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Data correction is probably the least favourite activity amongst users

experimenting with small-angle X-ray scattering: if it is not done sufficiently

well, this may become evident only during the data analysis stage, necessitating

the repetition of the data corrections from scratch. A recommended

comprehensive sequence of elementary data correction steps is presented here

to alleviate the difficulties associated with data correction, both in the laboratory

and at the synchrotron. When applied in the proposed order to the raw signals,

the resulting absolute scattering cross section will provide a high degree of

accuracy for a very wide range of samples, with its values accompanied by

uncertainty estimates. The method can be applied without modification to any

pinhole-collimated instruments with photon-counting direct-detection area

detectors.

1. Introduction

Attaining a high standard for data quality is paramount for

any insightful analysis. This is particularly important for small-

angle scattering, where the largely featureless scattering

patterns may easily be insufficiently corrected and/or over- or

under-fitted by an inexperienced user. Previous work on data

correction procedures tended to follow an ad hoc approach,

incorporating a limited incomplete subset of the available

corrections in an integrated correction step. Such methods

offer neither flexibility nor the ability to trace the effects of a

given correction step (Stothart, 1987; Strunz et al., 2000; Dreiss

et al., 2006).

This can be resolved with the provision of a comprehensive

modular set of elementary two-dimensional data correction

steps. These steps can be chained together to form a bespoke

and complete correction sequence for a given instrument or

sample in any small-angle scattering laboratory or synchro-

tron. When enhanced with the ability to estimate and propa-

gate well founded uncertainty estimates1 on (at least) the

resulting scattering cross-section values, it allows said

laboratory to rapidly evaluate and select the subset of signif-

icant corrections for their experiments or instruments. The
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1 The uncertainty estimates should be provided as the estimated standard
deviation characterizing the width of the likelihood distribution. For the
scattering cross section, this uncertainty is composed of a combination of
contributions, including the propagated counting uncertainties, augmented or
superseded by contributions from other local effects such as, for example, the
flatfield uncertainty and background measurement uncertainty. In accordance
with the NXcanSAS definition (http://download.nexusformat.org/doc/html/
classes/applications/NXcanSAS.html), it is recommended to separate the local
per-pixel uncertainty from the global scaling factor uncertainty.

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576717015096&domain=pdf&date_stamp=2017-11-29


two-dimensional nature of the corrections renders them

appropriate for isotropic as well as anisotropically scattering

samples, increasing their universality.

While the majority of these individual data correction steps

have already been comprehensively collated for experiments

using both X-rays (Pauw, 2013; Feigin et al., 1987) and

neutrons (Hollamby, 2013; Brûlet et al., 2007), the recom-

mended order in which they are to be applied has so far not

been published. For X-ray experiments in particular, this was

due to a historical lack of software that might benefit from

such a scheme, and because such a sequence had not been

finalized until now. With the recent emergence of various two-

dimensional data correction software packages capable of

performing such comprehensive modular corrections (Arnold

et al., 2014; Basham et al., 2015; Benecke et al., 2014; Filik et al.,

2017; Girardot et al., 2017; Nielsen et al., 2009; Taché et al.,

2017; Solé et al., 2017), establishing a recommended starting

point for implementing such a data correction schema seems

pertinent.

This work, therefore, provides a near universally applicable,

ordered schema of corrections with which the absolute scat-

tering cross section can be extracted from raw detector

information in a consistent and reproducible manner. This

scattering cross section is determined multidimensionally

(typically two dimensionally) and can optionally be reduced to

one dimension, i.e. where the averaged scattering cross section

is determined as a function of scattering vectorQ or azimuthal

angle �. This result can then be fed to a wide range of data

analysis programs for morphological elucidation, such as

ATSAS, GIFT, Irena, McSAS, SASfit and SASView, to name

but a few (Franke et al., 2017; Glatter, 1980; Ilavsky & Jemian,

2009; Bressler et al., 2015; Breßler et al., 2015; Alina et al.,

2017). This schema can be used as the core of a data correction

software package or as a reference correction sequence

against which (faster) alternatives can be proven. It is hoped

that adherence to this schema will improve the already

exemplary comparability of results obtained at different

instruments (Pauw et al., 2017; Rennie et al., 2013).

The near universality of the scheme implies that it is

applicable to most sample types (cf. Table 1). This property

stems from its three-stage correction process: The first two

stages of the correction process are sufficient to correct

homogeneous samples (single phase), and the addition of the

third stage means it can also extract a particular scattering

signal from both dilute and dense heterogeneous samples.

Examples of such investigations include size and shape

investigations of colloidal dispersions (Wagner et al., 2000),

the physical state of self-assembled systems (Soni et al., 2006),

the elucidation of structural and orientational details from

polymers (Heeley et al., 2005), and protein sizing in solution

(Rambo & Tainer, 2013). Additionally it is possible to use this

schema to extract the scattering of dynamic systems such as

evaporative drying (Gu et al., 2016), in situ chemical reactions

(Chen et al., 2015), phase or state changes experienced by soft-

matter systems with respect to change from external influences

and changes (Bulpett et al., 2015), and deterioration in systems

exposed to stress, strain, wear or age (Turunen et al., 2016).

