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S U M M A R Y

The European Plate has a 4.5 Gy long and complex tectonic history. This is reflected in the

present-day large-scale crustal structures. A new digital Moho depth map is compiled from

more than 250 data sets of individual seismic profiles, 3-D models obtained by body and

surface waves, receiver function results and maps of seismic and/or gravity data compilations.

We have compiled the first digital, high-resolution map of the Moho depth for the whole

European Plate, extending from the mid-Atlantic ridge in the west to the Ural Mountains in

the east, and from the Mediterranean Sea in the south to the Barents Sea and Spitsbergen in

the Arctic in the north. In general, three large domains within the European Plate crust are

visible. The oldest Archean and Proterozoic crust has a thickness of 40–60 km, the continental

Variscan and Alpine crust has a thickness of 20–40 km, and the youngest oceanic Atlantic

crust has a thickness of 10–20 km.
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H I S T O R I C A L B A C KG RO U N D

In 1910, the Croatian seismologist Andrija Mohorovičić (1857–

1936) published his important paper ‘Potres of 8.X.1909’ (Earth-

quake of 8 October 1909). In this paper, he studied seismograms

of an earthquake in the Kupa Valley (Croatia), together with other

events from this region and he discriminated two distinct pairs of

compressional (P) and shear (S) waves. He writes in his paper:

‘When I was sure, based on data, that two kinds of first prelim-

inary waves exist, both kinds reaching all locations from 300 to

700 km distance, and that from the epicentre to approximately

300 km distance only the first kind arrives, whereas from 700 km

distance onward only the second kind arrives, I tried to explain this

until now unknown fact’ (Mohorovičić 1910). In today’s nomencla-

ture, the first kind of the arrivals correspond to crystalline basement

Pg and Sg phases and overcritical crustal phases Pcrustal and Scrustal,

while the second kind of arrivals correspond to mantle Pn (Sn)
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and P (S) phases. The interpretation of the two sets of arrivals led

Andrija Mohorovičić to discover the existence of the velocity dis-

continuity in the uppermost Earth. He evaluated the depth to be at

50 km, with P-wave velocities 5.60 km s−1 above and 7.747 km s−1

below (respectively, 3.27 and 4.182 km s−1 for S waves). Below

the boundary surface, the velocity ratio was VP/VS = 1.852, which

was significantly larger than in the upper layer were it was 1.710

(Mohorovičić 1910). Studies during the next 100 yr showed that

the sharp seismic discontinuity discovered by Mohorovičić was

found worldwide, and that it separates crust from underlying upper

mantle. It was named the Mohorovičić discontinuity or Moho in

abbreviated form, or even M-discontinuity (for lazy people and

people having problem with the pronunciation of this Croatian

name).

The seismic discontinuity discovered by Mohorovičić is a pri-

mary definition of the boundary between crust and upper mantle,

given in terms of the velocities of seismic waves. Today, the seismo-

logically defined Earth’s crust means the outer shell of our planet

in which the velocity of P waves is smaller than about 7.6 km s−1,

and S-wave velocity is smaller than about 4.4 km s−1 (e.g. Meissner

1986). In general P-wave velocity in the lower crust is about 7 km s−1

and in the uppermost mantle about 8 km s−1. So, the P-wave

velocity contrast at the Moho discontinuity is quite large, being up to

1–1.5 km s−1. This indicates a significant change in elastic param-

eters, resulting from a significant change in the rock types between

crust and uppermost mantle.

Secondary definitions of the Earth’s crust use other parameters,

such as densities, type of rock, mineralogical and chemical com-

positions. In the density definition of the crust, the density value

corresponding to the Moho is 3.1 g cm−3. A typical density of the
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280 M. Grad et al.

lower crust is about 3.0 g cm−3 and for the uppermost mantle about

3.3 g cm−3. So, also in terms of density the Moho is a distinct discon-

tinuity. The interrelation of seismic velocities and densities of rocks

(Nafe & Drake, see Talwani et al. 1959), together with laboratory

data for various rock assemblages (e.g. Birch 1960; Christensen &

Mooney 1995) gives us the information for interpretation of crustal

and mantle lithologies.

