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Abstract: The beneficial effect of surface peening (including shot peening, laser shock peening,
low plasticity burnishing, etc.) on fatigue resistance of structural alloys is well documented and
widely used in industry to improve component life. It is perhaps the most widely used technique
that relies on the introduction of residual stresses into the component by direct mechanical
means. The resulting stress states are usually evaluated experimentally by X-ray diffraction or
other stress measurement techniques. In order for shot peening operations to be effective and
reliable, the process of introducing residual stresses and strains into peened components must
not only be controlled but also be predictable and quantifiable.

The present paper establishes a framework for predictive modelling of the residual stress states
due to surface peening. Firstly, uniform (within planes parallel to the surface) plastic deformation
of the surface layer taking place during shot peening of a thin plate is simulated using the
concept of eigenstrain.

As a further demonstration of the capabilities of the proposed approach, flexible plate theory is
applied to the analysis of stresses and deformations arising due to local peening within a circular
area. The results are of considerable use and significance for the analysis of shot peening and
peen forming operations.
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1 INTRODUCTION

Shot peening is a cold working process aimed at
creating substantial (of the order of 60 per cent of
the material yield strength) levels of compressive
residual stress in a thin near-surface layer of material.
This is achieved by bombarding the metal surface with
spherical particles, such as steel or ceramic shot or
glass beads, under controlled conditions. Success in
preventing, or substantially retarding stress corrosion
cracking, crack initiation and growth, pitting, fretting,
and other fatigue phenomena, by shot peening has
been reported for various steels, as well as for alumi-
nium and titanium alloys, the Inconels, copper silicon
alloys, and other materials [1]. The mechanism of
fatigue retardation is associated in part with work
hardening of the surface, but is mainly due to the
plastic strain, which puts the outer layers of material
into compression.
A somewhat arbitrary distinction is sometimesmade

between twopossiblemodes of plastic deformation [2],

namely one dominated by stretching (hard shot on
softer substrate) or by subsurface compression (soft
shot on harder substrate). Guechichi et al. [3] have
developed a cyclic loading model that predicts depth
distribution of shot peening stresses in a semi-infinite
solid based on the Hertzian elastic contact solution,
and the cyclic elastic limit of the substrate material.
Perhaps one of the more important conclusions is
that to good accuracy the plastic strain can be assumed
constant to a certain characteristic penetration depth,
and zero elsewhere.

In an application of the shot peening treatment, the
predictions for residual stresses obtained using the
above approach must be adjusted to specific finite
geometries. The key to better integration of shot
peening into the design process lies in the ability to
calculate reliably the increase in allowable stress. At
present this approach can very rarely be implemented,
with extensive fatigue testing being used instead at
early stages of design. The primary concern in the
practical application of shot peening is repeatability.
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This is achieved by careful monitoring of the peening
conditions, the Almen intensity being the primary
parameter. The intensity is an indication of the kinetic
energy transferred during the peening process. The
Almen gauge is a standard measurement device for
monitoring the arc height of a strip of material after
its exposure to a blast of shot.
The model presented here is based on the author’s

earlier studies [4]. It provides a more general frame-
work than that based on the ‘stress source’ solution
of Flavenot and Niku-Lari [5]. The present paper
addresses the question of elastic stress redistribution
in finite thickness specimens after the introduction of
permanent plastic strains by shot peening, and is
related to the interpretation of Almen intensity and
peen forming of thin plates. The approach described
in the present paper starts with an assumed distribu-
tion of permanent plastic strain introduced into the
workpiece by the peening process and proceeds to
derive the residual stress state that arises in response,
under the beam or shell bending approximation. It is
therefore important to note that peen process model-
ling is not part of the proposed routine. The residual
stress is thought to arise due to elastic stress equili-
bration and associated plate bending. An analytical
framework incorporating shot peening effects into
the flexible plate theory is presented and its applica-
tion to model problems is considered.
A significant number of publications can be found

in the literature dedicated to the modelling of the
peen process and of the resulting residual stress
state. Kobayashi et al. [6] consider the popular
approach based on the study of plastic deformation
induced by the impact of individual shot. They
review the literature dedicated to shot peen model-
ling and observe that a common difficulty arising in
this approach lies in the fact that simulating an
extremely large number of complex dynamic pro-
cesses associated with each impact involved in the
peening process is computationally prohibitively
expensive. The authors conclude that experimental
characterization of residual stress states after shot
peening remains a very important requirement.
Blodgett and Nagy [7] describe their results

