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Further improvements to the modified quasi-chemical model in the pair approximation for short-
range ordering (SRO) in liquids are extended to multicomponent solutions. The energy of pair
formation may be expanded in terms of the pair fractions or in terms of the component fractions, and
coordination numbers are permitted to vary with composition. The model permits complete freedom
of choice to treat any ternary subsystem with a symmetric or an asymmetric model. An improved
general functional form for “ternary terms” in the excess Gibbs energy expression is proposed. These
terms are related to the effect of a third component upon the binary pair interaction energies. It is
shown how binary subsystems that have been optimized with the quasi-chemical model can be
combined in the same multicomponent Gibbs energy equation with binary subsystems that have been
optimized with a random-mixing Bragg-Williams model and a polynomial expression for the excess
Gibbs energy. This is of much practical importance in the developmentof large databases for multicom-
ponent solutions. The model also applies to SRO in solid solutions as a special case, when the number
of lattice sites and coordination numbers are constant.

I. INTRODUCTION The nonconfigurational Gibbs energy change for the for-
mation of two moles of (m-n) pairs is Dgmn. Let nm and ZmIN a series of articles,[1–4] we introduced the modified
be the number of moles and the coordination number ofquasi-chemical model for short-range order in liquids in the
component m, respectively, and let nmn be the number ofpair approximation. In these articles, the classical quasi-
moles of (m-n) pairs (where nmn and nnm represent the samechemical model of Fowler and Guggenheim[5] was modified
quantity and can be used interchangeably). Then,(1) to permit the compositionof maximum short-range order-

ing (SRO) in a binary system to be freely chosen, (2) to Zmnm 5 2nmm 1 o
nÞm

nmn [2]
express the energy of pair formation as a function of compo-
sition, and (3) to extend the model to multicomponent sys-

In the case of a solid solution, clearly, it is required thattems. The model has since been applied to the critical
Z1 5 Z2 5 . . . 5 ZN.evaluation and optimization of several hundred liquid-oxide,

Pair fractions (Xmn), overall mole (or site) fractions (Xm),salt, and alloy solutions. In such optimizations, the empirical
and “coordination-equivalent” fractions (Ym) are defined asbinary and ternary parameters are found by critical evalua-

tion of available experimental thermodynamic and phase- Xmn 5 nmn /o nij [3]
equilibrium data. The model is then used to predict the

Xm 5 nm /o ni [4]properties of multicomponentsystems containing these bina-
ries and ternaries as subsystems.

Ym 5 Zmnm /o (Zini) 5 ZmXm /o (ZiXi) [5]In the current series of articles, further modifications and
extensions to the model are described. The first article[6]

(where Xmn and Xnm represent the same quantity and can be
dealt with binary systems. The present article treats multi- used interchangeably). Substitution of Eq. [2] into Eqs. [3]
component solutions. Subsequent articles in this series will and [5] gives
treat extensions to liquids with two “sublattices.”

Ym 5 Xmm 1 o
nÞm

Xmn /2 [6]

II. MODEL EQUATIONS
The Gibbs energy of the solution is given by

Atoms or molecules of the components 1, 2, 3 . . ., N of
a solution are distributed over the sites of a quasi lattice. In G 5 o nmg8m 2 T D Sconfig 1 o o

n.m
nmn (Dgmn /2) [7]

the pair approximation, we consider the pair-exchange
reactions where g8m is the molar Gibbs energy of pure componentm, and

DS config is an approximate expression for the configurational(m-m) 1 (n-n) 5 2(m-n); Dgmn [1]
entropy of mixing, given by randomly mixing the (m-n)

where (m and n 5 1, 2, . . ., N ) and (m-m), (n-n), and pairs:
(m-n) represent first-nearest-neighbor (FNN) pairs.

