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Abstract. As applying the Levenberg-Marquardt method to the reformulation of linear
complementarity problem, a modulus-based Levenberg-Marquardt method with non-
monotone line search is established and the global convergence result is presented.
Numerical experiments show that the proposed method is efficient and outperforms the
modulus-based matrix splitting iteration method.
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1. Introduction

Let Rn and Rn×n be the n-dimensional real vector space and the n-by-n real matrix
space, respectively. In this paper, we consider the linear complementarity problem, abbre-
viated as LCP(q, M), for finding a pair of real vectors w and z ∈ Rn such that

w := Mz + q ≥ 0, z ≥ 0 and zT w = 0, (1.1)

where M = (mi j) ∈ R
n×n is a given large, sparse and real matrix, and

q = (q1,q2, · · · ,qn)
T ∈ Rn

is a given real vector. Here, the notation ≥ denotes the componentwise defined partial
ordering between two vectors and the superscript T denotes the transpose of a vector.

The linear complementarity problem was introduced by Lemke in 1964, but it was Cot-
tle and Dantzig [1] who formally defined the linear complementarity problem and called
it the fundamental problem. The LCP(q, M) of the form (1.1) often arises in many scien-
tific computing and engineering applications, e.g., the linear and quadratic programming,
the economies with institutional restrictions upon prices, the optimal stopping in Markov
chain, and the free boundary problems; see [2,3,5] for details.
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For the solution of the large and sparse LCP(q, M), the pivot algorithms based on sim-
plex type processes require too many pivots, destroy sparsity, have exponential compu-
tational complexity and suffer from round-off errors [10]. Therefore, iterative methods,
such as projected relaxation method [11], were constructed and widely discussed. Man-
gasarian [12] and Ahn [13] established the convergence theory of the projected iterative
method when the matrix is either symmetric or nonsymmetric.

By equivalently reformulating the LCP(q, M) as an implicit fixed-point equation, Van
Bokhoven [6] presented a modulus iteration method, which was defined as the solution of
linear equations at each iteration. Moreover, Bai [7] presented a class of modulus-based
matrix splitting iteration methods which not only provided a general framework for the
modified modulus method [8] and nonstationary extrapolated modulus algorithms [9],
but also yielded a series of modulus-based relaxation methods which outperform the pro-
jected relaxation method as well as the modified modulus method in computing efficiency.
With respect to matrix splitting method and modulus-based method, we can also refer
to [18,20–23,25,26,28–33] and the references therein.

As we all know, the implicit fixed-point equation which is equivalent to the LCP(q, M)

is a absolute value equation. Iqbel et al. [14] proposed Levenberg-Marquardt method for
solving absolute value equations, which is the combination of steepest descent and the
Gauss-Newton methods. They proved the global convergence of new method when using
the Goldstein line search. Li and Fukushima [15] presented a non-monotone line search
for nonlinear equations, that is

F(xk +αdk)
2 ≤ (1+ηk)‖F(xk)‖

2−σ1α
2‖dk‖

2 −σ2α
2‖F(xk)‖

2, (1.2)

where F(x) : Rn→ Rn is a continuous function, σ1 and σ2 are positive constants and the
positive sequence {ηk} satisfies

∞∑

k=0

ηk <∞. (1.3)

It is noticeable that as α→ 0+, the left hand side of (1.2) goes to ‖F(xk)‖
2, while the right

hand side tends to the positive constant (1+ ηk)‖F(xk)‖
2. Thus, (1.2) is satisfied for all

sufficiently small α > 0. Hence, one can obtain αk by means of a backtracking process.
This non-monotone line search can guarantee the global convergence of the Levenberg-
Marquardt method [19].

Inspired by the above mentioned, we present the Levenberg-Marquardt method with a
non-monotone line search for the LCP(q, M).