obtained using one of the methods of experimental
residual stress characterization that uses eddy current
measurements. They also discuss the use of X-ray
diffraction for the purpose of residual stress evalua-
tion. An overview of laboratory-based X-ray methods
is given by Hauk [8], while Prevey (e.g. see reference
[9]) published a large number of experimental results
for various systems and surface treatment methods,
including low plasticity burnishing, laser shock peen-
ing, gravity peening, etc.
Wang and Platts [10] focus their attention on the

deformation induced in thin-walled components by
the peening process and propose a finite element

framework for modelling peen forming based on the
bending theory. Levers and Prior [11] present an
approach to peening-induced residual stress model-
ling that relies on experimentally determined plastic
strain distributions with depth from the surface, and
use the finite element framework in order to predict
the distortion (peen forming effect) arising from the
treatment, using thermal strains for their simulation.
A comparison of the present method with the study of
Levers and Prior is provided below.

In the approach adopted in the present study it is
the induced plastic strain distribution that is consid-
ered to be the primary characteristic of the peening
process. Clearly, this distribution stands in a complex
relationship to the material properties, shot size,
hardness, speed and angle of impact, and also work-
piece dimensions. Plastic deformation within the
workpiece arises due to a local stress increase under
impact. At large distances from the impact site the
contact-induced stresses decay inversely in propor-
tion to the distance. It is therefore reasonable to
assume that, as the size of the workpiece increases,
the influence of its dimensions on the interaction
between a shot and the surface becomes less and
less significant, and for large workpieces the resulting
plastic strain distribution becomes independent of
the workpiece thickness. Although this hypothesis is
not employed for the analysis presented in this
paper, it may provide a convenient basis for justifying
the use of plastic strain distribution as a process char-
acterization parameter, and deserves experimental
validation.

A further issue in the analysis of fatigue life
improvement afforded by surface peening is the
incorporation of residual stress into the numerical
model for cyclic elastoplastic deformation and the
predictive model for crack initiation. Guagliano and
Vergani [12] discuss the influence of the peening-
induced residual stress state on crack growth in
engineering components, using a procedure for
applying an experimentally determined residual
stress state to the crack surfaces within the finite
element framework.

It is worth noting here that, under fatigue condi-
tions, the presence of residual stress is not simply
equivalent to a modification of the mean stress.
Firstly, residual stress modifies local yielding condi-
tions, thus affecting both the stress and strain range,
and the mean stress. Secondly, the residual stress
itself changes during cyclic plastic deformation. This
happens as a result of the generation of additional
inelastic strain, or eigenstrain. Furthermore, the
growth of cracks is likely to cause stress redistribu-
tion, which in turn affects the conditions of crack
propagation. The concept of eigenstrain provides a
rational and rigorous basis for the incorporation of
residual stress into deformation modelling.
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To ensure clarity, it is convenient to split the prob-
lem into several stages. In this paper the only part of
the problem addressed concerns the determination
of the residual stress state given a continuous eigen-
strain distribution. This may be called the ‘direct
problem’. In practice the problem is quite often
more difficult and may be formulated as follows:
residual elastic strains (or their changes due to
machining) have been measured in a particular geo-
metry at a finite number of points (or averaged
across gauge volumes). The underlying eigenstrain
distribution responsible for the residual stress state
must be found. This problem is the inverse problem
of eigenstrain analysis. It can be addressed efficiently
for arbitrary geometries using a variational approach,
described in a separate study. In the present article
only the direct problem is discussed.
It is worthwhile here to make a brief note regarding

the role of the concept of eigenstrain in residual stress
analysis. Eigenstrain can be thought of as arbitrary
permanent inelastic strain introduced into the
object by a process other than elastic deformation.
This could be associated with time-independent
plasticity (as in the case of shot peening), creep, trans-
formation-induced strain, welding, or even a cutting
and pasting operation.
The last operation noted in the above list is particu-

larly relevant in order to appreciate the eigenstrain
concept. It is instructive to perform a thought experi-
ment whereby an annulus of elastic material is cut
along its radius so that some of the material along
the cut line is lost (Fig. 1). Now let the annulus be
glued back together. Since the annulus no longer fits
together neatly (is ‘misfitting’), this operation will
induce a residual stress state in it. The origin of this
residual stress state is eigenstrain, which could be
conveniently associated with the location of the cut.
Note that the term ‘eigenstrain’ is being used here
even though no deformation (strain) has taken place
in connection with the cutting and pasting operation.
It is useful to imagine that the same final state could be
achieved without cutting, but instead by imagining
that thematerial lost in the process of cutting had sud-
denly undergone a transformation process whereby
its hoop extent has diminished to zero.
Eigenstrain can also be thought of as the perturba-