DSconfig 5 2R o nm ln Xm
[8]

2R 1o nmm ln (Xmm /Y 2
m) 1 o o

m.n
nmn ln (Xmn /2YmYn)2ARTHUR D. PELTON, Professor, and PATRICE CHARTRAND,
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be expanded as an empirical polynomial in the component
fractions Ym:

Dgmn 5 Dg8mn 1 o
(i1j)$1

qij
mnY i

mY j
n [9]

where Dg8mn and qij
mn are empirical binary coefficients, which

may be functions of temperature and pressure. (These were
previously[1–4,6] written as qij

mn 5 (v ij
mn 2 h ij

mnT ).) Alterna-
tively, Eq. [9] can be rearranged into the “Redlich–

Fig. 1.—Symmetric (left) and asymmetric (right) schemes for interpolationKister” form:
from binary to ternary solutions.

Dgmn 5 Dg8mn 1 o
i$1

iLmn (Ym 2 Yn)i [10]

where Dg8mn is the binary parameter from Eqs. [9], [10], orwhere the set of empirical coefficients iLmn can clearly be
[11]. Substitution into Eq. [7] then givescalculated from the set qij

mn, and vice versa, since (Xm 1 Xn)
5 1 in the binary system. The empirical binary coefficients G 5 (n11g811 1 n12g812 1 n22g822 1 n13g813 1 . . . .)

[17]Dg8mn and qij
mn or iLmn are found by optimizationof experimen-

2 T D Sconfig 1 o o
n.m

(nmn /2)(Dgmn 2 Dg8mn)tal data in the binary subsystems.
In the preceding article,[6] it was proposed to replace the

with DS config given by Eq. [8] and Dgmn by Eqs. [9], [10],expansion of Eqs. [9] or [10] by an expansion in terms of
or [11]. Dividing, though, by (nij givesthe pair fractions Xmm and Xnn:

g (per mole of pairs) 5Dgmn 5 Dg8mn 1 o
(i1j)$1

gij
mnX i

mm X j
nn [11]

(X11g811 1 X12g812 1 X22g822 1 X13g813 1 . . . .)
where Eq. [11] applies in the m-n binary system and Dg8mn

1 RT(X11 ln X11 1 X12 ln X12 1 X22 ln X22 1 . . .)
[18]

and gij
mn are empirical coefficients,which may be temperature

and pressure dependent. This representation has been
found,[6] in general, to result in improved and easier optimi- 1 RT1o 2Xm

Zm
ln Xm 2 X11 ln Y2

1 2 X22 ln Y2
2

zations. In practice, in most cases, only the coefficients
gi0

mn and g0j
mn need be included.

In the preceding article,[6] composition-dependentcoordi- 2 X12 ln (2Y1Y2) 2 . . .2 1 gE

nation numbers were also introduced. This provides greater
flexibility and permits the composition of maximum SRO

whereto be chosen independently in each binary subsystem:

gE 5 1X12

2 2(Dg12 2 Dg812) 1 1X13

2 2(Dg13 2 Dg813) 1 . . .1
Z1

5
1

2n11 1 o
jÞ1

n1j
12n11

Z1
11

1 o
jÞ1

n1j

Z1
1j
2 [12]

[19]

The coefficients of Eqs. [9], [10], or [11] are obtained by1
Z2

5
1

2n22 1 o
jÞ2

n2j
12n22

Z2
22

1 o
jÞ2

n2j

Z2
2j
2 [13]

optimization of binary experimental data. Eqs. [9], [10], or
[11] only apply in the binary subsystems. It is now required
to write expressions for Dgmn for compositions within theetc.
N-component system for use in Eq. [17].

where Z1
11 and Z1

12 are, respectively, the value of Z1 when
all nearest neighbors of a 1 are also 1 and the (hypothetical)