The outline of this paper is as follows. We give some basic notations, definitions and
lemmas in Section 2 and establish the modulus-based Levenberg-Marquardt method for
linear complementarity problem in Section 3. In Section 4, the global convergence of
the modulus-based Levenberg-Marquardt method is proved. In Section 5, the numerical
experiments are presented to show the effectiveness of our method. In the final section we
give the concluding remarks.
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2. Preliminaries

We briefly introduce some necessary notations, definitions and lemmas. For a vector
x = (x1, x2, · · · , xn)

T ∈ Rn, the infinity norm of x is defined as ‖x‖∞ = max
1≤i≤n
|x i|, the

Euclidean norm of ‖x‖ is defined as ‖x‖ =
p

x2
1 + · · ·+ x2

n and |x | = (|x1|, |x2|, · · · , |xn|)
T

denotes the absolute value of x . For any A∈ Rn×n, ‖A‖ denotes the spectral norm defined
by ‖A‖=max{‖Ax‖ : x ∈ Rn, ‖x‖= 1}, where ‖x‖ is the Euclidean norm.

Definition 2.1. ([4, Definition 1.4]) A vector-valued function F : D ⊆ Rn → Rm is called

Lipschitz continuous if there exists a positive real constant c such that for all vectors x , y ∈ D

‖F(x)− F(y)‖ ≤ c‖x − y‖.

We say F is locally Lipschitz continuous if for every x ∈ D there exists a neighborhood U =

S(x ,δ) of x such that F restricted to U is Lipschitz continuous.

Let M = M1 − N1 = M2 − N2 be two splittings of the matrix M ∈ Rn×n, Ω be a positive
diagonal matrix, γ be a positive constant. By utilizing the matrix splitting and the idea
of acceleration, the LCP(q, M) can be equivalently transformed into the system of implicit
fixed-point equations [16]

(M1 +Ω)x = N1 x + (Ω−M2)|x |+ N2|x | − γq. (2.1)

Moreover, with specific choices of the matrix splitting and iteration parameters, (2.1) can
yield a series of accelerated modulus-based matrix splitting iteration methods. For exam-
ple, let M = D− L−U with D, −L and −U being the diagonal, the strictly lower-triangular
and the strictly upper-triangular matrices of M , and

M1 =
1

α
(D− β L), N1 =

1

α

�
(1−α)D+ (α− β)L+αU

�
, M2 = D− U and N2 = L,

where α and β are prescribed relaxation parameters. Then (2.1) reduces to the accelerated
modulus-based accelerated overrelaxation (AMAOR) iteration method

(D+αΩ− β L)x k+1

=[(1−α)D+ (α− β)L +αU]x k +α(Ω− D+ U)
��x k
��+αL
��x k+1
��−αγq.

It also gives the accelerated modulus-based successive overrelaxation (AMSOR) iteration
method, the accelerated modulus-based Gauss-Seidel (AMGS) iteration method and the
accelerated modulus-based Jacobi (AMJ) iteration method when α = β , α = β = 1 and
α= 1,β = 0, respectively.

It is clear that the system of implicit fixed-point equations (2.1) is equivalent to the
system of absolute value equations

(M +Ω)x + (M −Ω)|x |+ γq = 0. (2.2)

Particularly, let Ω = I , γ= 1, we have the following lemma.
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Lemma 2.1. For the LCP(q, M), the following statements hold true:

(1) If (w, z) is a solution of the LCP(q, M), then x = (z − w)/2 satisfies the system of

absolute value equations

(M + I)x + (M − I)|x |+ q = 0. (2.3)

(2) If x satisfies the system of absolute value equations (2.3), then z = |x | + x and

w = |x | − x is a solution of the LCP(q, M).