Over the past few years, most elements of the schema have

been developed, tested and refined in practice, on both

laboratory- and synchrotron-based small-angle X-ray scat-

tering (SAXS) instruments. Its development has focused on

modern instruments, and a direct-detection photon-counting
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Table 1
Examples of measurements to be used for the various processes, for a range of sample types.

‘NIB’ stands for nothing in beam. This means that there is nothing in the beam path at the sample position; the normal flight-tube exit and entrance windows, for
example, are kept in place. ‘Empty cell’ can be replaced with ‘empty capillary’ if capillaries are used. For sooty flames, the non-sooty flame is a best effort, since the
burning conditions, and therefore the background, are by definition different.

To determine the scattering of Process A Process B Process C

Solids
Freestanding solid (slab, plate or foil) NIB Solid N/A
Metal alloy NIB Alloy N/A
Nanoparticles embedded in a polymer NIB Polymer Polymer with embedded nanoparticles
Porous membrane in vacuum (dry) NIB Membrane N/A
Only pores in the membrane (dry) NIB Non-pore-containing membrane Dried, porous membrane
Porous membrane in in situ cell (gas/wet) Empty cell Filled cell Immersed membrane
Only pores in the membrane (gas/wet) Empty cell Immersed non-pore-containing membrane Porous membrane

Powders
Powder in between sticky tape (dry) Sticky tape Powder in sticky tape N/A
Powder in in situ cell (gas/wet) Empty cell Gas- or water-filled cell Immersed powder in cell

Liquids
Pure liquids Empty cell Liquid N/A
Nanoparticle dispersion in liquid Empty cell Solvent Solvent + nanoparticles
Proteins in buffer Empty cell Buffer Buffer + protein
Micelles in oil/water dispersion Empty cell Oil; water (separately) Micelles in dispersion

Gases
Pure gases NIB or empty cell Gas N/A
Particles in carrier gas (flow-through cell) Empty cell Gas Gas + particles
Particles in carrier gas (free flowing) NIB Gas Gas + particles
Sooty flames (see note in caption) NIB or empty cell Non-sooty flame Sooty flame



detector is, therefore, highly recommended in order to achieve

the best results. The use of such a photon-counting detector in

the following is implicit: the data correction steps necessary to

compensate for the inadequacies of other detector types have

been omitted for brevity.

We here present the ordered schema, each correction’s

abbreviation is briefly described, and the reasoning behind

their chosen position in the sequence is clarified.

2. The schema

The recommended data correction schema covering a wide

range of practical samples is presented in Fig. 1. This data

correction schema consists of three different series of

corrections, denoted as ‘Process A’, ‘Process B’ and ‘Process

C’. The measurements to be used in a particular process

depend on the object of interest, with many examples given in

Table 1. In general, Process A should be used on a measure-

ment of the instrumental background (including empty sample

cells when sample cells are used). Process B should be applied

to (1) measurement of a non-dispersed material of interest or

(2) a dispersant, be it either solid, liquid or gas. In the second

case, Process C is used for the measurement of the dispersant

with the analyte. The output from Process C is then the

absolute scattering power of the analyte alone, and the output

from Process B is the absolute scattering power of the

dispersant.

When applied to homogeneous polymer films, for example,

the instrumental background measurement (measured with

nothing at the sample position) is inserted in Process A and

the polymer film measurement in Process B. From the output

of that process, ‘Output B’, we then obtain the polymer film

scattering cross section in absolute units. If, however, deter-

mination of the scattering arising from nanoparticles

embedded within that polymer film were desired, then it

would be necessary to collect a measurement of the non-

nanoparticle-containing film for Process B and the nano-

particle-containing film in Process C. Output C will then be the

scattering power of the embedded nanoparticles alone.

Likewise, for a dispersion of nanoparticles in a solvent

contained in a capillary, measurement of the empty capillary

would be used in Process A, the solvent in capillary in Process

B and the dispersion in capillary in Process C. This leads to the

acquisition of the absolute scattering cross section for the

solvent in Output B and that of the pure analyte in Output C.

The advantage of this approach is that the solvent scattering

may be reused for other samples measured using the same

energy by adding this to a solvent scattering library. A

disadvantage of this approach is that the uncertainties of

several operations are added twice to the scattering cross

section for dispersions (Output C), such as the uncertainties

on the flatfield and polarization corrections, which will be

discussed below.

Note that the same capillary should be used for both

Process A and B, when obtaining the dispersant scattering

cross section. Likewise, the capillary used for the set of

Processes A and C, i.e. when collecting the measurement of

the dispersant with analyte, should also be identical. These

conditions, therefore, necessitate the use of reusable

containers or flow-through cells.