P R E V I O U S W O R K

The complicated history of the European Plate is reflected in

the present day structure, particularly in the continental and

regional scales of the Earth’s crust. Though there are several crustal

maps for Europe, we considered that in view of the quantity of

high resolution data and models now available, particularly seis-

mic models, it is an appropriate time to bring them together and

produce a new integrated map of the Moho depth for the Euro-

pean Plate. The improvement of Moho depth map for the Euro-

pean Plate was an initiative of the Subcommission on Crustal and

Upper Mantle Structure of the European Seismological Commission

(ESC).

The only existing Moho maps covering the whole European

Plate are of low resolution. The global crustal models are speci-

fied on 5◦×5◦ (Mooney et al. 1998) and 2◦×2◦ grids (Laske 2002;

Meier et al. 2007) and are the only unified models for the whole

European Plate available to date. Some models were constrained

in the past, but they covered, in fact, only the continental part of

Europe (e.g. Meissner et al. 1987; Giese & Pavlenkova 1988;

Tesauro et al. 2008). Compilations of Moho depth are available for

many regions of Europe (e.g. Radulescu 1988; Luosto 1991; Scaras-

cia & Cassinis 1997; Chadwick & Pharaoh 1998; Jensen et al. 2002).

They were published in last 20 yr, however, they contain the results

of a number of surveys done in the 1970s and the 1980s. They

do not, however, form a continuum. The integration of available

models derived from recent active and passive seismic experiments

should allow the construction of maps with a rather high resolu-

tion (1◦ or better) in many areas of Europe. From the early 1970s,

many crustal models have been produced for different regions in

Europe. A number of oldest surveys were also re-interpreted using

modern techniques (e.g. Luosto 1986; Grad & Tripolsky 1995; Grad

et al. 2005). Most of crustal models describe the variation of seismic

parameters, velocity and layer boundary discontinuities. It is time to

bring the models together and produce a new integrated crustal map

of the European Plate, with the plate understood as an area extend-

ing from the mid-Atlantic ridge in the west to the Ural Mountains in

the east and from the Mediterranean Sea in the south to the Barents

Sea and Spitsbergen in the Arctic in the north (extended between

40◦W and 70◦E and 28◦N and 88◦N◦, respectively). To compile the

Moho depth map from various sources, we need to use improved

structural models and to integrate the best local models available.

Such a map is required for the following reasons: (1) to highlight

the tectonic processes shaping surface geology; (2) to improve the

accuracy of location of seismic events. A good crustal model is

vital for the accurate location of seismic events (in position and

depth) and therefore essential for seismic hazard studies (3) to dis-

criminate between earthquakes and explosions at regional distances

2◦–20◦, this requires knowledge of how seismic waves propagate

through the crust and uppermost mantle. A good model is essen-

tial to explain and predict propagation anomalies; (4) to correct for

crustal effects when probing deeper into the Earth (e.g. in seismic

tomography).

R E V I E W O F M E T H O D S F O R T H E

C RU S TA L S T RU C T U R E S T U D I E S

In terms of elastic parameters and density, the Moho is a distinct

discontinuity. It can be studied relatively easily using geophysical

methods—seismic waves propagated through crust and mantle with

different velocities, as well as by modelling of gravity anomalies

with the use of large density contrast at the Moho (Fig. 1).

Seismic methods are most effective for studing the Earth’s in-

terior, and they use different types of seismic waves—body P and

S waves and surface waves. The waves have their characteristic

frequencies, which result in the resolution and accuracy of ob-

tained seismic models. Relatively long surface waves from shallow

regional earthquakes (period T = 10–100 s) are used in the mod-

elling of dispersion curves of phase and group velocities V (T)

and waveform modelling (Fig. 1a). In crustal studies using surface

waves, the epicentral distance of the recordings is usually between

10◦ and 20◦. They cover a relatively large area, but the lateral reso-

lution is usually of the order of 50–100 km. This limits the spatial

resolution for crustal velocities and Moho depth (depth accuracy

of the order ±4–5km). On the other hand, surface waves are useful

in studying oceanic areas, which have a rather poor coverage of

seismic stations.

