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1. INTRODUCTION. The Pythagorean triples [x, y, z] of integers satisfying the
equation x2 + y2 = z2 have been studied and enumerated since Babylonian times.
Since Diophantus, it has been known that this set of triples is related to the standard
rational parameterization of the circle of radius one, namely,

t �→
(

t2 − 1

t2 + 1
,

2t

t2 + 1

)
.

The Pythagorean triples that are relatively prime (called the primitive triples) have
the elementary and beautiful characterization as integers x = m2 − n2, y = 2mn, z =
m2 + n2 (when y is even) for relatively prime integers m and n of opposite parity. One
can think of this as replacing the parameter t for the circle with the fraction m/n and
then scaling.

Our motivation for understanding the triples stems from the realization that one can
enumerate the rational numbers on the line by using the modular group, in a sense
reversing the Euclidean algorithm [2]. Now the line can be transformed by a linear
fractional transformation to the circle. This transformation changes fractions to ra-
tional points on the circle, and after scaling this process gives rise to Pythagorean
triples. Roughly speaking, we can establish a correspondence of a Pythagorean triple
[m2 − n2, 2mn, m2 + n2] in which m and n are relatively prime with a matrix belong-
ing to SL2(Z) (the group of two-by-two integral matrices of determinant one) whose
entries depend on m and n. Since the modular group � = PSL2(Z) = SL2(Z)/{±I }
is essentially a free group, it follows that there is an underlying tree structure to
Pythagorean triples. Making this tree structure and its connection to the modular group
explicit is a bit delicate, but the payoff is worth the effort.

Our main results can be summarized as follows:

Theorem 1. The set of positive primitive Pythagorean triples has the structure of a
complete, infinite, rooted ternary-tree.

For the proof we use the action of � by conjugation on the set of all two-by-
two integer matrices M2(Z). By studying this action we show (Theorem 5) that the
Pythagorean triples can be identified with an orbit of �(2), the normal subgroup of
� obtained as the kernel of reduction modulo 2. Then, since the group �(2) is freely
generated by the images of the SL2(Z) matrices

U 2 =
(

1 2
0 1

)
, L2 =

(
1 0
2 1

)
,

we can use the tree structure for the group elements to make a tree for the Pythagorean
triples (see Figure 1).1

1After a version of this article was made available as a preprint, it was pointed out to the author that this
tree structure was noticed earlier by Hall using three-by-three matrices [4]. The connection between our use
of two-by-two matrices versus Hall’s three-by-three matrices is presumably a reflection of the isomorphism
between the group of linear fractional transformations and a subgroup of the Lorentz group preserving the
quadratic form x2 + y2 − z2.
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Figure 1. Tree of Pythagoras.

2. CONJUGATION ACTION AND SIMILARITY. In this section we develop
some fundamental properties of the action of � on M2(Z). We start with an elemen-
tary but important observation.

Proposition 2. An integer matrix X satisfies X 2 = 0 if and only if X has the form

X =
(

x y
z −x

)

for integers x, y, and z such that x2 + yz = 0.

Proof. The sufficiency is clear. Suppose that a nonzero integer matrix X has X 2 = 0.
Since the matrix X satisfies its characteristic polynomial, it follows that tr(X)X =
det(X)I . Because X is not a nonzero multiple of the identity matrix, it follows that
tr(X) = det(X) = 0. The conclusion is now immediate.

An element T of the group GL2(Z) of invertible two-by-two integer matrices acts
by conjugation on the set M2(Z) via X �→ TXT−1. This action preserves the “cone”
of nilpotent matrices N2 = {X ∈ M2(Z) : X 2 = 0} as described by Proposition 2. In
what follows [X ] signifies the similarity class of the matrix X (i.e., [X ] = {TXT−1 :
T ∈ GL2(Z)}).

Consider the matrix

E =
(

0 −1
0 0

)
.

Notice that the transpose Et and −E belong to [E] (conjugate by(
0 1
1 0

)

and ( −1 0
0 1

)
,

respectively). Let N denote the set of nonnegative integers. If Eλ = [λE] (λ ∈ N) it
is clear that Eλ = λ[E]. Moreover it is an easy exercise to check that Eλ and Eµ are
disjoint when λ = µ.
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Proposition 3. Each matrix X in N2 is similar to λE for a unique λ in N. Thus N2 =⋃
λ∈N Eλ is the disjoint union of similarity classes.

