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The Mokken scale is critically discussed. It is ar-

gued that Loevinger’s H, adapted by Mokken and ad-
vocated as a coefficient of scalability, is sensitive to
properties of the item set which are extraneous to
Mokken’s requirement of holomorphy of item re-
sponse curves. Therefore, when defined in terms of H,
the Mokken scale is ambiguous. It is furthermore ar-

gued that item-selection free statistical inferences con-

ceming the latent person order appear to be insuffi-
ciently based on double monotony alone, and that the
Rasch model is the only item response model fulfilling
this requirement. Finally, it is contended that the

Mokken scale is an unfruitful compromise between the
requirements of a Guttman scale and the requirements
of classical test theory.

The so-called &dquo;Mokken scale analysis,&dquo; first developed by Mokken (1971), has recently become
more widely used, especially in the Netherlands (e.g., Niemoeller & van Schuur, 1983; Stokman & van

Schuur, 1980) and in Germany (e.g., Henning, 1976). Mokken and Lewis (1982) gave a brief account
of the Mokken scale and some related issues. Although they referred to a number of recent publications,
such as Henning (1976) and Molenaar (1982a,b), they ignored the fact that Henning had reported rather
disappointing results, and that Jansen (1981, 1982a,b) and Jansen, Roskam, and van den Wollenberg
(1982) had raised a number of critical points with respect to the use of Loevinger’s II (as adapted by
Mokken) to indicate &dquo;scalability.&dquo; 

9

This paper reiterates the points raised by Jansen et al., and in addition, some related issues are
discussed in a fairly non-technical way; for technical details, the reader is referred to Jansen (1982b,
1983) and Jansen, Roskam, and van den Wollenberg (1984). First, the Mokken scale is briefly described.
In later sections, Mokken’s scalability concept is contrasted with the authors’ own position on this issue,
and the scalability coefficient ~I is critically examined.

Monotone homogeneity defines a class of item response models with certain general and desirable

properties. Any parametric model belonging to this class adds additional specific and restrictive properties,
which may be more than is desirable. Hence, a scalability coefficient and a corresponding procedure of
scale analysis which is directed toward nonparametric properties should be considered desirable objectives,
and can be put to use to investigate the extent to which data satisfy the properties of monotone homogeneity
(or holomorphy, respectively) without involving parameter estimation. The critical question of whether
or not this objective is met by Mokken’s scalability coefficient and procedure for scale analysis is discussed
below.
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The ~l~~~a~ Scale

Monotony and Coefficient H

A set of dichotomous items having monotone item characteristic curves (iccs) is called monotone

homogeneous; the one-, two-, and three-parameter logistic models all have this property, as does the
normal ogive model. When the iccs of a monotone homogeneous model are parallel in terms of horizontal
translation, the model is called holomorphic. The one-parameter logistic (Rasch) model has this property;
the two- and three-parameter logistic models and the normal ogive model do not. A holomorphic model
is very simple, as only one parameter for person location and one parameter for item location are needed.

A more general, nonparametric definition of holomorphy only requires that the probability of a

positive response is an increasing function of a person’s latent trait position, and a decreasing function
of the item’s difficulty. Consequently, no two Iccs intersect, and this is called double monotony. The
term nonparametric in this context means that no assumptions are made concerning the particular functional
form of the iccs.

For doubly monotone item response functions, Mokken (1971) derived a number of nonparametric
properties of the marginal response distribution for a population of persons. For instance, holomorphy
implies a unique ordering of the items: The ordering of the response probabilities of the items is independent
of a person’s latent trait position; the ordering is the same for all conceivable samples. The role of persons
and items is completely symmetrical, so the statement may be reversed.

In addition, Mokken (1971, p. 152) developed a &dquo;coefficient of scalability&dquo;, based on (but different
from) Loevinger’s H. For pairs of items, i and j, Hij is defined as

where pi refers to the proportion of persons with positive responses to item i, and pij refers to the proportion
of persons with positive responses to both items i and (i,j = 1, ..., k). H,y is equal to ~/~max, where §
is the binary inter-item correlation, and <l>max is its maximum value for given pi and pj. In a perfect Guttman
scale, or scalogram, ~ij = pi f~r ~i C~Jj9 and so (~ = (~max9 and ~ij = 1.

