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The Moduli Space of Special Lagrangian Submanifolds

NIGEL J. HITCHIN

1. - Introduction

In their quest for examples of minimal submanifolds, Harvey and Lawson in
1982 [7] extended the well-known fact that a complex submanifold of a Kahler
manifold is minimal to the more general context of calibrated submanifolds.
One such class is that of special Lagrangian submanifolds of a Calabi-Yau
manifold. New developments in the study of these have raised the question as
to whether they should be accorded equal status with complex submanifolds.

The developments stem from two sources. The first is the deformation

theory of R. C. McLean [8]. This shows that, given one compact special
Lagrangian submanifold L, there is a local moduli space which is a manifold and
whose tangent space at L is canonically identified with the space of harmonic
1-forms on L. The ,C2 inner product on harmonic forms then gives the moduli
space a natural Riemannian metric. The second input is from the paper of

Strominger, Yau and Zaslow [12] which studies the moduli space of special
Lagrangian tori in the context of mirror symmetry.

This paper is in some sense a commentary on these two works, but it is

provoked by the question: "What is the natural geometrical structure on the
moduli space of special Lagrangian submanifolds in a Calabi-Yau manifold?"
We know that a moduli space of complex submanifolds (when unobstructed)
is a complex manifold. We shall show that the moduli space M of special
Lagrangian submanifolds has the local structure of a Lagrangian submanifold,
and we conjecture that it is "special" in an appropriate sense.

"A Lagrangian submanifold of what?" the reader may well ask. Recall
that if V is a finite-dimensional real vector space, then the natural pairing with
its dual space V* defines a symplectic structure on V x V*. It also defines
an indefinite metric. We shall show that there is a natural embedding of the
local moduli space M as a Lagrangian submanifold in the product R) x

R) (where n = dim L) of two dual vector spaces and that McLean’s
metric is the natural induced metric.

The symplectic manifold V x V* can be thought of in two ways as a

cotangent bundle: as either T*V or T*V*. Thus the Lagrangian submanifold M
is defined locally as the graph of the derivative of a function 0 : V -~ R or 1/1 :
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V * ~ R. We show that this symmetry (which is really the Legendre transform)
lies behind the viewpoint in [12], where it is viewed as a manifestation of
mirror symmetry. This involves studying the structure of the moduli space of
Lagrangian submanifolds together with flat line bundles. We show that there is
a natural complex structure and Kahler metric on this space, and that this is a
Calabi-Yau metric if the embedding of M above is special.

2. - Calabi-Yau manifolds

,

A Calabi-Yau manifold is a Kähler manifold of complex dimension n with
a covariant constant holomorphic n-form. Equivalently it is a Riemannian man-
ifold with holonomy contained in SU(n).

It is convenient for our purposes to play down the role of the complex
structure in describing such manifolds and to emphasise instead the role of
three closed forms, satisfying certain algebraic identities (see [10]). We have
the Kahler 2-form (JJ and the real and imaginary parts Q i and Q2 of the covariant
constant n-form. These satisfy some identities:

(i) cv is non-degenerate
(ii) Ql 1 -f- i S22 is locally decomposable and non-vanishing

(iv) + (SZ 1 - (respectively if n is even (respec-
tively odd)

These conditions (together with a positivity condition) we now show serve
to characterize Calabi-Yau manifolds. Firstly if QC = S21 -f- i S22 is locally
decomposable as 01 A 82 n ... A On, then take the subbundle A of T*M 0 C
spanned by 01, ... , On. By (iv) and the fact that w" ~ 0, we have

and so T*M = A + A and we have an almost-complex structure. In this

description a 1 -form 0 is of type (1, 0) if and only if S2 9 - 0. Since
from (v) dQ, = dQ2 = 0 this means that QC A dO = 0. Writing

we see that Cij = 0. Thus the ideal generated by A is closed under exte-
rior differentiation, and by the Newlander-Nirenberg theorem the structure is

integrable.
Similarly, applying the decomposition of 2-forms (1) to cv, (iii) implies that

the (0, 2) component vanishes, and since cv is real, it is of type (1, 1). It is
closed by (v), so if the hermitian form so defined is positive definite, then we
have a Kahler metric.
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Since QC is closed and of type (n, 0) it is a non-vanishing holomorphic
section s of the canonical bundle. Relative to the trivialization s, the hermitian
connection has connection form given by But property (iv) implies
that it has constant length, so the connection form vanishes is
covariant constant.