3. The steps and reasoning behind the sequence

The mathematical expressions for most of the corrections

below are described by Pauw (2013), with the remainder given

in the appendices. Here, we focus on the justification of the

steps and highlight the position dependency of some of them.

(i) DS (data read-in): before starting any data corrections,

the data must be read in correctly, where necessary compen-

sating for the data storage peculiarities (Knudsen et al., 2013).

(ii) MK (masking): invalid pixels are masked so they are not

considered in the following corrections.

(iii) PU (Poisson uncertainty estimator): the Poisson

(counting) uncertainty needs to be calculated on the number

of detected photons, and therefore this step is carried out

before the deadtime, dark current or flatfield corrections.

Some detectors automatically apply corrections and will

require (software) adjustments before the uncorrected counts

can be retrieved.2

(iv) DT (deadtime): the signal is subsequently corrected for

the detector deadtime, returning the estimated number of

photons arriving at each pixel on the basis of the detected

count rate.

(v) DC (dark current): the subtraction of natural back-

ground radiation (including the steady flow of cosmic rays)

forms the dominant component of the dark current correction.

With the aforementioned recommended detector type, we

should not see any significant contribution of the time-inde-

pendent and flux-dependent dark current components.

(vi) TI (time): a normalization to render the measurement

independent of the measurement duration.

(vii) FL (flux): a normalization to make the measurement

independent of the incident beam flux.

(viii) TR (transmission): a scaling correction, correcting for

the probability of absorption (and only absorption) within the

sample. The transmission should, ideally, be calculated by

dividing the flux of all transmitted, scattered and diffracted

radiation by the incident flux. Note that the quality of the

obtained scattering cross section is very strongly dependent on

the quality of the transmission factor (in particular when the

background subtraction operation is applied), and an accuracy

of >99% should be aimed for.

(ix) SA (self-absorption): the sample self-absorption is the

correction for the increased probability of scattered rays that

are absorbed as they travel through slightly increased amounts

of sample after the scattering event. This correction needs to

research papers

1802 B. R. Pauw et al. � The modular SAXS data correction sequence J. Appl. Cryst. (2017). 50, 1800–1811

2 The Poisson (counting) statistics denote the probability of a number of
randomly arriving, discrete events occurring within a given time frame. This is
used here to determine the minimum scattering signal uncertainty associated
with an observed number of detected events. That can only be achieved when
applied to the actually detected events, and not on an estimated number of
incident photons theoretically corresponding to that number of detected
events.
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Figure 1
The recommended data correction sequence for most types of samples. Output B for solids is the corrected data in absolute units, and for dispersions it is
the dispersant (solvent) scattering in absolute units. Output C for dispersions is the sample scattering in absolute units. The azimuthal averaging step can
be considered for isotropically scattering samples.



be performed after the transmission correction: it represents a

direction-dependent modification to the transmission correc-

tion and does not replace the TR correction itself. It is feasible

to implement and use for samples of plate-like geometry

(only), with the plate surface perpendicular to the X-ray beam

direction. It is related and therefore placed next to the

transmission correction.

(x) FA (frame averaging): it is recommended for photon-

counting direct-detection systems that the measurements be

split up into multiple shorter frames. This avoids saturation of

the per-pixel counters and allows for temporal variations in

signal due to beam, instrument or sample instabilities to be

recognized. When no significant variation between the frames

is observed, they can be averaged in this step. When the

averaging is, furthermore, weighted by the scattering signal

uncertainty of each pixel in each frame, frames collected with

different exposure times can be averaged to obtain a high

dynamic range (HDR) scattering signal. Any saturated pixels

for a long-exposure frame will then have been masked by the

MK process.

(xi) BG (background subtraction): the subtraction of the

background signal is done only after the measurement-

dependent corrections have taken place, as the various para-

meters (transmission, flux, time and therefore dark current in

particular) may differ.

(xii) FF (flatfield): the flatfield correction, a multiplication

matrix normalized to 1, corrects for inter-pixel sensitivity

differences. An example of its magnitude in modern detectors

is given by Wernecke et al. (2014).

(xiii) AE (angular efficiency): this correction compensates

for variations in the detector efficiency depending on the

photon angle of incidence onto the detector surface. It is

detailed in Appendix C. This is the last of the corrections for

detector imperfections.

(xiv) SP (solid angle): a (geometric) correction for the solid

angle subtended by each pixel. This can be calculated on the

basis of the instrument geometry alone.

(xv) PO (polarization): the polarization correction com-

pensates for differences in the probability of scattering events,

both for polarized and for unpolarized beams. In the latter

case, it is an azimuthally uniform (isotropic) correction. The

polarization correction is performed before the second back-

ground subtraction, so that older dispersant measurements

can still be used for correction of future samples.

(xvi) TH (thickness): the thickness correction normalizes

the data to units of reciprocal length. Note that the thickness

used in this correction is the thickness of the solid sample or

the liquid phase for dispersions only. A derivation supporting

this is provided in Appendix D.