tion imposed upon the theory of elasticity formula-
tion. The conventional elastic problem formulation
(in terms of strains or stresses) consists of equations
of stress equilibrium, strain compatibility, and the
elastic stress–strain relations. Deviations from this
framework (e.g. plasticity) are usually thought of as
modifications to the latter part of the formulation,
i.e. non-linear stress–strain relations. It is proposed
here to consider a different view, namely that eigen-
strain gives rise to a non-zero right-hand side of the
equations of strain compatibility (more appropriately,

incompatibility). The evolution of eigenstrain during
inelastic deformation processes (cutting and pasting,
creep, plastic deformation, etc.) is a subject external
to the elastic formulation and must be described by
empirical equations of state.

In the analysis of residual stress it is not necessary
to know anything about the origin of eigenstrain,
but only about its spatial extent and variation. Once
eigenstrain is prescribed, the residual stress state is
found as the solution of a perturbed elastic problem,
where eigenstrain appears as the perturbation of
strain compatibility. If further inelastic processes
were to take place, then the eigenstrain distribution
becomes modified and a new residual stress is estab-
lished. This view is particularly advantageous if such
subjects need to be tackled as stress relaxation or
object distortion during subsequent machining. The
difficulty arising in such situations primarily stems
from the complex geometry of real components that
need to be considered. This usually precludes the
use of analytical solutions and requires the applica-
tion of numerical approaches, such as the finite
element method. The use of variational eigenstrain
modelling for such problems has been proposed
and developed by the author, and will be reported
in subsequent publications.

In the context of the present study the eigenstrain
considered is associated purely with the plastic defor-
mation induced by peen shot impact. The nature of
the plastic strain tensor and its spatial variation are
discussed. The perturbed elastic problem is then
solved using two different approaches, for the cases
of uniform (in two coordinates) and non-uniform
(non-zero within a finite region) eigenstrain.

2 UNIFORM EIGENSTRAIN

In the first instance a plate is considered of thickness h
in the z direction which contains uniformly distributed

Fig. 1 (a) Illustration of an annular specimen with
material cut-out that is equivalent to a localized
eigenstrain. (b) After the eigenstrain is introduced,
the annulus contains residual stress and may
undergo distortion (depending on the nature of
the eigenstrain introduced)
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permanent plastic strain induced by peening (Fig. 2).
Due to inherent symmetry of the shot peening
operation under the conditions of normal impact, the
eigenstrains "�x and "�y can be assumed equal through-
out the analysis. In the present case they are also
independent of the x and y coordinates, while their
variation in the z direction is assumed to be known,
"�x ¼ "�y ¼ �ðzÞ. The third normal eigenstrain compo-
nent "�zz must be constrained to be equal to �2�ðzÞ,
by virtue of volume conservation under the conditions
of plastic deformation that generated it, while all shear
eigenstrain components are assumed zero.
For a given function �ðzÞ, the stresses in the plate �x

and �y are to be determined. Firstly, the depth of the
shot peening affected zone, d < h, is defined as the
maximum depth for which non-zero eigenstrains
exist, i.e. �ðzÞ5 0. Then the following moments of
this eigenstrain distribution can be defined as

� ¼ 1

h

ðd

0
�ðzÞ dz‚ � 1 ¼

1

h2

ðd

0
�ðzÞz dz ð1Þ

where � may be called the depth-average eigenstrain,
while � 1 is the eigenstrain moment.
Let us now show that the stress � ¼ �x ¼ �y in the

plate is linearly dependent on the moments � and
� 1, and the eigenstrain distribution function �ðzÞ.
Indeed, the biaxial stress � is related to the biaxial
elastic strain e via � ¼ Ee=ð1� �Þ, where E and �
are the Young’s modulus and Poisson’s ratio of the
material respectively. Here the usual Kirchhof
bending theory is used. According to the Kirchhof
hypothesis of straight normals, during bending the
material points that originally lie on a normal, i.e.
on a line perpendicular to the plate mid-plane,
remain in a straight line, which only suffers a rotation
due to bending. A consequence of this assumption is

that the displacements, and hence the total strain
must vary linearly through the plate thickness, i.e.
"ðzÞ ¼ bþ az=h. Here the total strain must be thought
of as the sum of elastic and inelastic (i.e. plastic,
eigen) strain. The elastic strain may be obtained by
subtracting the eigenstrain from this total strain
expression, so that the stress is given by

