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Abstract

Apoptosis is a programmed cell death that plays a critical role during the development of the

nervous system and in many chronic neurodegenerative diseases, including Alzheimer's disease

(AD). This pathology, characterized by a progressive degeneration of cholinergic function resulting

in a remarkable cognitive decline, is the most common form of dementia with high social and

economic impact. Current therapies of AD are only symptomatic, therefore the need to elucidate

the mechanisms underlying the onset and progression of the disease is surely needed in order to

develop effective pharmacological therapies. Because of its pivotal role in neuronal cell death,

apoptosis has been considered one of the most appealing therapeutic targets, however, due to the

complexity of the molecular mechanisms involving the various triggering events and the many

signaling cascades leading to cell death, a comprehensive understanding of this process is still

lacking.

Modular systems biology is a very effective strategy in organizing information about complex

biological processes and deriving modular and mathematical models that greatly simplify the

identification of key steps of a given process.

This review aims at describing the main steps underlying the strategy of modular systems biology

and briefly summarizes how this approach has been successfully applied for cell cycle studies.

Moreover, after giving an overview of the many molecular mechanisms underlying apoptosis in AD,

we present both a modular and a molecular model of neuronal apoptosis that suggest new insights

on neuroprotection for this disease.

1. Introduction: the modular systems biology 
approach
Systems biology aims at describing biological processes as
interactions of molecular components structured by regu-
latory wirings, whose dynamics in various conditions
might be predicted by using mathematical models and
computer simulations. The goal is to achieve the ability to
integrate in a comprehensive model of pathways and net-

works the huge amount of data coming from post-
genomic analysis in order to gain a better understanding
of biological processes and a presently unattainable pre-
dictive ability.

For relatively simple processes, such as glycolysis, the
structure of the pathway is quite well defined and allows
us to readily construct the corresponding model. Neverth-

Published: 30 October 2006

BMC Neuroscience 2006, 7(Suppl 1):S2 doi:10.1186/1471-2202-7-S1-S2
<supplement> <title> <p>Problems and tools in the systems biology of the neuronal cell</p> </title> <editor>Sergio Nasi, Ivan Arisi, Antonino Cattaneo, Marta Cascante</editor> <note>Reviews</note> </supplement>

© 2006 Alberghina and Colangelo; licensee BioMed Central Ltd. 
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Neuroscience 2006, 7(Suppl 1):S2

Page 2 of 26

(page number not for citation purposes)

less, it has to be underlined that also in this relatively well
known situation the systems biology approach has been
able to identify a previously underestimated rate limiting
step [1].

For other more complex processes, such as cell cycle,
apoptosis, differentiation, transformation, we lack both a
complete molecular understanding and the logic of their
regulatory wirings. In order to develop a systems biology
approach able to foster the understanding of complex bio-
processes, our laboratory has developed a modular sys-
tems biology approach and tested its validity in cell cycle
studies.

The notion is by now largely accepted that cellular proc-
esses are carried out by modules, subsystems of interact-
ing molecules (DNA, RNA, proteins and metabolites) that
perform a given function in a way largely independent
from the context [2]. The various modules are linked by
governing interactions that follow general design princi-
ples well known in engineering, such as positive and neg-
ative feedbacks, switch, thresholds, amplification, error
correction, etc. [3].

The modular systems biology approach, which is exten-
sively discussed in ref. [4], starts with a global functional
analysis of the process in order to identify both the known
players and the main control functions active in the proc-
ess. Then a modular blueprint of the process is con-
structed by gathering all the information previously
collected. This low resolution blueprint is then used to
derive a mathematical model that, tested by simulation,
will show whether it is able to capture the essential fea-
tures of the process. In the negative case, one has to go
back to the drawing board and reconsider the blueprint
structure; in the positive case, one can move on to identify
the molecular components of each module following the
so called 4M Strategy: Mining of literature and data banks;
Manipulation by genetic means and by environmental
changes of the module structure and function; Measure-
ments of all putative regulatory components supposed to
be active in the module (i.e. estimation of their concentra-
tion, localization, state of activation, time-course changes,
etc.); Modeling and simulation: construction of a model
at higher resolution than the previous one, in which the
putative regulatory components of the module are linked
by a specific flow of events. The simulation of this model
will be compared with experimental results, in order to
check its validity. It starts, therefore, an iteractive process
of modeling, computer simulation, comparison with
experimental data, new hypothesis-driven experiments,
computer simulations, predictions that are going to be
experimentally tested, which is the characteristic of the
systems biology approach [5].

In this review we are going to apply the modular systems
biology approach to give structure to the information
available about the role of apoptosis in neurodegenerative
diseases. Moreover, we construct the blueprint of neuro-
nal apoptosis and present a tentative molecular model of
the mechanisms underlying neuronal apoptosis. The
roadmap describing the process is briefly reported in Fig-
ure 1.

In order to explain how the modular systems biology
approach works in the definition of a molecular model of
complex biological processes, we briefly summarize how

Scheme of the iterative roadmap of computational and experimental approaches applied in modular systems biologyFigure 1
Scheme of the iterative roadmap of computational and 
experimental approaches applied in modular systems biology.
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this approach has been successfully used in our laboratory
for cell cycle studies.

2. The modular systems biology approach for 
cell cycle studies
Cell cycle requires the coordination of different processes:
mass accumulation, DNA replication and faithful parti-
tioning of genetic material. In the budding yeast Saccharo-
myces cerevisiae, the most relevant model organism for cell
cycle studies, the coordination of mass accumulation with
cell cycle progression relies on a cell sizer mechanism that
allows DNA replication to start only when cells have
reached a critical cell size, called Ps. Although this key reg-
ulatory control of cell cycle has been known for almost
three decades [6-8], even recent cell cycle models [9,10]
do not offer satisfactory molecular explanations for the
setting of Ps. Besides, it is well known that external and
metabolic signals are able to control the setting of the crit-
ical cell size [11], but we still ignore the detailed mecha-
nisms that link signal transduction pathways to the cell
cycle core molecular machine.

2.1. Defining the cell sizer regulatory network controlling 

entrance into S phase in yeast

In order to define the molecular mechanism underlying
the cell sizer, the first step has been the drawing of a blue-
print of the cell cycle [12] that states that the cell sizer is
based on a threshold mechanism involving a growth-sen-
sitive cyclin (Cln3) and an inhibitor of cyclin-dependent
kinase (Cki), Far1, previously known to be involved in the
arrest of the cell cycle in G1 in response to mating factors
[13-15]. After the execution of the growth-sensitive
threshold, a cascade of cyclin-dependent-kinases takes
place, that controls the sequential progression of the cycle,
terminated by an End function, that comprises events
from the onset of mitosis to cell division and whose pro-
gression may be regulated by stress [12,16].

The second step has been the gathering of experimental
evidence about the involvement of Far1 in cell cycle con-
trol: an increased level of Far1 increases cell size, whereas
FAR1Δ cells initiate bud emergence and DNA replication
at a smaller size than wild type. Besides Cln3Δ, FAR1Δ and
strains overexpressing Far1 do not show a drop in bud-
ding (a marker of the entrance into S phase) during an
ethanol-glucose shift-up as wild type does. The activation
of Cln3·Cdk1, following the overcoming of the Cln3/
Far1 threshold, activates SBF- and MBF-dependent tran-
scription. A second threshold given by Clb5,6·Cdk1/Sic1
is required, together with the first one, to adjust the Ps
value to carbon sources availability (i.e. low Ps in poor/
ethanol media, high Ps in rich/glucose media) [17].

A mathematical model accounting for the network identi-
fied so far has been implemented and shown to capture

basic features of the G1 to S transition, such as the role of
Cln3 and Far1 dosage on the setting of Ps [4].

The third step has focused more on the role of Sic1,
another Cki, in the control of the entrance into S phase,
focusing on the modulation by carbon source of the sub-
cellular localization of Sic1 [18]. Sic1 and the cyclins Clb5
and Clb6 are the major regulators of the Cdk1 kinase
activity required for the onset of DNA replication [19].
The complex Clb5,6·Cdk1/Sic1, formed in G1 cells when
Clb5,6 are synthesized due to MBF-mediated transcrip-
tion, is activated by proteolysis of Sic1, primed by
Cln1,2·Cdk1 mediated phosphorylation on multiple
sites and dependent on SCF complex [20].

The carbon source modulation of the setting of Ps medi-
ated by Sic1 is dependent upon the fact that carbon source
affects both the overall level and the subcellular localiza-
tion of Sic1, that requires a newly characterized NLS to be
imported in the nucleus. Besides, it has been shown that
Sic1 facilitates nuclear accumulation of Clb5, thus playing
a hitherto unrecognized positive role in promoting the G1
to S transition [18]. The kinetic parameters of the binding
of Sic1 to cyclin/Cdk complex have been estimated, and
evidence has been obtained in vitro showing that the
strength of binding may be modulated by Sic1 protein
phosphorylation [21].

It may be interesting to recall that Sic1 has been shown to
be a functional homologue of the mammalian p27Kip1

with a conserved inhibitory domain [22]. Also p27Kip1,
together with p21Cip1, has been shown to promote nuclear
import of cognate cyclin D1/Cdk4, therefore the import of
cyclins, that do not have obvious nuclear import signals,
like cyclin D in mammals and Clb5 and Clb6 in yeast,
appear to be imported into the nucleus piggy-backed on
cargos (the complex cyclin/Cdk/Cki) that contains a pro-
tein (the Cki) with a NLS [23,24].

The fourth and last step, so far, has been to derive a math-
ematical model of the complex nucleus/cytoplasmic net-
work, derived from the previous experimental findings
integrated with the literature data, and to analyze various
aspects of it by simulation [Barberis et al., 2006, submit-
ted for publication]. Besides accounting for the behaviour
of many known cell cycle mutants, the model shows that
the critical cell size depends on the structure of the net-
work and, in a more sensitive way, on few parameter val-
ues. The results of the simulations shed new light on the
previously reported involvement of ribosome biogenesis
on the setting of Ps [25-27].
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3. Why modular systems biology approach for 
neurodegenerative diseases?
Taken together, the above mentioned results offer a strong
support to the notion that the modular systems biology
approach is very effective in fostering the identification of
networks controlling complex bioprocesses and, there-
fore, it could be useful for a better understanding of neu-
ronal apoptosis. Recently, mathematical models have
been developed for CD95- and cytokine-induced apopto-
sis in mammalian cells [28,29], as well for Ca++ signaling
at dendritic spines and neurotransmitter receptor com-
plexes underlying synaptic plasticity [30,31]. This review
discusses the use of the modular systems biology
approach to investigate apoptosis in neurodegenerative
disorders and, in particular, Alzheimer's disease (AD). The
basic idea is that structuring the apoptotic process in mod-
ules will allow us to better understand the regulatory wir-
ing of the process.

