
BioMed Central

Page 1 of 7

(page number not for citation purposes)

BMC Bioinformatics

Open AccessSoftware

The Molecular Biology Toolkit (MBT): a modular platform for
developing molecular visualization applications
John L Moreland1, Apostol Gramada1, Oleksandr V Buzko1, Qing Zhang1 and
Philip E Bourne*1,2

Address: 1San Diego Supercomputer Center, 9500 Gilman Drive, La Jolla, CA 92093, USA and 2Department of Pharmacology, University of
California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Email: John L Moreland - moreland@sdsc.edu; Apostol Gramada - agramada@sdsc.edu; Oleksandr V Buzko - obuzko@sdsc.edu;
Qing Zhang - qzhang@sdsc.edu; Philip E Bourne* - bourne@sdsc.edu

* Corresponding author

Abstract

Background: The large amount of data that are currently produced in the biological sciences can

no longer be explored and visualized efficiently with traditional, specialized software. Instead, new

capabilities are needed that offer flexibility, rapid application development and deployment as

standalone applications or available through the Web.

Results: We describe a new software toolkit – the Molecular Biology Toolkit (MBT; http://

mbt.sdsc.edu) – that enables fast development of applications for protein analysis and visualization.

The toolkit is written in Java, thus offering platform-independence and Internet delivery capabilities.

Several applications of the toolkit are introduced to illustrate the functionality that can be achieved.

Conclusions: The MBT provides a well-organized assortment of core classes that provide a

uniform data model for the description of biological structures and automate most common tasks

associated with the development of applications in the molecular sciences (data loading, derivation

of typical structural information, visualization of sequence and standard structural entities).

Background
Recent scientific and technical advances in the field of
experimental biology, particularly in genomics, have pro-
duced large amounts of biological data, which has posed
new conceptual challenges. The visualization and visuali-
zation-driven analysis of these experimentally derived
data has become a key component of the scientific
process.

Until recently, these needs were typically approached by
designing applications specialized in a set of well-defined
specific tasks. So, for example, popular applications for

molecular visualization include, but are not limited to,
Molscript [1], PyMol [2], Rasmol [3] and Swiss-PdbViewer
[4]. However, the analysis of these molecular data fre-
quently requires novel approaches to visualization and
integration with a variety of data types. Therefore, the abil-
ity to quickly prototype and develop software suitable for
diverse tasks becomes paramount. Hence, libraries, like
the MBT described here, are particularly useful, especially
given that many applications can be accessed through the
Web.

Published: 06 February 2005

BMC Bioinformatics 2005, 6:21 doi:10.1186/1471-2105-6-21

Received: 31 August 2004
Accepted: 06 February 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/21

© 2005 Moreland et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15694009
http://www.biomedcentral.com/1471-2105/6/21
http://creativecommons.org/licenses/by/2.0
http://mbt.sdsc.edu
http://mbt.sdsc.edu
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2005, 6:21 http://www.biomedcentral.com/1471-2105/6/21

Page 2 of 7

(page number not for citation purposes)

This paper, aimed at bioinformatics software developers,
provides a concise presentation of the design and capabil-
ities of the toolkit, presents a number of models for its
usage, and illustrates its performance with several applica-
tions. The paper is organized as follows. The following
section provides a general overview of the application
programming interface (API). The Results and Discussion
section presents details about core components of the
toolkit and illustrates its capabilities with two applica-
tions. The Conclusions section summarizes the main
functionality of the toolkit, discusses availability and doc-
umentation, presents performance data and outlines
future development plans.

Implementation
The application-programming interface (API) that serves
as the foundation of the toolkit has emerged from the
exploration of the typical needs encountered by a
researcher in the analysis of a documented biological mol-
ecule. The list of requirements includes reading the data
file and converting the information to data objects that are
easily accessible by applications, extracting subsets of
chemical components according to different chemical or
biological properties of interest (e.g. chains, residues, CA
atoms, ligands, etc.), deriving information that is not
explicitly present in the original input data (e.g., covalent
and hydrogen bonds, torsion angles, secondary struc-
tures) and visualizing chemical or physical properties of
different subsets of the molecule, or the entire molecule.