� ¼ E

1� �

�

bþ az

h
� �ðzÞ

�

ð2Þ

By applying the static equilibrium requirements the
unknown constants a and b can be determined as

a ¼ 6ð2� 1 � � Þ‚ b ¼ 2ð2� � 3� 1Þ ð3Þ

These results may be recast in terms of the plate
curvature radius R and the neutral axis position z0 as

R ¼ 1

2� 1 � �

h

6
‚ z0 ¼

3� 1 � 2�

2� 1 � �

h

3
ð4Þ

Finally, the expression for the stress is

�ðzÞ ¼ E

1� �

�

2�

�

2� 3z

h

�

� 6� 1

�

1� 2z

h

�

� �ðzÞ
�

ð5Þ

The relationship between the eigenstrain profile
and the residual stress in this case is illustrated (in a
normalized form) in Fig. 3. It is apparent that the
eigenstrain influence on residual stress can be
thought to consist of two effects. Firstly, the presence
of eigenstrain causes the generation of a local propor-
tional residual stress (with a coefficient equal to the
Young’s modulus) of opposite sign. Secondly, the
material responds to the appearance of the local
residual stress by global re-equilibration. In the
present case this amounts simply to bending, which
can be clearly identified in the figure. The difference
between the complete residual stress profile and the
continuation of the straight line representing bending
gives a local residual stress component that is propor-
tional and opposite in sign to the eiegenstrain.

It is worth noting the limiting case of z=h being very
small, i.e. the stress immediately below the shot-
peened surface, which is given by

�ð0Þ ¼ � E

1� �
½�ð0Þ þ 6� 1 � 4� � ð6Þ

If the plate is very thick (compared to the depth of the
shot peen affected zone, d), then the average eigen-
strain � and eigenstrain � 1 become very small, with
the stress being given by

�ðzÞ ¼ � E

1� �
�ðzÞ ð7Þ

This important conclusion indicates that residual
stress measured in uniformly peened massive

Fig. 2 Illustration of the problem geometry. The plate is
infinitely extended in directions x and y, and
possesses thickness h in direction z. In the uniform
eigenstrain problem it is assumed that the eigen-
strain domain is infinitely extended in directions x
and y, but varies in direction z through the thick-
ness of the plate. In the non-uniform eigenstrain
problem it is assumed that the eigenstrain domain
is also bounded in the plane parallel to the plate
surface, and only exists within the circular domain
x2 þ y2 < a2, as indicated in the figure
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workpieces is directly proportional to the permanent
plastic strain introduced into the material. The result
of this section, however, clearly demonstrates that
this is not true for workpieces of finite geometry.
Moreover, generally not one (e.g. Almen intensity)
but two parameters, � and � 1, may be required in
order to provide an accurate description of the
stress variation in plates of finite thickness.
The approach developed in the present paper is in

agreement with other shot peen modelling results
found in the literature. As an example consider the
residual stress profile given by Levers and Prior [11]
and shown in Fig. 4. Given that this distribution

arises in thick coupons and using the last equation
above, the eigenstrain distribution can be obtained
simply by dividing this profile by the value
E=ð1� �Þ ¼ 103GPa approximately for the alumi-
nium alloy considered. This corresponds to the
maximum eigenstrain value of about 0:77� 10�3, or
770 microstrain. The residual stress can now be
computed using the above formulae for the compo-
nent shell thickness of 4mm given in the paper, and
is also shown in Fig. 4.

An elastic stress redistribution may similarly be
expected to take place when spatially variant eigen-
strains are introduced, as shown in the next section.

3 NON-UNIFORM EIGENSTRAINS

In this section the main steps are presented in the
analysis of residual stresses due to spatially variant
eigenstrains in a thin flexible plate. More specifically,
a case of axisymmetric deformation due to the
presence of eigenstrains inside a bounded domain �
is considered. This simplification is chosen so that a
closed-form solution can be derived. For the same
reason, attention here will be confined to the case of
uniform eigenstrains inside a domain of simple shape.