The best resolution for the geometry of crustal seismic boundaries

and for the Moho is obtained using near-vertical reflection profil-

ing (Fig. 1b). In this technique, the relatively short wave lengths

(T = 0.02–0.1 s, frequency interval f = 10–50 Hz) permit

detailed determination of the shape of the seismic boundaries, the

zones of attenuation (e.g. fracture zones) and the zones of high

reflectivity. The deep near-vertical reflection technique is, however,

expensive. So, it is usually applied in prospecting the shallowest sed-

imentary cover (to a depth of a few kilometres, usually to about 4 s

TWT—two-way time). The number of profiles with recording time

extending to 12–20 s TWT is still limited and not nearly sufficient

to constrain the Moho depth map for large areas.

Intermediate resolution can be obtained with deep seismic sound-

ing using refracted and wide-angle reflected waves (Fig. 1d) of

intermediate frequencies (f = 5–15 Hz and T ≈ 0.1 s), recorded

along profiles up to distances of 300–400 km from the source. Iden-

tification of the Moho is crucial in this method. Reflections from the

Moho (PmP wave; usually the strongest observed wave), together

with refractions from the uppermost mantle (Pn wave; recorded

as first arrival in far distance from the source, some 150–300 km,

with characterstic velocity about 8 kms−1), unequivocally define

the Moho. The method of refracted and wide-angle reflected waves

gives Moho depth for long profiles with a good accuracy of the

order of ±1–2 km.

In the last over dozen or so years, a considerable development

in the receiver function (RF) technique has taken place. In RF the

initial data are broad-band seismograms of teleseismic P waves

from the earthquakes at the epicentral distance range of 30◦–100◦.

At seismic discontinuities beneath the seismic station, a part of the

P-wave energy is converted to S-wave energy (Fig. 1e). The delay

time of these P-to-S converted phases (Ps) depends on the depth of

the discontinuity and the S-wave velocity. The amplitudes depend

on the contrast of seismic velocities at discontinuity. Different tech-

niques of RF interpretation are applied, including 1-D inversion,

forward modelling of VS velocity, and simultaneous determination

of Moho depth and Poisson’s ratio in the crust. These results pro-

vide new, independent information, particularly on the distribution

of S-wave velocity in the crust and Moho depth (with an accuracy

of about ±3 km). In the RE technique, in a similar way to surface

C© 2008 The Authors, GJI, 176, 279–292
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The Moho depth map of the European Plate 281

Figure 1. An illustration of the methods used to study crustal structure and a sketch of the waves penetrating into crust/mantle model: (a) dispersion curves

of surface waves in surface wave tomography; (b) a seismic section in a near-vertical reflection profiling and reflected rays from the Moho; (c) a gravity model

obtained using the contrast of densities of the crust (ρc) and mantle (ρm); (d) a controlled source seismic refraction profiling record section and rays of refracted

waves in the crust and uppermost mantle; (e) a plot illustrating the RF technique with rays converted at the Moho—Pp (solid) and Ps (dashed)—the front of

the teleseismic P wave is marked by dotted line.

waves investigations, capability to resolve P-velocity and density is

very limited.

Distribution of the density in the crust can be obtained by mod-

elling Bouguer anomalies, which reflect mostly density inhomo-

geneities in sediments, crystalline complex of the crust and at the

Moho (Fig. 1c). Gravity modelling use seismic data: velocity dis-

tribution and geometry of seismic discontinuities result in density

distribution in the crust (ρc) and mantle (ρm).

In spite of their relatively low resolution, the surface waves and

RF investigations are able to resolve crustal S-velocity structure.

Their combination with P velocities from refraction studies and

densities from gravity modelling, gives the characteristics of the

basic elastic parameters of the crust, including the geometry of

discontinuities and Moho depth.