3. - Special Lagrangian submanifolds

A submanifold L of a symplectic manifold X is Lagrangian if w restricts
to zero on L and dim X = 2 dim L. A submanifold of a Calabi-Yau manifold is

special Lagrangian if in addition Q = S21 restricts to zero on L. This condition
involves only two out of the three forms, and in many respects what we shall
be doing is to treat them both -the 2-form (o and the n-form S2 on the same
footing.

REMARKS.

1. We could relax the definition a little since Qc is a chosen holomorphic
n-form: any constant multiple of Qc would also be covariant constant, so under
some circumstances we may need to say that L is special Lagrangian if, for
some non-zero c 1, c2 E R, C I Q - C2 Q2 = 0.

2. On a special Lagrangian submanifold L, the n-form S22 restricts to a

non-vanishing form, so in particular L is always oriented.

Examples of special Lagrangian submanifolds are difficult to find, and so
far consist of three types:

~ Complex Lagrangian submanifolds of hyperkahler manifolds
o Fixed points of a real structure on a Calabi-Yau manifold
. Explicit examples for non-compact Calabi-Yau manifolds

The hyperkahler examples arise easily. In this case we have n = 2k and
three Kahler forms (01, W2, W3 corresponding to the three complex structures I,
J, K of the hyperkahler manifold. With respect to the complex structure I the
form c~~ = + is a holomorphic symplectic form. If L is a complex
Lagrangian submanifold (i.e. L is a complex submanifold and Nc vanishes on L),
then the real and imaginary parts of this, cv2 and W3, vanish on L. Thus = W2
vanishes and if k is odd (respectively even), the real (respectively imaginary)
part of Qc = (W3 + vanishes. Using the complex structure J instead
of I, we see that L is special Lagrangian. For examples here, we can take any
holomorphic curve in a K3 surface S, or its symmetric product in the Hilbert
scheme which is hyperkahler from [1].

If X is a Calabi-Yau manifold with a real structure (an antiholomorphic
involution cr) for which = 2013 and a*Q = -Q, then the fixed point set (the
set of real points of X) is easily seen to be a special Lagrangian submanifold L.
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All Calabi-Yau metrics on compact manifolds are produced by the existence
theorem of Yau. In the non-compact case, Stenzel [ 11 ] has some concrete ex-
amples. In particular T*Sn (with the complex structure of an affine quadric) has
a complete Calabi-Yau metric for which the zero section is special Lagrangian.
When n = 2 this is the hyperkahler Eguchi-Hanson metric.

4. - Deformations of special Lagrangian submanifolds

R. C. McLean has studied deformations of special Lagrangian submanifolds.
His main result is

THEOREM 1 [8]. A normal vector field V to a compact special Lagrangian
submanifold L is the deformation vector field to a normal deformation through
special Lagrangian submanifolds if and only if the corresponding I -form (IV)* on
L is harmonic. There are no obstructions to extending a first order deformation to
an actual deformation and the tangent space to such deformations can be identified
through the cohomology class of the harmonic form with H 1 (L, R).