The present situation is a special case of a class of
problems about inclusions containing eigenstrains.
An example of a general method of formulation is
given byMura [13]. The problemwhen� is an ellipsoid
in an infinitely extended homogeneous elastic solid
and the eigenstrains are uniform was first solved in
closed form by Eshelby [14]. Numerous applications
of his famous result include crack problems,

Fig. 3 An illustration of eigenstrain distribution (dashed line) and residual stress for the case of eigen-
strain uniform in x, y. The horizontal axis is normalized by the total plate thickness, h. The ver-
tical axis is normalized by the maximum value of eigenstrain, E"�max, for eigenstrain, and by
Young’s modulus times eigenstrain for residual stress, E"�max , for stress

Fig. 4 Residual stress prediction compared with the
results of Levers and Prior [11]
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inhomogeneities, modelling of composite properties,
etc. Inclusions of other shapes and other geometries
have been considered. For example, the case of
cuboidal inclusion was treated by Faivre [15], while a
method of solution for a spheroidal inclusion inside
one of two dissimilar elastic half-spaces has been
considered by the present author [16].
Amethod of widest general applicability used in the

derivation of elastic fields of known eigenstrain distri-
butions is the method of Green’s functions [13]. In the
context of the present problem, however, it appears
more convenient to proceed by a different route.
The derivation of flexible plate equations will follow
and the prescribed eigenstrains will be directly
incorporated in the compatibility conditions.
Kirchhof’s formulae for strains in a flexible plate

(i.e. a plate for which both membrane and bending
terms are significant) are given by

"r ¼ u‚r þ
1

2

dw

dr

� �2

�z
d2w

dr2
‚ "� ¼

u

r
‚ �r� ¼ 0

ð8Þ

Here w is the vertical deflection and r denotes the
radial coordinate. When z ¼ 0 these expressions
describe the deformation of the median plane. The
equation of force equilibrium in the radial direction
has the form

d

dr
ðrSrÞ � S� ¼ 0 ð9Þ

where Sr, S� are the average stresses acting on ele-
mental surfaces spanning the plate thickness h with
the normal orientated in the radial or hoop direction
respectively. These are obtained by integration

Sr ¼
1

h

ðh

0
�r dz‚ S� ¼

1

h

ðh

0
�� dz ð10Þ

and can be expressed in terms of the Airy stress
function �ðrÞ introduced by Sr ¼ ð1=rÞðd�=drÞ,
S� ¼ ðd2�=dr2Þ. The depth-averaged strains are then
given by

E�""r ¼
1

r

d�

dr
� �

d2�

dr2
‚ E�""� ¼

d2�

dr2
� �

1

r

d�

dr
ð11Þ

In the plane case considered, Saint-Venant’s compat-
ibility conditions are reduced to the single relation.
Assuming the deflection w is small, the corresponding
term can be discarded, so that after averaging over
the plate thickness this equation becomes

E

�

d

dr
ðr�""�Þ � �""r

�

¼ r
d

dr
r2�

¼ E

h

ðh

0

�

"�r �
d

dr
ðr"��Þ

�

dz ð12Þ

This is the equation for determining the stresses
due to any given axially symmetric distribution of
eigenstrains. Note that only the depth-averaged
eigenstrains determine the total stress transmitted
through any cross-section. Let the eigenstrains
again be assumed biaxial and the depth-averaged
eigenstrain �ðrÞ (which now depends on the radial
coordinate) be introduced. Let the function �ðrÞ
have bounded support, i.e. require that � ðrÞ ¼ 0 for
all r > a. This implies that the eigenstrain is present
only within a circular region of radius a and is zero
outside.

Equation (12), upon substitution of the above and
some rearrangement, then assumes the form

d

dr
r2�þ E�ðrÞ
� �

¼ 0 ð13Þ

This can be integrated to give

�ðrÞ ¼ B log
r

a
� E

ð1

r

1

r

�
ð1

r
r�ðrÞdr

�

dr

so that the average stresses are

Sr ¼
B

r2
þ E

r2

ð1

r
r�ðrÞ dr

S� ¼ � B

r2
� E

r2

ð1

r
r� ðrÞdr� E�ðrÞ

ð14Þ

Since stresses remain finite as r ! 0, then

B ¼ �E

ð1

r
r�ðrÞ dr

Note also that stresses vanish at infinitely large dis-
tances from the inclusion (where � ¼ 0).

Further progress can be made if a specific distribu-
tion of eigenstrains is chosen. Consider, for example,
a circular inclusion with uniform dilatational eigen-
strain, i.e. � ðrÞ ¼ � 0Hða� rÞ, where HðxÞ denotes
the Heaviside step function. In this case �ðrÞ is a
continuous function, � ¼ ðE� 0=4Þða2 � r2Þ, r4 a,
and � ¼ ð�E� 0a

2=2Þ logðr=aÞ, r > a. The average
stresses are S� ¼ Sr ¼ �E� 0=2, r4 a, and
S� ¼ �Sr ¼ E� 0a

2=ð2r2Þ, r > a, i.e. for positive eigen-
strain the radial and hoop stresses are compressive
and equal in the peened area and decay to zero at
infinity outside this domain. The radial stress varies
continuously across the interface r ¼ a, while the
hoop stress changes abruptly from compressive to
tensile. It is worth noting that the solution for average
stresses is identical to the stress field around a circular
inclusion in a plane problem.