As previously discussed, the first step requires the collec-
tion and organization of the information available about
the process being considered. Therefore, the following
paragraphs are going to gather current knowledge about
functional analysis of apoptosis in AD neurodegeneration
in order to derive the structure in modules of the blue-
print, followed by an analysis of the key molecular play-
ers, in order to structure a tentative molecular model of
neuronal apoptosis to be proposed for experimental vali-
dation.

4. Global functional analysis of apoptosis in AD
Neurodegenerative diseases are characterized by dysfunc-
tion and death of specific neuronal populations and, in
many instances, by the presence of intracellular and extra-
cellular aggregates of otherwise soluble proteins, a com-
mon feature in several disorders of the central nervous
system (CNS), such as AD, Parkinson's (PD) and Hunt-
ington's diseases (HD) and Amyotrophic Lateral Sclerosis
(ALS) [32-34].

Besides the genetic component of different molecular and
cellular alterations, neuronal degeneration is contributed
by the intervention of various factors and biochemical
events that are relevant also to acute neuropathological
conditions and including metabolic and oxidative stress,
disruption of Ca++ homeostasis and excitotoxicity, as well
neurotrophic factor deprivation or traumatic injury
[32,33,35-37]. For instance, energy depletion, excitotoxic-
ity and oxidative stress are the major pathological mecha-
nisms leading to neuronal death during ischemic stroke
after oxygen and glucose deprivation due to transient or
permanent reduction of the cerebral blood flow [38]. On
the other hand, many biochemical mechanisms leading
to cell death are shared by several neuropathological con-
ditions. For example, excitotoxicity due to overactivation

of glutamate receptors represents a final common path-
way for both acute neurological disorders, such as stroke,
trauma and epileptic seizures, and chronic neurodegener-
ations like AD [35,39].

Regardless of which is the initial trigger and the neuronal
population affected, neuronal death can occur through
mechanisms involving necrosis or apoptosis, depending
on the intensity and duration of the insult, both processes
involving mitochondrial function [40,41]. Necrosis is a
rapid form of death resulting from an acute toxic event
that leads to complete failure of mitochondrial function
and cellular homeostasis. Apoptosis is, instead, a slow
and active process triggered by less severe insults and rep-
resents a mechanism for neurons to delay death, while
activating various neuroprotective programs involving
molecules and genes with anti-apoptotic function [42]. As
discussed below, in this process, that is characterized by
cell shrinkage, plasma membrane blebbing, nuclear chro-
matin condensation, DNA fragmentation and increase of
a number of apoptotic markers, mitochondria play a piv-
otal role in cell decision, which is supposed to depend on
a balance between apoptotic and anti-apoptotic signals.
The initial trigger, in fact, induces a state of increased vul-
nerability to other toxic events and/or synergize with
other apoptotic cascades, thus causing a persistent imbal-
ance of neuronal homeostasis, mitochondrial dysfunction
and neuronal death.

Increasing evidence indicates that apoptotic pathways
occur in most neurological disorders. Besides the role of
apoptosis in excitotoxicity and traumatic injury, there is
evidence for apoptotic cell death in the penumbral region
of ischemic brains [41,43,44]. Furthermore, apoptosis is
currently regarded as the main form of death during neu-
rodegenerative disorders like AD, PD, HD and ALS, as
supported also by a number of studies in patients [45-47].

AD is a progressive neurodegeneration characterized by a
disruption of synaptic function leading to a remarkable
cognitive decline, including memory impairment and
behavioural changes. The pathological hallmarks of AD
include the presence of aggregates of amyloid-β peptide
(Aβ) in neuritic plaques and intracellular neurofibrillary
tangles (NFTs) of hyperphosphorylated tau (PHFtau),
together with loss of neurons and synapses in the neocor-
tex, hippocampus and other subcortical regions of the
brain. These features are present both in sporadic AD and
in early-onset familial form (FAD) which has been associ-
ated with genetic mutations of the β-amyloid precursor
protein (APP) and the presenilin-1/2 (PS1/2) genes [34
and refs therein].

Due to the strong social impact of AD, a large number of
studies have focused on the pathological mechanisms
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underlying this debilitating disease that represents the
most common form of dementia.

Neurochemical analyses indicate that neurotransmitter
deficit, neuronal atrophy and synaptic dysfuction are early
events in AD, as they occur also in subjects with Mild Cog-
nitive Impairment (MCI), a high-risk pre-dementia state
of the disease. Decrease of cholinergic markers and loss of
basal forebrain cholinergic neurons has been observed in
the brain of AD patients and senile dementia [48], and a
strong correlation has been found between the degree of
cognitive deficit and the decrease of synaptophysin
immunoreactivity [49].

Brain imaging, electrophysiological and neuropsycholog-
ical studies have shown that the degree of synaptic loss is
correlated to levels of soluble oligomers of Aβ and occurs
even before the appearance of Aβ plaques and NFT forma-
tion [50-54]. However, a reduction of neurotrophic sup-
port, in particular Nerve Growth Factor (NGF) [55-57]
and Brain-Derived Neurotrophic Factor (BDNF) [58], is
also believed to play a role in neuronal dysfunction, as
discussed below.

Current therapies of AD are only symptomatic and
include treatments with acetyl-cholinesterase inhibitors
to improve cognitive function. However, effective thera-
pies may require the development of pharmacological
strategies that enable to modify and reverse the many bio-
chemical alterations involved in the onset and progres-
sion of the disease.

Given its well established role in AD degeneration, apop-
tosis has lately gained much attention as a potential phar-
macological target. However, although many of the
apoptotic pathways have been extensively elucidated in
terms of signaling [59-63] and differential gene expres-
sion [64,65], a comprehensive understanding of the
apoptotic process in AD is still missing, due to the com-
plex cross-talk between many different signaling cascades
that are activated in a dynamic and coordinated fashion.
Besides Aβ toxicity and deficit of neurotrophic support,
neuronal death is triggered by a huge number of signals
and biochemical mechanisms including microtubule
transport impairment, decreased glucose metabolism,
excitotoxicity, oxidative stress, mitochondrial dysfunction
and inflammatory processes [37,59,61,66,67].

In order to apply the modular systems biology approach
to apoptosis in AD, we will next review both the biochem-
ical basis of the physio-pathological events underlying the
two current AD hypothesis and the molecular mecha-
nisms through which a number of diverse neurotoxic
insults in AD may actually converge to convey apoptotic

signals. Then, we will attempt for the first time to structure
them in a molecular/modular model.

4.1 The "Neurotrophic Factor Hypothesis" and AD 

neurodegeneration

The "Neurotrophic Factor Hypothesis" [68,69] is linked to
the discovery of NGF by R. Levi-Montalcini and the first
observations of cell death for neurons deprived of their
target of innervation [70,71]. The neurotrophic activity of
target-derived NGF was then followed by the identifica-
tion of other molecules including BDNF, Neurotrophin-3
(NT-3) and Neurotrophin-4/5 (NT-4/5), with neuro-
trophic activity on different neuronal populations. All
neurotrophins share similar sequences and structures
along with variable domains that determine the specificity
of their biological activity resulting from the interaction
with their cognate tyrosine kinase (Trk) receptor [[72] and
refs. therein].

Thus, the phenomenon of apoptosis, that is central to the
Neurotrophic Factor Hypothesis, was first observed in the
context of the discovery of NGF and its role on differenti-
ation and survival of sympathetic and sensory neurons of
the peripheral nervous system [70,71]. During develop-
ment, neurotrophins regulate neuronal survival and dif-
ferentiation, and determine the pattern of innervation and
the expression of proteins that are crucial to a specific neu-
ronal phenotype, like neurotransmitters and neuropep-
tides, neurotransmitter receptors and ion channels.
According to the neurotrophic hypothesis, the correct pat-
tern of innervation is dependent upon competition of
developing neurons for a limited supply of growth factors
secreted by target tissues, thus ensuring a balance between
the number of neurons and the size of the innervated tar-
get [68,69].

Neurotrophins activity, however, is essential throughout
adult life and aging, where they play a key role in the reg-
ulation of neuronal function and synaptic plasticity, as
well in neuroprotection and repair [73]. In this context,
neurotrophins function can be revelant to the develop-
ment of neuronal dysfunction and degeneration.

The potential relevance of NGF to neuronal loss in AD is
based on a large body of evidence, including the existence
of a strong correlation between NGF expression in neocor-
tex and hippocampus and expression of TrkA receptor and
choline acetyltransferase (ChAT) activity in the basal fore-
brain, both during development [74-76] and in the adult
[77,78]. Cholinergic neurons atrophy and memory deficit
in aged rat and in primates could be prevented by intra-
ventricular infusions of NGF [79-82], while it is induced
by intraventricular administration of anti-NGF antibodies
[55] or disruption of the NGF gene [56]. Moreover, there
is evidence for reduced or defective retrograde transport of
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NGF in aged rats [83], while increased cortical and hip-
pocampal NGF levels with reduction of NGF in the
nucleus basalis have been found in AD patients [36].

Neverthless, it was shown that excitotoxic lesion of target
neurons does not induce death of basal forebrain cholin-
ergic neurons, but cell shrinkage and decreased ChAT
activity, suggesting that in the adult these neurons are no
longer dependent on NGF for acute survival but only for
maintenance of their cholinergic phenotype that is crucial
to the modulation of cortical and hippocampal synaptic
plasticity and learning and memory processes [84].

Recently, the potential role of NGF in AD degeneration
has been supported by the AD model of anti-NGF trans-
genic mice [57,85]. The conditional expression of anti-
bodies in the adult induces cholinergic deficit and the
appearance of structural changes (amyloid plaques, PHF-
tau and NFTs) resembling those found in human AD, thus
establishing a strong correlation between NGF depriva-
tion and cholinergic dysfunction. Moreover, the choliner-
gic deficits of these mice could be rescued by intranasal
administration of NGF [86].

