60] G. Lowe and M. L. Hui. Safe simplifying transformations for security protocols.

12th IEEE Computer Security Foundations Workshop, 1999.

[61] G. Lowe and A. W. Roscoe. Using CSP to detect errors in the TMN protocol.

IEEE Transactions in Software Engineering, 23(10), 1997.

[62] K. McMillan. Symbolic model checking. Kluwer Academic Publishers, 1993.

[63] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography. CRC Press, 1996.

[64] J. Millen. Common authentication protocol specification language, CAPSL.

www.csl.sri.com/ millen/capsl/abstract.html, 1998.

[65] S. P. Miller, C. Neumann, J. I. Schiller, and J. H. Saltzer. Kerberos authentication

and authorization system. Project Athena Technical Plan Section E.2.1, MIT,

1987.

[66] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[67] National Institute for Standards and Technology. Advanced encryption standard.

http://csrc.nist.gov/encryption/aes/.

Bibliography 293

[68] R. Needham and M. Schroeder. Using encryption for authentication in large

networks of computers. Communications of the ACM, 21(12), 1978.

[69] L. Paulson. Mechanised proofs for a recursive authentication protocol. 10th IEEE

Computer Security Foundations Workshop, 1997.

[70] L. Paulson. The inductive approach to verifying cryptographic protocols. Journal

of Computer Security, 6, 1998.

[71] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of reactive

systems. DERA/RHUL Workshop on Secure Architectures and Information Flow,

volume 32 of ENTCS, 1999.

[72] B. Pfitzmann and M. Waidner. A general framework for formal notions of

‘secure’ system. Hildesheimer Informatik-Berichte 11/94, Institut für Informatik,

Universität Hildesheim, 1994.

[73] S. J. D. Phoenix and P. D. Townsend. Quantum cryptography and secure optical

communication. BT Technical Journal, 11(2), 1993.

[74] R. Rivert, A. Shamr and L. Adleman. A method for obtaining digital signatures

and cryptosystems. Communications of the ACM 21(2), 1978.

[75] A. W. Roscoe. A mathematical theory of communicating processes. D.Phil,

Oxford University, 1982.

[76] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

[77] A. W. Roscoe. Proving security protocols with model checkers by data

independence techniques. 11th Computer Security Foundations Workshop, 1998.

[78] A. W. Roscoe and P. J. Broadfoot. Proving security protocols with model checkers

by data independence techniques. Journal of Computer Security, 1999.

[79] A. W. Roscoe, P. H. B. Gardiner, M. H. Goldsmith, J. R. Hulance, D. M. Jackson,

and J. B. Scattergood. Hierarchical compression for model-checking CSP or how

to check 1020 dining philosophers for deadlock. First TACAS, number 1019 in

LNCS. Springer, 1995.

[80] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through

determinism. Journal of Computer Security, 4(1), 1996.

[81] P. Y. A. Ryan and S. A. Schneider. An attack on a recursive authentication

protocol: A cautionary tale. Information Processing Letters, 1998.

[82] P. Y. A. Ryan and S. A. Schneider. Process algebra and non-interference. Journal

of Computer Security, 2000. Also in 12th IEEE Computer Security Foundations

Workshop, 1999.

[83] J. B. Scattergood. Tools for CSP and Timed CSP. D.Phil, Oxford University, 1997.

[84] S. A. Schneider. Security properties and CSP. IEEE Computer Society Symposium

on Security and Privacy, 1996.

[85] S. A. Schneider. Formal analysis of a non-repudiation protocol. 11th IEEE

Computer Security Foundations Workshop, 1998.

[86] S. A. Schneider. Verifying authentication protocols in CSP. IEEE Transactions

on Software Engineering, 1998.

294 Bibliography

[87] S. A. Schneider. Concurrent and Real-time Systems: the CSP Approach. Addison-

Wesley, 1999.

[88] S. A. Schneider and A. Sidiropoulos. CSP and anonymity. European Symposium

on Research in Computer Security, 1996.

[89] B. Schneier. Applied Cryptography. John Wiley, 1995.

[90] G. Seroussi, N. P. Smart, and I. F. Blake. Elliptic Curves in Cryptography.

Number 265 in London Mathematical Society Lecture Note Series. Cambridge

University Press, 1999.

[91] N. Shankar, S. Owre, and J. M. Rushby. The PVS proof checker: A reference

manual. Technical report, Computer Science Laboratory, SRI International, 1993.

[92] C. Shannon. Communication theory of secrecy systems. Bell Systems Technical

Journal, 28(4), 1949.

[93] G. J. Simmons. Cryptanalysis and protocol failures. Communications of the ACM,

37(11), 1994.

[94] S. Singh. The Code Book. Fourth Estate, 1999.

[95] D. Song, S. Berezin, and A. Perrig. Athena, a novel approach to efficient

automatic security protocol analysis. Journal of Computer Security, 2000.

