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Abstract - In this work the modelling of a process of textile dyeing of a single cotton thread is presented. This 
thread moves at a constant velocity within a homogeneous dye solution under steady state conditions. The 
method of volume averaging is applied to obtain the mass transfer equations related to the diffusion and 
adsorption process inside the cotton thread on a small scale. The one-equation model is developed for the 
fiber and dye solution system, assuming the principle of local mass equilibrium to be valid. On a large scale, 
the governing equations for the cotton thread, including the expression for effective diffusivity tensor, are 
obtained. Solution of these equations permits the dye concentration profile for inside the cotton thread and in 
the dyeing batch to be obtained and the best conditions for the dyeing process to be chosen. 
Keywords: textile, dyeing, modeling. 

 
 
 

INTRODUCTION 
 

The problem under study is illustrated in Figure 
1, which shows a uniform cotton thread (ω-region), 
moving at a constant velocity, uo, within a homogeneous 
dye solution. The ω-region is composed of fibers (σ-
region) and the dye solution inside the thread (β-
phase).   The concentration of  dye   in  the  thread  at 
x = 0 is CAω

o, and the concentration in the η-region 
at y ~ ∞ is a constant value, CA

∞. 
A small scale can be identified inside the σ-

region as shown in Figure 1. On this small scale, two 
phases can be characterized: liquid in the 
microfibers, γ-phase, and solid, κ-phase (Plumb and 
Whitaker, 1988a, b, 1990). The κ-phase refers to the 

cotton microfibers (Trotman, 1975; Holme, 1986), 
where the adsorption process occurs. 
 
 

γ - κ SYSTEM AVERAGING 
 
 The governing differential equations and 
boundary conditions for the mass transfer process in 
both the γ-phase and the κ-phase, illustrated in 
Figure 1, are given by 
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 A key aspect of the process of spatial smoothing is
 that the boundary condition given by Eq. (2) is 
combined with the governing equation. The area average 
concentration can  be replaced by the intrinsic average 
concentration, A

A

1C C
A

γκ

γ
γ

γκ
≈ ∫

l

A dAγ

σ

 when the 

following length-scale constraints, rγ <<  and 
2r

1
l
σ

σ

 
<< 

 
 , are satisfied (Ochoa-Tapia et al., 

1993; Whitaker, 1999). 

AB.C.2 : C f (r, t)γ =   at Aγe                           (3) 
 

AI.C.: C g(r)γ =           at t = 0             (4) 
 

It is assumed that in the interface the diffusive 
flux from the γ-phase to the κ-phase is equal to the 
adsorption rate. 

The κ-phase is assumed to be a rigid phase and the 
adsorption isotherm is a linear function expressed as  
 

As AC KeqC γ=    at Aγκ                          (5) 
 
Here CAγ represents the molar concentration of 
chemical species under study (mol/m3), CAs 

represents the surface concentration (mol/m2), and Dγ 
is the γ-phase molecular diffusivity of species A 
(Whitaker, 1992). The entrances and exits of the γ-
phase at the boundary of the σ-region are represented 
by variable Aγe. Variable Aγκ is used to represent 
the entire interfacial area within that region. The γ-
phase and the κ-phase and the σ−β system move at the 
same velocity in relation to the coordinate system; these 
two scales are confined to within the cotton fibers.  

 
Here avγκ  represents the surface area per unit 

volume, given by 
 

Aγκ
γκ

σ
=

V
av                      (9) 

 
and the spatial deviation concentration can be 
expressed as 
 

A A AC C C γ
γ γ − γ=�                           (10) The intrinsic average concentration is defined by 

  
The Closure Problem 

A

V

1C C
V

γ
γ

γ γ

= ∫ A dVγ                            (6)  
At this point a representation for the spatial 

deviation concentration needs to be developed.   
The spatial averaging theorem (Howes and 

Whitaker, 1985) for volume Vσ can be expressed as 
 Subtracting Eq. (8) divided by εγ from Eq. (1), 
one can obtain 

  

A

1 n dγ γ γκ γ
σ γκ

∇ψ = ∇ ψ + ψ∫V
A             (7) 

 
in which Aγκ represents the interfacial area  γ-κ  
contained within averaging volumeVσ . 