III. INTERPOLATION FORMULAEvalue of Z1 when all nearest neighbors of a 1 are a 2. (Note
that Z1

12 and Z1
21 represent the same quantity and can be A. When Dgmn in a Binary System is Given by Eqs. [9]

used interchangeably.) or [10]
The term Z m

mm is a constant for each pure component m
Suppose Dg12 in the 1-2 binary subsystem has beenand is the same for all solutions containing m. The composi-

expressed as a polynomial in the fractions Y1 and Y2 by Eq.tion of maximum SRO in each binary subsystem is deter-
[9]. We now want an expression for Dg12 in a multicompo-mined by the ratio Z m

mn /Z n
mn. The choice of the constants

nent solution. We shall consider first a ternary system 1-2-3.Z m
mm and Z m

mn was discussed previously.[6] Substitution of
Eqs. [12] and [13] into Eq. [2] gives 1. Symmetric model

With the symmetric model illustrated in Figure 1(a), Dg12nm 5 2nmm /Z m
mm 1 o

nÞm
nmn /Z m

mn [14]
in the ternary solution is given by

Clearly, in the case of a solid solution, all coordination
Dg12 5 1Dg812 1 o

(i1j)$1
qij

12 1 Y1

Y1 1 Y2
2

i

1 Y2

Y1 1 Y2
2

j

2
[20]

numbers must be equal. That is, Zm
mm 5 Z n

nn 5 Zm
mn 5

Z n
mn. The standard Gibbs energies g8mm and g8mn are defined as

1 o
k$1
i$0
j$0

qijk
12(3) 1 Y1

Y1 1 Y2
2

i

1 Y2

Y1 1 Y2
2

j

Y k
3g8mm 5 2g8m /Z m

mm [15]

g8mn 5 Dg8mn /2 1 g8m /Zm
mn 1 g8n /Zn

mn [16]
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where the first term on the right-hand side of Eq. [20] is
constant along the line 3-a in Figure 1(a) and is equal to
Dg12 in the 1-2 binary at point a (where (Y1 1 Y2) 5 1).
That is, it is assumed that the binary 1-2 pair interaction
energy is constant at a constant Y1/Y2 ratio. The second
summation in Eq. [20] consists of “ternary terms” that are
all zero in the 1-2 binary, and which give the effect of the
presence of component 3 upon the energy Dg12 of the 1-2
pair interactions. The empirical ternary coefficients qijk

12(3) are
found by optimization of experimental ternary data.

Similar equations give Dg23 and Dg31, with the binary
Fig. 2.—A five-componentexample solution illustrating which ternary sub-

terms equal to their values at points b and c, respectively, systems are to be treated by a symmetric model and which are to be treated
in Figure 1(a) and with the ternary coefficients qijk

23(1) and with an asymmetric model.
qijk

31(2), which give the effect of the presence of component
1 upon the pair energy Dg23 and of component 2 upon Dg31,
respectively. It has been proposed[7] that this functional form i-j-k ternary subsystems in which j is the asymmetric compo-
for the ternary terms is preferable to traditional expressions nent. This is best presented by an example.[17] For the five-
such as Y i

1Y
j
2Y k

3. component system in Figure 2, the ternary subsystems 1-2-
Alternatively, if Dg12 is expressed in the 1-2 binary system 3 and 1-2-5 are asymmetric with 1 and 5, respectively, as

by a Redlich–Kister expansion, as in Eq. [10], then the first asymmetric components, the system 1-2-4 is symmetric,
and so on, as illustrated schematically in the figure. In thissummation in Eq. [20] is replaced by o

i$1

iL12 1Y1 2 Y2

Y1 1 Y2
2

i

,
example, then,

which is also constant along the line 3-a and equal to Dg12 j12 5 Y1 j21 5 Y2 1 Y3at point a.
This model is “symmetric” in that the three components j13 5 Y1 1 Y4 j31 5 Y3 1 Y2

are treated in the same fashion.For certain systems, however,
j14 5 Y1 j41 5 Y4in which one component is chemically different from the

other two (e.g., SiO2-CaO-MgO, S-Fe-Cu, Na-Au-Ag, etc.), j15 5 Y1 1 Y2 j51 5 Y5
it is more appropriate to use the “asymmetric” model illus-

j23 5 Y2 1 Y5 j32 5 Y3 1 Y4 [23]trated in Figure 1(b), where component 1 is the “asymmet-
ric component.”