The item coefficient of scalability, is defined by the number of &dquo;errors&dquo; in response patterns

involving item i divided by the number of errors which is expected under the hypothesis of marginal
independence (where an error is defined in terms of the perfect scalogram; see Mokken, 1971, p 15 ff . ,
for details):

Finally, the coefficient of scalability, H, is defined as a weighted sum &reg;f l~,s:
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Since l~ is essentially based on counting order reversals, it is also a type of average weighted inter-item
I~endall9s tau.l 1

The Concept of Scalability Mokken Analysis

Mokken (1971) defined a scale as any set of positively correlated items, for which all values of d~~
exceed some positive constant c. A lower bound of .30 is advocated as a suitable value of c. The term
&dquo;scale,&dquo; in this context, appears to refer to a set of items satisfying cany model. The value of c as an

acceptable lower bound for l~ is in a sense arbitrary, just as setting a probability level is arbitrary in

accepting or rejecting a null hypothesis.
The problem with Mokken scale analysis is that the literature must be searched in order to gain a

more specific understanding of Mokkcn9s concept of scalability. In particular, the questions of where and
in what way double monotony is implied or required can be a matter of debate. The reason for this is
that Mokken (1971) was not very explicit in specifying the item response model with respect to which
his concept of scalability is defined. Mokken (1971) states: &dquo;We prefer to use the coefficient of homo-

geneity, I~9 as a criterion of scalability in the sense of monotone homogeneity.... Our coefficient of

scalability as such will be our sole criterion of scalability&dquo; (p. 182).
Ignoring the fact that this quotation implies a circular definition of scalability, the position can be

adopted that a Mokken scale is any set of items which have monotone iccs over a unidimensional latent
trait continuum. This definition is evidently implied by Mokken and Lewis (1982, pp. 418, 421). The
Rasch model, the two- and three-parameter logistic models and the normal ogive model would all be

special cases of the Mokken scale defined in this manner. The Guttman scalogram can be considered a

limiting case, where the iccs are step functions.
However, the concept of scalability becomes more complicated because in both Mokken (1971) and

Mokken and Lewis (1982) it also seems that double monotony is additionally implied in the concept of
the Mokken scale. Mokken (1971, p. 149), introducing ~I, wrote:

We may add that in the definition of the coefficient of scalability H, the order of the population
difficulties ... is essential. Therefore the property of monotone homogeneity may not be sufficient
if we relax the deterministic requirements and we admit a probabilistic model. We may then need
holomorphic or doubly monotone sets of items ...

In their abstract, Mokken and Lewis (1982) considered the Mokken model to be a natural generalization
of Guttman scaling. The Guttman scale, as is generally known, represents a weak ordering of both persons
and items, and as such it represents a case of double monotony. Mokken and Lewis also emphasized that
monotone homogeneity may not be the ultimate goal of scaling, and that double monotony may be

additionally required for test administration.
The confusion about the definition of the Mokken scale is of a more than casual nature, as will be

seen below. This confusion is related to the fact that although Mokken (1971), as well as Mokken and
Lewis (1982), introduced the concept of a scaling model (a nonparametric model of doubly monotone

items), they defined a scale by means of a scalability coefficient. Apparently, Mokken and Lewis do not
use the word &dquo;scale&dquo; to refer to a set of items satisfying any given model.

1Cliff, 1983, points out that "in view of ... the purely descriptive origins of this index, an underlying trait model is apparently
not necessary for it" (p. 291).
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Scalability

The Scaling Model

Mokken and Lewis (1982, p. 422, footnote 3) pointed out that they do not use the term &dquo;scale&dquo; in

the strict sense in which it is used in axiomatic measurement theory. They use the term in an open way,
meaning &dquo;a set of items which have certain properties&dquo;. In measurement theory, a scale is defined as
the numerical representation of some quality, obtained from the theoretical structure of the responses to
a set of items. Thus, scalability always refers to some item response model, for example, Guttman

scalability or Rasch scalability. A coefficient such as H carries some information concerning the structure
in the data, but in order to interpret and evaluate that information, it must be interpretable in terms of
the properties of a model.