Besides NGF, it must be acknowledged also the role of
BDNF in AD, given the well established role of this neuro-
trophin in synaptic plasticity of the hippocampus and the
requirement for BDNF in long-term potentiation (LTP)
during learning and memory processes [87]. The potential
role of BDNF in AD is supported by several studies show-
ing a reduction of BDNF mRNA and protein levels in the
cortex and hippocampus of MCI and severe AD patients
[58,88]. As this reduction also occurs at early stage of the
disease, it clearly demonstrates a role for decreased BDNF
in the cognitive impairment in AD, that even precedes the
reduction of ChAT activity [89].

An intriguing issue about the relevance of neurotrophins
in the onset and/or progression of AD is the recent finding
that the neurotrophin precursor proNGF appears to be the
major form of NGF in the brain and that proNGF levels
are increased in the parietal cortex of AD patients, even at
early stages of the disease and in subjects with MCI [90].
ProNGF levels were also found to be enhanced after CNS
injury, together with upregulation of the p75 neuro-
trophin receptor and increased p75-mediated apoptosis
[91]. Enhanced p75 levels are known to occur in various
injuries of the nervous system, as shown by both in situ
hybridization and immunohistochemistry analyses [92-
94]. In AD patients, increased p75 expression [95] is
accompanied by a 50% reduction in TrkA levels [96], thus
providing a challenging interpretation for decreased NGF
survival signaling and increased p75-induced apoptosis.

It is well known that levels of expression of NGF and its
receptors TrkA and p75 determine a balance between sur-
vival and apoptosis responses, the latter induced by NGF
in the absence of TrkA receptor or upon alteration of the
ratio between the two receptors in cells that express both
TrkA and p75 [97]. The discovery that NGF may be
secreted also as proNGF and that this unprocessed form
can induce neuronal death through preferential interac-
tion with the p75 receptor suggest that NGF may play a
role in neuronal survival also in the adult where life-death
decision would be also dependent upon the ratio between
secreted mature and proNGF [98,99].

Recently, also BDNF was found to be secreted as proBDNF
by cultured neurons and shown to induce apoptosis of
sympathetic neurons [100]. However, proNGF and
proBDNF do not induce apoptosis in all p75-expressing
neurons, as their pro-apoptotic activity appears to depend
on co-expression of sortilin, a member of the newly dis-
covered family of Vps10p-domain receptors [100,101].
Sortilin is expressed both during embryogenesis and in
the adult, in neurons and non neuronal cells of different
brain areas including cortex, hippocampus, medial and
lateral septum and amygdala [102].

These findings add a further level of complexity to that
already given by the large number of different biological
activities triggered by NGF upon activation of TrkA and
p75 receptors, as well as that resulting from the complex
cross-talk between the molecular intermediates of the sig-
naling cascades activated individually by each receptor.
Moreover, new questions arise as to whether proneuro-
trophins may have their own functional role under phys-
iological conditions, or whether they result from
postranslational alterations of neurotrophin synthesis
during brain damage. Interestingly, plasmin levels are
reduced in the brain of AD patients [103], although plas-
min is a proteinase that cleaves proNGF and proBDNF in
vitro, but its activity in vivo is still uncertain. Moreover, a
recent report showed a role of proBDNF-p75 in the
enhancement of long-term depolarization (LTD) medi-
ated by upregulation of the NR2B subunit of the N-
methyl-D-aspartate (NMDA) receptors [104].

The neurotrophic hypothesis of AD has led to some phase
I clinical trials. One study was based on intraventricular
administration of NGF in three AD patients [105], while
the last trial involved a rhNGF gene therapy approach that
resulted in some beneficial effect on cognitive function
[106].

Due to the invasiveness of these strategies, together with
the poor NGF permeability across the blood-brain barrier,
many studies have also focused on pharmacological regu-
lation of endogenous NGF expression [107]. Recently, a
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phase II clinical trial has been carried out by administra-
tion of a γ-aminobutyric acid (GABA) receptor antagonist
in 110 MCI patients. [108]. The drug increased NGF and
BDNF mRNA and protein levels in the rat cortex and hip-
pocampus, and improved cognitive function in the
patients. A second trial in AD patients is still in progress.

It should be emphasized that a NGF-based therapy of AD
may not be sufficient to fully reverse the AD pathology.
However, due to its role in neuroprotection and repair, it
is expected that NGF may provide a useful tool to amelio-
rate the symptoms and slow down the progression of the
disease, yielding anyhow a relevant accomplishment as
compared to the present therapeutic interventions. A
more effective AD therapy might be better accomplished
by targeting also other specific mechanisms of the disease
cascade, such as apoptosis.

4.2 AD and the Amyloid hypothesis

As mentioned, a clear role for increased production and
accumulation of soluble Aβ in the pathogenesis of AD has
been supported by a large number of studies [34,50-54].

Generation of neurotoxic species of Aβ results from an
abnormal metabolism of APP, a membrane protein local-
ized at the presynaptic terminals [[109] and refs therein].
A non-amyloidogenic pathway involves cleavage of APP
by α-secretase and production of a soluble secreted form
of APP (sAPPα), which has several biological activities
including cell survival, neurite outgrowth and protection
against excitotoxicity [110]. Production of amyloidogenic
Aβ occurs, instead, through sequential cleavage of APP at
the N-terminus by β-secretase and in the transmembrane
domain by γ-secretase, a multimeric complex whose pro-
teolytic activity is regulated by binding of PS1/2 at its cat-
alitic site. Cleavage sites of γ-secretase are located at
positions 40 and 42, thus generating Aβ 40 or Aβ 42,
respectively [109].

Although Aβ 42 is constitutively produced in the brain,
mutations in the APP or PS1/2 genes (which alter the
cleavage specificity of γ-secretase) lead to increased pro-
duction and accumulation of Aβ 42, that is neurotoxic
even before its aggregation in Aβ fibrils [111]. In fact, sol-
uble Aβ (including Aβ oligomers) can compromise basal
synaptic transmission and LTP in the hippocampus even
in the absence of Aβ deposits [53,54]. Synaptic activity
and learning are impaired also in APP transgenic mice
[112]. Additional studies in cultured cortical neurons
have shown that sublethal concentrations of Aβ decrease
the activity of cyclic AMP-response element binding pro-
tein (CREB) and downstream gene expression, such as the
activation of the BDNF promoter [113]. CREB is also a
transcription factor for the NGF promoter [114]. Suble-
thal doses of Aβ also interferes with BDNF-mediated path-

ways involved in protection of cortical neurons from
apoptosis [115]. Given the role of BDNF in LTP during
learning and memory [87], these data establish a strong
link between Aβ, trophic support and learning-memory
impairment in AD degeneration.

The correlation between Aβ and neurotrophins function is
supported by several studies showing that the amyloidog-
enic pathway seems to be favored by a failure of TrkA-
mediated NGF signaling and dysfunction of cholinergic
neurons [109], where NGF regulates ChAT activity,
choline uptake, acetylcholine synthesis and release [116].
In PC12 cells, APP transcription and secretion have been
found to be regulated by NGF and its receptors TrkA and
p75: TrkA activation increases APP processing and secre-
tion, while p75 signaling increases APP transcription
[117]. Recently, these data have been confirmed by in vivo
studies showing that accumulation of Aβ in aging might
depend on a switch of TrkA-p75 expression and that p75
enhances Aβ production in a NGF-dependent manner by
a ceramide-mediated mechanism [118].

Likewise, the APP secretory pathway, which generates
nonamyloidogenic sAPPα, is increased by activation of
the phosphoinositides (IP3)/Protein kinase C (PKC) sign-
aling pathways through stimulation of muscarinic acetyl-
choline receptor (mAChR)/G protein coupled receptors
(GPCR) both in vitro and in vivo [119,120]. Cortical and
hippocampal M1/M3 mAChR signaling is impaired in
AD, although the number of receptors is unaltered [121],
suggesting that an impaired mAChR signaling may favor
the amyloidogenic pathway of APP. On the other hand, a
reciprocal correlation also exists, since Aβ has been shown
to decrease acetylcholine synthesis and impair muscarinic
cholinergic signaling in cortical neurons and cells SN56
derived from basal cholinergic neurons [122,123].

Another mechanism that can contribute to synaptic dys-
function in AD is due to downregulation of the 2-amino-
3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)
and NMDA receptors. In fact, Aβ-mediated cleavage of
AMPA subtype of glutamate receptors has been shown to
occur in a caspase-dependent manner both in AD brains
and in cultured neurons [124], while recently Aβ has been
found to promote the endocytosis of NMDA receptors
through a mechanism involving Ca2+ influx and dephos-
phorylation of the NR2B subunit [125].

Besides its role in synaptic dysfunction and apoptosis, Aβ
also contributes to the formation of NFTs of tau, a protein
that binds and stabilizes microtubules. Hyperphosphor-
ylation of tau results in the detachments of PHFtau from
microtubules and its aggregation as paired helical fila-
ments of the NFTs, thus leading to microtubule destabili-
zation, disruption of the axonal transport and dysfunction
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of organelles like the Golgi apparatus. Furthermore, as
described in paragraph 5.5, both Aβ and PHFtau produc-
tion are increased by a mechanism involving Wnt signal-
ing and glycogen synthase kinase-3β (GSK-3β) [126,127],
whose activity is enhanced in AD brains [128], thus pro-
viding a link between the two principal structural and
pathological components of AD and decreased trophic
support [129].

Based on the evidence supporting the Aβ hypothesis,
potential therapeutic strategies have been developed
involving immuno-therapy or pharmacological modula-
tion of Aβ production. Both these approaches have also
led to some phase I and II clinical trials, whose results
indicate a reduction of Aβ levels in the plasma, but not in
the cerebrospinal fluid, with γ-secretase inhibitors, and
some cases of plaques regression following vaccination
[130,131].

5. Key players in neuronal apoptosis
Current knowledge of the AD pathology indicate that
multiple factors, genetic and environmental, play differ-
ent roles in determining the conditions that trigger the
dysfunction of the cholinergic neurons and the dynamic
and coordinated activation of a series of cascades that
eventually lead to neuronal death. Before analyzing the
distinct events triggering apoptosis in AD, it should be
emphasized that most of them include oxidative stress
and mitochondrial dysfunction. Thus, these organelles
play a key role in the amplification of responses to apop-
totic stimuli and, therefore, in cell death decision.

The main groups of molecules involved in the apoptotic
cascade include molecules as different as Bcl-2 family
members [60], caspases [61,67], adaptor proteins control-
ling the activation of initiator caspases, such as the Apop-
totic Protease Activating Factor-1 (APAF-1), and members
of the Tumor Necrosis Factor (TNF) receptor family con-
taining death domains (DD) (p75 and CD95/Fas)
[63,132,133], as well transcription factors, proteins
involved in the regulation of cell cycle and growth arrest
[134-136], heat-shock proteins [137], etc. An important
issue is that all these factors are activated through inde-
pendent signaling pathways whose molecular compo-
nents are engaged in a complex cross-talk, thus
influencing each other in a positive or negative manner.

