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The molecular basis of socially mediated
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Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype,

represents an excellent model with which to examine the relationship between gene

expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity

are challenging, however, especially in the case of complex social phenotypes. Here we apply

a machine learning approach to tackle this challenge by analyzing individual-level gene

expression profiles of Polistes dominula paper wasps following the loss of a queen. We find

that caste-associated gene expression profiles respond strongly to queen loss, and that this

change is partly explained by attributes such as age but occurs even in individuals that appear

phenotypically unaffected. These results demonstrate that large changes in gene expression

may occur in the absence of outwardly detectable phenotypic changes, resulting here in a

socially mediated de-differentiation of individuals at the transcriptomic level but not at the

levels of ovarian development or behavior.
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T
he relationship between gene expression and external
phenotype is complex and unresolved. Much research in
behavioral and evolutionary ecology is based on the

implicit assumption that phenotypic traits can be modeled as
though they directly reflect gene expression patterns, and that
evolutionary trajectories can therefore be studied while remaining
agnostic with regard to the underlying molecular mechanisms1–3.
This “phenotypic gambit” has proven a useful rule of thumb,
permitting the establishment of a rich body of literature sur-
rounding the evolution of complex traits, despite a lack of data
relating to the genetic basis of these traits4–6. In the past decade,
however, advances in the affordability of “omic” data and avail-
ability of powerful bioinformatic methods have greatly enhanced
our ability to assess the assumptions made by the phenotypic
gambit2,7. The time is right to disentangle the molecular foun-
dations of complex phenotypic traits.

Phenotypic plasticity, the ability of an individual to effect
phenotypic changes in response to external cues, is an ideal
phenomenon with which to study the relationship between gene
expression and phenotype because it involves the production of
multiple phenotypes without gene sequence changes. Of parti-
cular, value are species in which adult individuals can be
experimentally induced to transition between distinct, measurable
phenotypes. By comparing the gene expression profiles of groups
of individuals that differ in their phenotypes as a result of plas-
ticity rather than as a result of genetic differences, it is possible to
isolate phenotypic effects of gene expression. Using this approach,
significant progress has been made in unraveling the molecular
underpinnings of sequential sex changes in hermaphroditic
fish8–10, the distinct gregarious social phenotype of desert
locusts11,12, and the reproductive castes of social insects13–17.
Such studies typically rely on comparisons between groups of
individuals with well-differentiated phenotypes, however. As a
result, little is known about more subtle effects during the tran-
sition from one morph to the other, and the relationship between
expression patterns and phenotypic traits at the individual level.

The reproductive castes found in the colonies of social insects
provide excellent model systems for determining the extent to
which fine-scale changes in phenotype are reflected at the
molecular level. With a few exceptions18, the distinct queen and
worker phenotypes found in such colonies are plastically deter-
mined either during development or in adulthood. Workers in
some species can be experimentally induced to transition to a
reproductive role in response to the removal of a colony’s
queen19,20 or as a result of exposure to varying levels of
brood15,21, allowing changes in the behavioral, physiological, and
molecular traits that define caste identity to be tracked. An
additional benefit—and challenge—of studying social insect
colonies is that they involve complex social structures. Such
interactions can be hard to study, but offer the opportunity to
assess the effects of social interactions upon phenotypes and
transcriptomes.

The European paper wasp Polistes dominula (Christ 1791) is a
model organism often used in studies of social insect
behavior22,23 and, more recently, for analyses of caste gene
expression24–26. In this species, removing the established queen
from a single-foundress colony induces a queen succession pro-
cess in which one (or very few) workers transition to a queen
phenotype, with age playing a key role in predicting which
individual will do so27,28: almost invariably, the new queen is one
of the oldest individuals, and there is little conflict over
succession19,29. In a recent paper29, we followed responses to
queen removal in P. dominula on a fine scale by measuring
individual-level behavioral and physiological traits and generating
a univariate measure of caste identity (“queenness”) to describe
individuals’ phenotypic profiles (Fig. 1). We found that

phenotypic responses were limited to the subset of individuals
that transitioned to the queen role, while other individuals
exhibited little or no measurable change in measured traits. This
system, in which individuals within a controlled environment
vary strongly and predictably in their phenotypic response to a
shared stimulus, affords an excellent opportunity to track the
relationship between gene expression and phenotypic expression
at the individual level.

Support vector classification is a powerful tool with which to
transform complex patterns in multidimensional data into a
continuous classification score, allowing the detection of subtle,
widespread signals of differential expression between phenotypic
states that are likely to be missed in conventional differential
expression analyses. Support vector machines (SVMs) have
become a key tool in the early identification of phenotypically
indistinguishable cancer subtypes30–32 and their potential value
has recently been demonstrated in animal behavior studies:
Chakravarty et al.33, for example, recently showed that an SVM
trained using accelerometer data can reliably classify the beha-
viors of wild Kalahari meerkats. Given their ability to detect
subtle changes in patterns of high-dimensional data, SVMs
should be ideally suited to quantify gene expression variation
across the spectrum between differentiated worker and
queen roles.