(xvii) AU (absolute units): the absolute units correction

scales the data to units of scattering cross section, the fraction

of radiation that is scattered per length of material per solid

angle. This is commonly reported in units of ½d�=d�� ¼

m�1 sr�1 or ½d�=d�� ¼ cm�1 sr�1.

(xviii) DV (displaced volume): this correction has not been

included by Pauw (2013), but is described in Appendix B. This

correction can be applied for dispersions with high volume

fractions of analyte, but must be done on the solvent scattering

signal only.

(xix) RM (remapping): for background subtraction opera-

tions using a previously stored dataset, a mapping or inter-

polation operation may be necessary to match the

dimensionality and angular range of the dataset in the

processing step.

(xx) AV (averaging): this optional step reduces the dimen-

sionality and size of the dataset, typically from two dimensions

to a limited number of data points in one dimension. This can

be done azimuthally (to obtain ½d�=d�� versus Q) or radially

(½d�=d�� versus �). The azimuthal averaging is suitable for

isotropic data, whereas the radial averaging is typically applied

to anisotropic data over a limited radial range, to extract a

degree of orientation. This is commonly performed in fibre

diffraction experiments.

Note that the averaging from two dimensions to one

dimension is performed after the background subtraction step

as (1) it is optional and (2) the background subtraction process

in particular can subtract anisotropic signals such as flares. In

that case, the practical uncertainty estimated during the

averaging procedure is reduced if the background subtraction

is done in two dimensions rather than after averaging, as

shown in Appendix A. Note also that the solvent background

subtraction in Process C can be performed either directly with

two-dimensional data from Process B or using a stored solvent

scattering signal from the absolute backgrounds library. In the

latter case, the data may have been stored in azimuthally

averaged form (one dimensional), in which case they will need

to be mapped (interpolated) to two dimensions to match the

dataset dimensionality and angular range of the data

processed in Process C.

Many of the corrections are multiplications and therefore

follow the law of commutation. The corrections that can be

commutated have been grouped together (cf. Fig. 1), where

such a commutation would not affect the result. The

commutability becomes clear when we write Process B as a

pseudo-equation, with a ! indicating a more involved

operation, a � indicating a subtraction, and a � indicating a

multiplication operation with either a scalar or a vector:

IðQÞ
d�

d�

� �

¼ ðDS ! MK ! PU ! DTÞ �DC½ �
�

� TI� FL� TR� SA ! FA� BGg

� FF�AE� SP� PO� TH�AU ! AV:

3.1. Regarding uncertainties

In the modular approach presented here, it is pragmatically

assumed that the correction steps and their uncertainty

propagation are uncorrelated to, and independent of, any

preceding or subsequent correction steps. This assumption

makes the uncertainty propagation easy to implement, as each

correction step can remain unaware of its position within the

complete scheme. However, this assumption of uncorrelated

independent uncertainties for each step is not strictly true for
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those correction steps that are performed in each of the

processes but use the same correction factors (as is the case for

FF, PO, SA and AE, for example). Their multiple occurrence

within the general scheme may lead to an overestimation of

the propagated uncertainty (to which the uncertainty of each

of these is added several times). The propagated uncertainty

estimates in the final output may, therefore, be overestimated

owing to the multiple occurrences of these corrections in the

schema. The magnitude of this overestimation of uncertainties

can be reduced by avoiding the total number of such duplicate

correction steps, by considering the ‘merging points’ in the

data correction sequence.

In the data correction sequence, merging points exist at the

container and solvent scattering subtraction operations, where

the uncertainties of the preceding two sequences are

combined into the uncertainty of the resulting data values.

Operations that can be deferred beyond these merging points

are performed only once on the data as opposed to twice when

placed before the merging points (i.e. where they are applied

once per dataset), and therefore the total resulting uncertainty

estimate will be smaller by avoiding the duplicate operations.3

The corrections in this sequence have thus been ordered to

limit the number of duplicate operations, while retaining the

usefulness of the results. In particular the choice was made to

obtain both the solvent scattering (output B) and the analyte

scattering (output C) in a reusable form at the cost of retaining

some duplicate operations, whereas the scattering signal from

the container itself was not considered important enough to

obtain in reusable form. This has the added benefit that the

correction values, for e.g. the flatfield, do not need to be the

same between processes A + B and A + C. Pragmatic choices

have been made for corrections which do not benefit from an

early placement in the schema but can be deferred until after a

merging point, saving time and limiting the uncertainty

expansion. The authors believe that the simplicity of imple-

mentation of this approximate error estimate propagation

method outweighs the drawbacks of the potentially increased

uncertainty estimate. The increases can also be limited by

accurate determination of the correction values, so that the

correction value uncertainties are small and do not contribute

significantly. Finally, as multiple uncertainty estimators are

provided, including one determined during the final azimuthal

integration step, the user remains free to choose the final

estimator (or estimator combination) that they deem to be the

most accurate reflection of the practical uncertainty for their

instrument. The provided propagated uncertainties can only

improve with better, more involved uncertainty propagation

considerations in the future.

