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Abstract

Periodic timetabling is an important strategic planning problem in public
transport. The task is to determine periodic arrival and departure times of the
lines in a given network, minimizing the travel time of the passengers. We
extend the modulo network simplex method [6], a well-established heuristic
for the periodic timetabling problem, by integrating a passenger (re)routing
step into the pivot operations. Computations on real-world networks show
that we can indeed find timetables with much shorter total travel time, when
we take the passengers’ travel paths into consideration.

1 Introduction

Classical optimization approaches to periodic timetabling are based on formula-
tions in terms of the period event scheduling problem (PESP) [7], see, e.g., Lieb-
chen [4] and the references therein. A powerful heuristic for the PESP is the mod-
ulo network simplex method, which has been proposed by Nachtigall and Opitz [6].
It iteratively improves a given feasible solution by pivot operations. This algorithm
has been improved by Goerigk and Schobel [3] who introduced pivot selection
rules and cuts to escape local optima.

Standard PESP models work with fixed travel paths. The passengers, however,
choose their routes depending on the timetable. Approaches to integrate passenger
routing in periodic timetabling have been presented recently, see, e.g., [1, 2]. In
this paper, we propose to apply the modulo network simplex method to a periodic
timetabling model with variable passenger routing, i.e., to the integrated periodic
timetabling and passenger routing problem. We show that a pivot selection that
considers updated passenger routes allows to find better timetables in terms of total
travel time.

8This research was carried out in the framework of MATHEON supported by Einstein Foundation
Berlin, project B-MI3.
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2 Periodic Timetabling with Fixed Passenger Routes

Consider a directed graph N = (V,A), the event-activity network. The nodes V
are called events and represent arrivals and departures of lines at their stations.
The arcs A C V x V model activities of lines (driving between stations, waiting
at stations) and possible transfers between lines at stations. Further, we are given
lower and upper time bounds ¢, u, € Q>¢, respectively, for the duration of activity
a € A. Activity weights w € ]Réo represent the number of the passengers traveling
onarc a € A. -

A periodic timetable m : V — Q determines for each line periodic arrival and
departure times at its stations. We call a timetable feasible if 7 satisfies the periodic
interval constraints {, < [r; — m;]7 < u, for each activity a = (ij) € A; here, we
define [y]7 := ymodT for y € R. We may assume without loss of generality that
0<4, <ug,us—4L, <T,and £, < T holds for all a € A, see [4]. By Serafini and
Ukovich [7], 7 satisfies the periodic interval constraints if and only if there exist
modulo parameters 7 € 74 such that ¢, < mi—m+ Tz, <u,Va=(ij) € A. For
a feasible timetable 7 with modulo parameters z, the resulting duration of activity
a = (ij) € A is given by x, := mj — m; + T z,, and is called periodic tension. The
periodic slack is defined by y, := x, — £,; it measures how much the lower bound is
exceeded. The goal is to find a feasible timetable such that the resulting weighted
total travel time of all passengers is minimized.

Periodic tensions and slacks can be characterized by means of cycles in N,
see [5, 4]. Let T C A be a spanning tree of N. For a co-tree arc a € A\ T, denote by
C; the fundamental cycle of a, i.e., the unique oriented cycle C; induced by adding
a to the tree. Arcs in C; with the same orientation as @ are called forward arcs
C#, arcs with opposite orientation are called backward arcs C; . The fundamental
cycle matrix T € {—1,0,1}"\7*A of T is defined by Tz = 1 ifa € CJ, Tgy = —1
ifacC;,and Tz, =0ifa ¢ C;foralla € A\ T and a € A.

We introduce slack variables y € Q* for the arcs and modulo parameter vari-
ables z € ZA\7 for the co-tree arcs of T. As suggested by Nachtigall [5], the peri-
odic timetabling problem can be formulated as the following integer program:

(PTT,,) min Y wa (ya+La)
acA
S.t. I'y—Tz=-TY @)
Ogyaguafga VacA (2)
Ya €Q VacA 3)
2 €L VaeA\T. 4

The model (PTT,,) minimizes the total passenger travel time for a fixed passenger
routing given by the arc weights w € R4 . A timetable given by tensions is feasible
if and only if the tensions sum up to a multiple of the period time along every
fundamental cycle. This is expressed by Equations (1) in terms of slack variables.



3 The Modulo Network Simplex Method

In this section, we recall the modulo network simplex method as proposed by
Nachtigall and Opitz [6].

A point (y,z) € RA x ZA\7 is called a spanning tree solution for (PTT,,), if there
exists a spanning tree structure 8§ = 8§, U§,, where § is a spanning tree of N, the
periodic slack y, is zero for all a € 8/, and at its upper bound u, — ¢, for all a € §,,.
The values for all non-tree arcs and the modulo parameters are uniquely determined
by equation (1). The spanning tree solution is called feasible if 0 <y, < u, — ¢,
foralla € A, i.e., (y,z) is a feasible solution of (PTT,,).

