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Abstract

During murine fertilization, sperm bind to the specialized extracellular matrix of the egg, known as the zona pellucida (ZP). This matrix is

composed of three major glycoproteins designated ZP1, ZP2, and ZP3. Three models for sperm–ZP binding are now under consideration.

The domain-specific model posits that adhesion relies primarily on interactions between N-glycans located within the C-terminal domain

of ZP3 and a lectin-like egg-binding protein in the sperm plasma membrane. However, this model does not explain recent results obtained

in studies with ZP2mut mice. In the supramolecular structure model, sperm bind to a three-dimensional zona matrix that depends on the

cleavage status of ZP2. This paradigm does not explain the potent inhibitory effect of specific carbohydrate sequences or a C-terminal

glycopeptide (gp55) derived from ZP3. Recently, O-glycans linked at Thr155 and Thr162 of ZP3 were implicated as potential ligands

that mediate initial sperm–ZP binding. This novel model will be reviewed. A major challenge is to develop an alternate model for

sperm–ZP binding that fits as much of the data as possible. Such a model is presented in this review. This paradigm could explain how the

inability to cleave ZP2mut in ZP2mut mice could result in continued sperm binding to two-cell stage embryos without the formation of a

supramolecular binding complex. These novel insights should guide future experiments that will eventually determine the molecular

basis underlying gamete binding in the mouse and other eutherian mammals.
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Introduction

Like all mammalian eggs, the mouse oocyte is
surrounded by a specialized extracellular matrix
known as the zona pellucida (ZP). The first committed
step in mouse reproduction is the binding of sperm to
this matrix. The ZP is composed of three major
glycoproteins designated ZP1, ZP2, and ZP3 (Bleil &
Wassarman 1980b). Early studies with these purified
glycoproteins led to the development of a classical
model for sperm–ZP binding. ZP3 is the only glyco-
protein purified from this matrix that potently inhibits
murine sperm–ZP binding and induces the acrosome
reaction in free swimming sperm in vitro (Bleil &
Wassarman 1980a, 1983). Based on these observations,
sperm were proposed to bind to ZP3, and rapidly
undergo the acrosome reaction (Bleil & Wassarman
1983). During this reaction, the plasma membrane fuses
with the outer acrosomal membrane, forming membrane
blebs that detach from the head region of sperm (Austin
1977). This activation process exposes the inner
acrosomal membrane. In this classical model, receptors
on this membrane bind to ZP2 on the zona to mediate
secondary binding (Bleil et al. 1988). Sperm penetrate
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the ZP, enter the perivitelline space, and fuse with the
oocyte, completing the binding steps required for
fertilization. Many different adhesion molecules that
mediate initial sperm–ZP binding have been proposed
since 1980 (Tulsiani et al. 1997, Clark & Dell 2006,
Nixon et al. 2009).
A novel O-glycosylation domain that mediates
murine gamete binding

Early studies implicated carbohydrate recognition in
sperm binding. The digestion of ZP3 with pronase
released small glycopeptides that inhibited sperm–ZP
binding nearly as effectively as the intact glycoprotein
(Florman et al. 1984). ZP3-derived O-glycans ranging in
size between 3.4 and 4.5 kDa also inhibited sperm–ZP
binding (Florman & Wassarman 1985). Subsequent
mutagenesis of presumed O-glycosylation sites
at Ser332 and Ser334 of ZP3 resulted in the loss of its
sperm receptor activity, indicating the presence of an
O-glycosylation domain that mediated binding (Chen et al.
1998). This model for O-glycan participation in mouse
sperm–ZP binding was widely accepted, and appeared in
a major cell biology textbook (Alberts et al. 2002).
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Careful analysis of the results obtained in previous
studies now enables new conclusions to be drawn about
the role ofO-glycans in sperm–ZP binding. Ultrasensitive
MS studies indicated that the mass of ZP3-derived
O-glycans does not exceed 1.5 kDa, far less than the
mass of the putative O-glycans that reportedly inhibited
sperm–ZP binding (3.4–4.5 kDa; Florman & Wassarman
1985, Dell et al. 2003). Modern glycoproteomic analyses
have also confirmed that ZP3 is not O-glycosylated at
either Ser332 or Ser334 (Fig. 1; Boja et al. 2003, Chalabi
et al. 2006). These results are incompatible with the
hypothesis that an O-glycosylated region at these
positions mediates sperm binding (Chen et al. 1998).