4. A further practical modification

In practice, the flux and transmission corrections can be

combined. We define the transmission factor T ¼ I1=I0, with

the incident flux denoted as I0 and the emergent flux (the sum

of the transmitted, scattered and diffracted radiation) as I1.

Then, defining the prior detected signal IpðQÞ and flux- and

transmission-corrected signal IcðQÞ, we get

IcðQÞ ¼ IpðQÞ
1

I0T
¼ IpðQÞ

1

I1
: ð1Þ

Combining these operations ostensibly negates the need for

an upstream beam flux monitor, to the great relief of many

instrument scientists. However, as the transmission factor still

needs to be known for the self-absorption correction, their

elation is likely to be short in duration.

5. Instrumental effects for consideration in the analysis
rather than the data corrections

There are some effects which are, unfortunately, best consid-

ered in the scattering pattern analysis procedure rather than in

the data correction procedure. There are three effects: the

resolution function smearing, the multiple scattering effect

and the scattering length density contrast. We will discuss each

of these briefly.

The resolution effect originates from the uncertainty in the

scattering vector for each individual photon. Some of the

origins of these scattering vector uncertainties are well

defined, such as finite beam size and divergence, and the

scattering vectors for an ensemble of photons will, therefore,

exhibit a well defined spread. This is known as the resolution

function, and it can, in principle, be corrected for. The

procedure to do this can be likened to a ‘sharpening’ proce-

dure in image processing and carries the risk of introducing

artefacts due to its ill-posed nature. As it is more prominent in

the neutron scattering field, a workable solution has already

been developed there: the mathematically safer method for

including the resolution contribution is to include the reso-

lution function in the analysis. For this reason, the resolution

function should accompany the data, for example using the

provisions in the NXcanSAS format. By then convoluting or

‘smearing’ the model scattering with the resolution function,

the problem is tractable and can be taken into account without

reservation (Rennie et al., 2013).

The same holds for the multiple scattering contribution

(Warren & Mozzi, 1966). This is the probability that photons

are scattered twice or multiple times, and is directly related to

the scattering probability of a material for the energy used and

its thickness. The multiple scattering contribution is hard to

correct for in the original data. It is much easier to convolute

the scattering pattern with the multiple scattering effect and

likelihood, and to take it into account in that manner (Rennie

et al., 2013).

The last effect is the energy dependence of the scattering

length density contrast. This energy dependence implies that,

while the scattering vector is described independent of the

energy, the scattering cross section will still be correlated,

particularly near to absorption edges. There is, to our knowl-

edge, no current solution for this, and information on the used

energy must, therefore, always accompany a scattering curve.
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3 Consider, for example, the difference in this sequence with three
mathematical operations, ða� bÞ � ðc� bÞ, versus the same with only two:
ða� cÞ � b.



6. Conclusions

We have presented a comprehensive data correction sequence,

which can be used as the core of a software implementation or

as a reference correction sequence against which other, faster

implementations can be proven. The sequence is chosen so

that it returns useful information, in particular for dispersions,

where the absolute scattering signal from the dispersant and

that from the analyte are obtained independently.

By presenting this schema, we hope to encourage unity and

consistency in the worldwide data correction efforts, to the

betterment of the small-angle X-ray scattering field.

APPENDIX A

Background subtraction: one versus two dimensions

When dealing with isotropically scattering samples, many data

corrections can be performed on an image level (two dimen-

sional) or on azimuthally averaged curves (one dimensional).

In other words, the background subtraction is done either

(1) by subtracting the background image (two dimensional)

from a sample measurement, followed by azimuthal averaging

to obtain a one-dimensional curve, or

(2) by subtracting the azimuthally averaged background

data (one dimensional) from the azimuthally averaged sample

measurement,

with the latter being somewhat less computationally intensive.

We can demonstrate, however, that the background subtrac-

tion in particular, and therefore all preceding operations, are

best done in two dimensions in order to reduce the resulting

scattering signal uncertainties. As an added big benefit,

support for anisotropically scattering samples is then auto-

matically included.

The improvement for the background subtraction proce-

dure is due to the way the scattering signal uncertainties are

calculated during the azimuthal averaging and then propa-

gated. As uncertainty estimates play an important role in the

analysis of small-angle scattering images, having access to

(multiple) reasonable estimates is important. Besides the

propagated Poisson uncertainties, it is possible to get a second

estimate from the azimuthal averaging procedure, which will

include more instrumental contributions than Poisson uncer-

tainties alone. This second estimate is obtained by calculating

not only the mean scattering signal but also the standard error

on the mean.

To demonstrate how the choice of dimensionality affects the

resulting scattering signal uncertainties, we simulate both a

background image and a sample measurement image. For

simplicity, these are simulated in polar format: Q varies along

one axis and the azimuthal angle along the other. A systematic

instrumental contribution is added to the image, representing,

for example, a small contribution from scattering off the edge

of the collimation system or beamstop. Similar scattering can

originate from capillary walls or imperfections in window

material.