In order to specify the response model that acts as the (implicit) reference for Mokken scalability,
it is necessary to follow more closely the reasoning which led Mokken to H and to the procedure of scale

analysis. Like Guttman, Mokken concentrated on the prediction of single item responses from the raw
score and the item ordering. Related to this is the fact that the scalogram, with a sufficiently large and

well-spread number of items, can discriminate very adequately among persons with different latent

positions. The objective of scaling persons is not only to reproduce their response patterns from their raw
scores, but also to discriminate among them. However, Mokken (1971, pp. 41-42, 70-71) considered
the deterministic Guttman scale to be too rigid and obviously not realistic. Furthermore, he found ( 1971,
p. 64) that none of the existing criteria of scalability was satisfactory as a measure of Guttman scalability.
His answer to these problems was an adaptation of Loevinger’s H as a coefficient of scalability.

Although it is possible to agree with Mokken that none of the existing coefficients is satisfactory,
H is not a satisfactory alternative, as will be shown. In order to have a satisfactory coefficient of scalability,
it is desirable to have a model or theory about the way responses may differ from what is expected when

perfect scalability is assumed. Such a theory is patently absent in the Guttman scalogram, for the simple
reason that the scalogram is a deterministic model with no stochastic elements in it.

Consequently, a probabilistic &dquo;Guttman model&dquo; should serve as the basis for the construction of

the coefficient of scalability. The ideal is to order and select a set of items with respect to the degree to
which they satisfy the requirements of some sort of probabilistic analogue of the scalogram model. There

appear to be good reasons (cf. Jansen, 1983; Roskam, 1983; Roskam & Jansen, 1984) to argue that the
Rasch model is the only probabilistic generalization of the property of composite transitivity, which is
the core axiom of the scalogram model (Ducamp & Falmagne, 1969).

However, a researcher may not be interested in a specific parametric model, but rather in a class of
models defined by certain broad properties. These properties could, for instance, be monotony of item

response curves, or the more restrictive property of holomorphy, which excludes both the two-parameter
logistic and the normal ogive models. But in such a case, in order to be useful, a coefficient of scalability
must give information about the deviations from the expected structure; the degree to which the properties
of the class of models are satisfied should be reflected in the scalability coefficient.

Requirements for a Coefficient of Scalability

In the previous section, the almost trivial conclusion was drawn that a coefficient of scalability must

give information with respect to the hypothesis that the items constitute a scale with clearly specified
properties. In particular, H should indicate the extent to which the items satisfy an explicit though
nonparametric item response model. This does not imply that rigid criteria are required for rejecting that

hypothesis, nor that the sampling distribution of the statistic should be known under various deviations
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from the model, but it should at least behave properly. This means at least that the coefficient increases
when items known to deviate from the model requirements are eliminated, and that it decreases when an
item known to satisfy those requirements is replaced by one which is known to violate them. Note that
this implies that any test of goodness of fit is by itself a scalability coefficient. Conversely, a coefficient
which is not explicitly related to a scale model is not a scalability coefficient.

With regard to the behavior of goodness-of-fit statistics and scalability coefficients, some aspects
can be distinguished:
1. The sensitivity of a statistic to violation of essential properties of the model;
2. The sensitivity of a statistic to irrelevant properties of the data;
3. The differential sensitivity of a statistic to violation of essential properties of the model, given

differences in irrelevant aspects.
A statistic should be sensitive to violations of the properties (axioms) of the model; however, it need not
be sensitive to violations of all axioms. For example, van den Wollenberg (1982) showed for the case
of the Rasch model that his statistic Ql is sensitive to violations of monotony and sufficiency, but not to
violations of local independence and unidimensionality; for Q2 the situation is reversed, so together these
statistics constitute a complete test of model fit. A statistic should not be sensitive to properties of the
data which are immaterial in the scale model. As will be shown, this requirement is not met by the

scalability coefficient H.
It is quite possible that fit statistics react differentially to model violations dependent upon intrinsically

irrelevant properties of the data. A quite common example is that of statistical information. Information
is irrelevant to model violation; but, when the model is violated, a fit statistic will covary with the amount

of statistical information in the data.