Let us briefly see how the tangent ~pace to the (local) moduli space M is
identified with the space of harmonic 1-forms. Consider a I-parameter family Lt
of Lagrangian submanifolds as a smooth map f : ,C -~ X of the manifold
,C = L x U to X where U c R is an interval and f ( L , t) = L t . Since each L t
is Lagrangian, restricts to zero on each fibre of p : £ ~ U so we can
find a I -form i on ,C such that

The restriction 0 of i to each fibre L x {t} is independent of the choice of 6’,
and since = 0, it follows that

Similarly, since Lt is special Lagrangian, the n-form Q vanishes on each fibre,
so that

and since = 0 we have d~p = 0. Using the induced metric on Lt one can
show that

so that 0 is the required harmonic form.
A more invariant way of seeing this is to take a section of the normal

bundle of Lt, since this is what an infinitesimal variation canonically describes.
Take a representative vector field V on X and form the interior product i(V)(0.
Since w vanishes on Lr, the restriction of i(V)co to Lt is a 1-form which is
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independent of the choice of V. Now is naturally a section of the
normal bundle of L, C X and 0 is then the corresponding 1-form.

Suppose now we take local coordinates tl , ... , tm on the moduli space M
of deformations of L = Lo. Here of course, from McLean, we know that
m = b 1 (L ) = For each tangent vector 8/8tj we define as above a
corresponding closed 1-form 9~ on Lt for each t E M:

(with a slight abuse of notation).
Let A 1, ... , Am be a basis for Hl (L , Z) (modulo torsion), then we can

evaluate the closed form Sj on the homology class Ai to obtain a period ma-
trix hij which is a function on the moduli space:

r

Since by McLean’s theorem, the harmonic forms Sj are linearly independent, it

follows that Àij is invertible. We can now be explicit about the identification of
the tangent space to M with the cohomology group R). Let ot 1, ... , am E

Z) be the basis dual to A 1, ... , Am. It follows that

identifies Tt M with 
We now investigate further properties of the period matrix À.

PROPOSITION 1. The = E hi j dtj on M are closed.

PROOF. We represent the full local family of deformations by a map f’ :
.A/( 2013~ X where .M == L x M with projection p : M - M. Choose smoothly
in each fibre of p a circle representing A i to give an n + I-manifold Mi C M
fibering over M. Define the on M by

The push-down map p* (integration over the fibres) takes closed forms to closed
forms, and since = 0, = 0 and so d ~ = 0.

Now in local coordinates A ij and O-j restricts to Oj on each
fibre. Since Oj is closed, integration over the fibres of A4i is just evaluation on
the homology class Ai. Thus §I = ~ and §I is closed.

From this proposition, we can find on M local functions u 1, ... , um, well-
defined up to the addition of a constant, such that

Since Àij is invertible, u 1, ... , um are local coordinates on M. More invariantly,
we have a coordinate chart
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defined by u(t) = F-i ui ai which is independent of the choice of basis, and is
well-defined up to a translation.

Clearly, we should follow our even-handed policy with respect to wand Q
and enact the same procedure for Q. Thus, the basis a 1, ... , am defines a basis
B 1, ... , Bm of Hn_1 (L, Z) and we form a period matrix iti, *

In a similar fashion we find local coordinates vl,... , vm on M such that

and an invariantly defined map

given, using the basis ~81,... , flm of R) dual to Bl , ... , Bm by v (t) =

Ei vipi.

We obtain from u and v a map

defined by F(t) = (u(t), v(t)).

Let us see now how this fits in with the natural ,C2 metric on M. Note that
since L is oriented, and (L) are canonically dual. For any vector
space V there is a natural indefinite symmetric form on V ED V* defined by

B ((v, a,), (v, a)) = (v, 

Thus x has a natural flat indefinite metric G.

PROPOSITION 2. The ,C2 metric g on M is F* G.

PROOF. From (2), we have

Thus 
J 

But

and using Sj wk = Ei this is the same as (7).
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5. - Symplectic aspects

We have seen that the function F embeds the moduli space of special
Lagrangian submanifolds of X which are deformations of L as a submanifold
of x A vector space of the form V ® V* also has a natural

symplectic form w defined by

so that x Hn-1 (L) may be considered as a symplectic manifold. We
shall now show the following:

THEOREM 2. The map F embeds M in H1 (L) x (L) as a Lagrangian
submanifold.