The Bcl-2 family includes pro-apoptotic (Bax and Bad)
and anti-apoptotic (Bcl-2 and Bcl-XL) proteins, whose
expression and activity is regulated through different sign-
aling pathways including trophic factors deprivation, Aβ
toxicity, cytokines and DD receptors activation (Fas and
p75) [60,132,138-140]. The central element of the apop-
totic cascades is the activation of caspases [61,67,141], a
family of cystein proteases (initiator and effector cas-

pases) that can activate DNase and promote the cleavage
of enzymes, cytoskeletal proteins (actin and spectrin,
fodrin) and ion channels, such as the AMPA receptors
[124,140]. Among other proteases that are activated in
AD, calpains are activated by increased intracellular Ca2+

levels [142].

All these molecules are involved in two main apoptotic
pathways. The intrinsic pathway is centered on mitochon-
drial dysfunction and is regulated by Bcl-2/Bax proteins
[60,139,143]. Traslocation of Bax homodimers to mito-
chondria leads to release of cytochrome C to the cytosol
and its binding to APAF-1 with formation of the apopto-
some and recruitment of procaspase-9. Oligomerization
of APAF-1 promotes the allosteric activation of caspase-9.
This initiator caspase can in turn activate the executioner
caspases -3 and -7, thus leading to activation of proteoly-
sis and DNA fragmentation. This pathway is activated by
most of the known apoptotic triggers in AD, also because
is central to cell death caused by oxidative stress.

An extrinsic pathway is, instead, activated by DD receptors
[63,132,133]. For instance, interaction of Fas ligand (Fas
L) with Fas/CD95 through association with an intracellu-
lar adaptor protein Fas-Associated Death Domain
(FADD) is followed by activation of the initiator caspase-
8 and the effector caspase-3 [141]. The two pathways are
not mutually exclusive as, for instance, the mitochondrial
intrinsic cascade can also be activated by caspase 8- medi-
ated cleavage of Bid into a truncated tBid, followed by its
traslocation to mitochondria where it causes the release of
cytochrome C [144,145], as well the Apoptosis-Inducing
Factor (AIF) which mediates a caspase-independent path-
way [146,147].

5.1 Does NGF deprivation or proNGF play a role in AD 

apoptosis?

While NGF-mediated apoptosis during the development
is well established [68,69], the role of NGF on survival of
cholinergic neurons in the adult is recently gaining
stronger experimental support [57,85]. In fact, besides the
role of reduced retrograde transport of NGF [36,83] and
the new evidence obtained in adult anti-NGF transgenic
mice directly linking NGF deprivation to cholinergic defi-
cits [57,85], there might be also a potential role of
proNGF in triggering cell death through the p75 receptor
[90] whose levels are increased in AD patients along with
decreased TrkA expression [95,96].

The aim of this review is the construction of a molecular
model of apoptosis in AD. Given the existence of a cross-
talk between the apoptotic cascades activated by different
apoptotic triggers and that their molecular components
are involved in reciprocal modulation by the NGF signal-
ing, we will first review the main molecular mechanisms
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underlying the control of neuronal survival and death by
NGF/proNGF through their interaction with the TrkA and
p75 receptors. Co-expression of the two receptors deter-
mines the formation of high affinity binding sites that
potentiate TrkA signaling under conditions of low NGF
concentration, however both receptors can also activate
independent signaling cascades leading to survival or
apoptosis, depending on cell context [rev. in ref. [148]].

TrkA signaling

The role of TrkA signaling in neuronal survival is known
to be mediated by receptor dimerization and autophos-
phorylation on Tyr-490 and Tyr-785. Recruitment to p-
Tyr490 of shc (src homologous and collagen-like) and
other adaptor proteins is critical to the activation of two
independent pathways: ras-Extracellular signal-Regulated
Kinases 1/2 (ERK1/2) and Phosphatidylinositol-3 Kinase
(PI3K)/Akt (Protein kinase B) pathways.

Ras-ERK1/2 activation leads to ERK1/2 translocation to
the nucleus where they phosporylate Elk-1 and regulate
the activity of transcription factors and co-activators, such
as c-fos and CREB Binding Protein (CBP), involved in the
control of gene expression. ERK1/2 can also phosphor-
ylate Rsk (Ribosomal S6 Kinase), a cell cycle-regulated
kinase that phosphorylates the S6 protein of the 40S
ribosomal subunit. Rsk can in turn phosphorylate the
IkBα subunit of Nuclear Factor-Kappa B (NF-kB) and
CREB, whose activity is known to regulate genes involved
in neurite outgrowth, synaptic plasticity and cell cycle.

The PI3K/Akt pathway, instead, regulates neuronal sur-
vival by modulating the phosphorylation of members of
the bcl-2 family. Akt-mediated phosphorylation of Bad
favors its interaction with 14-3-3 protein and prevents it
from binding to Bcl-XL. As a consequence, Bcl-XL is free to
bind Bax, thus preventing the formation of Bax
homodimers that are pro-apoptotic. In fact, Bax
homodimers traslocate to mitochondria and determine
the alteration of the membrane potential and release of
cytochrome C [149]. Akt-mediated survival has been
shown to involve also phosphorylation and inhibition of
procaspase-9 [150].

Other important substrates of Akt include Forkhead
(FKH) transcription factors, GSK-3β and p53 [151-153].
Non-phosphorylated FKHs proteins are localized in the
nucleus and activate gene transcription, while phosphor-
ylation by Akt results in their association to 14-3-3 protein
and retention in the cytoplasm [151]. FKHs proteins reg-
ulate genes controlling cell cycle, cell metabolism, oxida-
tive stress and cell death, such as Fas L, which has been
shown to be overexpressed in AD brains [63] and
involved in Aβ-induced apoptosis in neuronal cultures
[63].

FKHs proteins have also been found to be phosphorylated
by a mechanism involving Jun N-terminal Kinase (JNK)
and p66Shc during Aβ-induced apoptosis [154], a process
that seems to occur also in vivo. It has been suggested that
relocation of FKHs to the cytosol would result in down-
regulation of target genes, such as Mn-Superoxide dis-
mutase (MnSOD), thus leading to increased accumula-
tion of reactive oxigen species (ROS), oxidative stress and
cell death. Also GSK-3β, which has been shown to be
involved in apoptosis following NGF deprivation and Aβ
neurotoxicity [128,129], is inactivated by phosphoryla-
tion through the PI3K/Akt signaling [152], as well by Wnt-
mediated activation of PKC [155].

A second survival element of the PI3K/Akt pathway is
through inhibition of the JNK signaling, as well as the acti-
vation of NF-kB. Phosphorylation and degradation of IkB,
the inhibitory subunit that sequesters the NF-kB complex
in the cytoplasm, releases NF-kB which can traslocate to
the nucleus and activate the transcription of genes that
promote resistance to apoptosis, such as MnSOD, Bcl-2
and members of the Inhibitor of Apoptosis Proteins
(IAPs) family.

Phosphorylation of Tyr785 of TrkA receptors determines,
instead, activation of phospholipase C-γ (PLC-γ) and pro-
duction of two intracellular second messenger: diacylglyc-
erol (DAG), a potent activator of PKC, and Inositol 1,4,5-
P3(IP3) which stimulates the release of Ca2+ from the
endoplasmic reticulum (ER) and the activity of Ca2+-
dependent proteins (Ca2+-calmodulin protein kinase)
and phosphatases.

Experimental evidence of cell death following NGF depri-
vation have been obtained in vitro, mainly in PC12 cells
and sympathetic neurons, where apoptosis following
growth factor deprivation occurs mainly through an
intrinsic pathway activated upon a failure of the TrkA/
PI3K/Akt signaling, followed by translocation of Bax to
mitochondria and release of cytochrome C
[138,139,156]. Decreased TrkA/PI3K/Akt signaling would
also result in the activation of JNK and induction of p53
[153], as well FKH-mediated transcription [151].
Although NGF deprivation has been found to induce Fas
and Fas L expression, activation of an extrinsic pathway
may contribute, but does not seem to be required for
apoptosis after NGF deprivation [139].

p75 signaling

The p75 receptor belongs to the TNF receptor family
because of the presence of a DD in the cytoplasmic region.
This property confers to this receptor the ability to control
cell survival/apoptosis depending on cell context, mainly
the presence/absence of TrkA receptors [rev. in ref. [148]].
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Increasing evidence has been accumulated so far about
the role of p75 in neuronal death both in vitro and in vivo
[93,153,157]. For instance, p75 has been shown to medi-
ate apoptosis of developing sympathetic neurons [153],
cultured cortical and hippocampal neurons [157], as well
in mature oligodendrocytes [158]. Moreover, overexpres-
sion of p75 contributes to neuronal death of cholinergic
neurons [93]. However, the precise molecular mecha-
nisms of the p75-mediated cell death are still controver-
sial. In fact, regardless of the presence of a DD, the
apoptotic cascade is quite different from that induced by
other TNF receptors family members. Signaling through
p75 does not appear to activate caspase-8, the end point
of a typical extrinsic pathway induced by Fas and other
related members of the TNF receptors.

Several adaptor proteins have been found to interact with
the DD of p75, including: NRIF1/2 (Neurotrophin-Recep-
tor Interacting Factor 1 and 2) and NADE (Neurotrophin-
Associated cell Death Executor) both involved in apopto-
sis; SC-1 (Schwann cell-1) and NRAGE (Neurotrophin
Receptor-interacting MAGE homologue) that are associ-
ated to growth arrest and cell cycle events; RIP2 (Receptor-
Interacting Protein 2), which possesses a CARD (Caspase
Recruitment Domain) and TRAF-4/6 (TNF Receptor Asso-
ciated Factor-4 and -6), both linked to survival responses
[159-161].

The p75-mediated apoptosis have been found to occur
mainly through activation of the sphingomyelinase/cera-
mide and JNK pathways [162]. The precise mechanism
underlying sphingomyelinase activation by p75 is still
unclear, but in oligodendrocytes there is a strict correla-
tion between p75-mediated generation of ceramide and
rac/JNK activation [158,163]. It is intriguing that cera-
mide has been shown to directly inhibit ERK and PI3K/
Akt signaling [164,165] thus evoking the same apoptotic
cascade induced by NGF deprivation. This inhibition is
part of the well known reciprocal regulation between the
two NGF receptors, as ceramide signaling is also inhibited
by PI3K/Akt. In cortical neurons ceramide induces activa-
tion of the mitochondrial apoptotic cascade and is associ-
ated to dephosphorylation of Akt, BAD, FKH and GSK-3β
[165].