Here, we apply an SVM approach to analyze transcriptomes
from the brains of 96 individuals for which we previously
obtained fine-scale behavioral and ovarian data, including queens
and workers from stable colonies and individuals from colonies
that had their queens experimentally removed. Combining this
approach with standard differential expression and gene co-
expression analyses, we show that brain gene expression
responses to queen removal in P. dominula include a colony-wide
response that does not match that observed at the phenotypic
level. Our results indicate that gene expression in P. dominula
colonies reflects both a generalized response to queen loss that is
seemingly independent of phenotype, and a phenotype-specific
response that tracks individuals’ expression of plastic phenotypic
changes. This study provides a comprehensive analysis of the
ways that plastic phenotypes are reflected at the transcriptomic
level; our results expose the complexity of the relationship
between individual-level gene expression and individuals’ out-
ward phenotypes.

Results
Support vector classification reveals consistent patterns of caste
gene expression differentiation involving many genes. SVMs
operate in a similar fashion to multivariate linear regression
models, estimating the relationship between a response variable
(here, known caste identities coded as worker = 0 and queen = 1)
and one or more independent variables (here, expression profile)
in a training data set. The model derived in this way is then
applied to the query data set to derive predictions of the response.
In contrast to standard linear models, SVM models project input
data into a higher-dimensional space, thereby making it possible
to fit a linear relationship to what would otherwise be non-linear
data34. Using this approach allowed us to reduce the brain gene
expression data we had generated down to a single dimension of
predicted caste identity (the classifier variable), analogous to the
Bayesian logistic regression model we used in Taylor et al.29 to
condense ovarian and behavioral data into a unidimensional
metric of phenotypic caste (“queenness”; Fig. 1).

We trained an SVM using whole-transcriptome data from 26
queens and 12 workers from stable, queenright colonies. A full
model, based on all 10,734 genes annotated in our experiment,
achieved a root mean squared validation error of 0.065 in
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threefold cross-validation, i.e., a model trained on a random
subset of two-thirds of workers and queens classified the
remaining third within 25.5% of their true values (0 and 1 for
workers and queens, respectively). This error rate suggests reliable
classification because it indicates that any given control worker
was likely to receive a classification that was closer to that of all
other workers than it was to the classification of any given queen,
and vice versa.

As many genes will not vary consistently in their expression
between workers and queens, an SVM model fit to the entire
transcriptome is likely to exhibit a significant degree of
overfitting. In order to identify a minimal set of genes that were
maximally predictive of caste identity, we applied a process of
“feature selection” in which uninformative genes were progres-
sively dropped until an optimal model containing only caste-
informative genes was achieved (Supplementary Fig. S1; Supple-
mentary Data File 1). The model obtained in this way contained
1992 genes with a root mean squared classification error of 0.021,
a substantial improvement over that achieved for the model
containing all genes (Supplementary Data File 2). This model
classified queens and workers very consistently, with strong
separation of queens from workers (Fig. 2A). Thirty-four gene
ontology (GO) terms were significantly enriched among these

1992 genes, including a number of terms associated with
translation such as rRNA processing, tRNA aminoacylation,
and ribosomal large subunit biogenesis (Supplementary Fig. S2).

When we applied a more standard differential expression
approach based on DESeq2 analysis and a 1.5-fold-change
threshold to the same set of queens and workers, we identified
just 81 differentially expressed genes (with no associated GO
terms), a number that is typical for similar analyses in
Polistes25,35,36. Of these genes, 77/81 (95%) were present in the
larger SVM set (Supplementary Fig. S3; Supplementary Data
File 3), suggesting that the SVM captures the information
contained in the set of highly caste-differentiated genes identified
using this standard method. Yet, an SVM trained using just these
81 differentially expressed genes exhibited a cross-validation error
rate of 0.065, significantly higher than that of the optimized
model (0.021) and no better than the original un-optimized
model containing all expressed genes. Thus, the picture of caste
differentiation provided by standard differential expression
analysis appears to miss a great number of subtle differences in
individuals’ gene expression profiles that contribute to caste
differentiation.