We create two images, 180 by

50 pixels in size, that represent

the background and sample

measurement in azimuthal angle

versus scattering vector. The

background image contains 50

counts with Poisson noise and a

central region of pixels with 50

more noisy counts. The sample

image is set up in a similar way,

with 70 noisy counts (20 signal

counts on top of the 50 back-

ground counts), and the central

region of scattering signal

elevated by another 50 counts as

in the background.

Approach 1 is the calculation

of the azimuthal average and the

standard error on the mean from

the sample and background

images directly, followed by

subtraction and propagation of

the uncertainties (top row of

Fig. 2).

Approach 2 involves subtrac-

tion of the background image

from the sample image, followed

by the calculation of the
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Figure 2
Two approaches to background subtraction. Top row: subtraction of two-dimensional images; bottom row:
subtraction of the azimuthally averaged images.



azimuthal average and the standard error on the mean

(bottom row of Fig. 2).

In conclusion (Fig. 3), we see that both approaches result in

the identical retrieval of 20 mean counts of signal after

subtraction of the background. However, the region of

elevated signal results in a much higher uncertainty estimate

on the scattering signal which has been background subtracted

after azimuthal averaging. If we do image subtraction of the

background before averaging, such spurious signals can – if

they are stable in both measurements – leave no large detri-

mental effect.

APPENDIX B

The displaced volume correction: DV

The displaced volume correction is one that only needs to be

considered for measurements on sample dispersions with a

high volume fraction of analyte in the matrix. A rule of thumb

would be to use this for analyte volume fractions of at least

1%.

In these cases there is a reduction in the amount of back-

ground material that the primary beam passes through, since a

part of that space is now no longer occupied by the back-

ground material (see Fig. 4). In other words, there is a reduced

length of background material in the beam, leading to a

reduction in the background signal by an amount proportional

to the volume fraction of sample in the beam. Perhaps

counter-intuitively, this is not something that is compensated

for by the transmission measurement; the sample may have an

identical overall absorption probability to the background but

still occupy a large fraction of the space.

What complicates matters is that this only reduces the

background signal originating from the solvent, while leaving

the background signal from the sample container walls unaf-

fected. This means that the background signal needs to be

disassembled into its components and that the background

scattering signal from the liquid needs to be reduced in a

scaling procedure. For this reason, the schema in Fig. 1 has two

background subtractions, the first to separate the solvent as

well as the dispersion signal from the capillary walls, and the

second to subtract the solvent signal from the solvent +

analyte signal. Before applying the second subtraction, the

solvent signal is multiplied with its (remaining) volume frac-

tion. In this case, the scattering signal of the sample alone is

obtained.

The second complication is that there is something of a

chicken-and-egg problem; you cannot do this correction

without knowledge of the volume fraction occupied by the

sample. That volume fraction, however, may result from the

scattering pattern analysis of the corrected scattering pattern

(which you do not have yet). It may be possible to apply this

correction in an iterative manner (an approach as yet

untested). Alternatively, the volume fraction of analyte needs

to be determined using other methods.

The correction of the observed solvent scattering signal Iobs
to the corrected solvent scattering signal Icorr using the volume

fraction of analyte vf then becomes

IcorrðQÞ ¼ IobsðQÞð1� vfÞ: ð2Þ

This corrected signal can be subtracted from the signal of the

dispersed analyte in the solvent.

This correction will be significant if (1) the analyte volume

fraction is significant, i.e. larger than 1 vol.%, and (2) the

scattering signal from the sample is weak compared to the

signal from the solvent. Proteins in solution and micellar

systems are a prime example, but also dispersed polymers and

vesicles may be affected.

APPENDIX C

The angle-dependent efficiency correction: AE

One additional correction can be considered, which takes into

account the variation in detection probability of a photon

passing through the detection layer at various angles (Zaleski

et al., 1998). When a photon passes through the detector at an

angle perpendicular to the sensor surface, its detection prob-

ability is proportional to the absorption probability. This is,

then, a function of the linear absorption coefficient (and thus

the photon energy and sensor material) and the thickness of

the sensor layer. If the photon passes through the detector
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Figure 4
A schematic description of the displaced volume correction: a reduction
in background signal when significant volume fractions of analyte are
present. In that case, the thickness of background material is reduced, and
its contribution to the scattering signal reduces proportionally.

Figure 3
The uncertainties resulting from the two approaches, showing a lower
uncertainty estimate for the image subtraction approach.



layer at an angle, the amount of material it passes through is

greater and the detection probability increases. This means

that the detection efficiency of a photon is greater when it

arrives at oblique angles rather than perpendicular to the

surface.

We ignore here, for simplicity, the fact that the detector

surface is divided into individual voxels, each of which can

absorb all or some of the photons that are passing through.