To conclude, a scalability coefficient may be insensitive to some types of model deviations, and in
this case more than one coefficient is needed for a full characterization; but a scalability coefficient may
never react to irrelevant properties of the data when the scaling model holds. For the case of the Mokken
scale, this implies that a pertinent coefficient of scalability should be a test of monotone homogeneity
and/or double monotony of iccs, as these are defining characteristics. The question of whether the
coefficient proposed by Mokken, H, satisfies the above requirements will be investigated below.

What Does H Measure?

The meaning of ~-1 will be revealed by scrutiny of the relation between II and specified properties
of item response structures. It is implied by Mokken that ~I expresses the degree of monotone homogeneity
of a set of items. However, the quotations show that holomorphy was additionally implied (cf. Mokken,
1971, pp. 148-149). Since both the Guttman scalogram and the Rasch model are special cases of the
Mokken scale, they should be homogeneous in the sense of Mokken’s H.

For pairs of items, i and j, Hij is simply equal to §/§~~_. Therefore, it follows immediately that H~~,
~I;, and H are equal to unity when a set of items forms a perfect Guttman scale. Indeed, II operates
satisfactorily for the scalogram. In this section it is shown that the same does not hold for probabilistic
response models, including the Rasch model.

C&reg;eff cient and Monotone ICCs

In the following, sets of (doubly) monotonous item response curves are discussed; these sets can be
characterized by two properties:
1. Steepness, the slope of the ICC;
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Figure 1
Various ICC Patterns Which Cause Different Degrees of Violation

of Guttman Scalability

2. Closeness, the distances between the item location parameters .
Figure 1 shows Iccs for several items which may cause different degrees of violations of Guttman

scalability. Iccs cc and b cause many violations, but cc and e cause almost no violations at all, and b and
e even less; other pairs of items, e.g., c and e, cause a fairly high number of violations. It can be observed
that the iccs in Figure 1 are very steep as compared to their closeness. As a consequence, the probability
of a non-scalogram response pattern is low. Stated more precisely: If the slope of Iccs is steep, ~1 will
be close to unity. The lower the slope, the lower ~1 will be, other things being equal. Similarly, if iccs
are close together, non-scalogram response patterns are likely to occur.

For a given sample or population of persons, therefore, H will vary in two ways, even for doubly
monotone items:

1. The steeper the iccs, the higher the value of H;
2. The closer the Iccs, the lower the value of H. 

2

Now consider a set of monotone homogeneous items and two samples of persons, one with a small
variance and one with a large variance. For the sake of argument, let the mean of the two distributions
coincide, and assume that the location of the items is symmetric around this mean.

In the sample with small variance, a large proportion of persons will produce violations of Guttman

scalability and hence a small 11. If the person variance is extremely small and therefore degenerates to
a single latent trait position, the response probabilities become perfectly predictable from the marginal
item p values, and ~1 becomes zero. This means, of course, that the items cannot discriminate among
the persons, since there is nothing to discriminate among.

In the sample with large variance, relatively few violations will occur and hence I~ will be large.
However, if the variance of the persons becomes extremely large, so that the relative spacing of the items

2A proof of the relation between H and closeness is given in Jansen (1982b, 1983); with respect to steepness, the authors have no
formal proof, but it should be quite clear that the effect of flatness on H is analogous to the effect of closeness on H. A simulation

study by Wierda (1984) also showed the effects of the person distribution on H.
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is small, and if their slope is relatively flat, the items act almost as a single item and H will be small

again.
Alternatively, it may be useful to examine the effect of the spacing of the items, and how it interacts

with the variance of the persons. As an extreme case, a set of items with coinciding iccs may be considered.
When the Icc is steep, ~I will be high: In the limiting case of the ICC being a step function, ~1 equals 1,
indicating a perfect scalogram. The discrimination by means of this scalogram is poor, as only the response
patterns (0,0) and (1,1) can occur. If, on the other hand, the Iccs are close together but flat, I~ will be

low, although the raw score may discriminate reliably among the persons if their variance on the latent
continuum is fairly large. This is a case where the persons differ considerably in terms of their probabilities
of correct responses and a large number of (almost) equivalent items gives a reliable estimate of those

probabilities.
Thus it is seen that properties of the items and of the sample of persons, which in themselves are

not related to monotone homogeneity, affect the value of H. Two data sets that are equally homogeneous
in the sense of holomorphy may show a high value of ~I in one data set and a low value in the other.
This is due to the combined effect of the variance of the persons, the spacing of the items, and the

steepness of the Iccs.