DATA T O C O N S T R A I N T H E N E W M O H O

D E P T H M A P

We begun by collecting a database of the Moho depth values

(Fig. 2 and Table 1). The oldest data come from early the 1970s

and the 1980s, and most of them were compiled in regional maps

that were published in the last 20 yr. A huge amount of new data were

obtained in last decade, for example, in Central Europe, particularly

within the refraction and wide-angle reflection projects POLON-

AISE’97, CELEBRATION 2000, ALP 2002 and SUDETES 2003

(Guterch et al. 1999, 2003). The results of different projects were

evaluated, and they were given relative weighs in our compila-

tion. The highest weigh was given to data from modern refraction

and wide-angle reflection profiles with a dense system of obser-

vations and good reciprocal coverage (e.g. Guterch et al. 1994;

EUROBRIDGE Seismic Working Group 1999; Grad et al. 2003,

2006; Środa et al. 2006; Brückl et al. 2007). Moho depths were di-

rectly extracted from 2-D numerical models with spacing of 5 or 10

km (depending on seismic data and model quality), and transferred

to geographical coordinates: latitude ϕ, longitude λ, and Moho

depth h below the sea level. Older profiles were digitized by hand

from published papers (e.g. Båth 1984; Fernàndez et al. 2004a; Ne-

prochnov et al. 2000; Lie & Andersson 1998) with spacing 10–20

km (or more for the spars recording system or low coverage of rays).

Only those parts of the models that were sufficiently sampled by rays

were included in the database. In case of significant disagreement

of depth at crossing points of two profiles, either the results of the

profile with better quality were used, or both profiles were removed

from the data set.

For some areas, we used regional Moho depth maps, compiled

using deep seismic data, usually both refracted and reflected. Some

of them we got in digital form, for example, for Germany (Mechie

2007) and for the Barents Sea (Ritzmann et al. 2007). For the

territory of Russia a few tens of deep seismic sounding profiles,

surveyed mainly by GEON, Moscow, were compiled into Moho

depth map shown in Fig. 3 (map Ko, for data examples see e.g.

Kostyuchenko et al. 1998, 1999, 2004, 2006; Yegorova et al. 2004b).

Another compilation for the same territory was done by Erinchek

et al. 2006 (see map Er in Fig. 3). Ko and Er maps are rather

consistent and express the deepest Moho in European Russia in

a very similar way. The differences in Moho depths between the

maps do not usually exceed ±3 km (Ko-Er in Fig. 3), and only

in some areas does it reaches ±5 km (the Urals, the area north

of Caspian Sea). Both maps show much more details in Moho

topography compared with about a 30-years-old map by Giese &

Pavlenkova (1988; in Fig. 3 map GP). Also, differences in Moho

C© 2008 The Authors, GJI, 176, 279–292
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282 M. Grad et al.

Figure 2. Spatial coverage of the data sets used in the construction of the Moho depth map for the European Plate. The database for this compilation comprises

more than 250 data sets from individual seismic profiles, 3-D models obtained by body and surface waves, RF and regional maps of seismic and/or gravity data

compilations. See the text for more description.

Table 1. Sources of data for Moho depth map of the European Plate.

Area References for original seismic and/or gravity data References for compiled data

East European

platform

Aleshin et al. 2006; Båth 1984; Czuba et al. 2002; DOBREfraction’99 Working Group 2003;

EUROBRIDGE Seismic Working Group 1999; EUROBRIDGE’95 Seismic Working Group

2001; FENNIA Working Group 1998; Grad & Luosto 1987, 1994; Grad & Tripolsky 1995;

Grad et al. 1991; Komminaho & Yliniemi 1992; Kortström et al. 2006; Luosto 1986; Luosto

et al. 1989, 1990, 1994; Olsson 2007; Środa & POLONAISE Working Group 1999; Thybo

et al. 2003; Wilde-Piórko et al. 2002

Bogdanova et al. 2006; Erinchek

et al. 2006; Korja et al. 2001;

Korsman et al. 1999;