The digestion of ZP3 with papain at a single site
released w26 and 55 kDa products from the N- and
C-terminal regions of this glycoprotein respectively
(Fig. 1; Rosiere & Wassarman 1992). The w55 kDa
C-terminal product (gp55) but not the w26 kDa product
inhibited sperm–ZP binding and induced the acrosome
reaction nearly as effectively as intact ZP3 (Rosiere &
Wassarman 1992, Litscher & Wassarman 1996). Modern
glycoproteomic analyses have confirmed that gp55 is not
O-glycosylated (Fig. 1; Boja et al. 2003, Chalabi et al.
2006). N-glycanase digestion of gp55 generated a
21 kDa product that retains the same sperm receptor
and acrosome-inducing activities as the intact glyco-
peptide (Fig. 1; Litscher & Wassarman 1996). Modern
ZP3
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Figure 1 Glycoproteomic map of ZP3 and digestion products discussed
in the text. The positions of the N- and O-glycosylation sites are based
on results obtained in two previous studies (Boja et al. 2003, Chalabi
et al. 2006). All of the O-glycans are located on the 26 kDa N-terminal
product obtained by papain digestion, whereas only N-glycans are
associated with gp55. The small arrows point to N-glycosylation sites
located at Asn146, Asn273, Asn304, and Asn327/Asn330.
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glycoproteomic analyses confirm that this 21 kDa
product does not express any N- or O-glycans (Fig. 1;
Boja et al. 2003, Chalabi et al. 2006). The inhibitory effect
of this deglycosylated product derived from the
C-terminal end of ZP3 is major evidence that supports
the domain-specific hypothesis for sperm binding (Clark
2010, 2011).

Recently, O-glycans positioned at Thr155 and Thr162

were proposed to constitute an alternate O-glycosylation
region in ZP3 that mediates sperm–ZP binding (Visconti
& Florman 2010). However, these sites are present in the
w26 kDa glycopeptide obtained after the digestion of
ZP3 with papain (Fig. 1). This product completely
lacked sperm receptor activity, unlike gp55 (Rosiere &
Wassarman 1992). The mismatch in the observed mass
of the inhibitory O-glycans in ZP3 (3.4–4.5 kDa)
compared with the actual mass of the O-glycans derived
from this glycoprotein (!1.5 KDa) also does not support
this model for sperm binding (Florman & Wassarman
1985, Dell et al. 2003). In summary, the existing
evidence does not support any role for O-glycans in
mediating sperm–ZP binding.
An alternate model for mouse sperm–ZP binding that
fits the data

The supramolecular complex and domain-specific
models for murine gamete binding have been compared
in depth in previous reviews (Dean 2004, Clark 2010,
2011). The supramolecular complex model does not
explain the inhibitory effect of oligosaccharides and
glycoconjugates on sperm–ZP binding (Litscher et al.
1995, Clark 2011). It also does not provide a basis for
the potent inhibitory effect of gp55 or its 21 kDa
deglycosylated analog on this interaction (Litscher &
Wassarman 1996). The domain-specific model
addresses these specific deficiencies because of its
major reliance on carbohydrate-mediated interactions.
However, this model does not explain how sperm
readily bind to two-cell stage embryos from ZP2mut

mice, but not to similar embryos from wild-type mice
(Gahlay et al. 2010).

Recent studies have also called into question the
classical model for mouse sperm–egg binding and
induction of the acrosome reaction discussed previously.
Dean (2004) have shown that mouse sperm do not
rapidly undergo the acrosome reaction after binding to
the ZP (Gahlay et al. 2010). On the other hand, only
acrosome-reacted sperm were observed in the perivitel-
line space. Hirohashi and coworkers recently reported
that most sperm readily undergo the acrosome reaction
before they encounter the ZP under in vitro conditions,
during their interactions with cumulus cells (Jin et al.
2011, Yanagimachi 2011). These investigators also
presented evidence indicating that acrosome-reacted
sperm readily bind to the ZP (Jin et al. 2011).
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Figure 2 An alternate scheme for the sperm–ZP binding events leading
to the fertilization and post-fertilization inhibition of sperm binding.
Acrosome intact sperm have a red crescent on their head; acrosome–
reacted sperm do not. (A) In freshly ovulated eggs, ZP3 is in very
close physical association with ZP2. This association likely inhibits the
acrosome-inducing activity of ZP3. Sperm bind to N-glycans and other
accessible sites for protein–protein interactions on ZP3, and slowly
undergo the acrosome reaction. Acrosome-reacted sperm bind to ZP2
via their exposed inner acrosomal membranes, penetrate the zona,
fuse with the oocyte, and fertilize the egg. (B) Immediately after
fertilization, cortical granules release a ZP2-specific protease and other
enzymes into the perivitelline space. This cortical granule protease
clips ZP2 and converts it into the cleaved form (ZP2c) that no longer
supports the binding of acrosome-reacted sperm. ZP3 dissociates from
ZP2c, and undergoes a subtle modification that converts it into a form
(ZP3f) that lacks sperm receptor and acrosome-inducing activity.
Neither acrosome intact nor acrosome-reacted sperm can bind to ZP3f
or ZP2c, consistent with the observation that two-cell stage embryos
from wild-type mice do not bind sperm (Bleil & Wassarman 1980a).
However, in ZP2mut mice, ZP2mutremains uncleaved, and in close
association with ZP3 after fertilization. ZP3 is not converted to ZP3f
and two-cell stage embryos from ZP2mutmice also bind sperm (Gahlay
et al. 2010).
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These results indicate that redundant mechanisms for
sperm binding and the induction of the acrosome
reaction could exist. Normally, sperm interact with
cumulus cells, triggering the acrosome reaction, and
the resulting acrosome-reacted sperm bind to the ZP (Jin
et al. 2011). However, some sperm may not undergo the
acrosome reaction during their penetration of the
cumulus oophorus. Alternatively, some eggs could lose
their cumulus cells before encountering sperm. The
existence of a redundant system for binding and
induction of the acrosome reaction mediated by the ZP
would rescue such eggs, enabling their fertilization.