From the above it follows that l~ should not be considered as a coefficient of scalability in the sense
of monotone homogeneity, and certainly not as a measure of holomorphy (see also Molenaar, 1982a, p.
29); this is contrary to the suggestions of Mokken (1971, pp. 148-149) which were accepted at the time

by, among others, Henning (1976). The effort of Molenaar (19~2c) to construct alternative test procedures
for the characteristics of the Mokken scale should also be seen in this light. It is a well-established fact
that H is sample dependent, and is thus sensitive to properties of the data which have nothing to do with
the assumed scale model.

~1 is based on counting the errors in response patterns, where error is defined in the sense of the

perfect Guttman scalogram. It is obvious that both lack of monotone homogeneity and lack of holomorphy
give rise to errors, but at the same time, probabilistic deviations from the scalogram pattern, which are

quite acceptable, are also treated as errors. The very fact that H is based on errors (i.e., deviations from
the perfect, deterministic scalogram) introduces the ambiguity of its meaning and interpretation with
respect to the probabilistic concept of (double) monotony.

Coefficient and Ite Selection

What will happen if Hi is used to select or eliminate items from a pool of items? The foregoing
shows that items with flat Iccs will be rejected, as well as items with Ices close to others. Only items
which are well spaced and have steep iccs will survive. This, in itself, is not undesirable, but it might
be obtained at the expense of items which might be perfectly doubly monotonic with the surviving items,
and which would contribute substantially to the reliability of the raw score or the estimated latent parameter.

When items are rejected by the scalability coefficient, even though they are perfectly in accordance
with the scaling model, it is feasible to lower the critical value of ~I for admission to a scale. Some

simulation studies by Molenaar (1982a) appear to invite, according to Mokken and Lewis (1982), in-

vestigation of whether and to what extent other values (e.g., c = .15) can be admissible. However, there

appears to be no way to derive a criterion of &dquo;admissibility&dquo; from the theory of the Mokken scale.
Furthermore, Mokken and Lewis (1982, p. 422) stated that a certain value of c performs &dquo;quite satis-

factorily&dquo; without giving any explicit criterion for what they consider satisfactory. Stating that this is a
matter of &dquo;practicality&dquo; is likewise gratuitous when no criteria are specified.

What makes a scale &dquo;work&dquo;? Reliability and validity may, of course, be conceivable and useful
criteria. Only recently, Molenaar and Sijtsma (1984) have begun to study relationships between H and
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classical reliability. One conclusion is that Loevinger’s H and Cronbach’s ~ measure different things,
and it may therefore not be wise to compare values of ~l and a. For instance, if the iccs of a set of items
are close and/or relatively flat, ll will be low, but the reliability of the raw score can be high in a sample
of persons with a fairly large variance on the latent continuum, and will increase with increasing number
of items. Given the lack of specification of model properties or objectives, lowering the critical value of
I~, is gratuitous, and was in fact refuted by some simulation studies by Jansen (1982b).

The present authors are willing to concede that I~ is not only sensitive to properties of the Iccs in
a perfectly monotone set of items, but also to lack of monotone homogeneity, as it was meant to be.

This implies that lowering the critical value of c, in order to accept items which are closely spaced and/
or have a flat icc, will also cause acceptance of nonhomogeneous items, or items which would not even
fit any unidimensional item response model. A high I~ may be indicative of a &dquo; near- scalogram &dquo; with

well-spaced items, though at the expense of items which would have survived, for example, a test of
Rasch homogeneity, or items which would increase the reliability of the raw score.

It might be added that tests of Rasch homogeneity (c.g., Q, and Q2; van den Wollenberg, 1982) are

independent of the person parameters and as such are sample free. This does not mean, of course, that
the sensitivity or power of such tests is sample free. Such tests will also not lead to rejection of the model
in those cases where the model is trivially satisfied (as was demonstrated by Wood, 1978); that, however,
can be judged independently.