Kostyuchenko et al. 1999,

2004, 2006; Luosto 1991;

Yegorova et al. 2004a, 2004b

Central Europe Bleibinhaus et al. 1999; Grad et al. 1999, 2003, 2005, 2006; Guterch & Grad 2006; Guterch

et al. 1994, 1999; Hauser et al. 2001, 2007; Hrubcová et al. 2005; Janik et al. 2002, 2005;

Jensen et al. 1999; Lie & Andersson 1998; Majdański et al. 2006; Malinowski et al. 2005;

Środa et al. 2006; Wilde-Piórko et al. 2002

Grad et al. 2002, 2007; Guterch

et al. 2007; Lenkey 1999;

Mechie 2007; Radulescu

1988; Wéber 2002

Western Europe Álvarez-Marrón et al. 1996; Banda et al. 1993; Bitri et al. 1997; Cassel et al. 1983; Grandjean

et al. 2001; ILIHA DSS Group 1993; Matte & Hirn 1988; Ottemöller & Midzi 2003; Pulgar

et al. 1996; Suriñach & Vegas 1988; Téllez & Córdoba 1998; Thybo et al. 2006; Zang &

Langston 1995; Zeyen et al. 1997

Banda 1988; Kelly et al. 2007;

Lefort & Agarwal 2000;

Rijkers & Duin 1994

Mediterranean Sea

and Alpine area

Behm et al. 2007; Ben-Avraham et al. 2002; Bertrand & Deschamps 2000; Brückl et al. 2007;

Clément et al. 2000; Contrucci et al. 2005; Hirn et al. 1996; Karagianni et al. 2005; Makris

et al. 1999, 2001; Makris & Yegorova 2006; Marone et al. 2003; Mele & Sandvol 2003;

Netzeband et al. 2006; Raykova & Nikolova 2007; Serrano et al. 2005; Van der Meijde et al.

2003; Zelt et al. 2005; Zor et al. 2006

Cassinis 2006;

González-Fernández et al.

2001; Mauffret et al. 1995;

Nicolich et al. 2000; Sartori

et al. 2004; Scarascia &

Cassinis 1997

Atlantic and polar

regions

Barton & White 1997; Bullock & Minshull 2005; Canales et al. 2000; Czuba et al. 1999, 2005;

Du et al. 2002; Fernàndez et al. 2004a, 2004b; Grevemeyer et al. 1997; Ljones et al. 2004;

Marone et al. 2003; Neprochnov et al. 2000; Ottemöller & Midzi 2003; Riedel et al. 2005

Foulger & Anderson 2005;

Gudmundsson 2003;

Leftwich et al. 2005; Planke

et al. 1991; Ritzmann et al.

2007; Tsikalas et al. 2005

European Plate

surroundings

Al-Damegh et al. 2005; Angus et al. 2006; Arboleya et al. 2004; Ayarza et al. 2005; Best et al.

1990; Dahl-Jensen et al. 2003; DESERT Group 2004; Doloei & Roberts 2003; Doser et al.

1997; El-Isa et al., 1987; Ginzburg & Ben-Avraham 1987; Ginzburg et al. 1981; Gürbüz &

Evans 1991; Juhlin et al. 1996; Maillard et al. 2006; Makris et al. 1988; Mechie et al. 2005;

Mickus & Jallouli 1999; Mohsen et al. 2005; Paul et al. 2006; Schmidt-Aursch & Jokat

2005a, 2005b; Schwartz & Wigger 1988; Snyder & Barazangi 1986; Zor et al. 2003

Kostyuchenko et al. 1998; Laske

2002; Pasyanos et al. 2004;

Seber et al. 2000;

Sheikh-Zade 1996;

Starostenko et al. 2004; Ye

et al. 1999
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The Moho depth map of the European Plate 283

Figure 3. A comparison of the data sets from European Russia. Data of GEON Moscow were compiled into the Moho depth map Ko (for data examples see

e.g. Kostyuchenko et al. 1998, 1999, 2004, 2006; Yegorova et al. 2004b). Map Er, compilation by Erinchek et al. (2006). Map GP, Moho topography by Giese

& Pavlenkova (1988). The corresponding differences in the Moho depths are shown in maps Ko–Er, Ko–GP and Er–GP.