Proof. Consider a matrix X from N2. If any entry of X is zero, then it follows im-
mediately from Proposition 2 that X is the zero matrix, a multiple of E , or a multiple
of Et . Thus, in this case X is similar to either the zero matrix or E .

Suppose next that none of the entries of X is zero. Write

X =
(

x y
z −x

)
.

Since the determinant of X is zero, the rows are linearly dependent over the rationals.
Furthermore, after factoring out the greatest common divisor of the entries of X , call
it λ, we find that there are relatively prime integers m and n such that mx = nz and
my = −nx .

Now exploiting the relative primality of m and n we conclude: m | z, m | x , n | x ,
n | y. Rewriting x = mnx1, y = ny1, z = mz1 and then canceling common factors
wherever possible, we see that mx1 = z1 and −nx1 = y1. Thus m | z1 and n | y1,
whence x = mnλ, y = −n2λ, and z = m2λ for some integer λ.

The original matrix X is therefore an integral multiple of a matrix that admits a
special factorization:

X = λ

(
mn −n2

m2 −mn

)
= λ

(
n
m

)
( m −n ) .

Consequently, the action of conjugation reduces to a mixture of the usual actions on
Z

2 through matrix multiplation with column- and and row-vectors, respectively:

TXT−1 = λT

(
n
m

)
( m −n ) T −1.

For any given relatively prime integers m and n, we can determine integers u and v

for which un + vm = 1. Let

T =
(

u v

−m n

)
.

Then

T

(
n
m

)
=

(
1
0

)

and

( m −n )T −1 = ( 0 −1 ).

Hence TXT−1 = λE and the conclusion of the proposition follows.

3. ENUMERATING PYTHAGOREAN TRIPLES. From the proof of Proposition
3 we see that any matrix X in M2(Z) that is similar to E is in N2 and has the form(

mn −n2

m2 −mn

)
= 1

2

(
C S − N

S + N −C

)
, (1)

where m and n are relatively prime integers. The integers S = m2 − n2, C = 2mn, and
N = n2 + m2 give a Pythagorean triple satisfying S2 + C2 = N 2.
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We thus have a method of generating all Pythagorean triples. For the matrix product

T =
(

1 −2
0 1

)(
1 0
2 1

)(
1 0
2 1

)

we find that

TET−1 =
(−28 −9

16 28

)
,

which yields the triple [−33, −56, 65]. (However, the triple in the tree in Figure 1 is
labelled using absolute values as [33, 56, 65].) For the matrix

R =
(

1 0
2 1

)
T =

( −7 −2
−10 −3

)

computing RER−1 and using the method just described leads to the Pythagorean triple
S = 51, C = 140, and N = 149. In fact, this triple (not shown in Figure 1) occurs at
the third level above [3, 4, 5] in the tree, branching from the triple [33, 56, 65].

In order to list the Pythagorean triples we seek an effective way of enumerating the
elements of the orbit of E under the action of GL2(Z) by conjugation. Since we want
the triples to exhibit a tree structure, the enumeration should have a recursive structure.
Recall that if a group G acts by permutations on a set X and if x0 is an element of X ,
then there is a bijection gH �→ g · x0 between right cosets of the stabilizer H of x0

({g ∈ G : gx0 = x0}) and the orbit of x0. In our case the permutation action is conju-
gation of matrices TXT−1 for T in GL2(Z) and X in M2(Z). This fundamental property
of group actions now ensures that there is a one-to-one correspondence between the
elements of the orbit of E and the cosets of the stabilizer of E .

As we now show, the group GL2(Z) can be replaced with a simpler group, in fact
a free group of rank 2, without changing the set of positive primitive triples obtained
from the orbit. First, since conjugation by a diagonal matrix of determinant −1 changes
only the sign of E , we may without loss of any triples restrict attention to the subgroup
SL2(Z) of elements having determinant one. In this situation, the stabilizer of E is the
subgroup H = {T ∈ SL2(Z) : TET−1 = E} of SL2(Z), which is easily seen to be the
subgroup generated by

U =
(

1 1
0 1

)

and −I , the negative of the identity matrix. Since the effect of conjugating by −I
on triples S, C , and N is trivial, we factor out that action and work with PSL2(Z) =
SL2(Z)/{±I } instead of SL2(Z). It can be shown (see [1]) that the group PSL2(Z) is
isomorphic to the group generated by the images of the matrices U and

A =
(

0 1
−1 0

)
.