What Is a Mokken Scale As Defined by

Loevinger’s ~1 was originally intended to be a measure of Guttman scalability (cf. Torgerson, 1958,
p. 325). In Loevinger’s terminology, a homogeneous test corresponds to a perfect Guttman scale. Mokken

appears to have chosen Loevinger’s coefficient-with a slight modification-as a useful index of scalability
for a set of doubly monotone items (i.e., in the context of probabilistic latent trait theory, without parametric
assumptions).

FI can be viewed as a measure that expresses how well a set of items sorts a set of persons into

piles, where each item can be seen as a probe which cuts the group into two consecutive parts on the
latent continuum (e.g., those who pass and those who fail, or those who agree and those who disagree).
It means that a set of items partitions the set of persons into a unidimensional quasi-order.3 3

Granting that each cut should be as neat as possible, with as few persons falling at the &dquo;wrong&dquo;
side of the cut, it does make sense to use H as a coefficient of scalability, ignoring whatever assumptions
might be made about the probabilistic character of the response process. It then follows that items which
cut close to each other cannot unambiguously order people by their manifest response pattern. In the
same vein, an item with a flat ICC is a poorly discriminating item, and one with a steep ICC will provide
fine discriminations and clear person ordering.

Using in this way as a means for item selection may lead to selection of only a few items, which
will permit differentiation of the people into only a few score groups. Conversely, a test with a large
number of items of approximately equal difficulty may return a low value of I~, but may yield fairly
reliable scores by virtue of the large number of items.

These considerations simply mean that the Mokken scale is an approximate Guttman scale, and H
is nothing but what it was originally intended for, namely a measure of Guttman scalability. In other
words, a Mokken scale as defined by H is an imperfect Guttman scale, with the degree of imperfection
specified by the value of H and dependent on the sample of persons.

3This notion of partitioning the persons is also employed by Guttman and Lingoes (cf. Lingoes, 1968) for multidimensional models.
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Guttman Scaling, Mokken Sc~ling9 Rasch Scaling, and Classical Test Theory

In the absence of a specified probabilistic response model connecting the latent trait and manifest

behavior, there is no obvious way of estimating the person parameter. This section will consider the

question of what can be said about the relation of manifest and latent score in the nonparametric Mokken
scale.

Sample Independence and Simple Sum Scores

For monotone homogeneous item sets, the expectation of the simple sum score is a monotone function
of the latent trait score (here and in the following it should be understood that statements about persons
and items can be interchanged in the case of doubly monotone items). Mokken and Lewis (1982) correctly
state: &dquo;’I’he person order ... always is given by the expected proportion correct ... and that person
order is item selection free&dquo; (p. 426). However, there is more to it. The person order on the latent level
is free of the effects of item selection by definition. Expected proportions cannot be observed, so inferences
about person order are to be based on the order of observed proportions. What matters is the question of
whether such statistical inferences about the person order are item-selection free. Secondly, though the
rank order of the expected proportions correct is item-selection free in any monotone model, the statistical

properties of orderings of observed proportions correct may not be item-selection free. (In this discussion,
&dquo;item-selection free&dquo; can only refer to inferences about the positions of persons or items on the latent
trait, and the inferences to be considered must be specified.)

The crucial point is that the probability that the observed proportion correct of one person exceeds
that of another person is in general not independent of the selection of items. Consider the simplest case
of two persons and one item. In this case, any requirement which is necessary for sample independence
to hold is also necessary for sample independence for any sample of persons and items. For two persons
and one item, there are two possible raw scores: 0 or 1. If one person responds 7 and the other responds
0, it is inferred that the first person’s latent trait position is above the other’s. This is the obvious and
certain inference if the items satisfy the scalogram structure perfectly. In a probabilistic context, the

primary concern is the probability of the event that one person responds 1 to the item, and the other

responds 0, given that only one of them responds l. If this (conditional) probability is to be independent
of the item selected, the Rasch model follows (cf. Fischer, 1974, p. 197; Roskam, 1983, p. 82; Roskam
& Jansen, 1984). _

In the Rasch model, the conditional likelihoods of the persons’ marginals given the sufficient statistics
for the parameters of the items (i.e., the item marginals) are independent of the selection of the items.