C© 2008 The Authors, GJI, 176, 279–292
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284 M. Grad et al.

depths between map GP and the two new maps Ko and Er reach

±6 km, or even more (see comparison Ko–GP and Er–GP in

Fig. 3). For our compilation of the European Moho we decided to

use average values from the Ko and Er maps.

For the territory of British Isles and surrounding sea areas we

made a similar comparison between two data sets based on seis-

mic profiles (KE, Kelly et al. 2007; CP, Chadwick & Pharaoh

1998) and Moho depth determined using the RF technique (RF,

Landes et al. 2006; Tomlinson et al. 2006). An RF map based

on a limited number of observations gives only the generalized

Moho depth of the area. All three maps and the difference between

Figure 4. A comparison of the data sets from the British Isles and surounding areas. KE, map by Kelly et al. 2007; CP, map by Chadwick & Pharaoh 1998;

RF, map compiled from the data published by Landes et al. (2006) and Tomlinson et al. (2006). KE–CP, differences between maps KE and CP.

KE and CP maps are shown in Fig. 4. Maps KE and CP differ

slightly, particularly in the continent-ocean transition (about 5 km

in KE–CP map). Both maps have been compiled using tens of

existing reflection and wide-angle/refraction seismic profiles, in-

cluding the results of the large project of deep reflection profiling

British Institutions Reflection Profiling Syndicate (BIRPS). How-

ever, the KE model was additionally verified and tuned by gravity

modelling. The minimized rms misfit between observed and cal-

culated gravity anomalies was 8.8 mGal (Kelly et al. 2007). We

used the KE map in our compilation of the Moho depth map for

Europe.

C© 2008 The Authors, GJI, 176, 279–292
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The Moho depth map of the European Plate 285

We used also Moho depths in digital form from 3-D models,

derived from local seismic tomography, surface waves and seis-

mic/gravity modelling results (e.g. Środa et al. 2002; Marone

et al. 2003; Karagianni et al. 2005; Schmidt-Aursch & Jokat

2005a, 2005b; Zelt et al. 2005; Behm et al. 2007; Majdański et al.

2007; Raykova & Nikolova 2007). In this case, maps and/or mod-

els had different grid spacings, from about 10 km ×10 km (or

even smaller), to about 50 km × 50 km. The grids were resam-

pled to a more suitable spacing according to quality of the data,

resolution of the data and existence of other data for the area in

question.

Another class of seismic data were RF Moho depth estimations

beneath permanent or temporary seismic stations (e.g. Du et al.

2002; Wilde-Piórko et al. 2002; Angus et al. 2006; Olsson 2007).

In addition many maps were digitized by hand (e.g. Mauffret et al.

1995; Starostenko et al. 2004; Leftwich et al. 2005; Tsikalas et al.

2005; Cassinis 2006; Makris & Yegorova 2006). Areas without

regional seismic or gravity data (usually at European Plate sur-

roundings) were filled using more general, lower-resolution global

models (Laske 2002; Pasyanos et al. 2004).

Altogether, the Moho map database comprises more than 250

data sets from individual seismic profiles, 3-D models obtained by

body and surface waves, RF, and maps of seismic and/or gravity

data compilations (Fig. 2 and Table 1). All coordinate manipula-

tion, gridding and filtration were done using The Generic Mapping

Tools (GMT, Wessel & Smith 1991, 1998). The original data points

were triplets: latitude ϕ, longitude λ and Moho depth h below the

sea level. The data was transformed to the xy-coordinate system

to reduce distortion caused by handling geographic data from dif-

ferent latitudes. Latitude and longitude values were changed to

xy-coordinates using a Lambert projection in the scale 1:10000000

using origin 59.5◦N, 15.0◦E and standard parallels 30◦N and 86◦N.