If the plate deflection is assumed small and the
associated stresses disregarded, the through-thickness
variation of residual stress in the peened area can
now be found by superposing uniformly distributed
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average stresses on the stress profile determined in the
previous section. It is clear from the above solution
that the magnitude of the near-surface compressive
stresses due to peening is increased in the case of
local treatment compared to the case of uniform
eigenstrain. This effect is associated with the con-
straint exerted on the peened region by the surround-
ing material.
If the plate deflection is small, but non-negligible, it

must be determined from the equation discussed in
the next section.

4 PLATE DEFLECTION

Once the stress function �ðrÞ has been determined,
the deformed shape of the plate (i.e. the out-of-
plane displacement of the median plane) can be
found by solving the equation for deflection of flexible
plates, due to von Karman [17]

r2r2w ¼ 1

r

d

dr

�

r
d

dr

�

1

r

d

dr

�

r
dw

dr

���

¼ � h

Dr

d

dr

�

d�

dr

dw

dr

�

ð15Þ

where D ¼ Eh3=½12ð1� � 2Þ� denotes the plate bend-
ing stiffness. The dimensionless parameters � ¼ r=a
and 	2 ¼ E� 0a

2h=ð2DÞ ¼ 6� 0ð1� � 2Þa2=h2 can be
introduced. Using the solution for the stress function
found in the previous section, the deflection equation
is obtained in the form

r2
�r2

�w ¼

	2

�

d

d�

�

�
dw

d�

�

‚ �4 1

	2

�

d

d�

�

1

�

dw

d�

�

‚ � > 1

8

>

>

>

<

>

>

>

:

ð16Þ

Via the substitution v ¼ �w0, this equation is trans-
formed to become

v00 � v

�
� 	2 v

�n
¼ Cn ð17Þ

where n ¼ 0 for �4 1 and n ¼ 2 for � > 1. By assum-
ing smooth behaviour of the deflection wðrÞ at the
origin and at large values of r it is easily demonstrated
that Cn ¼ 0 must be chosen in the present case.
For � < 1, equation (17) is of the modified Bessel

type with the general solution given by a linear com-
bination vð�Þ ¼ A�I1ð�Þ þ B�K1ð�Þ, where the func-
tions Inð�Þ are called Bessel functions of imaginary
argument and Knð�Þ the Macdonald functions [18].
For � > 1, equation (17) admits simple solutions

given by the powers �m, m1‚2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 	2
p

. Taking
into account the asymptotic behaviour of the solu-
tions at small and large values of the arguments [18]
and the conditions of continuity for the slope w0 at

� ¼ 0 and � ¼ 1, unknown constants in the general
solution for v ¼ �w0 can be eliminated. The solution
for the deflection w can then be obtained by integrat-
ing the following

w0ð�Þ ¼
AI1ð	�Þ
I1ð	Þ

‚ �4 1

A��
ffiffiffiffiffiffiffiffiffi

1þ	2
p

‚ � > 1

8

>

<

>

:

ð18Þ

with the boundary condition w ¼ 0 for � ! 1. This
gives

wð�Þ ¼
w0

�

1þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 	2
p

� 1Þ I0ð	Þ � I0ð	�Þ
	I1ð	Þ

�

‚ �4 1

w0�
�½

ffiffiffiffiffiffiffiffiffi

1þ	2
p

�1�‚ � > 1

8

>

<

>

:

ð19Þ

where w0 denotes the plate deflection at the edge of
the peened region, � ¼ 1.

5 CONCLUSIONS

The solution has been presented of the axisymmetric
problem about elastic deformation of a flexible plate
due to a prescribed distribution of eigenstrains, such
as may be generated during shot peening treatment.
The spatial variation of residual stresses and strains
through the plate thickness, and the deformed
plate shape, can be predicted using this technique.
Important parameters that govern the residual
stress distribution, the depth-average eigenstrain
and the eigenstrain moment, have been identified.

The framework presentedmay serve to improve the
amount of control exercised in shot peening and peen
forming operations.
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