They are functions only of the person parameters (Fischer, 1974, Equation 13.5.7). Conversely, the

person marginals are sufficient statistics for their true latent scores, and the rank order of these marginals
is identical to the rank order of their estimated latent score. Furthermore, these statistics provide consistent
estimators.

Mokken and Lewis appear to confuse the rank order of expected proportions (which cannot even be

observed) and the probability of a rank order of observed proportions. Because of that, they seem to
contend that persons’ simple sum scores allow item-independent inference of their true rank order. The
maximum likelihood latent rank order is, of course, equal to the observed rank order, but it is by itself
not necessarily item-selection free. If that were true, then, for example, the normal ogive model with

equal slopes would share this property of sample independent ordering with the Rasch model. In the
Rasch model, the person parameters can be estimated independently of the item selection, and therefore,
the latent person ordering is also estimated independently of the item selection. It can furthermore be

argued that any latent trait model can only identify the latent parameters up to an ordinal transformation
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(stretching or shrinking of the latent continuum can simply be cancelled by compensatory deformation
of the iccs, without affecting any statistical property of the model). Therefore, a set of items satisfies
the Rasch model if and only if there exists a monotone transformation of the latent continuum which
makes all ices one-parameter logistic. If, in this way, a set of normal ogive iccs could be transformed
into a holomorphic set of logistic iccs, the normal ogive model would have sufficient statistics for its

parameters, which it has not. The existence of sufficient statistics, and hence of sample independent
parameter estimates, holds if and only if the model belongs to the exponential family with separable
parameters. This leads to the Rasch model for dichotomous items (Andersen, 1980, pp. 241-242; Fischer,
1974, pp. 420-421), and excludes models such as the normal ogive model.

Though sample-free estimation of the persons’ latent parameters implies sample-free estimation of
the persons’ latent rank order, the reverse need not be true. As far as is known, sample-free inference
of the persons’ latent rank order has not been shown to hold for any model except the Rasch model. In
view of the considerations presented here, it can be conjectured that sample-free inferences about the

persons’ latent rank order require at least double monotony, and, even stronger, that it imposes the Rasch
model. Considering the admissibility of a monotone transformation of the latent continuum, any model
which permits sample-free inferences about the persons’ latent rank order should be equivalent to the
Rasch model.

The statistical properties of the Rasch model are more powerful properties of statistical inference
than the property that expected marginals reflect the true latent score rank order. Note that Mokken’s
(1971) approach was:

To formulate a scaling model ... and to investigate what general properties would be preserved in
the manifest data irrespective of the specific parametric form of the latent structure and the resulting
distribution of subjects (population distribution) [all italics added] . (p. 174)

In summary:
1. For any holomorphic item set, the rank order of the persons’ expected proportions correct is inde-

pendent of the selection of items. Obviously, with increasing number of items the rank order of the
observed proportions correct is asymptotically equal to the true rank order. (Little appears to be
known about the asymptotic behavior of the observed rank order.)

2. The likelihood of observed proportions correct, conditional upon sufficient statistics for the instraz-

mental, &dquo;incidental&dquo; item parameters, is independent of item sampling if and only if the Rasch
model holds, and it is a function only of the structural person parameters. In this context, the parameters
of interest (e.g., the person parameters) are called structural parameters, whereas the instrumental

parameters (item parameters) are called &dquo;incidental&dquo; or &dquo;nuisance&dquo; parameters (cf. Fischer, 1971).

Compromising Between Test Theory and Guttman Scalability

When only simple properties of the manifest responses can be used to order or score persons, only
two methods come to mind:

1. Taking the raw score; but this is tantamount to assuming the Rasch model, or to ignoring latent trait

theory altogether and resorting to classical test theory.
2. Scoring the person by the rank of the most difficult item which was answered positively; this is

tantamount to requiring a perfect scalogram pattern.
In the absence of a specified probabilistic response model, the only testable property of the responses is
their closeness to a perfect scalogram pattern. This is measured by H. However, N is just one of several

possible ways of assessing Guttman scalability. H implies a particular weighing of deviations from perfect
scalability, and is sample dependent. Recently, Raju (1982) and Cliff (1983) discussed various other
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coefficients of homogeneity or consistency of response patterns, such as ~1&reg;rst’s (1953) adaptation of the
KR-20 coefficient.