[96] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to group

key agreement. 18th IEEE International Conference on Distributed Computing

Systems, 1998.

[97] D. R. Stinson. Cryptography: Theory and Practice. CRC Press, 1995.

[98] P. Syverson and P. Van Oorschot. On unifying some cryptographic protocol

logics. IEEE Computer Society Symposium on Research in Security and Privacy,

1994.

[99] M. Tatebayashi, N. Matsuzaki, and D. B. Newman, Jr. Key distribution protocol

for digital mobile communication systems. Advances in Cryptology: Proceedings

of Crypto ’89, volume 435 of LNCS. Springer, 1990.

[100] D. Welsh. Codes and Cryptography. Oxford University Press, 1988.

[101] J. T. Yantchev. ARC – a tool for efficient refinement and equivalence checking

for CSP. IEEE Second International Conference on Algorithms and Architectures

for Parallel Processing, 1996.

[102] Jianying Zhou and D. Gollmann. A fair non-repudiation protocol. IEEE

Computer Society Symposium on Security and Privacy, 1996.

[103] P. R. Zimmermann. The Official PGP User’s Guide. MIT Press, 1995.

296 Bibliography

Notation in protocol

descriptions

Lower case is used for variables: message components and keys that are generated in a

particular run (e.g. nonces, session keys). Lower case is also used for agent names in

the general description of the run. e.g. kab for a session key generated in that run.

Upper case is used for constants: items that are fixed for all runs (e.g. long-term

session keys, the name of the server, public and secret agent keys). So PKa for a’s

public key, SKa for a’s secret key, PKJ for Jeeves’ public key (since the functions PK

and SK from agents’ names to keys are constant). If K is upper case then the key is

fixed prior to communication, e.g. KAB. If it is lower case, e.g. kab then it is a key being

set up by the protocol under consideration and is not known to the agents in advance.

a, b agent variables

A, B particular given agent names

k key variable

pk public key variable

sk secret key variable

shk shared key variable

kab a shared session key

n nonce variable

na a nonce supposedly generated by agent a

t text variable

Agent the set of agent names

Honest the set of names of honest agents

Key the set of keys

Nonce the set of nonces

Nonce Ia a’s set of nonces for use in initiator runs

Nonce Ra a’s set of nonces for use in responder runs

{m}k or encrypt(k, m) message m encrypted under key k

g(|m|) message m hashed under hash function g

m1.m2 the concatenation of m1 and m2

X ⊢ f f can be constructed from the facts in X

297

298 Notation

I(A) the intruder masquerading as agent A. In I(A) →
B : M, I initiates messge M making it appear to come

from A. IN B → I(A) : M, I intercepts a message M

intended for A.

ServerKey(a) a’s long-term key shared with the trusted server

PKa agent a’s public key

SKa agent a’s secret key

IK the intruder’s initial knowledge

Init CSP description of a protocol initiator role single run

Initiator(a, na) initiator role with agent a and nonce na

Resp CSP description of a protocol responder role single run

Responder(b, nb) responder role with agent b and nonce nb

User CSP description of all a user’s possible protocol runs

together
Serv CSP description of a single server protocol run

Server CSP description of the complete server behaviour in a

protocol
Intruder CSP description of the hostile environment

System CSP description of the protocol in the hostile

environment
send.i.j.m CSP event: agent i transmitting message m for delivery

to agent j
receive.i.j.m CSP event: agent j taking delivery of message m

apparently from agent i
signal.claim.a.b.f a specification event in a protocol description marking

a significant stage of the protocol execution a is

running apparently with b
signal.Claim Secret.a.b.f a specification event marking the point at which the

agent a executing the protocol apparently with b is

claimed to have established secrecy of fact f
signal.Running role.a.b.f a specification event marking the point at which the

agent a in the particular role executing the protocol

apparently with b is deemed to be running the protocol

with parameters f
signal.Commit role.a.b.f a specification event inserted into a protocol

description to mark the point at which the agent

a in the particular role executing the protocol

apparently with b is deemed to have successfully

completed the protocol with parameters f
role roles used in this book are Initiator, Responder,

Server, Customer, Merchant, CyberBank and

abbreviations of these

Index

Abadi, M. and Gordon, A. D. 238

Abstract Machine Notation (AMN) 232

abstraction 53–6, 241–2

actions 40

AES (Advanced Encryption Standard) 17

agent processes 75–80

algebraic attacks 32

algebraic equivalences 171

alphabets 49

AMN (Abstract Machine Notation) 232

anonymity 12–13, 114–8

APM 36

ASTRAL 231

asymmetric cryptography 17–21

Athena 236

atomic field removal 211–12, 217

atoms 211, 212–13, 216

authenticated key establishment 9–11

authentication 1, 5, 8–11, 92–3, 145, 157–

8, 172–3, 192–8, 230

CyberCash Main Sequence protocol

219–21

entity 8–9, 99–108, 237–8

injective 108

non-injective 108, 157–8

origin 7

Yahalom protocol 192–4, 211

availability 13

BAN logic 226–30

BDD (Binary Decision Diagrams) 126

Bella, G. 237

Binary Decision Diagrams (BDD) 126

bisimulation, strong 135

block ciphers 5–6, 15, 22, 170

B-method 232

breadth-first exploration 127

buffers 63, 68, 71, 72

bundles 234–5

Burrows, M., Abadi, M. and Needham, R.