Based on the requirements identified above, we have
arrived at the multi-layered design illustrated in Fig. 1. The
bottom (input/output) layer contains facilities for import-
ing molecular data from a variety of sources. The Structure-

Factory class offers a uniform approach to loading
structural data, independent of the format of the source.
The class makes use of a set of loaders that can import data
from a variety of sources, either on the same machine or

located on a remote server. Moreover, this allows the
developer to write applications that do not have to
uniquely specify the source of data. Instead, a number of
methods in the StructureFactory class enable loading of
structures based on a series of source descriptors: file
name, PDB id code, URL location, etc. The first loader
capable of handling the source descriptor is used thus pro-
viding a data access and retrieval mechanism that is trans-
parent to the user.

The output of the load methods in the StructureFactory is a
Structure object, which is effectively an interface to a sum-
mary of raw primary and secondary structure data. The
Structure object is not restricted to holding structural
information and can contain any other data relevant to
the organization of the molecular entity. For instance, it
can store the description of single or multiple protein
sequences preserving the ordering and alignment of the
amino acid residues and their properties.

The StructureMap class builds the internal data model of
the simple or complex molecule and provides hierarchical
access to both raw data and derived information gener-
ated from the input. This includes access to chains, resi-
dues, atoms, bonds, nucleic acid components, ligand
atoms, fragments associated with secondary structure
components, or features defined by the user.

The StructureStyles class provides information about ren-
dering, coloring and selection attributes associated with
any structure component produced by the StructureMap. A
wide variety of methods in this class allow any module of
an application, in particular any viewer, to set and retrieve
the information describing the visually represented
parameters of any structure component.

The StructureDocument is designed as a container class that
maintains a log of all loaded structures and viewers that
are instantiated by an application in a given session. It
also has the role of generating events associated with the
addition or removal of structures and viewers.

The next level of the API contains graphical user interface
(GUI) elements. This portion of the package contains high
level constructs, such as windows and panels designed to
display 3D graphics, protein or DNA sequences or tree
representations of the chemical components of the mole-
cule, as well as lower level components that can be used
to build a molecular scene according to a developer's
preferences.

Finally, at the application level, a number of applications
are provided that can be used to illustrate the features of
the toolkit, or as starting templates for new application
development. For example, the applications illustrate

The architecture of the toolkitFigure 1
The architecture of the toolkit.

BMC Bioinformatics 2005, 6:21 http://www.biomedcentral.com/1471-2105/6/21

Page 3 of 7

(page number not for citation purposes)

how to use methods in the StructureMap class to retrieve
all secondary structures within a given molecule, or how
to obtain a list of atoms or residues. This is the level that
most developers would modify in order to create custom
applications tailored to their specific needs.

Note that care has been taken to further enable applica-
tion developers to use different components of the toolkit
to build purely analytical applications that have no visu-
alization component. For example, a developer could
write a command-line tool that simply loads a molecule
and gathers statistics about the structure data without pre-
senting any graphical interface. Such an application could
be part of a back-end process that runs in a web-server
environment.

Results and discussion
Core components

The MBT was developed as an object-oriented Java-based
environment and hence is flexible, modular and light-
weight, which facilitates maintenance, web deliverability
and limits the required computer resources. Moreover, the
toolkit can be easily extended and having been written
completely in Java is effectively platform-independent.

The internal data model describes the hierarchical organi-
zation of a protein molecule – Structure, Chain, Residue,
and Atom. We have implemented this data model by
designing a class hierarchy to efficiently encode its ele-
ments. The components of this class hierarchy (Fig. 2) are
built around a Structure object (Fig. 1). Structure is a con-
tainer designed to hold all raw information pertaining to
the given unit of biological information: protein
sequence, genomic sequence, taxonomy information,
experimental data and so on. The remainder of the class
hierarchy represents the components of the macromole-
cule. The toolkit is not inherently limited to operating on
biological molecules, and can easily be used to manipu-
late small organic and inorganic molecules. Selection, ren-
dering and coloring attributes for all biological molecules
are handled by StructureStyles.