The integration of Eqs. (1) through (4) in volume 
Vσ, using the spatial averaging theorem as presented 
by Ochoa-Tapia et al. (1993) and Whitaker (1999), 
results in the volume-averaged form of Eq. (1), given by 
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The interfacial boundary condition for the 

deviation concentration can be expressed as 
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A
A

A
A

CB.C.1: n .D C Keq
t

C
n .D C Keq

t

γ
γκ γ γ −

γ
γγ

γκ γ γ

∂
− ∇

∂

∂
= ∇ +

∂

�� =

  at Aγκ       (12) 

 
AB.C.2 : C (r, t)γ =� H       at Aγe                 (13) 

 
AI.C.: C (r)γ =� Z        at t = 0            (14) 

 
Since the source H  only influences the   

field over a distance on the order of l
(r, t) AC�

AC�

y, we can 
generally replace the boundary condition imposed at 
Aγe with a spatially periodic condition for  
(Whitaker, 1999). So, when the spatially periodic 

model is used and 
*

2

D t

l
γ

γ

is much greater than one, 

the boundary value problem can be rewritten as 
 

A
A

av Keq C
. C xD t

γ
γγκ

γ
γ γ

  ∂
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A AB.C.2 : C (r i) C (r), i 1, 2, 3γ γ+ = =� �l           (17)
 

 
Figure 1: Averaging volumes for diffusion and adsorption within the cotton thread. 
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Closure Variables where the effective diffusivity tensor is defined by 
  
 The boundary value problem for deviation 
concentration is solved by the method of 
superposition, where a proposed solution is given by 

A

1D I n bdA
V

γκγ
γ γκ

 
 
 
 

∫+effD =                       (26) 

 
 

A
A A

C
C b. C

t

γ
γγ

γ γ
 ∂
 = ∇ + + ψ
 ∂ 

� s           (18) and vector u is defined by 
 

A

1u n D
V

 
 γκ γ 
 γ γκ

= ∫ s dA                  (27)  
Whitaker (1999) proves that ψ = constant is the 

only solution. Since this additive constant will not 
pass through the filter, the value of ψ  plays no role 
in the closed form of the volume averaged diffusion 
equation. 

 
Here the diffusive tensor, Deff, depends only on 

the geometry of the porous medium (Whitaker, 
1999).  

Here b and the scalar s are the closure variables 
and ψ  is an arbitrary function (Whitaker, 1999). The 
two closure variables can be determined according to 
the following two boundary value problems: 

One can use Eq. (23) and Eq. (27) for estimating 
the order of s and u. Using these results in Eq. (25), 
Whitaker (1999) demonstrated that the advective 
term can be neglected for the case of diffusion in 
porous solids. The final form of the local average 
diffusion and transport equation is given by 

 
Problem I 
  

2b 0∇ =                    (19) A
A

av Keq C
1 .

t

γ
γ

C γγκ
γγ γ

γ

  ∂
ε + = ∇ ε ∇  ε ∂ 

eff.D    (28)  
B.C.1:              at An . b nγκ γκ− ∇ = γκ               (20) 

  
 B.C.2 : b(r i) b(r), i 1, 2, 3+ = =l         (21) 

σ−β SYSTEM AVERAGING  
 Problem II 
 In this section we will develop the spatially 
smoothed equations associated with volume Vω, 
shown in Figure 1. The length scales related to this 
averaging volume are identified in Figure 1. The 
boundary value problem associated with the local 
volume averaging procedure is given by 
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B.C.2 : s(r i) s(r), i 1, 2, 3+ = =l                   (24) 
 

 (29) Closed Form 
  in the  σ-region                   
 The closed form of the governing equation for the 
intrinsic average concentration, <CAγ >γ, can be 
obtained by substitution of Eq. (18) into Eq. (8). The 
resulting equation can be expressed as 
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AB.C.2 : C Cγ
Aγ β=               at  Aσβ              (31) 

 
 AB.C.3: C (r, t)β =G1              at Aβe              (32a) 
 

AB.C.4 : C (r, t)γ
γ =G2          at Aσe              (32b) 
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The spatial deviation concentration equation can be 
obtained by subtracting Eq. (36) divided by σϕ  from 
Eq. (29), and the resulting equation can be simplified 
when the following restrictions are satisfied: 

r 1
l
ϖ

ϖ
<< and 

( )l
1

l
ϖ γ σ

σ

ε ϕ
>> .  Under these 

circumstances Eq. (36) can be rewritten as 

(A
A

C . D C
t

β
β

∂
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∂
)β    in the  β-phase       (33) 

 

The σ-Region 
 

Integration of Eq. (29) over V , illustrated in 
Figure 1, results in 
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         (38) 
 
in which the nomenclature for the σ-region has been 
simplified by using the relationship AC Cγ

γ σ= , 
where  
 

C C σ
σ σσ= ϕ and  
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AB.C.2 : C C C σ

βσ = −�
σ             at  Aσβ           (40) By using the averaging theorem and following the 

same procedure as that adopted previously and 
assuming that the restriction l  is satisfied, 
Eq. (34) can be expressed as  

σ <<
 
The β-Phase 
 
 The volume averaging form of Eq. (33) in volume 
Vω, using the averaging theorem, is given by  
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Here   ϕσ   represents  the   volume   fraction   of   the 
σ-region contained in the volume Vω .  
 