226

Caesar cipher 15

Calculus of Communicating Systems

(CCS) 232, 237

CAPSL notation 36

Casper 36, 37, 39, 141–60, 165, 166, 171,

221, 233, 246

input files 143–50, 216, 221

CBC (Cipher Block Chaining) 22

CCS (Calculus of Communicating

Systems) 232, 237

Certification Authorities (CA) 21–2

chaining operators 56–7

choice distribution 182

choice operators 43–7

Cipher Block Chaining (CBC) 22

ciphers

block 5–6, 16–17, 22, 170

stream 6, 15–16

substitution 15–17

transposition 15

codes 16–17, 81

communication 40–3

communications protocols 1

compositional refinement 67

compression operators 135–6

conference keying 244

connectionlessness 8

constraints 51–2

corruption 9, 23

CoSec 233

counterexamples 136–8, 173

CRC (Cyclic Redundancy Check) 23

299

300 INDEX

credit cards 215, 220

cryptographic protocols 1

cryptographic techniques 225, 242–4

CyberCash Main Sequence protocol 203,

204, 205, 206, 215–22, 222

Cyclic Redundancy Check (CRC) 23

Data Encryption Standard (DES) 16

data types 80–2, 161–2

data-independence 243, 246–8

deadlock 40, 59

deadlock freedom 68–69

debugging 137

decryption see encryption

deduction 165–7, 169–71

Denning, D. E. and Sacco, G. M. 31

denotational models 125

denotational semantics 62, 125

depth-first exploration 127

DES (Data Encryption Standard) 16

Diffie, W. and Hellman, M. E. 17

Diffie, W., van Oorschot, P. W. and

Wiener, M. J. 9

Diffie-Hellman key-establishment

protocol 9–12, 20–21, 28, 32,

34, 163, 171, 239

digital signatures 21–3

dining cryptographers protocol 116–21

diplomatic protocols 1

direct communication 87–9

distributed termination 58–9

distributivity 45

divergence 69–70, 124

Dolev-Yao model 226, 233

ElGamal algorithm 19

Ellis, James 18–19

encryption 2–3, 5, 23, 80–81, 169

encryption removal 210–12, 216, 218,

219–20

Enigma machine 15

enslavement operators 56

events 42, 62

evidence 108–14, 124

explicitness 93

explicit-state exploration 126

exponentiation 32, 163

failures 67–70

refinement 68, 125, 131–3

failures/divergences 69–70, 124, 132

fairness 12, 109

FDM 230

FDR 13, 35–7, 84–5, 123–38, 164, 170,

214, 220

fixed points 70–2

Focardi, R. and Gorrieri, R. 232

forward secrecy 31–2

freshness 227

functions, Casper input file 146

GCHQ 17

goal availability 235–6

Gollmann, D. 8, 229

group keying 246

hash functions 23–4, 158–9

removal 211, 216, 217

hashing 126

Haskell 147, 211

Heisenberg principle 245

Hennessy, M. 124

hiding 53–4, 137

Hoare, C. A. R. 39, 50, 56

honesty 95–6, 97–98, 109, 112, 121

hostile agents see intruders

IDEA algorithm 17

implementation processes 130

InaJo 230

Inatest 231

induction 71, 236–7

inference rules 64, 71

initiators 77–78

input files, Casper 141–8, 216

free variables 143

processes 143–4

protocol descriptions 143

specifications 145

system definition 146–7

integrity 9

interleaving 29–30, 50–51, 62, 80

INDEX 301

Interrogator 232

intruder processes 82–5

intruders 87, 147

modelling 164–6

Isabelle 236

Kehne-Landendörfer-Schönwälder

protocol 150–1

Kemmerer, R. 230–31

Kerberos protocol 2, 31

keys 2–5

authenticated exchange 9–11

confirmation 11

distribution 5

Labelled Transition Systems (LTS) 127–

33

leak channels 95–6, 172

link parallel 57

livelock 59, 124

liveness 7, 158

logic-based techniques 225

loop detection 127

Lowe, G. 32, 33, 36, 227

Lowe, G. and Hui, M. L. 221

LTS (Labelled Transition Systems) 127–

33

machine-assisted theorem proving 198

man-in-the-middle attacks 27-8

master processes 117

MD5 23

Meadows, C. 231

message splitting 214, 219

Millen, J. 36, 232

Milner, R. 237

MITRE 232, 233

model-checking 35, 225

monotonicity 62, 66–7

multiple fixed points 70

Needham, R. and Schroeder, M. 225

Needham-Schroeder Public-Key (NSPK)