Let F(x) be given by

F(x) = (M + I)x + (M − I)|x |+ q. (2.4)

Then solving LCP(q, M) is equivalent to solving the system of absolute value equations
F(x) = 0, where F is a function from Rn into Rn as defined in (2.4). It is noticed that
there is no method that gives a solution which converges very rapidly compared to existing
methods because of the non-differentiability of the function F . Hence, Foutayeni et al. [27]
constructed a sequence of smooth functions Fr ∈ C∞ which are uniformly convergent to the
function F and showed that an approximation solution of LCP(q, M) is obtained by solving
Fr(x) = 0 for r is large enough. Here, the sequence of smooth functions Fr : Rn → Rn

defined by

Fr(x) = (M + I)x + (M − I)
�

x2+ e−r
� 1

2 + q, (2.5)

where r ∈ N and

(x2+ e−r)
1
2 :=
��

x2
1 + e−r
� 1

2 ,
�

x2
2 + e−r
� 1

2 , · · · ,
�

x2
n + e−r
� 1

2

�T
∈ Rn. (2.6)

Specifically, Foutayeni et al. [27] derived the following results.

Lemma 2.2. ([27]) The sequence of smooth functions {Fr}r≥1 converges uniformly to F on

R
n when r → +∞.

Lemma 2.3. ([27]) If x∗r is a solution of the equation Fr(x) = 0, then x∗r is an approximation

solution of the equation F(x) = 0 for r is large enough.

In the following analysis, our goal is to build a method for solving Fr (x) = 0 for r is
large enough.

3. Proposed method

In this section, we suggest Levenberg-Marquardt method with non-monotone line search
for the nonlinear equations (2.5) which is the reformulation of the LCP(q, M). Firstly ,we
take

Ψr(x) =
1

2
‖Fr (x)‖

2 (3.1)

as the merit function of (2.5). When solving (2.5) by Levenberg-Marquardt method, we
obtain the Jacobian matrix of Fr (x) is

J (r)(x) = F ′r(x) = (M + I) + (M − I)Dx ,r , (3.2)
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where

Dx ,r = diag(d1, d2, · · · , dn), di =
x ip

x2
i
+ e−r

. (3.3)

Together with the definition of Fr(x), we have the following lemma.

Lemma 3.1.

(1) Fr(x) is Lipschitz continuous.

(2) J (r)(x) = F ′r(x) is Lipschitz continuous.

(3) J (r)(x) = F ′r(x) is bounded.

Proof. (1) Let us use the result of mean value theorem [4, Theorem 1.5] on vector
function Fr . Then for all x , y, we have

‖Fr (y)− Fr(x)‖ ≤ sup
0≤t≤1

F ′r(x + t(y − x))
‖y − x‖. (3.4)

Let z = x + t(y − x). By using (3.2) and (3.3), we have

sup
0≤t≤1

F ′r(z)
 = sup

0≤t≤1

(M + I) + (M − I)Dz,r



= sup
0≤t≤1

(M + I) + (M − I)diag
� z1p

z2
1 + e−r

, · · · ,
znp

z2
n + e−r

�


≤ sup
0≤t≤1



‖M + I‖+ ‖M − I‖ max

1≤i≤n

���
zip

z2
i
+ e−r

���



≤ ‖M + I‖+ ‖M − I‖. (3.5)

Together (3.4) with (3.5) yields

‖Fr(y)− Fr(x)‖ ≤ sup
0≤t≤1

F ′r(x + t(y − x))
‖y − x‖

= sup
0≤t≤1
‖F ′r(z)‖‖y − x‖ ≤ (‖M + I‖+ ‖M − I‖)‖y − x‖. (3.6)

Hence, from Definition 2.1, Fr (x) is Lipschitz continuous.