To enumerate distinct primitive Pythagorean triples [S, C, N ] we must start with m
and n that are relatively prime and of opposite parity. If m is even and n is odd, then
C is even and S is odd. For such m and n there is a matrix T in PSL2(Z) with T11 = n
and T21 = m. If the entry T12 is odd, we replace T with the matrix T ′ = TU, which
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has even entry T ′
12. This gives rise to the same Pythagorean triple as T , since U sta-

bilizes E . The elements of � = PSL2(Z) with even entries off the diagonal constitute
the normal subgroup �(2), the kernel of the homomorphism PSL2(Z) −→ PSL2(Z2)

effected by reducing modulo 2. On the basis of earlier remarks we conclude that we
need not consider the action of the full modular group � to enumerate all triples, just
that of �(2).

Using the fact that U and A generate �, one can show that �(2) is generated by the
two matrices

U 2 =
(

1 2
0 1

)
, L2 =

(
1 0
2 1

)
.

Moreover, these elements generate the group as a free product.

Proposition 4. The group �(2) is the free product of the infinite cyclic subgroups
generated by U 2 and L2.

Proof. This result is easily established using the structure of PSL2(Z) as the free prod-
uct of the subgroups of orders 2 and 3 generated by the matrices

A =
(

0 −1
1 0

)

and

B =
(

0 −1
1 1

)
,

respectively [1]. Since U = AB, U 2 = ABAB, L = AB−1, and L2 = AB−1AB−1, any
alternating word in U±2 and L±2 is also alternating in A and B±1, hence is nontrivial.

The enumeration of triples is still a bit subtle, since we want to enumerate only the
distinct absolute values of the triples [|S|, |C |, |N |]. Let

D =
(−1 0

0 1

)
.

Then, for any matrix T in PSL2(Z), δ(T ) = DTD−1 is the matrix with the same off-
diagonal entries as T but with signs changed on the diagonal. The two matrices T and
δ(T ) give rise to the same absolute Pythagorean triple, as one reads directly from the
prescription for S, C , and N given by (1). Because the automorphism δ of order 2 has
the effect that δ(U 2) = U−2 and δ(L2) = L−2, we can avoid using both T and δ(T ) in
the enumeration of cosets of �(2) modulo the stabilizer of E simply by enumerating
“half” of the cosets.

To summarize: we have described a listing of Pythagorean triples based on the enu-
meration of cosets of �(2) modulo the stabilizer of E , the subgroup generated by U 2.
Because of the free product structure of �(2) the coset representatives are just the
words in L±2 and U±2. Since we are considering nontrivial left cosets of the sub-
group generated by U 2, the rightmost letter of a coset representative is L±2. We do a
“breadth-first” enumeration, alternatively concatenating with U±2 or L±2 on the left of
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a string. For example, if the last group element on the left is L2, we can concatenate
with L2, U 2, or U−2.

We can then effectively describe the distinct coset representatives that enumerate the
distinct Pythagorean triples by appealing to the alternating property for the words of
the free group �(2) in the generators L2 and U 2. Since we can recover |n| and |m| from
|C | and |N |, then by use of δ we see that we obtain distinct triples when we initialize
with just one of the strings L±2. Let L+

0 = {L2}, L−
0 = U±

0 = ∅ and inductively define

L+
k+1 = { L2 X : X ∈ L+

k ∪ U±
k },

L−
k+1 = { L−2 X : X ∈ L−

k ∪ U±
k },

U+
k+1 = { U 2 X : X ∈ U+

k ∪ L±
k },

U−
k+1 = { U−2 X : X ∈ U−

k ∪ L±
k }

for k = 0, 1, . . . . For example, when k = 0, the level-one sets are

L+
1 = {L4}, L−

1 = ∅, U+
1 = {U 2 L2}, U−

1 = {U−2 L2}.