Guttman (1950) has pointed out that scalability and discrimination are different matters. &dquo;Item

analysis may find that items discriminate (or not) regardless of scalability&dquo; (Guttman, 1950, p. 185).

Scalability implies that each item’ score is a function of the total (or latent) score, whereas discriminability
refers to the correlation between item score and total score.

In classical test theory, scoring (discriminating) people reliably is a primary concern. This is some-
times confusingly called &dquo;scaling the subjects.&dquo; In item response theory, scaling or scalability of both

persons and items is a central issue, and item response characteristics are taken into consideration. The
Mokken scale appears to compromise between these two approaches in that scalability in the Mokken,
sense appears to refer primarily to persons, but a nonparametric probabilistic item response model is
assumed. Hence, a set of items is sought by which the persons are neatly partitioned into cumulative
score groups, exhibiting the scalogram pattern as closely as possible. It follows that certain items will

spoil this pattern more than others, in particular those which have their ices relatively close to others,
and/or have relatively flat iccs. Mokken scale analysis will eliminate such items-even though they might
very well fit a specified ice model, such as Rasch’s or Bimbaum’s-for no other reason than that they
spoil the scalogram pattern. It therefore appears that the technique of Mokken scale analysis runs counter
to its objective, namely to identify or scale nonparametrically a set of monotone items. Conversely, if
its objective were formulated not in terms of scalability but in terms of discriminability of persons, it

also runs counter to that objective: Eliminating items with low Hi might decrease the reliability of the

simple sum score, because the test is shortened. Also, a smaller number of items means a smaller range
of scores and hence less differentiation among the persons.

The above does not imply that a coefficient for the efficiency of person discrimination by means of
an item set is not relevant. For many practical purposes this is of utmost importance. However important t
a coefficient of person discrimination may be, discriminability and scalability are not the same thing,4 

4

and cannot be pursued simultaneously in a single analysis. Mokken and Lewis (and others) might argue
that H is intended to have something to do with discriminability (which it appears to have), but then

discriminability acts as a criterion of scalability, and contributes to the confusion about what a Mokken,
scale is.

Recently, Sijtsma (1984), reacting to Jansen (1982b), described Mokken scale analysis as a two-

stage process, consisting of a first phase in which items are selected using N (indicating Guttman

scalability), and a second phase in which the double monotony of these selected items is investigated.
In a rejoinder, Jansen et al. (1984) questioned this bb~r~i&reg;~&dquo; into one scaling procedure of two techniques
that (1) have theoretically different bases, and (2) can be conflicting in practice, as illustrated above.

Conclusion

It appears that two issues are involved in discussing the merits of the Mokken scale. The first concerns
monotone homogeneity, holomorphy, and sample independence, and the other concerns the meaning and
usefulness of the H coefficient. It should be clear that ~ is not a measure of monotone homogeneity or
of holomorphy, and that it is not sample independent. At this moment, reliable tests for h&reg;1&reg;rn&reg;rphy do
not appear to exist, except in the Rasch model.

The Mokken scale (with R4okken’s refinement of Loevinger’s N) appears to be a revival of the

4An interesting case has been demonstrated by Wood (1978): A set of random data cannot, under the Rasch model, be distinguished
from perfectly Rasch-homogeneous data obtained from persons with identical person parameters.
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Guttman scale. In addition, it claims to have a probabilistic flavor which would make it work for the
broad class of unspecified monotone response models. However, this claim cannot be substantiated, as
the procedure can do no more than judge how response patterns deviate from the perfect scalogram. Some
of the drawbacks of the Mokken scale procedure were aptly summarized by Niemoeller and van Schuur
(1983): &dquo;Scales consisting of different items as indicators of the same latent trait may give rise to different
scale values for the subjects, dependent upon the items used; the value of the coefficient of scalability,
I~y depends upon the homogeneity of the group of subjects in the analysis&dquo; (p. 147).
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