(2) From (3.2), by some calculations, we have

‖F ′r(y)− F ′r (x)‖=
[(M + I) + (M − I)Dy,r]− [(M + I) + (M − I)Dx ,r]


=‖(M − I)(Dy,r − Dx ,r)‖ ≤ ‖M − I‖‖Dy,r − Dx ,r‖

=‖M − I‖ max
1≤i≤n

�����
yip

y2
i
+ e−r

−
x ip

x2
i
+ e−r

�����

=‖M − I‖ max
1≤i≤n

�����
e−r

(z2
i
+ e−r)3/2

(yi − x i)

����� , zi = x i + t(yi − x i), t ∈ (0,1)

≤e
r

2 ‖M − I‖ max
1≤i≤n
|yi − x i| = e

r

2 ‖M − I‖‖y − x‖∞ ≤ e
r

2 ‖M − I‖‖y − x‖, (3.7)
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where the fifth equality use the Lagrange mean value theorem of real value function g(ξ) =
ξ
p
ξ2 + e−r

. It then follows from Definition 2.1 that F ′r(x) is Lipschitz continuous.

(3) The result can be obtained by the analysis of (1). The proof is completed. �

Now, we can outline our new Levenberg-Marquardt method with non-monotone line
search for solving linear complementarity problem as follows:

Algorithm 3.1 Levenberg-Marquardt method with non-monotone line search.

Input : A matrix M ∈ Rn×n, a vector q ∈ Rn, an accuracy parameter ǫ > 0, a positive
parameter r > 0(default r = 100).

Begin :
Step 0. Give an arbitrary point x0 in Rn, µ > 0, σ1,σ2 > 0, ω,ρ ∈ (0,1) and the
sequence {ηk} satisfying in (1.3). Set k := 0.

Step 1. Compute Fk = Fr(xk) and Jk = J (r)(xk).

Step 2. If ‖J T
k

Fk‖ ≤ ǫ, stop. Otherwise, set λk = µ‖Fk‖
δk where

δk =





1

‖Fk‖
, if ‖Fk‖ ≥ 1,

1, otherwise.
(3.8)

Step 3. Solve the linear system

(J T
k Jk +λk I)d = −J T

k Fk (3.9)

to compute dk.

Step 4. If
‖Fr(xk + dk)‖ ≤ωdk, (3.10)

then, take αk = 1 and go to Step 6. Otherwise, go to Step 5.

Step 5. Compute αk =max
�
1,ρ1,ρ2, · · ·
	

with αk = ρ
i satisfying

Fr(xk+αkdk)
2 ≤ (1+ηk)
Fr(xk)
2−σ1α

2
k

dk

2 −σ2α
2
k

Fr(xk)
2, (3.11)

where the positive sequence {ηk} satisfies (1.3).

Step 6. Set xk+1 = xk +αkdk. Set k := k+ 1 and go to Step 1.

end

Remark 3.1. As α→ 0+, the left hand side of (3.11) goes to ‖Fk‖
2 while the right hand

side tends to the positive value (1+ηk)‖Fk‖
2, thus (3.11) is satisfied for sufficiently small

α > 0. This shows that Algorithm 3.1 is efficient.
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4. Convergence analysis

In this section, we will show that Algorithms 3.1 is global convergence. Firstly, we
define

Ω =
¦

x | ‖Fr(x)‖ ≤ eη/2‖F0‖
©

, (4.1)

where η is a positive constant such that

∞∑

k=0

ηk ≤ η <∞. (4.2)

According to Lemma 3.1, Fr(x) is Lipschitz continuous and its Jacobian matrix J (r)(x) is
Lipschitz continuous and bounded, so Fr(x) and J (r)(x) have the same properties on Ω,
i.e., there exists a positive constant L such that for all x , y ∈ Ω

‖F(x)− F(y)‖ ≤ L‖x − y‖, (4.3a)

‖J (r)(x)− J (r)(y)‖ ≤ L‖x − y‖, (4.3b)

‖J (r)(x)‖ ≤ L. (4.3c)

Now we state the following two lemmas that show the sequence {xk} generated by Algo-
rithm 3.1 belongs to Ω and the sequence {‖Fk‖} converges.

Lemma 4.1. ([17])Let {ak} and {rk} be positive sequences satisfying ak+1 ≤ (1+ rk)ak+ rk,

∀ k = 0,1, · · · and
∞∑

k=0
rk <∞. Then {ak} converges.