Theorem 1 (Nachtigall [5]). Define the periodic slack polyhedron by

Y ::conv{(y,z) e RA XZA\{‘TzogySu—ﬁ,Fy—Tz:—l"E}.

Then, (y,z) € Y is an extremal point of Y if and only if it is a spanning tree solution.

The idea of the modulo network simplex is as follows: starting with a feasible
spanning tree solution (y,z) for a spanning tree structure 8 = 8,US§,,, the current
solution is iteratively improved by exchanging a co-tree arc a € A\ § with a tree arc
a € § in its fundamental cycle. This is done by shifting the slack from the co-tree
arc a to the other arcs in the fundamental cut of 4. For every tree arc d € 8, the
fundamental cut induced by d is defined by the unique minimal oriented cut X; C A
of N such that X;N8 = d. As commonly known, & is contained in the fundamental
cut induced by a if and only if 4 is contained in the fundamental cycle induced
by a.

Let I be the fundamental cycle matrix of 8 and let § € {yz,ya —ua +£a}. Then

a+Tadlr ifaeX],
Ya=19 a—Tablr ifaecXy, VacA,
Ya else,

induces a feasible spanning tree solution if y/, < u, — ¢, for all a € A. That is, if
¥y, < ug— €, for all a € A, then there exists 7 € Z*\7 such that (y/,7') is a feasible
spanning tree solution of (PTT,,) with respect to 8’ = 8U{a}\ {a}. If 6 =y,
then we are pivoting the co-tree arc a into 8, i.e., y; = 0. On the other hand, if
0 = yz — ug + g, then we are pivoting the co-tree arc a into 8/, i.e., y; = uz — {z.

We call y’ a feasible pivot operation if y' is a feasible solution. If the difference
in the objective value is negative, i.e., ¥ yea Wa (V, +4a) < Yaca Wa (Vare,), then we
call this an improving pivot operation.

The modulo network simplex iteratively applies improving pivot operations
to the current tree solution until it terminates with a solution, which cannot be
improved further by exchanging a co-tree arc with a tree arc.



4 Integrating Passenger Routing

In order to integrate passenger routing into the modulo network simplex method,
we replace the fixed arc weights w by a variable passenger routing along paths in
the network V.

The passenger demand is given in terms of an origin-destination matrix (OD-
matrix) (dy ) € Q¢ specifying for each pair (s,7) € V x V the number of passengers
that want to travel from s to z. Let D = {(s,t) € V xV : dy > 0} be the set of
all OD-pairs and for an OD-pair (s,¢) let Py, be the set of (s,¢)-paths in N and
P :=U(s)ep Ps be the set of all passenger paths.

We extend the model (PTT,,) to a version (PTTs) with integrated passenger
routing. We introduce passenger variables f;, > O for the fraction of passengers that
travel on path p € P and enforce the passenger flow by constraints ) ,cp_ f, =1 for
all (s,¢) € D. We include constraints (1)—(4) and change the objective as follows:

min c(y,z, f) 1= Z Z Z dst fp (Ya+La)-

a€A (s,t)eD pePy
acp

The resulting model (PTT+) is a mixed-integer non-linear program that minimizes
the total passenger travel time among all feasible timetables.

Theorem 2. There exists an optimal solution (5,75, fS) of (PTTy) such that
(yS,ZS) is a spanning tree solution, i.e., there exists a spanning tree structure
8 =8,US8, such thaty$ =0 forall a € 8¢ and y$ = u, —{, forall a € §,,.

Proof. Let (y*,z*, f*) be an optimal solution of (PTT). Define arc weights w’, :=
Y (s.0)eD LpePyacpdst [, a € A. Let (y®,2z%) be an optimal spanning tree solution
of (PTT,,) for the arc weights w*. Since (y®,7z%) is optimal and (y*,z*) is feasible
for (PTT,,- ), we have:

c(3%,2%, 1) = Y wih +4a) < Y Wi+ La) = ey, 25 f). )

acA acA
This inequality implies that (y®,zS, f*) is also an optimal solution of (PTT5). [

Theorem 2 shows that it suffices to investigate spanning tree solutions as well
when we integrate passenger variables. In the integrated case we have to consider
the passenger flow in order to compute the difference in the objective value between
two solutions. Let (y,z, f) be a feasible spanning tree structure solution of (PTTs)
and let y' be a feasible pivot operation. The passenger flow that minimizes the
travel time with respect to the modified timetable y' is given by

fl= argmin{c()’/,zljf) 1), fp=1Y(s) €D, fe [O’l]?}'

PEPy

Hence, y’ is an improving pivot operation in the integrated case if c¢(y',7, f") <

c(y,2,f)-



Table 1: The columns list the instances, the number of stations, the number of
directed lines, the number of OD-pairs, the period time, the number of events,
the number of activities, a lower bound on the optimal objective value for model
(PTT+9), and the objective value of the starting solution.

instance IS||£] ID| T \% |A| lower bound  starting sol.