The small set of differentially expressed genes that we identified
using DESeq2 in the above analysis might conceivably reflect the
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Fig. 1 Summarized experimental design describing the generation of phenotypic data pertaining to individual-level responses to queen removal in

Polistes dominula29 used in this study. a Early-season nests were transferred to the lab prior to the eclosion of workers and subordinate foundresses were

removed. After at least 4 workers had eclosed, nests were filmed for 3 days and then assigned to either control or queen removal treatments. Following

treatment (sham or queen removal) nests were filmed for a further 3 or 12 days and then all individuals were dissected to generate ovarian development

indices following57. Footage of nests was used to generate dominance indices in the form of Elo ratings59,60. b Ovarian and dominance indices from queens

(orange) and control workers (black) were used to produce a logistic regression model for caste classification (0=worker, 1= queen). Data from

individuals on queenless post-removal nests (green) were then passed through this model to fit caste estimates and thereby identify individuals with high

“queenness”, i.e., those that exhibited strongly queen-like phenotypes following queen removal and thus represented possible replacement queens. Of the

individuals for which data are shown here, 27 queens, 12 workers from control nests, and 62 individuals from queen removal nests were subsequently

sequenced to generate the data discussed in the present study. Images (wasps and nest combs) created by BAT.
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conventional fold-change threshold that was applied as part of the
approach. Indeed, when we omitted this cutoff, we found 2438
differentially expressed genes, on the same order of magnitude as
that found via SVM feature selection. This set of genes overlapped
significantly with those identified by feature selection (Jaccard
index= 0.44; one-sided hypergeometric overlap p < 0.001). How-
ever, an SVM model trained using the differentially expressed
genes exhibited a root mean squared error rate of 0.030, and thus
still performed substantially less well than the model using the
genes identified using feature selection (0.021).

Colony-wide brain gene expression responses to queen
removal. Following the loss of a queen from a Polistes colony,
typically one or a few individuals undergo a phenotypic transition
to become a replacement queen while the rest of the colony
members remain workers29,37,38. To capture this transition at the
transcriptional level, we analyzed individuals’ gene expression
profiles at three days after queen removal, when queen replace-
ment is ongoing (n= 24), and at 12 days after queen removal

(n= 34), when succession is largely settled at the phenotypic
level19,29. Individuals for sequencing were selected to cover a wide
range of phenotypes, including those that remained entirely
worker-like, those that had transitioned to highly queen-like
phenotypes, and those with intermediate phenotypes at the time
of sampling (Supplementary Fig. S4).

In order to assess changes in individuals’ caste-specific gene
expression profiles following queen removal, we applied the
optimized SVM model described above to the gene expression
profiles of these 62 individuals. Doing so generated an SVM
classification for each individual that describes the degree to
which its gene expression corresponds to the worker state
(classifier= 0) or queen state (classifier= 1) as reflected in the
expression profiles of the control workers and queens on which
the SVM was trained.

Analyzing shifts in SVM estimates of individual wasps then
allowed us to assess the degree to which these concurred with the
changes visible at the phenotypic level. Doing so, we found that
the SVM estimates of individuals from post-removal nests were
intermediate between those of queens and workers from control
nests (Fig. 2B), a finding which concurs with the placement of
these individuals according to principal component analysis
(Supplementary Fig. S5). This result is surprising given that the
majority of individuals on queen removal nests are phenotypically
indistinguishable from workers on control nests in terms of
ovarian development and behavioral dominance29. Thus, the
large majority of individuals on queen removal nests exhibited
perturbation of their caste-associated gene expression, even
though only a few of these individuals exhibited responses to
queen loss at the level of physiology or behavior.

Furthermore, we found no evidence that the degree of
transcriptional perturbation declined over time following queen
removal. SVM classification estimates of individuals from queen
removal nests did not differ significantly between days three and
twelve following queen removal (QR3 mean 0.331 ± 0.111; QR12
mean 0.345 ± 0.082; Wilcoxon W= 369, p= 0.55). The effects of
queen removal on individuals’ gene expression profiles therefore
appear to be both widespread and persistent, affecting all
individuals in a nest and lasting beyond the point at which a
new queen has already become phenotypically established.

Interestingly, the strong colony-wide perturbation following
queen loss that this SVM approach identifies would have been
entirely missed using a standard differential expression approach:
a DESeq2 analysis with a 1.5-fold-change threshold identified just
five genes as differentially expressed between control workers and
individuals from manipulated nests, with no associated GO
enrichment (Supplementary Data File 4). Even omitting the fold-
change threshold, the number of genes identified as being
differentially expressed between control and queen removal
workers only rose to 291, a small fraction of the 2438 genes
identified as differentially expressed between control queens and
workers.

Age and queenness explain variation in individual-level
molecular responses to queen loss. Although SVM classifica-
tion indicates that queen removal causes colony-wide perturba-
tion to brain expression profiles, classifier estimates varied
substantially between individuals following queen removal,
spanning a much greater range of values (0.116–0.540) than those
of queens (0.900–1.100) or workers (0.057–0.100) from queen-
right colonies (Fig. 2). To better understand this variation, we
examined whether the classifier estimates for individuals from
manipulated colonies were predicted by those individuals’ phe-
notypic traits—specifically ovarian development, behavioral
dominance, and age29 (Fig. 1).
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Fig. 2 Phenotypic and gene expression classification of individuals from

control and experimental colonies. Classifier estimates generated by a

Bayesian logistic regression model using ovarian and dominance data (left)

and an SVM model using 1992 caste-informative genes (right) for a queens

(orange; n= 26 biologically independent samples) and workers (black; n=

12 biologically independent samples) from control colonies and b

individuals from experimental colonies either 3 days (blue; n= 24

biologically independent samples) or 12 days (green; n= 34 biologically

independent samples) following queen removal. Mean and standard

deviation for each group are shown in black. Classifications are a measure

of individuals’ phenotypic/gene expression similarity to queens and

workers from control nests. 0 = complete similarity to control workers; 1 =

complete similarity to control queens.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21095-6