The Lambert projection was chosen because it produces very low

distortion of an area but is still conformal. The data points were

changed to a 10 km × 10 km grid, using the adjustable tension

continuous-curvature surface gridding algorithm (Smith & Wessel

1990). Before the gridding the data were pre-processed to avoid

spatial aliasing and to eliminate redundant data. This was done by

transforming the original points to 10 km × 10 km block averages.

The data grid was lowpass filtered using cut-off length of 100 km

and passing wavelengths greater than 200 km. Finally the gridded

data set was transformed from xy-coordinates back to the geograph-

ical coordinate system ϕ, λ, h. The final product—a Moho depth

map was resampled to a 0.1◦ × 0.15◦ grid. The map to a scale of

1:40000000 is shown in Fig. 5.

In general, the Moho depth map is smooth, though we accepted

small disagreements of depth at the crossing points of profiles. In

some cases, disagreements result from different accuracy, differ-

ent techniques used or from velocity anisotropy in the crust (e.g.

Środa 2006), which can be in the order of 10 per cent. However,

anisotropy was not taken into consideration in our ‘isotropic’ map.

It should be noted, that the process of models evaluation, determi-

nation of sampling interval for models and Moho depth maps, as

well as the decision to use only parts of overlapping data, sets was

subjective, based first of all on the quality of original data and our

own experience. Another recommendation for the quality of data

and models/maps is the fact that they were published in high quality,

reviewed, international journals.

Although different types of data were used, in most cases depths

to the Moho were consistent. As mentioned earlier, we can expect

that our map describes Moho depth with an accuracy of the order

±3–6 km. However, the uncertainties are different for different seis-

mic techniques, even different for the same techniques in different

experiments and areas. Evaluation of the Moho depth uncertainty

was published only in few papers (e.g. Zeyen et al. 1997; Doloei &

Roberts 2003; Grad et al. 2003; Marone et al. 2003; Środa et al.

2006; Behm et al. 2007; Ritzmann et al. 2007). We expect the lowest

uncertainty of the order 5 per cent for new, modern, good quality

seismic refraction profiles, available in digital form (e.g. models

obtained by ray tracing modelling)—it gives about ±2 km uncer-

tainty for 40 km thick crust. Older, reinterpreted, compiled, and/or

manually digitized profiles have lower quality, with uncertainty of

the order 6–8 per cent. For profiles with good-quality seismic data,

but a poor coverage of shots and/or receivers, as well as for good

quality RF studies the uncertainty is about 10 per cent. For man-

ually digitized maps and results based on gravity modelling using

seismic profiles uncertainty is about 15 per cent (about ±6 km

for 40 km thick crust). The lowest uncertainty (about 20 per cent)

was atributed to results obtained from surface waves and gravity

modelling.

When available, the uncertainties were taken from the published

papers. In other cases, we used values described above. For all data

points used to construct the Moho depth map (for the same latitude

ϕ and longitude λ), corresponding values of uncertainties (in km)

were atributed. The map of Moho depth uncertainty (Fig. 6) was

done using exactly the same projection, transformation, filtering,

etc., as the Moho depth map.

The uncertainty map is shown in Fig. 6. The uncertainty ranges

from 5 to 20 per cent, what gives uncertainty for the Moho depth

from ±2 to ±10 km. As seen from the map we have the lowest

uncertainty of the order of ±2–4 km for the continental part of

Western, Central and North Europe. We have similar values for the

oceanic crust; however, the Moho depth there is about 10–15 km,

so, the relative uncertainty is big. The bigest uncertainty is observed

for Greenland and for Europe–Africa–Arabia transition, where the

resolution of the present map is the lowest.

M O H O M A P F O R T H E E U RO P E A N

P L AT E A N D T E C T O N I C C O N C LU S I O N S

The new European Plate Moho depth map (Fig. 5) is a compilation

of data, published before September 2007. The map has some advan-

tages over the previous maps: (1) it contains available recent/modern

results on the crustal stucture, mostly high quality seismic results;

(2) the map covers the area of the whole European Plate, extending

from the mid-Atlantic ridge in the west to the Ural Mountains in

the east and from the Mediterranean Sea in the south to the Barents

Sea and Spitsbergen in the Arctic in the north, which is much wider

than areas covered by previous Moho depth maps of Europe; (3) it

is consistent and (4) it is available in digital form.