protocol 5, 29, 227

Needham-Schroeder Secret-Key (NSSK)

protocol 3, 11

Needham-Schroeder-Lowe Public-Key

protocol 150, 233

nodes 131, 234

nonces 3, 25, 146, 212, 216

nondeterminism 44–6, 60, 125

non-interference 7, 232–3, 238, 243

non-repudiation 12, 109–14, 124

normalization 131–3, 137

notaries 12

NRL Analyser 231–2

NSPK (Needham-Schroeder Public-Key)

protocol 5, 29, 227

NSSK (Needham-Schroeder Secret-Key)

protocol 3, 11

observable behaviours 124–5

one-way functions 18–20

operational semantics 62, 127, 133

operator trees 134, 137

oracle 28

Otway-Rees protocol 215

oversimplification 204

parallel operators 47–53

parallelism 48, 51, 56

passwords 28

Paulson, L. 36, 236–7, 244

%-notation 149–50

Pfitzmann, B. and Waidner, M. 13

PGP (Pretty Good Privacy) system 21

piping operators 56

PKC (public-key cryptography) 14,

17–21, 23

Playfair cipher 16

polyalphabetic subtitution 15

Pretty Good Privacy (PGP) system 21

process alphabets 50

process equivalences 193

process-oriented specifications 98–9,

106–7

proof rules 64–5, 175–7, 178–9

proof-based techniques 225

protocol specifications 157–8

provable security 225, 238–9

public-key certificates 21, 151

302 INDEX

public-key cryptography (PKC) 14,

17–21, 23

public-key encryption 171

PVS theorem prover 36, 198

quantum cryptography 245

rank functions 35, 177–87, 221, 222

RankAnalyser 198

recursion 40–3, 52, 62, 65

redirecting 214, 219–21

refinement 45, 65–7, 68, 72, 123, 242

compositional 67

failures 68, 131–3

failures/divergences 69, 124–5, 132

transitive 66

reflection 28

refusal 67

relations 54

removal

atomic fields 211

encryption 210

hash functions 211

signatures 218

renaming 53, 85–7, 134, 167–9

replay 28–9

responders 75, 79–80

RIPEMD-160 23

Rivest, Shamir and Adleman (RSA)

algorithm 19–21, 170, 251–2

Roscoe, A. W. 39

RSA (Rivest, Shamir and Adleman)

algorithm 19–21, 170, 251–2

safe transformations 203–207, 210–13

safety conditions 206–7

safety properties 7, 242

Schneider, S. A. 39

scope extrusion 237

secrecy 7, 16, 91, 95–9, 121, 145, 172,

181, 238, 273–7

Yahalom protocol 181–92

secret-key cryptography 15

secure channels 2

Secure Process Algebra (SPA) 232–3

sequential composition 57, 58

servers 76, 185

SHA1 23

shared keys 9, 151

signals 92, 101, 106, 121, 226

simplification 203–222

SPA (Secure Process Algebra) 232–3

specification events see signals

spi calculus 237–8

state enumeration 225

state exploration 125–7

Station-To-Station (STS) protocols 9–10

strand spaces 233–6

stream ciphers 6, 16

STS (Station-To-Station) protocols 9–10

substitution ciphers 15–17

supercompilation 134–6

symmetric cryptography 15–17

symmetric encryption 169

synchronization 133

system definition, Casper input file 146–8

tail recursion 51

termination 57–8

theorem proving 36, 123, 175–200

threats 91

tickets 150–1

time stops 73

timeliness 8, 217

timestamps 26, 72, 151–3, 216

TMN protocol 37

trace refinement see refinement

trace specifications 64–7, 97, 102, 106

traces 45, 60–63

transformations 203–4

message-splitting 214

redirecting 214, 219–20

safe 203–207, 210–13

simplifying 203–207, 210–13

structural 213–15

transitive refinement 66

transparent functions 135

transposition ciphers 15

trap-doors 18–20

trust 109

trusted channels 8

trusted third parties 12, 109, 215

INDEX 303

tupling 81, 163

two-time-unit limits 155

type definitions, Casper input file 146

unique fixed points 70

US National Institute for Standards and

Technology 17

Vernam encryption 34, 158–9, 170

Vigeniere cipher 15

vulnerability 26–32

Wide-Mouthed-Frog protocol 151–7

Yahalom protocol 31, 75, 84, 87, 94–105,

143–7, 181–99

Zhou-Gollmann protocol 111–14