The Closure Problem  
 The deviation concentration for the β-phase is given 

by     A A AC C C
β

β β β= −� . 
Analogously to the previous procedure, here a 

representation for the spatial deviation concentration 
is required. The use of the spatial deviation 
concentration defined by Gray (1975) and applied to 
the σ-region results in 

 
The Closure Problem 

 
 One can see that the subtraction of Eq. (41) 

divided by βϕ  from Eq. (33) results in the governing C C Cσ
σ σ= + � σ                 (37) 
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One-Equation Model equation for the deviation concentration, which is 
given by   
  Making the assumption that the principle of local 

mass equilibrium (Quintard and Whitaker, 1993; 
Whitaker, 1986 a, b)  is valid, we can write  

N
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      (42) 

 
*

A AC C Cβ σ
β σ= =              (44) 

 
Here <CΑ>∗  is the spatial average concentration 
defined as 
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ω ω

β
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The following definitions  

 
         

β σ γϕ + ϕ ε = ε                         (46)  
By analysis of the order of the terms in Eq. (42), and 
assuming the length-scale constraints given by 

 and l rβ << ϖ

*

2

D t
1

l
β

β

>> , one can conclude that 

the nonlocal term can be considered negligible 
compared to the diffusion term and the closure 
process can be considered quasi-steady. Under these 
circumstances, Eq. (42) can be rewritten as 

 

av Keq Kσ γκϕ =                       (47) 

 
can be used with Eqs. (36) and (41) to give 
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Here we have defined the overall effective 

diffusivity as

 

( ) ( )* *
A A

A A

D1. . C . D . C . n C dA n C dAI
σβ βσ

β
σ ββ γ σ β β γ σβ β

ω ω




Aσ
∇ ϕ ∇ = ∇ ε ϕ + ϕ ∇ +ε +  

∫ ∫� �eff effD DeffD
V V

     (49) 

 
Closure Variables The following boundary value problem needs to 

be solved:   
 Considering that the local closure problem has a 
unique nonhomogeneous term proportional to the 
gradient of the spatial average concentration 
evaluated on the centroid, one can write  

 
2b 0β∇ =                    (52) 
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σβ β β σβ γ σ
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*

A AC b . Cβ β= ∇ + ψ�                    (50) 
 

*
AC b . Cσ σ= ∇ +� ξ                  (51) 

B.C.2:  b b at Aσ β σβ=                       (54) where bβ and bσ are the closure variables. 
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2b 0σ∇ =                      (55) 
 

Periodicity : 
b (r) b (r ) , b (r)

b (r ) , 1,2,3

σ σ β

β

= +

= + =

li

li i

=
     (56) 

            
One can show that ψ = ξ = constant. This 

constant will not pass through the filter represented 
by area integrals in Eq. (49), as suggested by 
Whitaker (1999). So the value of this constant plays 
no role in the closed-form equation. 
 
The Closed Form 
 
 Substituting the expressions given by Eq. (50) 
and Eq. (51) for the spatial deviation concentrations 
in Eq. (49), taking into consideration solution of the 
boundary value problem, one can obtain 
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THE ω -η SYSTEM 
 
The ω-Region 
 

At  this point we need to consider the ω-region 
motion  related to the η-phase and for this 
circumstance the time derivative of average 
concentration of species A in the ω-region can be 
expressed  as 
 

* *
A A *

A00

d C d C
u . Cu v 0dt dt

= + ∇=  (59) 

 
By simplification Eq. (59), we can write 

 
* *

A A *
A00

d C C
u . Cudt t

∂
= + ∇

∂
      (60) 

 
The subscript on the left side of Eq. (60) does not 

indicate what is being held constant, but instead 

indicates the velocity of the observer who is 
measuring the concentration. On the basis of Eq. (60) 
the governing equation for the ω-region can be 
written as 
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 ε + + ∇
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The η-Phase 

 
The governing equation for the η-phase is given 

by 
 

(A
A

C . C . D C
t

η )Aη ηη η
∂

+ ∇ = ∇ ∇
∂

v          (62) 

 
One can assume that the boundary layer solution 

for the hydrodynamic problem in the η-phase is 
acceptable, and in this circumstance the velocity 
profiles obtained by Sakiadis  (1961a, b, c) can be 
used in Eq. (62). 
 