4 NATURE COMMUNICATIONS |          (2021) 12:775 | https://doi.org/10.1038/s41467-021-21095-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Our phenotypic measure of caste identity (queenness) was a
significant predictor of expression-based SVM classifier estimates
when fitted using a linear model (slope±SE= 0.0414 ± 0.0114,
p= 6.0 × 10−4; Fig. 3A). This relationship did not change when
using queenness values recalculated using a phenotypic training
set consisting of only the individuals for which gene expression
data were generated (slope±SE= 0.0407 ± 0.0115, p= 8.3 ×
10−4). The individual components of queenness, ovarian
development and dominance were also significant or near-
significant predictors of SVM classification individually (ovarian
development: slope±SE= 0.0426 ± 0.0113, p= 4.0 × 10−4; dom-
inance: slope±SE= 0.0231 ± 0.0122, p= 0.06). Notably, however,
because phenotypic queenness was strongly correlated with age
among post-removal individuals29 (cor= 0.4832, p= 8.0 × 10−5),
age was an equally strong predictor of caste estimates when fitted
in a separate linear model (slope±SE= 0.0516 ± 0.0106, p= 9.8 ×
10−6; Fig. 3B). Thus, the significance of queenness as a predictor
of caste estimates might have been an artifact of the fact that both
are correlated with age. To test whether queenness had an effect

over and above that accounted for by age, we calculated the
residuals of phenotypic queenness on age and fitted the caste
estimates against these. These residuals were not significantly
predictive of SVM classification (slope±SE= 0.0202 ± 0.0123,
p= 0.11; Fig. 3C), nor were the residuals of ovarian development
alone on age (slope±SE= 0.0223 ± 0.0123, p= 0.07) or the
residuals of dominance alone (slope±SE= 0.0114 ± 0.0126, p=
0.37). Age is thus the strongest determinant both of individuals’
caste phenotypes and of their caste-associated gene expression.

The control queens and workers that were used to train the
SVM model differed not only in their caste, but also in their age—
because foundress queens had overwintered, they were several
months old at the time of sampling, whereas workers were weeks
or days old. This fact, together with the observation that age
predicts individuals’ SVM classifications, could suggest that our
SVM model is in fact a classifier for age rather than caste. Yet,
three lines of evidence speak against this possibility. First, control
workers and queen removal individuals were of comparable age
but their SVM classifications were clearly distinct (but should
have been very similar if based purely on age). Second, age was
not predictive of variation in the SVM classifications among
control workers (slope±SE= 0.0054 ± 0.0033, p= 0.14). Third,
the set of caste-informative genes identified by our SVM
approach did not overlap significantly with a set of 625 age-
biased genes identified using DESeq2 (Supplementary Data File 5;
Jaccard index= 0.05; one-sided hypergeometric overlap p=
0.12). Taken together, these three results strongly suggest that the
SVM model that we have produced classifies individuals by caste
identity rather than by age.

In order to further discern the factors that shaped individuals’
gene expression profiles following queen removal, we performed
weighted gene co-expression network analysis (WGCNA) using
the full set of annotated genes. We generated 22 consensus
modules across all samples, and then determined which traits
significantly predicted the expression of a given module within
each group (Supplementary Figs. S6–S8). Six modules exhibited a
significant degree of overlap with the set of 1992 caste-predictive
genes identified using SVM feature selection (Supplementary
Fig. S9), including three modules whose expression was
significantly correlated with either phenotypic traits or SVM
classification in at least one treatment group.

Module 2 consists of 102 genes and appears to be associated
with many caste-related traits in the queen removal condition,
being negatively correlated with queenness, age, SVM classifica-
tion and (less strongly) with ovarian development among queen
removal individuals. We also found weak evidence that this
module is negatively associated with age among workers from
control nests. Unexpectedly, despite the seeming importance of
Module 2 in predicting caste identity among workers, not a single
GO term was enriched among the genes in the module at p < 0.01.
A second module, Module 8, consists of 614 genes and has a
strongly negative correlation with age among both control
workers and queen removal individuals. This module is
associated with 20 GO terms, including a number of terms
associated with molecular binding, such as “protein binding”,
“DNA binding”, and “RNA binding” (Supplementary Fig. S10).