The complex tectonic history of Europe reflects the breakup of

a Neoproterozoic supercontinents Rodinia/Pannotia (Dalziel 1997)

to form the fragment of Baltica and the subsequent growth of conti-

nental Europe, beginning with the Caledonian orogeny. Caledonian

and younger Variscan orogenesis involved accretion of Laurentian

and Gondwanan terranes to the rifted margin of Baltica during the

Palaeozoic (Pharaoh 1999). The suite of sutures and terranes that

formed, the so-called Trans-European suture zone (TESZ) adjacent

to the rifted margin of Baltica, extends from the British Isles to

the Black Sea region. The TESZ is far more complex than a single

suture, but in a broad sense, it is the boundary between the accreted

Phanerozoic terranes and Proterozoic Baltica. Understanding its

structure and evolution is one of the key tectonic challenges in
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Figure 6. The map of the Moho depth uncertainty. The map was processed similarily as Moho depth map in Fig. 5.

Europe and is certainly of global importance to studies in terrane

tectonics and continental evolution. The younger Alps, Carpathian

Mountains arc and Pannonian backarc basin in the south form

interrelated components of the Mediterranean arc–basin complex

and are the result of intricate Mesozoic/Cenozoic plate interactions

in the Mediterranean region as the Tethys Ocean, closed during the

convergence of Europe and Afro–Arabia.

All tectonic processes and geological structures mentioned above

have their images in the Moho depth map. Regional and local prop-

erties can be studied using existing models and data for relatively

limited area. Here, we would like to concentrate on the continental

scale of visible structures. Long wave filtration permits us to ex-

pose the main elements of the European Plate Moho on a large scale.

Fig. 7 shows two maps, filtered from the original one with a charac-

teristic length of 500 km (Fig. 7a) and 1000 km (Fig. 7b), which are

devoid of the fine details of the structure. In Fig. 7(a) the thick crust

of the East European platform (with the Baltic shield) is separated in

the west from the Atlantic by the Caledonides. In the south, between

TESZ and the Mediterranean Sea, accreted terranes form a much

shallower crust (ATA, Iberia, Pannonian Basin), with the exception

of the thick collisional Alpine crust. For longer characteristic length

of filtration (Fig. 7b), three large domains within European Plate

crust are visible. The oldest Archean and Proterozoic crust of thick-

ness 40–60 km, continental Variscan and Alpine crust of thickness

20–40 km, and the youngest oceanic crust of Atlantic of thickness

10–20 km.
In general Moho depth map presented in this paper for the whole

European Plate is consistent and smooth, although the data grid
was lowpass filtered using cut-off length of 100 km and passing
wavelengths greater than 200 km. The Moho map images and
our current knowledge of the overall structure of the European
Moho are available at webpages of the University of Helsinki and
the University of Warsaw as a graphic (tiff, pdf, eps and jpg for-

mats), as well as in data files (ASCII text and GMT format), with
latitude, longitude, Moho depth and Moho depth uncertainty. We
hope that new data and contributions could give an opportunity to
update our map after 5–7 yr. It will be particularly useful to get new
data sets from the mid-Atlantic ridge and Europe–Africa–Arabia
transition, where the resolution of present map is the lowest. We
also look forward to your contributions to our future map. The
map can be found at: http://www.igf.fuw.edu.pl/mohomap2007/ and
http://www.seismo.helsinki.fi/mohomap/
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Figure 7. Filtered Moho depth maps of the European Plate: (a) A 500 km filter brings out the main terranes of the European Plate; (b) a 1000 km filter

highlights the three age groups of the European crust—thin and young oceanic crust of the Atlantic Ocean, the continental crust of Variscan and Alpine Europe

and thickest and oldest crust of Archean and Proterozoic Baltica.
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