Wuppertal 98 123 98 32857 20 1370 10994 2043083.52 2239330.56
Wauppertal 154 148 154 45159 60 4313 75768 225779297 2517657.17
Wauppertal 1582 311 196158 60 13202 78090 5016813.33 5625657.98
Dutch 23 40 158 60 447 3626 868074.00  871964.00

S Computational Experiments

We implemented four variants of the modulo network simplex method in C++11
to assess the improvement potential of our integrated approach. We call the stan-
dard modulo network simplex method with fixed arc weights static. The variant
with fully integrated passenger routing, which compares the objective values with
updated passenger flows when searching for improving pivot operations, is called
integrated. Since the integrated variant takes a toll on the runtime compared to
the classic static variant, we also implemented an iferative version that applies the
static modulo network simplex method and, at its end, updates the arc weights by
passenger flow computations; this process is iterated until it cannot improve the
solution any further. We finally tested a hybrid mode that updates the passenger
flow induced arc weights after each pivot operation.

Instead of selecting the most improving pivot operation in each modulo net-
work simplex iteration we used a faster ”Quality First” rule as proposed in [3],
which selects the first pivot with a satisfying improvement on the objective value.
We used an improvement threshold of 0.1% and a scaling factor of 0.2 in all compu-
tations. A run was terminated after at most two hours plus finishing the incumbent
iteration. All computations were done on an Intel(R) Xeon(R) CPU E3-1290 V2,
3.7 GHz computer (in 64 bit mode, 15 GB system memory), running Linux.

Statistics on four test instances are given in Table 1. The instance Wuppertal is
based on the real multi-modal public transportation network of the city of Wupper-
tal for 2013. The remaining two Wuppertal-instances are obtained by selecting a
subset of lines of this instance. The Dutch instance is based on a network that was
introduced by Bussieck in the context of line planning. In all instances the lines
are operated at different frequencies; their period times are 10, 15, 20, 30, or 60
minutes.

Statistics on the computations are given in Table 2. The integrated variant
apparently outperforms the others in terms of quality but at the cost of a strong in-
crease in the computation time. The computations confirm the existence of substan-
tial optimization potentials of integrating passenger routing into periodic timetable
computations.



Table 2: Computational results. The columns list the instances, the variant of
the algorithm, the computation time, the number of pivot iterations, the average
time per pivot operation, the final objective value, the optimality gap compared to
the lower bound, and the improvement compared to the starting solution. For the
iterative method, the number of (outer) iterations is given in parentheses.

instance method time [s] pivotiter. time/iter. final obj. gapin % impr. in %

static 16 3 534 223757131 8.69 0.08

Wuonertal og 1eraive 3) 25 6 418 2233814.57 8.54 0.25

UPPETtALZE i tegrated 7232 48 150.66 2161064.73 5.46 3.50

hybrid 16 4 405 2233814.57 8.54 0.25

static 6496 6 108274 2516268.31 10.27 0.06

Woonertal 154ierave @) 7115 7 101641 2515421.58 10.24 0.09

PP integrated 7479 14 53421 2457124.12 8.11 2.40

hybrid 6468 6 1078.01 2515421.58 10.24 0.09

static 7479 19 393.62 5622157.01 10.77 0.06

Woopertgl | iterative (1) 7490 19 39420 5622157.01 10.77 0.06

UPPETEL i tegrated 8206 7 117234 5553853.73 9.67 1.28

hybrid 7379 14 52706 5618800.66 10.71 0.12

static 4 6 <1  871697.00 0.42 0.03

Dutch iterative (2) 4 7 <1  871697.00 0.42 0.03

Y integrated 147 18 8.18  868320.00 0.03 0.42

hybrid 1 2 <1 871772.00 0.42 0.02
References

[1] R. Borndérfer, H. Hoppmann, and M. Karbstein. Passenger routing for peri-
odic timetable optimization. Public Transport, 2016. epub ahead of print.

[2] P. Gattermann, P. GroBmann, K. Nachtigall, and A. Schobel. Integrating Pas-
sengers’ Routes in Periodic Timetabling: A SAT approach. In M. Goerigk and
R. Werneck, editors, ATMOS 2016, Dagstuhl, Germany, 2016.

[3] M. Goerigk and A. Schobel. Improving the modulo simplex algorithm for
large-scale periodic timetabling. Comp. & Oper. Res., 40(5), 2013.

[4] C. Liebchen. Periodic timetable optimization in public transport. PhD thesis,
Technische Universtitiat Berlin, 2006.

[5] K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables.
Habilitation thesis, Universtitit Hildesheim, 1998.

[6] K. Nachtigall and J. Opitz. Solving periodic timetable optimisation problems
by modulo simplex calculations. In M. Fischetti and P. Widmayer, editors,
ATMOS 2008, Dagstuhl, Germany, 2008.

[7] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling
problems. SIAM Journal on Discrete Mathematics, 2(4), 1989.