j24 5 Y2 j42 5 Y4 1 Y3

2. Asymmetric model
j25 5 Y2 1 Y1 1 Y4 j52 5 Y5In this case, Dg12 in the ternary solution is given by

j34 5 Y3 j43 5 Y4 1 Y1
Dg12 5 1Dg812 1 o

(i1j)$1
qij

12Y i
1 (1 2 Y1) j2

[21]
j35 5 Y3 j53 5 Y5 1 Y2

j45 5 Y4 1 Y2 j54 5 Y5
1 o

k$1
i$0
j$0

qijk
12(3)Y i

1 (1 2 Y1) j 1 Y3

Y2 1 Y3
2

k

Then, in the multicomponent system,

Dg12 5 Dg812 1 o
(i1j)$1 1

j12

j12 1 j21
2

i

1 j21

j12 1 j21
2

j

qij
12where the binary terms are constant along the line ac and

equal to their values at point a in Figure 1(b). A similar
expression is written for Dg31, while Dg23 is given by an

1 o
i$0
j$0
k$1

1 j12

j12 1 j21
2

i

1 j21

j12 1 j21
2

j

[24]
expression similar to Eq. [20]. If Dg12 is expressed in the
binary system by a Redlich–Kister expansion, then the
binary terms in Eq. [21] are replaced by (

i$1

iL12(2Y1 2 1)i.

It has been shown[7] that, for systems with large composi- 1ol
qijk

12(l)Yl (1 2 j12 2 j21)k21 1 o
m

qijk
12(m) 1Ym

j21
2tion-dependentdeviations from ideality, the choice of a sym-

metric or an asymmetric model can often give very different
results. An incorrect choice can even give rise to spurious 11 2

Y2

j21
2

k21

1 o
n

qijk
12(n) 1Yn

j12
2 11 2

Y1

j12
2

k21

2miscibility gaps.

where the summations of ternary terms are over (1) all l3. Multicomponent solutions
components in 1-2-l ternary subsystems, which are eitherIn order to extend this symmetric/asymmetric dichotomy
symmetric or in which l is the asymmetric component; (2)to N-component solutions, while still maintaining complete
all m components in 1-2-m subsystems, in which 1 is theflexibility to treat any ternary subsystem as symmetric or
asymmetric component; and (3) over all n components inasymmetric, we define[7]

1-2-n subsystems, in which 2 is the asymmetric component.
jij 5 Yi 1 o

k
Yk [22] Eq. [24] reduces to Eq. [20] in symmetric ternary subsys-

tems (when (Y1 1 Y2 1 Y3) 5 1) and to Eq. [21] in asymmet-
ric ternary subsystems, as can be verified by substitution ofwhere the summation is over all k components in asymmetric
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Eqs. [23]. The form of the ternary terms in Eq. [24] has which, in the limit, becomes the well-known Kohler–Toop[9]

equation for asymmetrical ternary systems.been chosen such that if two components (for example, 3
and 4) have the same effect upon Dg12 (that is, if qijk

12(3) 5 3. Multicomponent solutions
qijk

12(4)), then the effect of the presence of both 3 and 4 will To extend this symmetric/asymmetric dichotomy to multi-
be additive. This has been discussed previously.[7] If a component solutions, we define
Redlich–Kister expansion, as in Eq. [10], is used in the 1-
2 binary system, then the binary terms (the first summation)

x12 5 o
i51,k

o
j51,k

XijY o
i51,2,k, l

o
j51,2,k, l

Xij [27]in Eq. [24] are replaced by (
i$1

iL12((j12 2 j21)/(j12 1 j21))i.