Finally, Module 11 consists of 519 genes and is notable in that
its expression in individuals from queen removal colonies is
positively associated with SVM classifications but not with
phenotypic correlates of caste—significantly, “chromatin remo-
deling” is one of the 22 GO terms with which this module is
associated (Supplementary Fig. S11). Regulation of chromatin
accessibility is one of several epigenetic processes that have been
implicated in the control of caste expression in social insects38–40.
The fact that Module 11 correlates with transcriptomic caste
identity in post-removal nests might therefore suggest that
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model are shown in black and gray respectively.
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disturbances to individuals’ gene expression patterns following
queen removal reflect some form of epigenetic reprogramming41.
Genes that were more strongly related to phenotypic queenness
also exhibited higher module significance (connectivity) within
Module 11 (cor= 0.6, p= 1.0 × 10−78), which was not the case
for Module 2 (cor= 0.95, p= 0.34) or for Module 8 (cor= 0.077,
p= 0.057). Taken together, these results strongly suggest a role
for Module 11 in caste differentiation.

Discussion
In this study, we have employed an SVM approach to interrogate
the transcriptomic signatures of a complex plastic phenotype.
Applying this approach to identify caste-specific gene expression
profiles in P. dominula and to explore the relationship between
transcriptomic and plastic phenotypic changes following a major
social perturbation in paper wasp colonies, we identify a set of
~2000 genes that optimally capture gene expression differences
between established queens and workers. Using a caste classifier
based on these genes, we find that queen removal leads to a
colony-wide shift in expression, where the expression profiles of
all individuals move towards a state intermediate between those
of established queens and workers. Individual variation around
this intermediate state is related to age and phenotypic attributes,
with older (and therefore more queen-like) individuals showing
expression profiles that are closer to that expected for established
queens. Our results show that molecular responses to queen
removal in P. dominula consist of both a general colony-wide
response independent of measured phenotypic change and a
response that reflects the plastic phenotypic transition. Our
findings also highlight the utility of SVMs, both to identify genes
that reliably separate complex but well-defined phenotypes, and
to identify transcriptomic shifts that occur when such phenotypes
become plastic.

Our study contributes to the significant progress in our
understanding of the relationship between molecular changes and
changes in phenotypic expression that has been made in the past
decade, facilitated by the increased availability of “omic” data and
complex bioinformatic analyses. Recent studies have started to
challenge the view that there is a direct correspondence between
transcriptomic states and external phenotypes. Libbrecht et al.15,
for example, show that gene expression responses associated with
a reversible phenotypic change differ qualitatively based on the
directionality of the change (from reproductive to non-
reproductive or vice versa). Meanwhile, molecular manipula-
tions have revealed a surprising degree of plasticity in canonically
implastic traits such as mammalian sex42 or ant castes13. Our
results appear to go further, showing a shift in caste-specific brain
gene expression profiles among individuals whose phenotypic
caste expression remains otherwise apparently unchanged. If
accurate, this result shows that the expectation of a close match
between expression profiles and phenotypes is excessively sim-
plistic, or at least that detecting such a match requires detailed
knowledge of relevant genes and/or exhaustive phenotypic
characterization.

Although we failed to find a clear age-independent association
between expression profiles and caste-related phenotypes, we
cannot rule out the possibility that there are other, more subtle
facets of caste identity in P. dominula that we failed to measure
and that might explain variation in gene expression. For example,
Polistes wasps are known to exhibit increased juvenile hormone
titers following queen loss20, and foundress queens may possess
more substantial lipid stores than early-season workers43. It is
possible that changes in these traits or others would explain the
large shifts in gene expression that we observed across all indi-
viduals following queen removal. We nonetheless consider it

significant that the phenotypic changes associated with queen
removal are not expressed at the level of ovarian development or
dominance. These two traits are the ultimate determinants of
caste identity: the fact that an individual has high JH levels does
not matter to colony functioning if that same individual con-
tinues to occupy the social and reproductive role of a worker.
Therefore, although we cannot unequivocally state that our
results reflect a disconnect between phenotype and gene expres-
sion, it is certainly unexpected that changes in individuals’ caste-
specific gene expression profiles would not be reflected at the level
of caste expression that matters.

It is also possible that the relationship between caste pheno-
types and expression profiles would be more obvious in tissues
that were not assayed in our study (such as ovaries). We con-
centrated on the brain because we were able to assess individuals
only over a relatively brief period following queen removal and
this tissue is known to show high short-term expression
plasticity44,45. Similarly, our choice to analyze transcriptomes of
whole-brain tissue rather than singling out individual tissues
within the brain was driven by both practical and scientific
concerns: we aimed to acquire enough tissue per sample to avoid
pooling, and also to remain agnostic regarding the specific
regions of the brain that could be influential upon reproductive
phenotypes. Despite the limitations of focusing on a single, het-
erogenous tissue type, our analyses revealed significant associa-
tions between measured expression patterns and ovarian
development, indicating that brain gene expression at least par-
tially reflects organismal physiology and the state of other
tissue types.