PROOF. We need to use the algebraic identity (iii) in Section 2 relating (o

and Q on X:

Let Y and Z be two vector fields, then taking interior products with this identity,
we obtain

and restricting to a special Lagrangian submanifold L, since N and Q vanish,
we have

Now for Y and Z use vector fields extending 8/8ti and and we then

obtain on L

Thus, integrating,

and so using

From the definitions of the coordinates u and v in (3) and (5) we have

so that (8) becomes
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But this says precisely that

It is well-known that a Lagrangian submanifold of the cotangent bundle
T*N of a manifold for which the projection to N is a local diffeomorphism
is locally defined as the image of a section do : N ~ T*N for some function
q5 : N ~ R. Thus, as a consequence of the theorem, taking N = we

can write

for some um ) . From Proposition 2 the natural metric on M
can be written in the coordinates u 1, ... , um as

Equally, we can take N = and find a function 1/1 (VI , ... , vm) to
represent the metric in a similar form:

The two functions q5, * are related by the classical Legendre transform.

REMARK. Metrics of the above form are said to be of Hessian type. V. Ru-

uska characterized them in [9] as those metrics admitting an abelian Lie algebra
of gradient vector fields, the local action being simply transitive.

Given that M parametrizes special Lagrangian submanifolds, it would seem
reasonable to seek an analogue of the special condition which M might inherit
from the embedding F. Now the generators of V and A m V * define two
constant m-forms W, and W2 on the 2m-dimensional manifold V x V*. We could
say that a Lagrangian submanifold of V x V * is special if a linear combination
of these forms vanishes, in addition to the symplectic form w. With this set-up
we have:

PROPOSITION 3. The map F embeds M as a special Lagrangian submanifold if
and only if any of the following equivalent statements holds:

~ ~ satisfies the Monge-Ampère equation = c

. 1/1 satisfies the Monge-Ampère equation = c-1

. The volume of the torus H 1 (Lt, R/Z) is independent of t E M

. The volume of the torus (L,, R/Z) is independent of t E M.
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PROOF. For the first part, note that, using the coordinates u 1,..., um, the
m-form c l Wl + c2 W2 vanishes on F (M) if and only if

which gives 
-

Interchanging the roles of V and V* gives the second statement.
To determine the volume of the torus R/Z), we take a basis

a 1, ... , am of harmonic 1-forms, normalized by

and then the volume is det(ai , aj) using the inner product on harmonic forms.
Now from the definition of the normalized harmonic forms are

and the inner product

Thus the volume is

Now in the coordinates tl,..., tm the form CI WI + C2 W2 restricted to F (M) is

and this vanishes if and only if - -cl /c2. The final statement

follows in similar way. The volume in this case is 

REMARKS.
1. The relationship between pairs of solutions to the Monge-Ampere equa-

tions related by the Legendre transform is well-documented (see [2]).
2. On any special Lagrangian submanifold the volume form is the restriction

of Q2, and S22 is closed in X, so the cohomology class of the volume form
is independent of t. Thus the 1-dimensional torus R/Z) has constant
volume.

3. In the case where X is hyperkahler and L is complex Lagrangian with
respect to the complex structure I, then the flat metric on H 1 (L, R/Z) is Kahler
and its volume is essentially the Liouville volume of the Kahler form. But the
symplectic form on the torus is cohomologically determined: if E H2 (L, R)
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is the cohomology class of the 1-Kahler form of X, then for a, fl E R)
the skew form is given by

Since this is entirely cohomological, it is independent of t.
4. Another geometrical interpretation of the structure on M is as an affine

hypersurface xm+ 1 - ~ (x 1, ... , xm ) . The Legendre transform then corresponds
to the dual hypersurface of tangent planes, and a solution to the Monge-Ampere
equation describes a parabolic affine hypersphere ([4], [2]).