Other examples of the application of Eq. [22] were given where k represents all values of k in 1-2-k asymmetric ternary
previously.[7] For example, suppose all components are subsystems in which 2 is the asymmetric component, and l
grouped as either “acids” (group I) or “bases” (group II), represents all values of l in asymmetric 1-2-l subsystems
where a ternary system is symmetric if all three components in which 1 is the asymmetric component. The term xij is
are in the same group, and asymmetric otherwise. It then analogous to the ratio jij/(jij 1 jji), defined by Eq. [22] and
follows from the definition of jij that j12 5 Y1 and j12/(j12 1 used in Eq. [24]. Taking the example of Figure 2, from
j21) 5 Y1/(Y1 1 Y2) if 1 and 2 are in the same group, while Eq. [23],
j12 5 (

group I
Yi [ jI and also j12/(j12 1 j21) 5 jI if 1 and 2

j23

j23 1 j32
5

(Y2 1 Y5)
(Y2 1 Y5) 1 (Y3 1 Y4)

[28]are in groups I and II, respectively.

whereas
B. When Dgmn in a Binary System is Given by Eq. [11]

x23 5 [29]
Suppose that Dg12 in the binary system has beenexpressed,

as in Eq. [11], by a polynomial in terms of the pair fractions. (X22 1 X55) 1 X25

(X22 1 X55) 1 (X33 1 X44) 1 X25 1 X23 1 X24 1 X53 1 X54 1 X34Let us consider first a ternary system 1-2-3.

1. Symmetric model That is, starting from Eq. [28], we can write the expression
In a symmetric ternary system, as in Figure 1(a), the for x23 in Eq. [29] by replacing the sums (Yi 1 Yj 1 Yk 1

following equation for Dg12 is proposed: . . .) in the numerator and denominator of Eq. [28] by the
sum of (Xii 1 Xjj 1 Xkk 1 . . .) plus all cross terms (Xij 1Dg12 5 Dg812 Xik 1 Xik 1 . . .).

In the case where all components are grouped as either
1 o

(i1j)$1
gij

12 1 X11

X11 1 X12 1 X22
2

i

1 X22

X11 1 X12 1 X22
2

j

[25] acids (group I) or bases (group II), it follows from the
definitions and from Eq. [6] that x12 5 X11/(X11 1 X12 1
X22) if components 1 and 2 are in the same group and

1 o
i$0
j$0
k$1

gijk
12(3) 1 X11

X11 1 X12 1 X22
2

i

1 X22

X11 1 X12 1 X22
2

j

Y k
3 x12 5 (

group I
Yi [ j1 if components 1 and 2 are in groups I

and II, respectively.
Then, in the multicomponent system,

As with Eq. [11], in practice, it is usually sufficient to
include only terms with i 5 0 or with j 5 0. The form of Dg12 5 Dg812 1 o

(i1j)$1
x i

12x j
21g

ij
12

this expression has been chosen for the following reason. As
Dg12, Dg23, and Dg31 become small, the solution approaches

1 o
i$0
j$0
k$1

x i
12x j

21 1ol
gijk

12(l)Yl (1 2 j12 2 j21)k21

[30]
ideality, and Y11 ® Y 2

1, Y22 ® Y 2
2, and Y12 ® 2Y1Y2. In this

case, X11/(X11 1 X12 1 X22) ® (Y1/(Y1 1 Y2))2 and Eq. [25]
approaches Eq. [20], which, in the limit, becomes the well-
known Kohler[8] equation for symmetrical ternary systems.