A major advantage of this study is the use of individual-level
gene expression data from a large number of subjects, including
individuals reared in a shared social environment but exhibiting
very different phenotypic responses to perturbation. By sequen-
cing individuals rather than pools, we were able to match each
gene expression profile to high-resolution phenotypic data that
captures the scale of naturally occurring variation in features such
as age, ovarian development, and dominance behavior. This
resolution allows us to address questions that are otherwise
inaccessible in gene expression analyses. For example, we have
been able to show that caste identity, but not the residuals of caste
identity on age, are significantly predictive of individuals’ change
in transcriptomic caste identity following queen loss.

Our discovery of colony-wide responses to queen loss suggests
that this social perturbation provokes a significant reaction even
from individuals that have little hope of attaining the vacant
reproductive role. This is an unexpected finding given that P.
dominula is thought to express a “conventional” gerontocratic
(age-based) mechanism of dominance and queen succession that
mitigates the need for costly intragroup conflicts over the identity
of the replacement queen27,28,46, which should greatly reduce the
need for young, low-ranking workers to respond to queen loss29.
The gene expression responses of lower-ranked workers to queen
removal might plausibly represent a form of safeguard against
queen loss: if queen loss sometimes occurs multiple times in quick
succession or is frequently associated with a general reduction of
the nest population (i.e., through predation), there might be kin-
selected benefits of a colony-wide “de-differentiation” of indivi-
duals that facilitates a quicker succession process. This possibility
is supported by the fact that one of the WGCNA modules that we
identified was significantly enriched for the GO term “chromatin
remodeling”. Regulation of chromatin accessibility, together with
other epigenetic mechanisms, is a prime candidate mechanism for
the regulation of caste identity in social insects38–40. The fact that
this module was correlated with transcriptomic but not pheno-
typic caste identity among individuals from post-removal nests
may therefore indicate that individuals respond to queen loss by
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priming their transcriptomes for further epigenetic changes, but
that this priming only goes on to produce phenotypic effects if
accompanied by a second trigger (such as the absence of an older
sibling on the nest).

We identified 34 GO terms that were significantly enriched
among the 1992 genes optimally separating queens and workers.
Most of these terms were related to the regulation of gene
expression or cell signaling, rather than to processes directly
involved in reproduction or aggression. We also did not find a
significant overlap between these 1992 genes and 1533 genes
whose expression was correlated with vitellogenin in a previous
study of caste in P. dominula24 (Jaccard index= 0.09; one-sided
hypergeometric overlap p= 0.64), which reinforces the findings
of our GO analysis because vitellogenin is thought to be a key
regulator of aggression in P. dominula26. Although it might have
been expected that GO terms associated with aggression or
reproduction would be among the most highly enriched terms
separating queens from workers in this study, this result does fit
with previous studies of caste expression in P. dominula. For
example, the most highly enriched GO terms differentiating
queens and workers in Standage et al.24 were involved in bio-
synthetic processes, which the authors argue to be evidence in
favor of the idea that highly conserved genes with basic biological
functions may play a key role in the evolution of insect sociality
(the “genetic toolkit” hypothesis47). Although our 1992 caste-
biased genes do not significantly overlap with 295 genes that
Standage et al identified as differentially expressed between
queens and workers (Jaccard index= 0.02; one-sided hypergeo-
metric overlap p= 0.72), the GO terms that we identified do
correspond to highly conserved functions such as transcription
and biosynthesis. Our results thus add to the increasing body of
data supporting the genetic toolkit hypothesis.

Replacement queens in our colonies did not have access to
males and therefore remained unmated even after queen suc-
cession. This may partially explain the fact that even individuals
with fully developed ovaries and very high dominance ratings did
not transition to a fully queen-like gene expression profile, as
mating can induce significant gene expression changes in
insects48–50. The lack of immediate mating opportunities for new
queens in our experiment is not necessarily unrealistic, however:
unmated hymenopteran females can lay unfertilized eggs, which
develop as males. Moreover, in naturally occurring early
P. dominula nests, replacement queens may be established a
month or more before they are mated19, presumably owing to a
scarcity of early males. The unmated replacement queens ana-
lyzed here are therefore representative of those that would be
present on wild nests shortly after queen loss.

Applying a support vector classification approach to behavior-
associated transcriptomic data, we identified a large group of
genes as differing meaningfully between Polistes castes—over 10%
of annotated genes, a similar number to that which we were able
to identify using a standard differential expression program with
no log fold-change threshold. Although the set of caste-biased
genes identified by our SVM approach did not differ strongly in
size from that generated using a standard approach, the use of
SVMs nonetheless provides two clear advantages over standard
analyses. First, SVM classification not only identified a set of
genes that are predictive of caste identity, but the univariate
classification that the model generated also allowed us to char-
acterize the molecular caste identity of samples that did not fall
squarely into the roles of control workers and queens. Standard
differential expression analyses such as edgeR51, DESeq252, or
NOISeq53 assess differential expression at the level of individual
genes. This focus makes these approaches well-suited to the
identification and ranking of genes that distinguish pre-defined
states, but of limited use when classifying intermediate or

uncategorized samples, a purpose for which SVM analysis is
ideally suited.