This approach will produce an effective enumeration of nontrivial primitive Pythagorean
triples in terms of the coset representatives in the disjoint union

P =
⋃
k≥0

(L±
k ∪ U±

k ).

The recurrence relation that counts the number pk of elements in P of level k is
pk = 3pk−1, for we can add any one of three elements to the left of a given alter-
nating string to keep it alternating. We use � to denote the set of matrices obtained
from E via conjugation by the elements of P . The entries of each T = (Ti j ) in �

determine a unique primitive Pythagorean triple of positive integers as follows:

|S| = |T21 + T12|, |C | = |2T11|, |N | = |T21 − T12|.

Theorem 5. The primitive Pythagorean triples are in one-to-one correspondence with
the set � of coset representatives of the subgroup generated by U 2 in �(2). This set �

can be enumerated as a union of subsets �k of size 3k (k = 0, 1, 2, . . .), the levels of
the tree of Pythagoras.

We build the tree of Pythagoras by starting with

L2EL−2 =
(

2 −1
4 −2

)
,

so m = 2, n = 1, and [S, C, N ] = [3, 4, 5]. At the next level L4EL−4 yields the triple
[15, 8, 17], and similarly conjugation of E by U 2 L2 and U−2 L2 gives the other triples
above [3, 4, 5] (i.e., after taking absolute values we obtain [21, 20, 29] and [5, 12, 13]).
Further conjugations using L−2, L2, U−2, and U 2 of the matrix corresponding to
a triple [S, C, N ] at level k, where S = m2 − n2, C = 2mn, and N = m2 + n2,
creates three new triples at level k + 1 and duplicates one triple from the prior level
k − 1. In general to make the tree we connect the j th element of level k with the
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absolute values of the entries of the three different triples of level k + 1 (numbered
3( j − 1) + 1, 3( j − 1) + 2, 3( j − 1) + 3) obtained from the conjugation action on
the j th element.

Alternatively, to get to the next level in the tree when the coordinates of a triple
(expressed in terms of m and n) are all positive, it suffices to compute L+, U−, and U+,
since if S, C , and N are positive, then the previous triple is L−. Here

L− = [m2 − 4mn + 3n2, 2mn − 4n2, m2 − 4mn + 5n2],
L+ = [m2 + 4mn + 3n2, 2mn + 4n2, m2 + 4mn + 5n2],
U− = [−n2 + 4mn − 3m2, 2mn − 4m2, n2 − 4mn + 5m2],
U+ = [−n2 − 4mn − 3m2, 2mn + 4m2, n2 + 4mn + 5m2].

This is easy to see, for in this case m > n ≥ 0, 2mn > 2mn − 4n2 > −2mn, and
2mn − 4n2 (the second coordinate of L−) is smaller in absolute value than C = 2mn.
Similarly, the second coordinate of each of L+, U−, and U+ is greater than C .

We now show how to modify L+ and U± to obtain transformations that map triples
with positive coordinates to other triples of this sort and so preserve the positive quad-
rant of the cone S2 + C2 = N 2. One may use these transformations as the starting
point for an alternate description of the tree structure:

L+[S, C, N ] = [m2 + 4mn + 3n2, 2mn + 4n2, m2 + 4mn + 5n2]
= [S, −C, N ] + 2(N − S + C)[1, 1, 1],

U−[S, C, N ] = [n2 − 4mn + 3m2, 4m2 − 2mn, n2 − 4mn + 5m2]
= [−S, C, N ] + 2(N + S − C)[1, 1, 1],

U+[S, C, N ] = [n2 + 4mn + 3m2, 2mn + 4m2, n2 + 4mn + 5m2]
= [−S, −C, N ] + 2(N + S + C)[1, 1, 1].

Certain paths in the tree have predictable properties. If, for example, we start at
the root and always follow the path dictated by L+, then we get a sequence that dis-
plays quadratic growth in the C coordinate, since the terms are solutions to x2 + y2 =
(x + 2)2 (or equivalently x = 1

4 y2 − 1):

[3, 4, 5]
[15, 8, 17]
[35, 12, 37]
[63, 16, 65]
[99, 20, 101]
[143, 24, 145]
[195, 28, 197]

· · ·

Another path starts at the root [3, 4, 5] and follows a route along which the N coordi-
nate differs by one from either twice the S or twice the C coordinate. It is generated
by alternating the application of the transformations L+ and U−:
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[3, 4, 5]
[15, 8, 17]
[33, 56, 65]

[209, 120, 241]
[451, 780, 901]

[2911, 1680, 3361]
· · ·

The growth of the N coordinate in the following triples, which are obtained by taking
every other triple from the previous list, is visibly exponential. It is left as an exercise
to show that these are solutions to the equation x2 + y2 = (2x − 1)2 (equivalently,
(3x − 2)2 − 3y2 = 1) and thus related to solving Pell’s equation X 2 − 3Y 2 = 1.