Lemma 4.2. Let the sequence {xk} be generated by Algorithm 3.1. Then

(1) the sequence {‖Fk‖} converges and xk ∈ Ω for all k ≥ 0.

(2) the sequence {‖Fk‖} is bounded, that is, there exists a constantM > 0 such that

‖Fk‖ ≤M , ∀ k ≥ 0. (4.4)

Proof. From (3.10) and (3.11), we have

‖Fk+1‖
2 ≤ (1+ηk)‖Fk‖

2.

Due to {ηk} is a positive sequence, we have

‖Fk+1‖
2 ≤ (1+ηk)‖Fk‖

2 +ηk.

Lemma 4.1 implies that {‖Fk‖
2} and so {‖Fk‖} are convergent. Moreover, from the above

inequality, we deduce that

‖Fk+1‖ ≤ (1+ηk)
1/2‖Fk‖ ≤ · · · ≤

k∏

i=0

(1+ηi)
1/2‖F0‖.
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Thus

‖Fk+1‖ ≤
� 1

k+ 1

k∑

i=0

(1+ηi)
� k+1

2 ‖F0‖ ≤
�

1+
k∑

i=0

ηi/(k+ 1)
� k+1

2 ‖F0‖

≤
�

1+
η

k+ 1

� k+1
2 ‖F0‖ ≤ eη/2‖F0‖,

where the second inequality use arithmetic-geometric means inequality, the third inequal-
ity use the basis fact lim

n→∞
(1 + 1/n)n = e and the relation (4.2). This inequality means

xk ∈ Ω for all k. The proof of (1) is completed. Part (1) and the definition of Ω implies
that the sequence {‖Fk‖} is bounded. The proof is completed. �

Lemma 4.3. Let the sequence {xk} be generated by Algorithm 3.1. If (3.10) holds for infinite

k, then {‖Fk‖} converges to zero. In other words, if there exists a positive constant c such that

‖Fk‖ ≥ c holds for sufficiently large k, then (3.10) holds for finite k.

Proof. Denote the index sets

I j = {k ≤ j | (3.10) holds}, H j = {0,1, · · · , j}\I j , j = 1,2, · · · .

If (3.10) holds for infinite k, then as j →∞, card(I j)→∞, where card(I j) is the number
elements of I j . From (3.10) and (3.11), we have

‖Fk+1‖ ≤
�∏

i∈Hk

(1+ηi)
1/2
∏

i∈Ik

η
�
‖F0‖

=
�∏

i∈Hk

(1+ηi)
1/2
�
ρcard(Ik)‖F0‖

≤e
η

2ρcard(Ik)‖F0‖ → 0, as k→∞.

So ‖Fk‖ → 0. The proof is completed. �

Theorem 4.1. Algorithm 3.1 either terminates in a finite number of steps or satisfies

lim inf
k→∞
‖J T

k Fk‖= 0. (4.5)

Proof. By contradiction, suppose there exist τ > 0 and an integer k̄ such that

‖J T
k Fk‖ ≥ τ, ∀ k ≥ k̄. (4.6)

This together with (4.3c) implies that

‖Fk‖ ≥ L−1τ (4.7)

holds for sufficiently large k. So, by Lemma 4.3, the inequality (3.10) holds for finite k.
On the other hand, from (3.11), we have

‖Fk+1‖
2 ≤ (1+ηk)‖Fk‖

2 −σ2α
2
k‖Fk‖

2,
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then
σ2α

2
k‖Fk‖

2 ≤ ‖Fk‖
2 −‖Fk+1‖

2 +ηk‖Fk‖
2.

Thus, according to Lemma 4.2 (2), results that

σ2

m∑

k=0

α2
k‖Fk‖

2 ≤ ‖F0‖
2 −‖Fm+1‖

2 +

m∑

k=0

ηk‖Fk‖
2 ≤ ‖F0‖

2 +M

m∑

k=0

ηk,

which implies
∞∑

k=0

α2
k‖Fk‖

2 <∞.