The mitochondrial intrinsic pathway following p75 sign-
aling is also mediated by the JNK pathway through stabi-
lization of p53 [153] which targets several genes,
including Bax. Thus, p53 is a common component of the
pathways activated by the two NGF receptors, both TrkA
following NGF withdrawal and p75 signaling. The mito-
chondrial cascade leading to activation of the initiator cas-
pase -9, and then caspases -3 and -7, has been found to be
mediated by a JNK-dependent pathway following interac-
tion of p75 with NRAGE [159]. JNK/p53 also triggers the

induction of Fas L which promotes apoptosis through
binding to Fas receptor [132]. Fas L and Fas receptor
expression are elevated both in AD and in cultured neu-
rons treated with Aβ [63].

Another target of p75 signaling is the activation of NF-kB
[166]. Recently, in vitro studies have shown that NF-kB
activation can be mediated by the interaction of p75 with
RIP2 and TRAF-6 [160,161]. TRAF-6 activates the protein
kinase NFkB-Interacting Kinase (NIK), which phosphor-
ylates the Inhibitor of IkB Kinase (IKK), thus leading to
phosphorylation and degradation of IkB and transloca-
tion of NF-kB to the nucleus.

Induction of NF-kB by p75-mediated signaling has been
observed in many cell types, under different conditions
[166,167] and mostly linked to a survival function. In
general, NF-kB is regarded as an anti-apoptotic transcrip-
tion factor and its activation is believed to be fundamental
in neuroprotection and repair following brain injury and
upregulation of p75 expression. Thus, it is reasonable to
believe that activation of this transcription factor is one of
the mechanisms through which cells are able to control
between life and death decisions.

Finally, p75NTR receptor has been found to directly inter-
act with RhoA, a member of the Ras-GTP binding proteins
and a regulator of actin assembly in many cell types, sug-
gesting a role for this receptor in the neurite outgrowth
and reorganization of the actin cytoscheleton, a function
that is negatively modulated by neurotrophin binding
[168].

5.2 Aβ toxicity and oxidative stress

Oxidative stress and mitochondrial dysfunction are com-
mon players in the apoptotic cascades leading to neuronal
death in AD and are induced by all the known triggers,
including growth factor deprivation and Aβ toxicity both
in vitro and in vivo [37,169]. Aβ can induce apoptosis
directly by increasing generation of ROS and mitochon-
drial dysfunction. ROS accumulation determines oxida-
tion of proteins, peroxidation of membrane lipids and
DNA damage. Oxidative stress causes then a dysfunction
of Na+/K+- and Ca2+-ATPases, alteration of glucose and
glutamate transport, excessive Ca2+ influx, ATP depletion,
membrane depolarization and translocation of cyto-
chrome C to the cytoplasm [rev. in ref [42]].

It should be briefly mentioned that further contribution
to oxidative stress is also given by Fe2+, Cu2+ and Zn2+ ions
[42], whose levels are increased in the senile plaques of
AD patients. Several in vitro and in vivo studies have dem-
onstrated that these ions are implicated in Aβ deposition
[170].
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Besides the evidence demonstrating the involvement of
Aβ in the impairment of synaptic activity, Aβ toxicity has
been found to be a central element of the apoptotic neu-
ronal death in AD, as extensively demonstrated both in
vivo [37,48,62,63] and in vitro by using either primary cul-
tured neurons or PC12 cells [59,66,171]. Aβ-induced
apoptosis of cortical neurons is characterized by internu-
cleosomal fragmentation after only a 6 hr-exposure to Aβ
and is greatly increased by expression of p75 [172-174],
thus linking Aβ toxicity to the aberrant expression of p75
and TrkA in AD [95,96].

Aβ-induced apoptosis is mediated by activation of the
Stress-activated protein kinases (SAPK) p38 Mitogen Acti-
vated Protein Kinase (p38MAPK) and JNK, followed by
activation of both NF-kB and p53 [171,174,175]. Active
forms of JNK and p38 kinase have been found in hippoc-
ampal and cortical neurons of AD brains, suggesting their
potential implication in hyperphosphorylation of tau and
NFT formation [176].

Recently, p75-mediated cell death in Aβ neurotoxicity has
also been shown to occur through interaction of p75 with
a newly identified P75-Like Apoptosis-Inducing Death
Domain (PLAIDD) [177]. Moreover, a new protein has
been identified, Aβ-Binding Alcohol Dehydrogenase
(ABAD), that is highly expressed in the brain and has been
clearly shown to link Aβ-toxicity to the mitochondrial oxi-
dative stress [178].

In hippocampal neurons, sympathetic neurons and PC12
cells, Aβ-toxicity has been found to be mediated by activa-
tion caspases-9 and -3, as well by caspase-2 [171,179].

In AD, caspases -9, -3, -6 and -8 colocalize with NFT, sug-
gesting a direct role of caspases in cleavage of tau and for-
mation of NFT [61,67,180]. Caspase-8 in the brain of AD
patients has been also shown to be induced through a
mechanism mediated by the TNF-Related Apoptosis-
Inducing Ligand (TRAIL) in response to Aβ toxicity. Evi-
dence from in vitro studies also indicates that TRAIL might
provide a substantial contribution to the progression of
the neurodegeneration during chronic inflammatory
responses [181]. Other caspases that are found over-
expressed in postmortem brains from AD patients include
caspases-2, -5 and -7 [62].

However, besides the strong presence of the many acti-
vated caspases, also increased NF-kB activity has been
observed in neurons and glia of brain sections from AD
patients, as well in cultured primary neurons exposed to
Aβ [182]. Thus, it is quite clear that also in vivo apoptosis
involves activation of several apoptotic cascades, as well
as signaling pathways that lead to trascription of neuro-

protective genes in an attempt to rescue neurons from cell
death.

5.3 Excitotoxicity: role of Ca2+ and calpains in cell death 

and NFT formation

As previously mentioned, excitotoxicity plays a role in
many acute and chronic degenerative diseases and exacer-
bates oxidative stress through a mechanism leading to dis-
ruption of Ca2+ homeostasis and increase of ROS [183].

Ca2+ is a critical regulator of synaptic plasticity because of
its role in LTP and LTD, postranslational modification of
proteins involved in neurite elongation and synaptic
activity (actin-binding proteins and ion channels), activa-
tion of kinases, such as Protein Kinase A (PKA), Calcium-
Calmodulin Kinase II (CaMKII), and ras-Mitogen Acti-
vated Kinase (MAPK), as well as the activity of transcrip-
tion factors, like Elk-1, CREB and Activator Protein-1 (AP-
1) [184]. Moreover, cytosolic free Ca2+ mobilized from the
intracellular stores of the ER has been shown to be also a
second messenger for NGF-TrkA signaling linked to the
activation of PLC-γ [185]. However, persistent alterations
of Ca2+ homeostasis following excitotoxicity and oxida-
tive stress can contribute to neuronal apoptosis in AD
[142,186]. One target for increased intracellular Ca2+ lev-
els are calpains [142], cystein proteases involved in the
regulation of cytoskeletal remodeling. Calpains were
found to participate to apoptosis through cleavage of Bax
[186], followed by release of cytochrome C and activation
of caspase-3, as well as by direct activation of caspases-7
and -12.

Calpain activation has been detected in the brains of AD
patients in proximity of NFT [187] and suggested to play
a role in the regulation of tau phosphorylation and NFT
formation by a mechanism involving the cleavage of p35
to p25 [188] and activation of cdk5 [188,189]. Cdk5, a
member of the cyclin-dependent kinase family not linked
to cell cycle, is highly expressed in neurons and, together
with its regulatory protein p35, is required for neurite out-
growth. In AD, accumulation of p25 correlated with
enhanced cdk5 kinase activity, while expression of p25/
cdk5 in cortical neurons was found to cause increased tau
phosphorylation, disruption of cytoskeleton and apopto-
sis [189]. Inhibition of cdk5 or calpain activity reduced
cell death in Aβ-treated cortical neurons, suggesting that
the p25/cdk5 complex mediates also Aβ-neurotoxicity
[188].

On the other hand, there is increasing evidence showing
that NFT formation and apoptosis might also involve an
impairment of the ubiquitin-proteasome (UB-proteas-
ome) system, whose activity is required for degradation of
short-lived and damaged proteins, such as misfolded or
modified proteins in AD. In vitro studies have shown that
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failure of the proteasome system is an early event in sev-
eral apoptotic conditions including NGF deprivation of
sympathetic neurons [190] and exposure of cerebellar
granule cells to reduced K+ levels [191]. The latter has been
found to be associated with caspase-3 activation and accu-
mulation of ubiquitinated proteins in the cytosol [191].

There is evidence for impaiment of the UB-proteasome
system also in AD. Among the others, a mutant form of
ubiquitin (Ub+1) has been found in the brain of AD
patients, that would result in dominant inhibition of the
UB-proteasome system [192] and might play a critical role
in accumulation of misfolded tau proteins forming NFT.

5.4 Vascular factors and brain metabolism

A contribution to increased Aβ production and deposition
was found in individuals carrying the ε4 allele of the Apol-
ipoprotein E (APOE) gene. APOE is a plasma lipoprotein
that functions as the major cholesterol carrier to the brain,
thus linking hypercholesterolaemia and alteration of
brain cholesterol homeostasis to the risk of developing
AD. This correlation has been suggested also by several
epidemiological studies, as well by the evidence that stat-
ins, which reduce cholesterol levels, also decrease the risk
of AD [rev. in refs [193,194]].

Atherosclerosis is also a risk factor for AD, as reduced cer-
ebral blood flow can cause reduced glucose utilization in
AD patients [195]. Other vascular factors in AD include
diabetes and alteration of serum levels of insulin and
Insulin Growth Factor-1 (IGF-1), two important regula-
tors of brain energy balance. In fact, IGF-1 has been found
to be implicated in modulation of synaptic plasticity
[196,197], regulation of Aβ levels [198] and neuroprotec-
tion against Aβ toxicity [199] by a mechanism involving
Akt and GSK-3β [200,201].