The probability of absorption within such a voxel is also

dependent on its exact shape, the incidence vector and the

energy of the photon. The probability of detection is

furthermore dependent on the localized probability for charge

sharing between neighbouring pixels and the energy threshold

settings used for that pixel (Kraft et al., 2009; Bergamaschi et

al., 2015). Lastly, at lower energies, photons arriving at oblique

angles are more likely to be absorbed by the deadlayer of the

sensor, reducing their probability of detection compared to

photons arriving perpendicular to the detector surface

(Wernecke et al., 2014). These additional complications could

be considered in future fine-tunings of the AE correction.

This angle-dependent efficiency correction could be

considered part of the flatfield response correction of the

detector. Its source, however, is not detector imperfections but

lies in the instrument geometry coupled with the detector

sensor thickness. This correction can, therefore, be considered

separately. Since its magnitude can be easily estimated, it is

straightforward to take it into account. If we rewrite the

derivation from Zaleski et al. (1998) to let K represent the

mass energy-absorption efficiency of a detector surface of

thickness d as a function of the angle of incidence � of a

photon to the detector surface normal, we get

K ¼ 1� exp
��end

cosð�Þ
; ð3Þ

where �en is the mass energy-absorption coefficient for silicon

for a given energy. The correction of the observed scattering

signal IobsðQÞ to the corrected scattering signal Icorr then

becomes

IcorrðQÞ ¼ IobsðQÞ=K: ð4Þ

The magnitude of this correction becomes larger with

increasing energy, thinner detector surfaces and increased

angular coverage of the detectors. Fig. 5 shows the magnitude

for various energies for a typical sensor thickness of 450 mm.

Its magnitude may not be large for SAXS experiments, but it is

easy to implement and correct for. Furthermore, when

combining SAXS with wide-angle X-ray scattering data, the

correction becomes more important.

APPENDIX D

Deriving the background subtraction sequence

Dispersions are often measured inside a sample container

(indeed, it is hard to do otherwise). This implies that we have

an absorbing container wall upstream and downstream,

between which we have a particular length of sample, which

also absorbs. Here, we show how to extract the sample scat-

tering in this geometry. This derivation forms the basis of the

data correction sequence in the manuscript. For this calcula-

tion, the self-absorption correction of the scattered radiation

is not considered.

D1. Base definitions

Note that the definitions made herein are for this appendix

only and do not apply to the general manuscript.

D1.1. System definitions. The scattering system is consid-

ered to consist of a three-component sandwich-like structure:

an upstream sample container wall, followed by a sample,

followed by a downstream sample container wall (see Fig. 6).

All components are considered to be plate like in shape, with

the plate normal parallel to the direct beam. Furthermore, the

distance between the sample and the detector is considered to

be much larger than the thickness of the sample.

D1.2. Geometric definitions. The upstream sample

container wall is denoted by the subscript 1, the sample by

subscript 2 and the downstream sample container wall by

subscript 3. The following definitions are made:

D: the thickness of a phase.

t: the running variable of distance travelled through all phases.
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Figure 6
Schematic overview of the definitions used in the derivation of the
background correction for dispersions ‘sandwiched’ between two
container walls.

Figure 5
Detection efficiency of photons of various energies, dependent on their
angle of incidence to the detector plane.



t0: position at the start of the upstream sample container

component.

t1: position at the start of the sample component (end of the

upstream sample container component).

t2: position at the start of the downstream sample container

component (end of sample component).

t3: position at the end of the downstream sample container

component.

Pnð2�Þ: the scattering probability of phase n.

I0ðtÞ: the primary beam flux at position t.

IsðtÞ: the scattered flux at position t.

I0: the primary beam flux.

I1: the primary beam flux entering the sample phase.

I2: the primary beam flux entering the downstream sample

container component.

I3: the primary beam flux after absorption through all of the

components.

�n: the linear absorption coefficient of phase n.

2�: the angle of the scattered radiation.

Tn: the transmission factor of a given phase or set of phases.

D2. The derivation

D2.1. Absorption of the unscattered beam. The X-ray

absorption is defined as

I0ðtÞ ¼ I0 expð�2�tÞ: ð5Þ

The beam intensities entering and exiting the various phases

therefore work out as

I1 ¼ I0 expð��1D1Þ;

I2 ¼ I0 exp �ð�1D1 þ �2D2Þ
� �

;

I3 ¼ I0 exp �ð�1D1 þ �2D2 þ �3D3Þ
� �

:

ð6Þ

D2.2. Absorption of the scattered beam by subsequent

components. In this geometry, the probability of absorption of

a scattered photon increases with the scattering angle, as it has

to travel through more material. The length of travel of the

photon though subsequent materials is defined as

l ¼
D� t

cosð2�Þ
: ð7Þ

The transmission factor T of scattered radiation through

subsequent phases therefore is

Tn ¼
Is;n

Is;n�1

¼ expð��nlÞ: ð8Þ

D2.3. Flux of the scattered beam in the scattering

component. The scattered flux and direction-dependent

transmission factor have been derived elsewhere (Pauw, 2013)

and found to be

I1ðtÞ ¼ PnI0 exp �
�

cosð2�Þ
t cosð2�Þ þ ðD� tÞ½ �

� �

: ð9Þ

For the initial derivation, however, we do not consider the

scattering-angle-dependent increase in material path length,

so the term cosð2�Þ ¼ 1.