A potential cause for concern for this model is that the
sperm that undergo the acrosome reaction after contact
with the cumulus cells are labeled with enhanced green
fluorescent protein (EGFP) in their acrosomes and a red
fluorescent protein (DSRed2) in their mitochondria (Jin
et al. 2011). Genetic manipulations of sperm have often
led to unpredictable morphological and physiological
changes (Baba et al. 1994, Lu & Shur 1997, Nishimura
et al. 2001, Ensslin et al. 2007, Lin et al. 2007). Because
of these previous problems, some skepticism is war-
ranted about the findings with these in vivo fluorescently
tagged sperm (Jin et al. 2011). Certainly there is also
compelling evidence that acrosome intact sperm pene-
trate the cumulus oophorus and bind to the ZP (Florman
& Storey 1982, Storey et al. 1984).

There is no question that purified ZP3 readily induces
the acrosome reaction in sperm in vitro (Bleil &
Wassarman 1983). If the assumption is made that the
genetic insertion of EGFP in mouse sperm does not affect
their physiological responses, then ZP3 in the intact ZP
likely induces the acrosome reaction in bound sperm,
but at a far slower rate than is observed when sperm are
exposed to purified ZP3 in vitro. A rational explanation
for this difference is that the acrosome-inducing activity
of ZP3 is somehow regulated in the zona matrix. Such
regulation could be physiologically relevant, because
slowing down the induction of the acrosome reaction
could reduce the chance that polyspermy will occur.

A major challenge is to construct a paradigm that
reconciles as much of the existing data obtained in
mouse fertilization studies as possible. A scheme
consistent with this goal is presented in Fig. 2. In this
model, multiple adhesion proteins on sperm bind to both
N-glycans and accessible protein regions located within
the C-terminal domain of ZP3 (Fig. 2A). These adhesion
proteins are very likely localized to the detergent
resistant membrane fraction in mouse sperm (Nixon
et al. 2009). The ZP is composed of a polymer of
ZP2–ZP3 dimers that form fibers that are cross-linked by
ZP1 (Greve & Wassarman 1985). In this new model, the
close association of ZP2 and ZP3 limits the ability of ZP3
to induce the acrosome reaction in bound sperm
(Fig. 2A). Acrosome-reacted sperm bind to ZP2, enabling
these gametes to penetrate the zona, and fuse with the
oocyte (Bleil et al. 1988). This fusion event triggers the
www.reproduction-online.org
release of a ZP2-specific protease and other enzymes
from the cortical granules (Moller & Wassarman 1989).
ZP2 is cleaved by this protease, generating ZP2c
(Fig. 2B). ZP2c dissociates from ZP3, making ZP3
accessible to a currently unknown modification that
converts ZP3 to ZP3f. This modified form of ZP3 present
in two-cell stage embryos reportedly does not support
sperm binding or induce the acrosome reaction in vitro
(Fig. 2B; Bleil & Wassarman 1980a). Neither ZP3f nor
ZP2c can mediate the binding of intact or acrosome-
reacted sperm to the ZP. The net result is that sperm do
not bind to two-cell stage embryos from wild-type mice
(Fig. 2B). However, in ZP2mut mice, ZP2mut remains
uncleaved, and ZP3 remains closely associated with
ZP2mut. This association prevents the conversion of ZP3
to ZP3f, and acrosome intact sperm readily bind to two-
cell stage embryos from ZP2mut mice, as reported
recently (Gahlay et al. 2010). This model for the
modification of these ZP glycoproteins is operational
whether acrosome intact or acrosome-reacted sperm are
initially bound to the ZP.
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The first step in the validation of this novel model will
be to define the molecular differences that exist between
ZP3 and ZP3f in unfertilized eggs and two-cell stage
embryos respectively (Bleil & Wassarman 1980a). The
next step will be to demonstrate that the conversion of
ZP3 to ZP3f does not occur in two-cell stage embryos
derived from ZP2mut mice. Ultrasensitive mass spectro-
metric analyses will be essential to define these
differences.
Summary

Currently, there are no substantive findings that support a
role for O-glycan recognition in mediating sperm–ZP
binding. Neither the supramolecular complex model nor
the domain-specific model for murine gamete binding
can explain certain observations that have been made
during the early events of fertilization. The novel scheme
for sperm binding, induction of the acrosome reaction
and subsequent post-fertilization events outlined in
Fig. 2 is consistent with nearly all the existing data,
including recent results obtained with ZP2mut mice
(Gahlay et al. 2010). More experiments will be required
to validate a recent study performed with sperm that
have been labeled with fluorescent proteins (Gahlay
et al. 2010, Jin et al. 2011). Continued testing of
these paradigms for sperm–ZP binding should eventually
lead to a more thorough understanding of the molecular
basis of this interaction in mice and other eutherian
mammals.
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