1 o
m

gijk
12(m) 1Ym

j21
2 11 2

Y2

j21
2

k21

From Eq. [6], it can be seen that the factor Y3 in the
ternary terms in Eq. [25] is equal to (X33 1 X31/2 1 X23/2).
In principle, the effect of these three terms upon Dg12 could
easily be represented by three independent ternary coeffi- 1 o

n
gijk

12(n) 1Yn

j12
2 11 2

Y1

j12
2

k21

2
cients. However, this additional complexity is probably
not required. where the summations over l, m, and n are as was described

following Eq. [24]. Equation [30] reduces to the correct2. Asymmetric model
symmetric or asymmetric ternary equation (Eq. [25] or [26])In an asymmetric ternary system, as in Figure 1(b), the
in any ternary subsystem. The analogy to Eq. [24] is evident.following equation is proposed:

Dg12 5 Dg812 1 o
(i1j)$1

gij
12 X i

11 (X22 1 X23 1 X33) j

[26]
IV. DISCUSSION

Substitution of Eqs. [24] or [30] into Eq. [17] gives an
1 o

i$0
j$0
k$1

gijk
12(3) X i

11 (X22 1 X23 1 X33) j 1 Y3

Y2 1 Y3
2

k

equation for G in terms of the pair fractions Xmn. For any
overall composition given by (n1, n2, . . . , nN), the equilib-
rium pair fractions are then calculated by minimizing G,
subject to the mass-balance constraints of Eq. [14]. ThisIn the limit of ideality, this equation reduces to Eq. [21],
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Gibbs energy minimization is greatly facilitated by the form excess terms, then, have no effect upon the calculated pair
distributions, and so the Gibbs energy minimization willof Eq. [17]. When expressed per mole of pairs, as in Eq.

[18], the Gibbs energy equation is identical, apart from the result in a random mixture. That is, the second entropy term
in Eq. [8] will automatically become zero, and the resultsecond configurational entropy term, to commonly used

expressions for the Gibbs energy of a randomly mixed solu- will be the same as if Eq. [36] had been used for G.
Hence, the same model subroutine that is used for thetion of “components” (11, 12, 22, . . .); the “excess” terms

in Eq. [19] are polynomials in the fractions Xmn , since Dgmn quasi-chemicalmodel can be used,with one minor alteration,
for the random-mixing Bragg-Williams model.from Eqs. [24] or [30] is expressed only in terms of Xmn (Ym

being given in terms of Xmn by Eq. [6]). Therefore, the
same existing algorithms and computer subroutines that are

B. Combining Models in One Multicomponent-Solutioncommonly used for polynomial solution models can be used
Databasedirectly for the quasi-chemical model by simply including

the extra entropy terms. The major importance of this fact is that it is now possible
That is, a significantsimplificationis achievedby formally to “mix models” in one multicomponent solution. This is

considering the mn pairs as the components of the solution. of much practical value. For example, in developing the
A further computational simplification can also be F*A*C*T[10] database for multicomponent molten salt solu-
achieved[6] by formally treating these components as the tions, we have already performed optimizations on well
“associates” or “molecules” m1/Z m

mn
n1/Z n

mn. For example, if over 100 binary and ternary common-anion alkali-halide,
Z m

mm 5 6, Z n
nn 5 6, Z m

mn 5 3, and Z n
mn 5 6, then the formal carbonate, sulfate, nitrate and hydroxide systems using the

components would be m2/6, n2/6, and m1/3n1/6. Setting Bragg–Williams polynomial model, which is satisfactory
for these systems, in which deviations from ideality arenm1/Zm

mnn1/Zn
mn

5 nmn [31]
relatively small. We are now including alkaline-earth salts

and substituting into Eq. [14] gives in this database. Several of the binary liquid solutions (e.g.,
MgCl2-KCl) exhibit large negative deviations from ideality

nm 5 2nm2/Zm
mm

/Z m
mm 1 o

nÞm
nm1/Zm

mnn1/Zn
mn

/Z m
mn [32] and a large degree of SRO and require the quasi-chemical

model. Ideally, of course, all previously optimized systems
which is now a “true” chemical mass balance, in that the should be reoptimized with the quasi-chemical model, but
number of moles of m is the same on both sides of the the amount of work involved is considerable.
equation. However, it is now easy to combine the models in one