 

CONCLUSIONS 
 
 The model of a single cylinder cotton thread, 
developed using the method of volume averaging for 
the adsorption dyeing process, represents a 
fundamental approach in this area. Two scales were 
considered in order to formulate this problem. The κ-
phase, inside the σ-region, is composed of 
microfibers where the adsorption process occurs. 
The ω-region, containing the σ-β system, moves at a 
constant velocity.  The method of volume averaging 
is applied to obtain the mass transfer equations 
related to the adsorption process on the small and the 
large scale. The one-equation model is developed for 
the β- σ system, assuming the local mass 
equilibrium. The simulation results and validation of 
this model as well as the effective mass diffusivity 
obtained by solution of closure problems will be 
presented in a subsequent paper. 
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Dγ The γ−phase molecular diffusivity, m2/s Aperfeiçoamento de Pessoal de Nível Superior, 
CAPES, Brazil. Deff  The γ−phase effective diffusivity tensor,        
    m2/s  

Dβ The β−phase molecular diffusivity, m2/s NOMENCLATURE 
Dη The η−region molecular diffusivity,   

Aγκ Interfacial area of the γ−κ system, m2  m2/s 
Deff Effective diffusivity tensor for the σ−β  Aγe Area of entrances and exits for the 

γ−phase, m2  system , m2/s 
I Unit tensor Aσβ Interfacial area of the σ−β system, m2 
<K> The averaged adsorption equilibrium  Aσe Area of entrances and exits for the 

σ−region, m2  constant, m 
Keq Adsorption equilibrium constant, m 

Aβe Area of entrances and exits for the 
β−phase, m2 

l ω Characteristic length of the ω−region, m 
l σ Characteristic length of the σ−region, m 

Aγκ The γ−κ interfacial area contained 
within the averaging volume, V σ, m2 l β Characteristic length of the β−phase, m 

 l γ Characteristic length of the γ−phase, m Aγe Area of entrances and exits for the 
γ−phase contained within the averaging 
volume, V σ,  m2  

li Lattice vectors describing  a spatially  
 periodic porous medium, m 
L Long length for volume averaged  

Aσβ The σ−β interfacial area contained 
within the averaging volume, V ω,  m2  

 quantities associated with the ω−η 
system, m 

avγκ The γ−κ interfacial area per unit           
volume, m-1 

nγκ Outwardly directed unit normal vector  
 pointing from the γ−phase toward the 
κ−phase CA

∞ Concentration in the η−phase outside 
the boundary layer, kgmol/ m3 nσβ Outwardly directed unit normal vector 

pointing from the σ−region toward the 
β−phase 

CAγ Point concentration in the γ−phase,     
   kgmol/ m3 
<CAγ>γ=Cσ Intrinsic averaged concentration in the 

γ−phase, kgmol/ m3 rσ Radius of the γ−κ system  averaging 
volume, V σ, m 

AC γ
�  Spatial deviation concentration in the 

γ−phase, kgmol/ m3 
 rω Radius of the σ−β system  averaging 

volume, Vω, m 
CAβ Point concentration in the β−phase,   t Time, s 
   kgmol/ m3 t* Characteristic time, s 
CAη Point concentration in the η−phase,  V σ Small-scale averaging volume, m3 
 kgmol/ m3  Vω Large-scale averaging volume, m3 
<CAβ>β Intrinsic regional averaged  uο The ω−region velocity vector, m/s 

 concentration for the β−phase, kgmol/ 
m3 

vη The η−phase velocity vector, m/s 
Vγ   Volume of the γ−phase  contained   

<Cσ> Superficial regional averaged 
concentration for the σ−region, kgmol/ 
m3 

  within V σ,  m3 
Vσ Volume of the σ−region contained 

within V ω,  m3 <Cσ>σ Intrinsic regional averaged 
concentration for the σ−region, kgmol/ 
m3 

δC Mass boundary layer 
δH Hydrodynamic boundary layer 
εγ The γ−phase volume fraction in the  Cσ

�   Spatial deviation concentration in the 
σ−region, kgmol/ m3 

  γ−κ system  
ϕσ The σ−region volume fraction in the  

AC β
�   Spatial deviation concentration in the 

β−phase, kgmol/ m3 
 σ−β system 
ϕβ The β−phase volume fraction in the 

<CA>* Intrinsic spatial averaged concentration 
for the σ−β system, kgmol/ m3 

 σ−β system  
<ε> The averaged porosity   
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