Insulin/IGF-1 serum levels and signaling are impaired in
AD patients suggesting a link also between AD pathology
and defective signaling by these two important regulators
of the brain energy balance. Thus, it is conceivable that a
decline in metabolic and hormonal function in aging,
together with accumulation of oxidative stress, can influ-
ence neuronal vulnerability to other concomitant insults
and result in neuronal degeneration through activation of
apoptotic cascades.

5.5 IGF-1, Wnt signaling and GSK-3β
The relevance of IGF-1 in neuroprotection developes
around the activity GSK-3β, which is a central element of
the IGF-1/Wnt signaling, and also a target of the PI3K/Akt
pathway.

AD is characterized by increased levels of GSK-3β which,
in its active (dephosphorylated) state, is a key regulator of

NFT formation [126]. GSK-3β is phosphorylated (and
inactivated) through a PI3K/Akt signaling pathway
induced by IGF-1, NGF and any growth factor whose
activity is mediated by receptors with intrinsic tyrosine
kinase activity [201], including also Fibroblast Growth
Factor-2 (FGF-2). Down-regulation of PI3K/Akt results in
active GSK-3β and renders neurons more vulnerable to
Aβ/JNK/p53 cascade. In fact, GSK-3β is activated, along
with caspases, during NGF deprivation-induced cell death
of PC12 cells [129], Aβ- toxicity and oxidative stress [152]
by a mechanism mediated by reduced PI3K/Akt signaling
and JNK/p53 activation, thus providing a link between
NGF deprivation and the two pathological components of
AD.

Among other evidence indicating a role in neuroprotec-
tion, IGF-1, NGF and FGF-2 have been shown to protect
hippocampal neurons against Aβ toxicity [199,201-203].

GSK-3β is also inactivated by the mitogenic IGF-1/Wnt
pathway. GSK-3β inactivation results in: i) decreased tau
phosphorylation and ii) accumulation of β-catenin fol-
lowed by translocation to the nucleus and regulation of
cyclin D1 expression and c-myc [204]. The Wnt signaling
can be inhibited by p53 leading to active GSK-3β which
determines phosphorylation of β-catenin for degradation
by the ubiquitin-proteosome system, increased Aβ pro-
duction and increased tau phosphorylation. Thus, GSK-3β
provides also a link between decreased IGF-1-mediated
trophic support and Aβ toxicity/tau phosphorylation/cell
cycle events [152].

5.6 Apoptosis and cell cycle events

An intriguing issue about the apoptotic processes underly-
ing neurodegenerative diseases is raised by the question
that neuronal death is accompanied by cell cycle events,
suggesting that neurons attempt to divide before dying.
Moreover, there is increasing evidence that neuronal
apoptosis can arise from a failure of degenerating neurons
to re-entry the cell cycle. Mature neurons exit the cell cycle
and remain quiescent in the G0 phase, however, active cell
cycle proteins are present in neurons of AD brain, includ-
ing cyclins, cell cycle kinases, as well as their activators
and inhibitors [134-136,205,206]. Cell cycle proteins and
complexes found in AD brains include cyclinD, cdk4 and
Ki67, as well the presence of cyclinE/cdk2 which controls
G1/S phase transition, indicating an alteration of cell cycle
events in AD neurons.

An increase in cyclin D1 expression has been demon-
strated also in Aβ-induced apoptosis of differentiated neu-
rons [206]. In addition, several in vitro studies have shown
that apoptosis induced by NGF deprivation occurs
together with the expression of cell cycle proteins cdk4
and cdk6 and their cognate cyclins, and that cdk inhibi-
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tors p16Ink4, p21Cip1 and p27Kip1, as well the DN-cdk4/6,
promoted survival of differentiated PC12 cells and sympa-
thetic neurons [207,208]. Besides supporting survival,
p16Ink4 and p21Cip1 have been shown to reconstitute NGF-
dependent neurite outgrowth in PC12 cells [209].

Similarly, elevated expression of the cdk inhibitor p16Ink4

and other members of the INK4-family (p15Ink4b, p18Ink4c

and p19Ink4d), which bind complexes of cdk4/6-cyclinD,
were found also in AD, mainly in neurons with NFT and
neuritic plaques [135]. Several other studies have demon-
strated increased expression of cell cycle proteins, includ-
ing Proliferating Cell Nuclear Antigen (PCNA), cyclins B,
C and D in the brain of AD patients, both in neurons and
astrocytes. Moreover, cell cycle events appear to occur at
early stages of the disease (in MCI) and precede neuronal
cell death [136,210,211].

Many factors may induce neurons to attempt a cell cycle
re-entry. One is the overexpression of growth factors with
mitogenic/differentiation activity, such as NGF, IGF-1/2
and Epidermal Growth factor (EGF), as well Tumor
Growth Factor-α 1 (TGFα 1) and FGF-2 secreted by reac-
tive astrocytes and microglia in response to brain damage.
Most of these growth factors signal through the ras-MAPK
pathway [212] that is involved in the regulation of G0/G1
transition. At an early stage of AD, elevated expression of
p21ras co-localizes with p16Ink4 in pyramidal neurons
[213]. ERK activation is also linked to c-myc phosphoryla-
tion in AD.

Cell cycle re-entry may occur also through mechanisms
mediated by GSK-3β following phosphorylation (and
inactivation) by either a PI3K/Akt signaling or the
mitogenic Wnt pathway that is a central element of IGF-1
signaling. For instance, the inactivation of GSK-3β results
in the upregulation of cyclin D1 expression in carcinoma
cells [204].

Furthermore, cell cycle re-entry might also be triggered by
oxidative stress through activation of the stress-activated
protein kinases JNK-SAPK and p38-SAPK2, which control
stress responses in AD [176], suggesting a possible link
between the occurrence of cell cycle reentry and increased
oxidative stress and neuronal vulnerability in aging.
Accordingly, neurons in AD brains are characterized by
extensive DNA damage and increased p53 expression.
However, in PC12 cells and cortical neurons, exposure to
Aβ induces upregulation of cdk4/6, phosphorylation of
the retinoblastoma protein pRb/107, release of Rb from
the transcription factor complex E2F-DP and activation of
E2F-mediated trascription of genes required for S phase
transition, but these events occur in a p53-independent
manner [214].

Cell cycle components have been proved to be expressed
also in FAD mutants of APP, where cell cycle entry can be
mediated by the APP-binding protein 1 (APP-BP1) [215]
or p21-Activated Kinase3 (PAK3) [216]. Recently, a
reduced PAK pathway was associated to cognitive deficits
in AD [217].

5.7 Inflammatory processes

Finally, another relevant factor in the pathogenesis of AD
is given by neuroinflammatory processes, a common
response to brain damage mediated by the proinflamma-
tory cytokines Interleukin(IL)-1α (IL-1α), IL-1β, TNFα
and TGF-β 1, chemokines and the prostaglandin E2
(PGE2) released by reactive astrocytes [218].

Many of these inflammatory mediators have been shown
to mediate protection by inducing the synthesis of growth
factor. For instance, NGF while under normal conditions
is localized in neurons, during inflammation is synthe-
sized also by microglia and reactive astrocytes, where it is
upregulated by cytokines (IL-1α, IL-1β and IL-6) and
other inflammatory mediators, such as Interferon-γ (IFN-
γ) and Lipopolysaccharide (LPS) [reviewed in ref. [107]].
This is a common response to CNS injury and it is linked
to the role of NGF in neuroprotection and repair. NGF-
mediated activation of both TrkA and p75, the latter being
increased following brain damage, may promote neuro-
nal survival through activation of NF-kB [182], which can
also be directly induced by most of the cytokines.

Microglial activation have also a phagocytosis function for
removal of apoptotic cells, thus limiting the spread of tox-
ins to the adjacent tissues. Neverthless, it is believed that
the inflammatory processes contribute to exacerbation of
the AD pathology and rapid progression of the disease.
The activation of microglia causes chronic inflammation
by inducing an autotoxic loop due to secretion of proin-
flammatory cytokines (TNFα and IL-1β), acute-phase pro-
teins and overproduction of free radicals (nitric oxide and
superoxide) [218,219]. An amplification of the inflamma-
tory processes is also due to activation of the complement
system that has been shown to be also directly induced by
Aβ [220].

The role of inflammatory processes in AD progression
may explain the protection by non- steroid anti-inflam-
matory drugs observed in epidemiological studies [221],
due to both cyclooxygenase-1 and -2 (COX1-2) inhibition
of PGE2 synthesis and modulation of γ-secretase [222]. A
different mechanism of protection may instead be medi-
ated by the naturally occuring anti-inflammatory
cytokines, such as IL-10 which has been shown to prevent
glutamate toxicity through inhibition of caspase-3 [223].



BMC Neuroscience 2006, 7(Suppl 1):S2

Page 14 of 26

(page number not for citation purposes)

6. Toward a blueprint of neuronal apoptosis
It is clear from the experimental evidence summarized in
the two previous paragraphs that neuronal apoptosis in
AD is quite a complex process, thus posing many prob-
lems to the current efforts of acquiring a comprehensive
understanding of the phenomenon and ordering of the
sequential events.

Recently, attempts to obtain this information have
involved different approaches, including microarray anal-
ysis of expression profiles [64,65]. One of these studies
revealed that Aβ-induced apoptosis of cultured cortical
neurons involves the differential expression of 956 genes,
and 70 of them were common to those whose expression
was altered during apoptosis of cerebellar granule cells by
serum and potassium deprivation as well [64]. These
genes included neurotransmitter receptors, neuropep-
tides, ion channels, growth factors, transcription factors,
enzymes, structural proteins, and so on. These data
strongly suggest that neuronal apoptosis displays several
regulatory mechanisms that are common to other apop-
totic processes triggered by various insults and in a cell
type-independent manner.

Neverthless, gene expression analysis can only provide a
partial picture of the whole process. The notion is well
accepted that apoptosis is an active process requiring de
novo protein synthesis [224]. However, many events are
based on translational or posttranslational modifications,
such as allosteric modifications, phosphorylations, com-
partimentalization, as well as cellular intermediates that
belong to different classes of molecules, such as Ca2+, cera-
mide, etc.

As mentioned in the first paragraph of this review, a mod-
ular systems biology approach has been shown to be a
useful strategy for organizing information and providing
molecular models of complex bioprocesses. A similar
instrumental benefit might be obtained for apoptosis in
chronic neurodegenerative diseases.