[3, 4, 5]
[33, 56, 65]

[451, 780, 901]
[6273, 10864, 12545]

[87363, 151316, 174725]
[1216801, 2107560, 2433601]

[16947843, 29354524, 33895685]
[236052993, 408855776, 472105985]

[3287794051, 5694626340, 6575588101]
[45793063713, 79315912984, 91586127425]

[637815097923, 1104728155436, 1275630195845]
[8883618307201, 15386878263120, 17767236614401]

[123732841202883, 214311567528244, 247465682405765]
[1723376158533153, 2984975067132296, 3446752317066305]

[24003533378261251, 41575339372323900, 48007066756522501]
[334326091137124353, 579069776145402304, 668652182274248705]

[4656561742541479683, 8065401526663308356, 9313123485082959365]
[64857538304443591201, 112336551597140914680, 129715076608887182401]

[903348974519668797123, 1564646320833309497164, 1806697949039337594245]
[12582028104970919568513, 21792711940069192045616, 25164056209941839137025]

[175245044495073205162051, 303533320840135379141460, 350490088990146410324101]
.
..

4. RAYS IN THE TREE. In this section we discuss and sketch some connections
between infinite rays in the tree of Pythagoras and Pell’s equations. A ray in the tree
is an infinite sequence of distinct triples starting at a root or vertex of the tree so
that two consecutive terms of the sequence are one level apart in the tree. The root
corresponds to the smallest solution to a Pell’s equation and the remaining solutions
give higher level vertices in the tree. We invite the reader to visit the applet at http://
www.math.sjsu.edu/~alperin/Pythagoras/ModularTree.html, where he or she may pe-
ruse the tree at great length.

The results discussed here depend on a close examination of differences between
the coordinates of triples that remain constant (up to sign) in a sequence of triples
as one proceeds level-by-level up the tree. Here are some examples to motivate the
discussion: (a) the sequence of triples [S, C, N ] with difference 1 between N and C
make up a ray in the tree beginning with [3, 4, 5], [5, 12, 13], and [7, 24, 25]; (b) the
analogous ray with (absolute) difference 1 between C and S exhibits an alternation of
the location of the larger coordinate, as seen in [3, 4, 5], [21, 20, 29], [119, 120, 169],
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and [697, 696, 985]; (c) the difference −7 for S − C occurs (alternating sign) for the
ray beginning with [15, 8, 17], [65, 72, 97], and [403, 396, 565].

One can easily check that each of the differences between coordinates in
[m2 − n2, 2mn, m2 + n2]—namely, P = N − C = (m − n)2, Q = N − S = 2n2, and
R = C − S = (n + m)2 − 2m2—persists to the next level (except for a sign change in
the last one), for exactly one of the transformations U−, L+, or U+. These three new
points at level k + 1 are represented in the tree from left to right (see Figure 1) and
connected to the level k point.

We indicate an approach to a characterization of all those integers that can be dif-
ferences of the types just indicated: P , Q, or ±R. This “difference problem” is equiv-
alent to a question about the representations of integers by the forms P = (m − n)2,
Q = 2n2, and R = (m − n)2 − 2n2 for m even and n odd. The first form can take on
any odd square value, the second can assume any value that is twice an odd square,
but the third case is more restrictive. We shall concentrate our attention on the values
of ±R. The values of R are closely related to values of the algebraic norm a2 − 2b2 of
an element a + b

√
2 in the ring Z[√2].

Suppose that we are given integers a and b such that

a > 0, b < 0, a2 − 2b2 = d.