D2.4. Flux scattered from component phases. The scat-

tered fluxes of the individual components are defined as

follows:

Isn ¼ In�1

Z

tnþ1

tn

expð��ntÞPn exp ��n

Dn � t

cosð2�Þ

� �

dt: ð10Þ

With cosð2�Þ ¼ 1, this simplifies to

Isn ¼ In�1Pn exp ��nDnð Þ
R

tnþ1

tn

1dt

¼ In�1PnDn exp ��nDnð Þ: ð11Þ

D2.5. Flux scattered from the total. The total scattered flux

is the sum of the scattering from all three components in the

beam, attenuated by their subsequent phases:

Is ¼ Is1T2T3 þ Is2T3 þ Is3: ð12Þ

Replacing the components of equation (12) with equations

(11), (6) and (8), we get for the total scattered flux of both

sandwich-cell walls and the intermediate sample

Is ¼ I0P1D1 expð��1D1Þ expð��2D2Þ expð��3D3Þ

þ I1P2D2 expð��2D2Þ expð��3D3Þ

þ I2P3D3 expð��3D3Þ

¼ I0P1D1 exp �ð�1D1 þ �2D2 þ �3D3Þ
� �

þ I0 expð��1D1ÞP2D2 exp �ð�2D2 þ �3D3Þ
� �

þ I0 exp �ð�1D1 þ �2D2Þ
� �

P3D3 expð��3D3Þ

¼ I0P1D1 exp �ð�1D1 þ �2D2 þ �3D3Þ
� �

þ I0P2D2 exp �ð�1D1 þ �2D2 þ �3D3Þ
� �

þ I0P3D3 exp �ð�1D1 þ �2D2 þ �3D3Þ
� �

¼ I0 exp �ð�1D1 þ �2D2 þ �3D3Þ
� �

ðP1D1 þ P2D2 þ P3D3Þ:

ð13Þ

Assuming phases 1 and 3 are identical, this simplifies to

Is ¼ I0 exp �ð2�1D1 þ �2D2Þ
� �

ð2P1D1 þ P2D2Þ: ð14Þ

D2.6. Determining P1. Before we can continue, we must

find out how to determine P1. We do this in a background

measurement, by measuring the scattering from the empty cell

Ib (in practice, the cell is ideally drawn to a vacuum, although

the signal from air is assumed to be negligible). This implies

that P2 and �2 are both zero as this phase is not present in the

measurement. We then obtain P1 from equation (13):

Ib ¼ 2P1D1I0 expð�2�1D1Þ ð15Þ

(note that the first factor 2 originates from considering the

upstream and downstream walls separately), so
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P1 ¼
Ib

2D1I0 expð�2�1D1Þ
: ð16Þ

D2.7. Extracting P2. Finally, we want to find the scattering

probability of phase 2, P2 (which is what we are really

seeking), by rearranging equation (14):

2P1D1 þ P2D2 ¼
Is

I0 exp �ð2�1D1 þ �2D2Þ
� � ;

P2 ¼
1

D2

Is

I0 exp �ð2�1D1 þ �2D2Þ
� �� 2P1D1

( )

¼
1

D2

Is

I0 exp �ð2�1D1 þ �2D2Þ
� ��

Ib

I0 expð�2�1D1Þ

( )

:

ð17Þ

Substituting the transmission factors for the empty

cell T1 ¼ expð�2�1D1Þ and cell plus sample T1þ2 ¼

exp½�ð2�1D1 þ �2D2Þ�, we arrive at the (more or less) stan-

dard background subtraction calculation:

P2 ¼
1

D2

Is

I0T1þ2

�
Ib

I0T1

	 


: ð18Þ

So, even when we thoroughly consider the scattering process

of a sample sandwiched between two sample cell walls, we

arrive at a simple equation for determining the sample scat-

tering probability from the total measured scattering signal.

D3. Final remarks

There are interesting aspects when we use this background

subtraction equation in practice. Firstly, we find that it is not

necessary to determine the sample cell wall thickness D1.

Secondly, both the sample measurement and the background

measurement are normalized to the thickness of the sample

phase D2 only. Lastly, note that this is, of course, only valid if

the same sample cell is used for both the background and the

sample measurement.

Equation (18) as derived thus is represented using the

modular data corrections as shown in Fig. 1. The thickness

correction occurs after background subtraction, and the

transmission and incident flux corrections have been applied

before subtraction. The same background equation also works

for simpler cases, for example when measuring a solid sample

with an empty background.
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