A second strength of the SVM classification approach is that it
partially bypasses the requirement for judgements over which
genes can be considered “biologically meaningful”. Differential
expression studies almost always include a fold-change threshold
in their analyses to ensure that they do not include genes with
very small fold changes in expression that may be statistically but
not biologically significant. Choice of fold-change threshold is
largely arbitrary and can be hugely impactful upon the results
achieved54. For example, in this study, we identified just 81
differentially expressed genes when using a 1.5-fold-change
threshold, compared with 2438 genes when no threshold was
applied. Both of these sets of genes exhibited reduced predictive
ability compared with a model generated using SVM feature
selection, suggesting that the standard differential expression
approach either misses genes that are predictive of caste identity
or includes genes that confound caste prediction (via overfitting).
Indeed, the primary reason that the majority of standard differ-
ential expression analyses include a fold-change threshold is a
concern that failure to do so will result in the identification of
genes that are statistically differentially expressed but are biolo-
gically uninformative55. Our results reinforce this notion. By
contrast, the decision of whether a given gene was included in our
SVM model was based on a criterion that directly reflects bio-
logical relevance: did expression measures for that gene provide
additional information about an individual’s likely caste identity,
and hence improve the predictive ability of our model?

Here we have undertaken a detailed analysis of the relationship
between gene expression and socially mediated phenotypic plas-
ticity, revealing broad-scale changes in caste-associated gene
expression profiles following a major social disruption. Our
findings demonstrate the value of SVMs both to generate sets of
genes that meaningfully predict differences between well-defined
phenotypes and to identify the transcriptomic changes that
accompany subsequent plasticity in such phenotypes. We reveal a
hitherto unrecognized capacity for large-scale disruption to caste-
biased gene expression profiles even in the absence of apparent
changes in caste phenotype, a disconnect that undermines sim-
plistic models of the relationship between transcriptome and
phenotype. Future studies should continue to marry detailed
phenotypic and gene expression data in order to assess the pre-
valence and provenance of such discontinuities.

Methods
Sample collection. Polistes dominula colonies (n= 72) were collected from rural
areas near Florence, Italy. Nests were transferred to the laboratory prior to the
eclosion of workers and subordinate foundresses were removed. After at least 4
workers had eclosed, nests were filmed for 3 days and then assigned to either
control or queen removal treatments. Following treatment (sham or queen
removal) nests were filmed for a further three or twelve days and then all indivi-
duals were dissected and measured using ImageJ56 to generate ovarian develop-
ment indices57. Footage of nests was annotated using BORIS behavioral annotation
software58 and then used to generate dominance indices in the form of Elo
ratings59,60. Ovarian and Elo rating data were fed into a Bayesian logistic model to
produce a caste classifier, which we then used to produce a holistic measure of caste
identity (“queenness”) for individuals from queen removal nests. A queenness
estimate of 1 indicates that an individual is identical to a control queen in terms of
ovarian development and behavioral dominance, whereas a value of 0 indicates
complete identity to a control worker by the same measures. Using these methods,
ovarian, dominance, and queenness data were generated for 220 workers from
control nests, 330 individuals from queen removal nests and 54 queens. Complete
details of all the above methods can be found in Taylor et al.29.

From among these individuals we randomly selected 29 queens and 20 control
workers for sequencing. We additionally selected 65 individuals from queen
removal nests for sequencing, using stratified random sampling to cover a full
range of values of ovarian development, Elo rating, and queenness (Supplementary
Data File 6). A number of these samples failed at the point of transcriptome
sequencing (next section), leaving us with final sample sizes of 12 control workers,
58 queen removal individuals, and 26 queens.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21095-6 ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:775 | https://doi.org/10.1038/s41467-021-21095-6 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Gene expression quantification. Brain tissue was extracted from the heads of
individual samples and RNA was extracted using the RNeasy Mini Kit (Qiagen)
according to manufacturer’s instructions. Library preparation was performed by
Novogene Co. followed by sequencing on an Illumina HiSeq 2000 platform with
150-base pair paired-end reads. Reads were filtered with SortMeRNA61 using
default options to remove ribosomal sequences. Trimmomatic62 was then used to
perform quality trimming. First, we trimmed adapter sequences and leading and
trailing bases with low phred scores (<3). We then used the MAXINFO option with
target length 36 and strictness 0.7 to trim low-quality sequences from the
remaining reads. Reads were next mapped to 11,313 transcripts from the P.
dominula genome annotation 1.024 using STAR63 with default options. All
101 samples produced >85% uniquely mapped reads. Reads were assembled into
transcripts using StringTie264 before being passed on as raw counts to downstream
analyses. Between each step, the quality of reads for each sample was checked using
FastQC65. Prior to downstream analysis, transcripts were filtered to remove any
gene which did not have >20 counts across all samples in at least one of the
experimental groups (queens, control workers, and day 3 and day 12 post-
manipulation workers). Following this filtering, 10734/11,313 (94.9%) of tran-
scripts remained.