We can then solve for values of m and n that give rise to a Pythagorean triple by
setting m + n = a and m = b. Then n = a − m > 0 and n − m = a − 2m > 0. Hence
the Pythagorean triple of positive integers [n2 − m2, −2mn, m2 + n2] has difference
d = −R = n2 − m2 − (−2mn) = a2 − 2b2. For example, to find the first time that
the difference R = −17 occurs in the Pythagorean tree we use the smallest positive
solution (in Z[√2]) 5 − 2

√
2 to a2 − 2b2 = 17. In this instance m = −2 and n = 7

produce the (positive) triple [45, 28, 53]. To create a triple with R = 17, multiply 5 +
2
√

2 by −1 + √
2, the smallest positive unit of norm equal to −1, to obtain −1 + 3

√
2

of norm −17. Then, choosing m = 3 and n = −4 gives the triple [7, 24, 25].
The “norm” equation (or Pell’s equation) X 2 − 2Y 2 = d can be solved for integers

X and Y for exactly those integers d that occur as norms for the ring Z[√2]. When d
is square-free, we see by reducing this equation modulo d that 2 is a quadratic residue
modulo d, and hence also modulo any divisor of d. It now follows from the quadratic
reciprocity law that every odd prime factor p of d is congruent to ±1 modulo 8. Con-
versely, it is not difficult to see that Z[√2] is a Euclidean ring with respect to the func-
tion |a2 − 2b2| and consequently any prime p congruent to ±1 modulo 8 is a norm
(i.e., p = a2 − 2b2 for integers a and b integers). Since the norm is multiplicative, if
we want to show that a particular value of d is a norm we express its prime factors
as norms (if possible). By multiplying the minimal positive representation of d as a
norm by an arbitrary unit of Z[√2] we obtain a ray in the Pythagorean tree of constant
(up to alternations of sign) differences using the method that we have discussed. The
path is infinite since the group of units of Z[√2] contains an infinite cyclic subgroup
of index 2.

We should also note from the foregoing discussion that if we chose m = Y with m
even, then the Pell’s equation X 2 − 2Y 2 = d can be transformed to the Pell’s equa-
tion x2 − 8y2 = d. We give an example to illustrate a method of solving the latter
equation in integers x and y when d = p is a prime congruent to 1 modulo 8. This
method of Lagrange is described in [3]. We use d = 89 and seek a minimal solution
to x2 − 8y2 = 89. First one finds the smallest positive integer z0 less than 89/2 such
that (z2

0 − 8)/89 is an integer, say q1 (here z0 = 39, q1 = 17). One then solves for the
smallest z1 less that 17/2 such that (z2

1 − 8)/17 = q2 is integral. In this case z1 = 5 and
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q2 = 1 <
√

8, so the algorithm terminates. It now follows that (39 − 2
√

2)/(5 + 2
√

2)

has norm 89. This gives rise to the solution 11 + 4
√

2, an element of norm 89 in
Z[√2]. The solution 11 + 4

√
2 leads to m = 4 and n = 15, which generates the posi-

tive triple [209, 120, 241]. The number 3 − 7
√

2 has norm −89; with 3 − 7
√

2 we use
m = −7 and n = 10 to obtain the positive triple [51, 140, 149]. This triple stems from
[33, 56, 65] (not shown in Figure 1). It follows that the triple [51, 140, 149] is a root
of those triples with difference R = −89.

New mysteries of the Pythagorean triples and their connections with other Pell’s
equations await readers who delve further into the ideas presented here or explore
other aspects of the geometry of the Pythagorean modular tree.
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Finite dimensionality of normed spaces with compact closed disks:
A short proof

Theorem 1. Let X be a real normed vector space. If the closed unit disk D in X
is compact, then X is finite dimensional.

Proof. Let S be the sphere that bounds D. This is a closed subset of D, hence is
compact. By the Hahn-Banach theorem, there exists for each x in S a continuous
linear transformation πx : X → R such that πx(x) = 0. Then

S ⊆
⋃
x∈S

(πx)
−1(R\0).

The compactness of S reduces this union to a finite one, that is, there are points
x1 . . . , xn in S such that S is contained in the union of (πxi )

−1(R\0). The con-
tinuous linear map f : X → R

n defined by x �→ (πxi (x), . . . , πxn (x)) is an
R-monomorphism. The result follows.

——Submitted by Shahram Biglari, University of Leipzig, Germany
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