Then lim
k→∞

αk‖Fk‖ = 0. This relation together with (4.7) yields

lim
k→∞

αk = 0. (4.8)

Now, let Jk = UkΣkV T
k

be the sigular value decomposition (SVD) of Jk, where Uk, Vk are
two orthogonal matrices and Σk = diag(σk,1,σk,2, · · · ,σk,n) with σk,1 ≥ σk,2 ≥ · · ·σk,n ≥
0. Then, we have

(J T
k Jk +λk I)−1
= ‖Vk(Σ

2
k +λk I)−1V T

k ‖

=
(Σ2

k +λk I)−1
 = max

i∈{1,2,··· ,n}
(σ2

k,i +λk I)−1 ≤ λ−1
k

. (4.9)

This inequality together with (3.9), (4.3c) and (4.4) implies that

‖dk‖ =
(J T

k Jk +λk I)−1J T
k Fk

≤
(J T

k Jk +λk I)−1
‖Jk‖‖Fk‖

≤Lλ−1
k
‖Fk‖ =

L

µ
‖Fk‖

1−δk .

If ‖Fk‖ < 1, then δk = 1, hence

‖dk‖ ≤
L

µ
. (4.10)

If ‖Fk‖ ≥ 1, then δk =
1

‖Fk‖
, hence

‖dk‖ ≤
L

µ
‖Fk‖

1− 1
‖Fk‖ ≤

L

µ
‖Fk‖ ≤

L

µ
M . (4.11)

LetM1 =max{1,M}, together (4.10) with (4.11) yields

‖dk‖ ≤
L

µ
M1. (4.12)

If lim inf
k→∞
‖dk‖ = 0, then we have from (3.9) and (4.3c) that

lim inf
k→∞

J T
k Fk

= lim inf
k→∞

(J T
k Jk +λk I)dk

= 0, (4.13)
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which obtains a contradiction to (4.6). Hence there exists a constant ν > 0, such that

lim inf
k→∞
‖dk‖ > ν . (4.14)

From line search (3.11), we have

‖F(xk +αkdk)‖
2−‖Fk‖

2

>−α2
k(σ1‖dk‖

2+σ2‖Fk‖
2) +ηk‖Fk‖

2 > −α2
k(σ1‖dk‖

2 +σ2‖Fk‖
2),

where αk =
αk

ρ
. Combine this inequality with (4.3) yields

α2
k

�
σ1‖dk‖

2 +σ2‖Fk‖
2�> −
�
‖F(xk +αkdk)‖

2−‖Fk‖
2�

=− 2F T
k [F(xk +αkdk)− Fk]−‖F(xk +αkdk)− Fk‖

2

≥− 2F T
k [F(xk +αkdk)− Fk]− L2α2

k‖dk‖
2. (4.15)

On the other hand, by the mean-value theorem [4, Theorem 1.6], we have

F T
k

�
F(xk +αkdk)− Fk

�
= αkF T

k Jkdk + F T
k

∫ 1

0

�
J(xk+ tαkdk)− Jk

�
αkdkd t

≤αkF T
k Jkdk +

1

2
LMα2

k‖dk‖
2 = −αkdT

k

�
J T

k Jk +λk I
�

dk +
1

2
LMα2

k‖dk‖
2, (4.16)

which, together with (4.15), yields

αk

�
σ1‖dk‖

2 +σ2‖Fk‖
2�> 2dT

k

�
J T

k Jk +λk I
�
dk − LMαk‖dk‖

2 − L2αk‖dk‖
2.