SVM classification. Support vector classification was performed in R66 using the
e1071 package67 using the gene expression profiles for all available queens (coded
with a value of 1; n= 26) and control workers (coded with a value of 0; n= 12).
Classifiers were assessed via their threefold cross-validation error rates; classifiers
with lower classification error were considered to be superior. SVM classification
operates by taking multidimensional data (e.g., the expression levels of many dif-
ferent genes) pertaining to two or more classes (e.g., queens and workers) and
identifying a kernel function that will transform the data such that the classes can
be linearly separated. The choice of kernel function is optimized by performing a
“grid search” in which each combination of parameters within the kernel function
is tested across a range of values in order to identify the set of parameters that best
allow the data to be linearly separated between classes. Initially, we tested classifiers
using a variety of kernel functions—radial, linear, sigmoid, and polynomial—
combined with grid searches across a wide range of parameters for each kernel
(kernel parameters vary depending on the form of the kernel, but always include a
cost parameter C, which determines how strongly misclassifications are penalized).
The kernel function that produced the lowest error rate was the radial function,
which gives the distance between two samples x and y as:

exp �γ x � yj j2
� �

ð1Þ

A radial kernel with γ= 10−6 and cost parameter C= 25 was found to produce
the lowest error rate of all combinations of parameters, so all subsequent classifiers
were fit using this kernel and a more focused grid search in a parameter space
of 24 < C < 26 and 10−5 < γ < 10−7 in order to minimize the processing power
necessary to perform feature selection. For feature selection, we took the classifier
fitted with all genes, and iteratively performed the following process: (1) the
threefold cross-validation error of the model was calculated twenty times using
randomly assigned bins, and the mean of the resulting errors was recorded as the
true validation error of the classifier; (2) the feature weights of all genes were
calculated by taking the matrix product of that classifier’s coefficients with its
support vectors; (3) the gene with the smallest absolute weight in the model was
dropped; (4) a new classifier was calculated using the remaining set of genes. This
process was repeated until just 100 genes remained, and the optimal support vector
classifier was then taken as that for which the cross-validation error reached its
minimum.

Differential expression analysis. Differential expression analyses were performed
in R using the DESeq2 package52. DESeq2 was run on all groups and contrasts were
then calculated for each pair of groups. Unless otherwise stated, differential
expression was calculated relative to a baseline fold change of 1.5, i.e., p values refer
to the probability that absolute change between two groups was >50%. Genes were
considered differentially expressed between conditions if p < 0.05 after false dis-
covery rate correction according to the Benjamini–Hochberg procedure.

Gene co-expression network analysis. WGCNA was performed in R using the
WGCNA package68. As WGCNA is particularly sensitive to genes with low
expression, data were first subjected to a second round of filtering in which genes
that had <10 reads in >90% of samples were removed, as recommended by the
package authors. This second round of filtering removed an additional 1631 genes,
leaving a total of 9103 genes. Counts were then subjected to a variance-stabilizing
transformation prior to further analysis, Consensus gene modules across all sam-
ples were then constructed using a soft-threshold power of 9. Initially, 26 gene
modules were identified. Modules whose eigengene correlation was >0.75 were
subsequently merged, after which 22 consensus modules remained. Finally, the
Pearson correlation of each module with each phenotypic trait within each group
(queens, control workers, and individuals from queen removal nests) was calcu-
lated and subjected to Benjamini–Hochberg FDR correction. Network summary
measures and gene dendrograms for WGCNA are provided in Supplementary
Figs. S12–13.

GO enrichment analysis. In order to perform GO enrichment analysis, we first
used OrthoFinder69 to identify orthologues for each P. dominula gene in Droso-
phila melanogaster, a model species for which GO annotations are much more
complete. GO annotations for each D. melanogaster gene were acquired from
BioMart70 and each P. dominula gene was then assigned GO terms permissively,
i.e., a given P. dominula gene was assigned a GO term if that term appeared as an
annotation to any of its orthologues. 6659/10734 (62.0%) of genes possessed at least
one orthologue in D. melanogaster. GO enrichment analysis was then performed in
R via the topGO package71 using topGO’s weight01 algorithm and Fisher’s exact
test to identify GO terms that were significantly overrepresented (p < 0.01) in a
focal set of genes against a background consisting of all genes that appeared in the
relevant analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data associated with this paper have been deposited in the NCBI Gene
Expression Omnibus with accession number GSE153532. Source data are provided with
this paper.

Code availability
Custom R code used to perform support vector classification and feature selection are
provided in a GitHub repository [https://doi.org/10.5281/zenodo.4390131], with
instructions for use.
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