Given the complexity of the phenomenon in AD, a large
body of data needs to be organized and structured first in
a low-level model (a blueprint) and further in a more
detailed molecular model. A recent mathematical model
of CD95-induced apoptosis [28] is used in this review as
backbone to start to organize the data gathered on neuro-
nal apoptosis. The proposed basic blueprint for neuronal
apoptosis shown in Figure 2 considers a trigger submod-
ule (the DISC-system in the Bentele et al. paper), an actu-
ator (the caspase submodule), a feed-forward module
(mitochondrial dysfunction), a brake (IAP/Survivin/Cki)
and the many degradative responses of apoptosis (degra-
dation of proteins, poly(ADP-ribose)polymerase (PARP),
DNA and so on).

As shown in Figure 2, the structure of the basic blueprint
indicates quite clearly that the activation of caspases is due
to one specific event, although it depends on various trig-
gers. The mitochondria submodule, that has a feed-for-
ward effect on caspases, may be further stimulated by an
autocatalytic process, while a negative feed-back on cas-
pases depends on the IAP/Survivin/Cki module. The fully
fledged caspases induce apoptotic death by degrading the
various cellular components.

The structure of the blueprint makes it possible to analyze
the condition in which the caspases activation is not fully
expressed and investigate the role that both the IAP/Sur-
vivin/Cki module and the anti-apoptotic molecules acting
on mitochondria may have in protecting neurons from
death.

Let us now go through the various submodules of the
blueprint and analyze how the findings summarized in
paragraphs 4 and 5 fit with the picture.

6.1. The triggers

It is quite clear from Figure 3 that the events able to trigger
neuronal programmed cell death are numerous and quite
diverse, and possibly in cross-talk.

Because of its pivotal role for maintenance of the cholin-
ergic phenotype, one of the key triggers might be the alter-
ation of NGF availability and/or transport, and failure of
the TrkA-mediated signaling (via ras-ERK1/2 and PI3K
pathways), as described in paragraphs 4.1 and 5.1. On the
other hand, increased pro-NGF levels in AD [90] might
also play an important role in triggering neuronal apopto-
sis through p75 receptor [91], whose upregulation is com-
mon to a variety of neuronal injuries. Indeed, although
the precise p75 signaling is not completely understood,
p75 can induce apoptosis through a neurotrophin-
dependent activation of the sphingomyelinase/ceramide
and JNK/p53 pathways followed by induction of Bax and
Fas L, thus involving the activation of the mitochondrial
intrinsic cascade and, perhaps, also an extrinsic apoptotic
pathway, given that Fas and FasL have been found in
senile plaques in AD and suggested to participate Aβ-
induced neuronal death [63].

Aβ is a another key trigger of neuronal apoptosis in AD
and its neurotoxicity is enhanced by expression of the p75
receptor. Besides the involvement of the ceramide/JNK
pathway, Aβ toxicity leads to accumulation of ROS, thus
further increasing a condition of oxidative stress that is
peculiar to the brain in aging and represents the third
main element strongly implicated in neuronal apoptosis
in AD, through activation of the mitochondrial intrinsic
cascade. Moreover, ROS-mediated activation of caspase-3,
can further stimulate sphingomyelinase and ceramide
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production, thus generating a feed-forward loop. An
extrinsic pathway is also activated by Aβ through the
induction of TRAIL and activation of caspase-8.

As mentioned, an important role in neuroprotection is
played by other growth factors, such as FGF-2 and IGF-1,
meaning that availability of these growth factors can influ-
ence the balance of pro- and anti-apoptotic mediators
(Bcl-2/Bax, caspases, NF-kB, etc.) and push toward the res-
cue of cells rather than their death. The relevance of
trophic support, mainly NGF and IGF-1, and other growth
factor signaling through trk receptors and activation of
PI3K/Akt and PKC, is also linked to the key role played by
GSK-3β in the regulation of both Aβ accumulation and
NFT formation, as well to cell cycle events.

Another important element is the alteration of Ca2+

homeostasis that can be caused by both oxidative stress
and excitotoxicity, a common pathway in many neu-
ropathological conditions [35]. Besides the role in cell
death, Ca2+ gives a further contribution to the formation
of NFT by activating calpains and p25-cdk5 complexes
which increase tau phosphorylation [188,189].

Moreover, among the other mechanisms triggering cell
death and described in paragraph 4, we must acknowl-
edge also the genetic mutations (APP, PS1/2, APOE) that
cause an alteration of APP processing and accumulation
of neurotoxic Aβ, although the role of the genetic factors
is limited to the familial forms of AD.

6.2. The caspases

This module is characterized by one initiator caspase (cas-
pase-8 or caspase-9) activated by the trigger events and
several executioner caspases (caspases-3, -6, -7). Caspases
are synthesized as inactive pro-caspases that are cleaved at
the internal proteolytic site to yield the active caspase. The
initiator caspases, once activated, will activate the down-
stream effector caspases, which in turn will cleave their
substrates, such as PARP.

In the extrinsic pathway this module is initiated by the
association of the DD receptor to its ligand and recruit-
ment of an adaptor molecule and procaspase-8 to form
the DISC (Death Inducing Signaling Complex). Procas-
pase-8 is then cleaved to active caspase-8 which in turn
activates the effector caspase-3 [141]. The extrinsic path-
way mediated by DD receptors in AD is believed to be
prevalently linked to Fas-FasL, TRAIL and cytokines activ-
ity during inflammation.

The intrinsic or "mitochondrial" pathway, instead,
includes the activation of the initiator caspase-9 mediated
by the heptameric apoptosome complex. Formation of
apoptosome is initiated by the interaction of the cytoplas-
mic APAF-1 with cytochrome C derived by the dysfunc-
tion of mitochondria. Once recruited to the apoptosome,
procaspase-9 acquires autocatalytic activity and then acti-
vates also the executioner caspases-3 and -7. Caspase-3
activates, by proteolytic cleavage, both the executioner
caspase-6 and caspase-2 which, in turn, activates a feed-

The basic blueprint of neuronal apoptosis showing the different modules and how they are interconnected by positive and neg-ative feed-backsFigure 2
The basic blueprint of neuronal apoptosis showing the different modules and how they are interconnected by positive and neg-
ative feed-backs.
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forward loop by stimulating mitochondria to release
more cytochrome C and activate more caspase-9.

At this point we moved to collect the available informa-
tion in a molecular model (Figure 4) structured in mod-
ules according to Figure 2, although we do not claim it to
be exhaustive and definitive, but a useful tool for a sys-
tems biology approach. When considering caspases, Fig-
ure 4 shows that the overall dynamics of this submodule
sees distinct triggers that independently activate pathways
of proteolysis that converge on the three executioner cas-
pases, whose activity is strongly controlled by a feed-for-
ward loop acting on mitochondria. This process is in part
sustained by autocatalytic events, such as the activation of
caspase-2 by caspase-3 involved in the feed-forward loop,
as well the activation of caspase-6 by caspase-3 that allows
an amplification of the final proteolytic events controlling
protein degradation and DNA fragmentation.

In addition, we can observe that in AD the majority of the
cell death signals converge on the mitochondrial intrinsic

pathway and that the two main caspase cascades are not
independent on each other. A cross-talk between the two
pathways is mediated by caspase-8, cleavage of Bid and
traslocation of tBid to mitochondria where, directly or
indirectly, it causes the release of cytochrome C. Also this
cross-talk between the DD receptor signal and mitochon-
dria leads to an amplification of caspases activation.

6.3. The speeder: the mitochondrial submodule

The speeder submodule involves processes that integrate
the initial apoptotic signaling which otherwise could pro-
ceed to either cell death or recovery from stress events. The
main actors are mitochondria which play a crucial role in
caspase-dependent and independent apoptotic signaling
through the interaction with both pro-apoptotic (Bax,
Bak, Bad, Bid, Bik and Bim) and anti-apoptotic proteins
(Bcl-2, Bcl-XL and Bcl-w) [149]. Following trigger events,
their activation and association in different homo- and
hetero-dimers function as a "sensor" of the level of cellu-
lar stress and damage. Proapoptotic proteins induce cell
death by regulating the formation of transition pore

A list of the many genetic and environmental events that contribute to the activation of apoptotic cascades in AD neurodegen-erationFigure 3
A list of the many genetic and environmental events that contribute to the activation of apoptotic cascades in AD neurodegen-
eration.

Trigger events

• Aβ neuritic plaques and NFTs formation

• Decreased availability of NGF/alteration of NGF processing

• Alteration of trkA/p75 receptors expression

• Impairment of M1/M3 mAchR signaling

• Oxidative stress

• Excitotoxicity

• Alteration of Ca 2+ homeostasis

• Production of pro-inflammatory cytokines (TNF-α and IL-1β)

• Decreased trophic support (IGF-1/Wnt signaling/GSK3β)
• Impairment of the proteasome system 

• Vascular factors (hypercholesterolemia and decreased glucose metabolism)

• Genetic mutations (APP, PS1/2, APOE ε4 allele)
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(MTP) in the outer mitochondrial membrane. Mitochon-
drial membrane permeability (MMP) determines the
release of cytochrome C, Smac/DIABLO, AIF and endonu-
clease G (Endo G). Traslocation of cytochrome C to the
cytoplasm is crucial to the activation of the initiator cas-
pase-9 and the executioner caspases-3 and -7, followed by
cleavage of PARP and activation of Caspase-activated
DNase (CAD) and DNA fragmentation. AIF is, instead, the
final effector of a caspase-independent pathway that
causes extensive DNA fragmentation, while Smac/DIA-
BLO participate in the final steps of both the extrinsic and
intrinsic pathway by inhibiting the IAP proteins. ROS-
mediated activation of the intrinsic apoptotic pathway
involves the release of several mitochondrial proteins,
such as cytochrome C, AIF and Smac/DIABLO.

MMP is determined by Bax and Bak homodimers which
are formed upon allosteric conformational changes and
dimerization in response to trigger signals. Bax and Bak
activation is mediated by Bad, Bik, Bid, and Bim and is
due to either the preferential interaction with Bcl-2 and
Bcl-XL, or their release from these anti-apoptotic proteins,
thus shifting the balance of the different heterodimers
toward the formation of the proapoptotic Bax and Bak
homodimers. In sympathetic neurons, following growth
factor deprivation and failure of PI3K/Akt signaling, Bad
is activated by dephosphorylation, dissociation from the
molecular chaperone 14-3-3 and association with Bcl-XL.
In viable cells, Bcl-XL binds Bax and Bak, thus keeping
them in an inactive form. Bid and Bim can be also acti-
vated by a direct cleavage by caspase-8, as well as by the

A molecular model of neuronal apoptosis organized in submodulesFigure 4
A molecular model of neuronal apoptosis organized in submodules. The central part of the model (green panel) represents the 
mitochondria submodule and all the molecules that regulate its function as "sensor" of the cellular stress responses (yellow 
panel). Dark blue and green arrows indicate survival and apoptotic pathways, respectively; orange arrows indicate inhibitions. 
Red arrows indicate the positive feed-back, while in purple and light blue are indicated the cross-talk between extrinsic/intrin-
sic apoptotic cascades and the survival regulatory control by IAPs, respectively. More information is the text.
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lysosomal protease cathepsin, in response to ceramide,
ROS and JNK.