Hence

αk

�
(σ1 + LM + L2)‖dk‖

2 +σ2‖Fk‖
2
�
> 2dT

k

�
J T

k Jk +λk I
�

dk ≥ 2λk‖dk‖
2, (4.17)

where the last inequality is due to the semi-positive definite of J T
k

Jk. So, from the inequality
(4.17), we have

αk >
2λk‖dk‖

2

(σ1 + LM + L2)‖dk‖2 +σ2‖Fk‖2
. (4.18)

Consequently, we can deduce from (4.4), (4.12), (4.14) and (4.18) that {αk} is bounded
away from zero, which contradicts with (4.8) and the proof is completed. �

5. Numerical experiments

In this section, we represent some numerical examples to demonstrate the effectiveness
of our algorithm from the aspects of iteration steps (denoted by ’Iter’), elapsed CPU time in
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seconds (denoted by ’CPU’) and the norm of absolute residual vectors (denoted by ’Res’).
Here, ’Res’ is defined as

Res(zk) :=
min(Mzk + q, zk)


2,

where zk is the kth approximate solution to the linear complementarity problem (1.1), and
the minimum is taken componentwise.

All of the tests were run on the Intel (R) Core (TM), where the CPU is 2.40 GHz and
the memory is 8.0 GB, the programming language was MATLAB R2015a. The stopping
criteria for all methods are Res(zk) ≤ 10−5 or k reaches the maximal number of iteration,
e.g., 5000. Moreover, for Algorithm 3.1, we set the parameter r = 100, µ = 0.5, σ1 =

σ2 = 0.55, ω = 0.5, ρ = 0.8, ηk = 0.5k.

We compare our method with ’AMSOR’ method presented in [16] as follows:

(D+αΩ−αL)x k+1

=[(1−α)D+αU]x k+α(Ω− D+ U)
��x k
��+αL
��x k+1
��−αγq.

In numerical experiments, take γ = 1 and Ω = 5D, and have ‘AMSOR’ converges, we also
take different α for comparison.

Example 5.1. ([16]) Let m be a prescribed positive integer and n = m2. Consider the
LCP(q, M), in which M ∈ Rn×n is given by M = bM + ν I and q ∈ Rn is given by q =

−
�

1

α
D− L

�
z∗, where

bM =




B −I O · · · O O

−I B −I · · · O O

O −I B · · · O O
...

...
. . .

...
...

O O · · · · · · B −I

O O · · · · · · −I B




, z∗ =




1
2
1
2
...




,

where B = tridiag(−1,4,−1) ∈ Rm×m, I ∈ Rm×m is a unit matrix, O ∈ Rm×m is the zero
matrix, ν is a constant and α is the positive parameter used in ‘AMSOR’. Obviously, M is a
symmetric positive definite matrix. In this example, we take ν = 4.

In Table 1, the iteration steps, the CPU time and the residual norms for the Levenberg-
Marquardt method (Algorithm 3.1) and the accelerated modulus-based matrix splitting
iteration method (AMSOR) for Example 5.1 are listed.

From Table 1, we can find that Algorithm 3.1 has higher precision for different choic-
es n. Algorithm 3.1 needs less CPU time and iteration number. Especially, the iteration
number of Algorithm 3.1 is far less than that of ‘AMSOR’ method.
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Table 1: Numerical comparison of the testing methods for Example 5.1.

m
AMSOR([16]) Algorithm 3.1

(α = 0.8) (α = 0.9) (α = 1.1) (α = 1.2) (α = 0.8) (α= 0.9) (α = 1.1) (α = 1.2)

10
Iter 90 74 57 54 3 3 3 3
CPU 0.0577 0.0564 0.0434 0.0293 0.0280 0.0299 0.0291 0.0282
Res 9.8518e-06 9.8531e-06 9.5125e-06 7.6435e-06 2.6153e-08 8.4000e-09 1.7749e-09 5.3528e-10

20
Iter 98 81 61 57 3 3 3 3
CPU 0.2652 0.2961 0.2122 0.1594 0.1403 0.1387 0.1433 0.1319
Res 9.2125e-06 9.3818e-06 9.6478e-06 9.9704e-06 6.4034e-07 1.9456e-07 2.5338e-08 8.0523e-09