6. - Kahler metrics

The approach of Strominger, Yau and Zaslow takes the moduli space not
just of special Lagrangian submanifolds, but of submanifolds together with flat
unitary line bundles ("supersymmetric cycles"). Since a flat line bundle on L is
classified by an element of R/Z), then by homotopy invariance (we are
working locally or on a simply connected space) this augmented moduli space
can be taken to be

The tangent space Tm at a point of M’ is thus canonically

This is a complex vector space, so M’ has an almost complex structure. More-
over, for any real vector space V, a positive definite inner product on V defines
a hermitian form on V Q9 C, so M’ has a hermitian metric. We then have:

PROPOSITION 4. The almost complex structure I on Mc is integrable and the
inner product on H 1 (L, R) defines a Kdhler metric on Mc.

PROOF. Use the basis a 1, ... , am of R) to give coordinates x 1, ... , xm
on the universal covering of the torus H 1 (L , R/Z) . Then (tl , ... , tm , x 1, ... , xm )
are local coordinates for Mc and from (2) the almost complex structure is
defined by

If we define the complex vector fields
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then these satisfy IXj = iXj and so form a basis for the ( 1, 0) vector fields.
The forms Oj defined by

annihilate the Xj and thus form a basis of the (0, I)-forms. But from (3)

so that wj = uj are complex coordinates, and the complex structure is

integrable.
The 2-form i-o for the Hermitian metric is defined by

and from the definition of I,

But from Proposition 2 the metric is F* G, so in the local coordinates tl,..., tm,

(note that symmetry follows from (8)). Thus,

from (5). This is clearly closed, so the metric is Kahlerian.

REMARK. Since vk = we can also write

so that ø /2 is a Kahler potential for this metric. Such metrics, where the
potential depends only on the real part of the complex variables, were considered
by Calabi in [3].

We have seen that the pulled-back metric F*G defines a Kahler metric
on M~. If we pull back the constant m-form F* Wl - du A ... A dum, then
this defines directly a complex m-form

which is clearly non-vanishing and holomorphic. Using this, we have:
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PROPOSITION 5. The holomorphic m-form S2~ has constant length with respect
to the Kdhler metric if and only if any of the equivalent conditions of Proposition 3
hold.

PROOF. First note that

Thus

But

Thus S2~ has constant length iff det p is a constant multiple of det h. But from
the proof of Proposition 3, this is equivalent to the volume of the torus being
constant.

Note that we could equally have argued using the Monge-Ampere equation
for the Kahler potential.

We have thus seen that if F maps M to a special Lagrangian submanifold
of the complex manifold Mc has a natural Calabi-Yau metric.

REMARKS.
1. It is not hard to see that the tori R/Z) x {t} I in Mc are special

Lagrangian with respect to the natural Kahler metric and the holomorphic form
Since the first Betti number of this torus is m = dim M, the family

parametrized by t E M is complete by McLean’s result, and so we can repeat
the process to find another Kahler manifold. The reader may easily verify that
the roles of (À, u i , q5) and (It, vi, p) are interchanged. In [12], one begins with
a Calabi-Yau manifold with a family of special Lagrangian tori, and produces
its "mirror" Mc in the above sense. Performing the process a second time one
obtains some sort of approximation to the first manifold. The metric defined

here, however, even when it is Calabi-Yau, will hardly ever extend to a compact
manifold, since it has non-trivial Killing fields alaxi - by Bochner’s original
Weitzenbock argument, zero Ricci tensor would imply that these are covariant
constant.

2. The simplest case of the above process consists of considering ellip-
tic curves in a hyperkahler 4-manifold (a 2-dimensional Calabi-Yau manifold).
Thus m = 2 and we obtain a 4-dimensional hyperkahler metric on Mc. The
existence of two Killing fields shows that it must be produced from the Gibbons-
Hawking ansatz [6] using a harmonic function of two variables. From the above
arguments, this means that the 2-dimensional Monge-Ampere equation can be
reduced to Laplace’s equation in two variables. In fact, as the reader will find
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in [5], this is classically known. In the same way curves of genus g in (for ex-
ample) a K3 surface generate a solution to the 2g-dimensional Monge-Ampere
equation.
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