The fact that Eq. [18] is written solely in terms of the multicomponent-solution database. If a binary subsystem m-
fractions Xmn of the mn components permits the chemical n has been optimized with the quasi-chemical model with
potentials to be easily calculated in closed explicit form. As Eqs. [9] or [10] for Dgmn , then Eq. [24] for Dgmn is substituted
shown previously,[6] the chemical potential of m is given by into Eq. [17]. If another binary subsystem i-j has been opti-

mized with the quasi-chemical model with Eq. [11] for Dgij ,mm 5 (­G/­nm)ni 5 (Z m
mm /2) (­G/­nmm)nij [33]

then Eq. [30] for Dgij is substituted into Eq. [17]. If yet
another binary subsystem k-l has been optimized using theHence,
random-mixing Bragg–Williams model with Eqs. [9] or [10]
for Dgkl , then Dgkl from Eq. [24] is substituted into Eq. [17]mm 5 g8m 1 RT ln XA 1 1Zm

mm

2 21RT ln
Xmm

Y 2
m

1 gE
mm2 [34]

and, furthermore, nkl is replaced everywhere in Eq. [17] by
(( Z i

iini)YkYl.where the partial excess term gE
mm can be calculated in the

usual way from the polynomial expansion for gE in Eq. [19]:
V. CONCLUSIONSgE

mm 5 gE 1 (­gE /­Xmm) 2 o
(ijÞmm)

Xij (­gE /­Xij) [35]
Improvements to the quasi-chemical model introduced in

the first article in the present series[6] have been extendedwhere Eq. [6] is used to express Ym in terms of Xmn.
to multicomponent solutions with SRO. The energies of pair
formation (Dgmn) may be expandedas polynomialsin the pair

A. Reduction to the Random Mixing (Bragg–Williams) fractions, rather than the component fractions. Composition-
Model dependent coordination numbers may also be used. Both

these improvements provide better representations by pro-Suppose that it is desired to suppress the formation of
viding greater flexibility.SRO and to employ the following commonly used Bragg–

The properties of a ternary solution may be estimatedWilliams model for a solution with random mixing and a
from optimized data for its binary subsystems by eitherpolynomial expression for gE:
a symmetric or an asymmetric model. In the former, all

G 5 o nmg8m 1 RT o nm ln Xm 1 o o
n.m

Xmn(Dgmn) [36] components are treated in the same fashion, while in the
latter, one component, being chemically different from the
other two, is singled out. It has been shown how thiswith Dgmn given as a polynomial expansion in terms of Yi

by Eq. [24]. This can be done by simply replacing all nmn symmetric/asymmetric dichotomy can be extended into the
N-component solution while still permitting complete flexi-factors (m Þ n) in Eq. [17] by (( Z i

iini)YmYn which is the
value in a randomly mixed (Bragg-Williams) solution. It is bility to choose either a symmetric or an asymmetric model

for any ternary subsystem.also necessary in this case to set all values of Z m
mn 5 Z m

mm.
Eqs. [15] and [16] are still used to give g8mm and g8mn. The An improved general functional form for “ternary terms”
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in the excess Gibbs energy expression has been proposed. such as reciprocal molten salt solutions with intrasublattice
as well as intersublattice SRO. It will be shown that theThese terms are related to the effect of a third component

upon the binary pair-interaction energies. large degree of flexibility in the model also permits the
treatment of phenomena such as complexation, polymeriza-By treating the nearest-neighbor pairs as components, a

Gibbs energy expression is obtained which is a function of tion, and multiple compositions of maximum SRO.
An example of the application of the model of the presentonly the pair fractions Xmn. This expression is identical, apart

from a configurational entropy term, to the equations for a article to liquid LiCl-NaCl-KCl-RbCl-CsCl-MgCl2-CaCl2
solutions is given in an accompanying publication.[11]randomlymixed solutionof these componentswith a polyno-

mial expression for the excess Gibbs energy. This permits
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