The model presented in Figure 4 indicates that mitochon-
dria play a significant role in the amplification of the
apoptotic processes initiated by growth factor depriva-
tion, DD receptors activation (p75 and Fas), increased lev-
els of intracellular Ca2+ linked to excitotoxicity and ROS
accumulation in response to the many brain insults.

6.4. The brake: the IAP/Survivin/Cki submodule

In a scenario that mainly sees the propagation of various
apoptotic stimuli that may compromise mitochondrial
function and converge into the activation of a series of cas-
pases and other effectors of cell death, a brake submodule
is given by the IAP proteins (Figure 4). The IAP family of
proteins include XIAP (X-linked IAP), c-IAP-1/2 and Sur-
vivin which are potent regulators of caspase activity. They
function by inhibiting both the activation of pro-caspases
and the enzymatic activity of active caspases, such as cas-
pases-3, -7 and -9.

The pro-survival activity of IAPs, however, can in turn be
inhibited by Smac/DIABLO that, once released from
mitochondria, can bind IAP and promote activation of
caspase-3. This modulation represents one of the many
examples of the fine regulatory control of apoptosis. An
interesting connection between cell cycle and apoptosis is
given by the antiapoptotic activity of the Cki p27Kip1 and
p21Cip1. When these proteins are phosphorylated by Akt,
they are translocated to the cytoplasm where they may
have antiapoptotic activity [225-227]. More specifically,
p27Kip1 has been shown to be cleaved by caspases in the p-
23 and p-15 N-terminal peptides that have a strong antia-
poptotic activity [226].

Although, as shown above, there is enough information
to sketch the lines of structure of the various submodules
of the apoptotic process in general, investigations are
needed to identify the protein networks actually present
in neuronal cells in various neurodegenerative disorders
in order to make faithful mathematical models able to
yield accurate predictions.

The application of the roadmap of modular systems biol-
ogy to investigate neuronal apoptosis is expected to
improve pathways and network identification with high
efficiency.

7. Neuroprotection and control of apoptosis
Current therapies for Alzheimer's disease as well as for
other neurodegenerative disorders are solely symptomatic
[228]. The efforts of the pharmaceutical industry are now
focusing on several steps of the hypothesized pathogenic
pathways: for instance, prevention of production of neu-

rodegenerative factors (plaques and NFT), targeting medi-
ators of deleterious signaling cascades and trophic
support. How does this approach fit with the blueprint of
neuronal apoptosis discussed so far?

The concept of neuroprotection implies the reversibility
or at least the significant slow down of the apoptotic proc-
ess. It is quite clear that apoptosis cannot be reversed
when a fully fledged activation of executioner caspases has
been achieved. It is therefore reasonable to suppose that
the passage from cells under apoptotic stress to dying cells
requires the full activity of the positive feed-back loop
based on mitochondria. What is the role of caspase-2 in
this process? Which are the manipulations more likely to
damp down the apoptotic stress? What are the markers of
mild to severe apoptotic stress? How do the cells of a pop-
ulation/tissue respond to a specific apoptotic trigger? How
will the overall activity of the cell, such as metabolic
remodeling due to general environmental stress response
in chromatin remodeling and ensuing changes in gene
expression [229] affect neuronal apoptosis?

The molecular map drawn in Figure 4 attempts to compile
the essential molecular pathways that chatacterize neuro-
nal apoptosis. As said before, it does not pretend to be
exhaustive, but only opens the way to a systems biology
approach of neuronal apoptosis. First of all it presents a
trigger module that includes the many genetic and envi-
ronmental factors listed in Figure 3. Each triggering insult
can activate pathways that independently lead to specific
modifications/alterations of neuronal homeostasis and
eventually initiate a cell death program.

The process is complicated by the existence of an intense
cross-talk between the various molecular intermediates
that directly or indirectly influence each other, as well as
many other parameters controlling cellular homeostasis.
The result is the sequential intervention of a large number
of metabolic and signaling cascades that may also act syn-
ergistically.

Another important element is the redundancy of signal-
ings leading to a specific effect. For instance, NFT forma-
tion is induced through activation (dephosphorylation)
of GSK-3β due to downregulation of PI3K/Akt, as well as
by activation of the p25-cdk5 complex following Ca2+-
dependent activation of calpains and cleavage of p35, and
both pathways can become synergistically activated upon
trophic factors deprivation and ROS accumulation, sug-
gesting that cells use more than one route to respond to
stimuli.

A further level of amplification is present in the caspase
submodule. As shown in Figure 4, caspases are activated
both by the many stimuli that trigger the mitochondrial
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intrinsic cascade (Bax, citochrome C/Apaf-1, caspase-9
and caspases-3/-7), and by the extrinsic pathways (DD
receptors, caspase-8, caspase-3). Besides these cascades
(green arrows), the caspase submodule is based on three
mechanisms: i) autocatalytic events leading to the activa-
tion of many proteolytic enzymes that, once activated,
greatly accelerate the degradation processes; ii) a feed-for-
ward loop based on mitochondria and involving caspases
and Bcl-2 family members (red arrows), and iii) a cross-
talk between the extrinsic and intrinsic cascades (purple
arrows).

This evidence indicates that mitochondria, besides play-
ing an essential role in providing energy for all the cellular
activities, also represent the central element of the apop-
totic machinery, where signals from the different cellular
compartments converge and are integrated. Thus, they
play a pivotal role in the amplification of the apoptotic
processes initiated by DD receptors activation (p75 and
Fas), down-regulation of growth factor signaling, mito-
chondrial influx of Ca2+ released by ER and ROS accumu-
lation in response to many brain insults. This function

allows mitochondria to be the main "sensor" of the stress
thresholds reached by neurons after an insult and contin-
uously adjust their response. This role of mitochondria as
"sensor" of the cellular conditions might be particularly
relevant in AD and other chronic neurodegenerations,
given that neurons, more than other cells, rather than
dying, attempt to activate many protective programs that
can delay the death decision, thus generating a situation
of "stand-by". This situation is exemplified in Figure 5
showing cells that accumulate under stress pressure fol-
lowing exposure to toxic stimuli and/or stressful events.
The idea is that after the activation of a trigger event, a cell
may activate in part the caspase pathway without reaching
a fully activated state.

In this context, the activity of IAPs and Survivin, which
can inhibit caspases, appears relevant, as well as their inhi-
bition by Smac/DIABLO. As shown in Figure 4, IAPs can
be induced by NF-kB and Akt, which can also inhibit the
intrinsic apoptotic pathway through phosphorylation of
both caspase-9 and its inactive form [150]. This modula-
tion represents, indeed, another example of the fine regu-

A drawing exemplifying the active "stand-by" status of cells exposed to the various stressful events involved in AD apoptosisFigure 5
A drawing exemplifying the active "stand-by" status of cells exposed to the various stressful events involved in AD apoptosis. 
Neuronal death occurs when the cell(s) reaches a point of "No-return", where an overwhelming mitochondria pressure is no 
longer compensated by the many protective pathways that the cell(s) has adopted.
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latory control of apoptosis, and is consistent with the
hypothesis that the final outcome (life or death) depends
not only on which players are active in a given moment,
as this decision also revolves around to what extent each
pro-apoptotic and anti-apoptotic element is active, in
terms of levels and persistency. Thus, it seems that the
amplifications and brake mechanisms are meant to add a
further level of complexity to the final steps controlling
the life/death decisions that eventually will depend on the
amount of mitochondrial pressure. As illustrated in Figure
5, cells will die when a "Point of No-Return" is reached.
Beyond this checkpoint the anti-apoptotic mechanisms
are no longer effective against a persistent condition of
energy depletion following mitochondrial dysfunction.
Thus, apoptosis would take place upon engulfment of an
over-loaded homeostatic system.

Another element that has recently gained a lot of attention
is the building up of evidences for cell cycle proteins and
DNA tetraploidy in neurons in brain regions involved in
AD degeneration, suggesting that neurons may enter aber-
rant cell cycle before undergoing apoptosis.

An appealing issue, as well as an interesting field for future
directions, is the antiapoptotic activity of the Cki p27Kip1

and p21Cip1. If, on the one hand, there is evidence indicat-
ing that cell cycle events are upstream of caspases activity
[214], suggesting that they may function like a "last-
chance" mechanism engaged by stressed cells to overcome
and/or recover from endangering conditions, on the other
hand, the role of Cki is interesting as potential inhibitors
of apoptosis upon their translocation to cytoplasm fol-
lowed by caspases-3/8-mediated cleavage [226] (Figure
4). The release of an active Cyclin/cdk complex would
then explain the abortive onset of cell cycle.

However, the presence of cell cycle proteins has been
detected also in the brain of rodents and humans under
normal conditions, suggesting that processes linked to cell
cycle events might have a physiological, rather than path-
ological role [230], and require further investigation. The
presence of so many regulatory links yields complex and
often counter-intuitive dynamics in response to changing
conditions, therefore underlying the need for accurate
modeling and extensive simulations to better understand
the system and allow the development of a rational drug
discovery process for neurodegenerative disorders.

In this context, there is a remarkable need to identify the
check-points that represent the points of no-return for
over-stressed cells. Given the existence of so many actors,
it is clear the importance of deriving mathematical models
that can allow us to identify these critical check-points,
thereby allowing to focus on selected relevant pathways

and speed up the discovery process of rate limiting steps
useful for neuroprotection.

Conclusion
In conclusion, this review has started from an overview of
the current knowledge of the molecular events underlying
apoptosis in neurodegenerative diseases, with particular
attention to AD. Following the established strategy of
modular systems biology, the data collected have been
first used to identify the blueprint of the relevant modules
of neuronal apoptosis and their wirings. Then, a molecu-
lar model of neuronal apoptosis has been constructed and
discussed as a framework in which to investigate how var-
ious anti-apoptotic pathways may have a role in neuro-
protection. This approach may offer new insights to the
development of new therapeutic strategies against AD.
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