30
Iter 101 84 63 59 4 3 3 3
CPU 1.1397 1.0281 0.7868 0.7513 0.9609 0.7050 0.7298 0.7342
Res 9.8448e-06 9.3716e-06 9.7976e-06 9.8046e-06 7.9535e-14 1.0505e-06 1.7578e-07 5.0147e-08

40
Iter 104 86 65 61 4 4 3 3
CPU 4.4286 3.6525 2.7851 2.4528 3.7787 3.3502 2.6663 2.5685
Res 8.6993e-06 9.2668e-06 8.5050e-06 8.1384e-06 1.7006e-13 9.0236e-14 4.9956e-07 1.7792e-07

50
Iter 105 88 66 62 4 4 3 3
CPU 12.0005 10.0970 7.6646 7.1613 10.8706 10.0492 7.8830 7.7892
Res 9.6343e-06 8.3616e-06 8.6148e-06 8.0671e-06 4.1890e-13 1.6673e-13 1.0589e-06 3.6835e-07

Example 5.2. ([24])Consider the LCP(q, M), M ∈ Rn×n and q ∈ Rn are given below:

M =




4 −2 0 · · · 0 0
1 4 −2 · · · 0 0
0 1 4 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 4 −2
0 0 0 · · · 1 4




, q =




−4
−4
−4
...
−4
−4




∈ Rn.

It is easy to see that M is a nonsymmetric tridiagonal H+-matrix.

In table 2, the iteration steps, the CPU time and the residual norms for the Levenberg-
Marquardt method (Algorithm 3.1) and the accelerated modulus-based matrix splitting
iteration method (AMSOR) for Example 5.2 are listed.

From Table 2, we can find that Algorithm 3.1 has higher precision for different choices
n. When α = 0.8 and α = 0.9, the CPU time and the iteration number of Algorithm 3.1
are far less than that of ‘AMSOR’ method. When α = 1.1 and α = 1.2, with the increasing
of matrix dimension n, Algorithm 3.1 needs more CPU time. However, Algorithm 3.1
outperforms ‘AMSOR’ method in terms of the iteration number and the precision.

6. Conclusions

In this paper, the modulus-based Levenberg-Marquardt method is proposed and applied
to the linear complementarity problem. The proposed method is well defined, the new
algorithm is globally convergent by utilizing the non-monotone line search. Numerical
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Table 2: Numerical comparison of the testing methods for Example 5.2.

Dim(n)
AMSOR([16]) AMSOR([16]) AMSOR([16]) AMSOR([16])

Algorithm 3.1
(α = 0.8) (α = 0.9) (α = 1.1) (α = 1.2)

100
Iter 70 62 50 46 3
CPU 0.0430 0.0393 0.0383 0.0405 0.0261
Res 9.1563e-06 8.9179e-06 9.3475e-06 8.1329e-06 2.6713e-08

400
Iter 74 65 53 48 3
CPU 0.2354 0.1972 0.1611 0.1635 0.1128
Res 8.3568e-06 9.2419e-06 8.2115e-06 9.0419e-06 3.4113e-07

900
Iter 76 67 54 49 3
CPU 0.9845 0.8334 0.7088 0.6231 0.6050
Res 8.3474e-06 8.7428e-06 9.2991e-06 9.9547e-06 1.5609e-06

1500
Iter 77 68 55 50 4
CPU 2.7097 2.4697 2.0325 1.8528 2.5815
Res 8.7810e-06 8.9502e-06 9.0071e-06 9.3739e-06 2.3943e-13

2000
Iter 78 69 56 51 4
CPU 5.3375 5.2777 4.0042 3.4825 5.1278
Res 8.2470e-06 8.1804e-06 7.7889e-06 7.8805e-06 5.5586e-13

results indicate that the modulus-based Levenberg-Marquardt method with non-monotone
line search is effective and robust for solving linear complementarity problem. Moreover,
the modulus-based Levenberg-Marquardt method outperforms ‘AMSOR’ method in terms
of the iteration number, the precision and the CPU time.
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