The Fragment class contains, for example, one of the four
known conformations: α-helix, β-strand, turn or random
coil, but is sufficiently general to define ranges of residues
grouped according to any property of interest. In addition,
the data model contains classes that describe other objects
associated with derived information, such as covalent or
hydrogen bonds.

In order to provide uniform style features across the
toolkit a StructureStyles class has been implemented. This
class maintains a representation of the rendering charac-
teristics of all structure component objects so that any
application module has access to the style data for any

given object that needs to be visually represented. The set
of style parameters maintained by the StructureStyles class
is comprehensive – it is the union of the sets of style
parameters required by any known viewer.

Communication between different components of the
toolkit is enabled by a flexible event handling mecha-
nism. Changes in the data, rendering styles, addition or
removal of viewers and many other actions with toolkit-
wide impact generate descriptive events, which are recur-
sively propagated across the toolkit components, allowing
an automatic synchronization of the state of different
active parts of an application.

Version 1.0 of the MBT provides three standard viewers: a
3D structure viewer, a primary sequence viewer, and a tree
viewer. The 3D viewer is implemented using the Java3D™
extension. The use of Java3D for visualization was moti-
vated by the convenience of the availability of high-level
constructs for building complex 3D scenes. Analysis of the
performance aspects [5] of Java3D has shown that some
performance issues can be overcome through a careful
organization of the molecular scene. Existing applications
indicate that the visualization of most molecules using
typical desktops and graphics cards is fast and fully inter-
active. For example, typical protein data sets with four to
five thousand atoms (e.g., PDB identifiers 4 HHB, 10 MH,
6 GEP) load and display in four or five seconds on a Pen-
tium III 1.2 GHz laptop computer.

A schematic representation of the data structure used by
the 3D viewer is shown in Figure 3. For each primary or
secondary structure element, a geometry object (Geometry-

Entity) is built, which is then attached as a BranchGroup

node to a SceneGraphObject (the common superclass for
all graph objects in Java3D) representing the three-dimen-
sional image of the molecule. The PsGeometry (primary
structure) and SsGeometry (secondary structure) classes
provide a number of methods that build complete 3D

The MBT data modelFigure 2
The MBT data model.

BMC Bioinformatics 2005, 6:21 http://www.biomedcentral.com/1471-2105/6/21

Page 4 of 7

(page number not for citation purposes)

scenes from a given set of primary or secondary structure
data object (See Fig. 2).

The geometry engine of the 3D viewer uses a flexible
approach to generate ribbon-like surfaces. It allows the
construction of ribbons using an extrusion with any shape
of the cross section. A few most commonly used shapes
are immediately available as core components of the
toolkit. However, the developers could easily implement
and register with the toolkit any additional shapes that
may be of interest in their specific applications. The qual-
ity of geometry can be controlled either directly by setting
individual geometry rendering parameters, or indirectly
by a general quality parameter that optimizes the number
of facets/vertices used in the construction of different geo-
metric shapes. This allows for an easy adjustment of the
application parameters in a wide performance-quality
range, from very fast line-only drawing, to a somewhat
slower, publication-quality rendering.

The sequence viewer is a module designed to display pri-
mary sequences of proteins and nucleic acids that are
either derived from the loaded structures or acquired from
individual sequence files or sequence alignments. The
sequence viewer uses AWT drawing methods, which does
not impose any specific requirements on the client sys-
tem, as they are part of the standard Java distribution. The
viewer is designed as a full-featured module capable of
performing most of the sequence analysis tasks, including
basic statistics, pattern and motif searching and display of
secondary structure mapping onto the sequence. The
viewer is capable of displaying an unlimited number of
sequences and provides multiple representation options.
The latter include residue coloring by several criteria with
a possibility of an easy extension, setting sequence display
to any of the available system fonts, a flexible selection
system, and more. As stated, the integrated event handling
of the toolkit allows for simultaneous updates of the pres-
entation layer for any participating viewers. Hence, the
toolkit has the built-in support for common selection and

common coloring across all registered viewers. This offers
an important visual cue to many applications, linking for
example sequence and structural components.

The tree viewer offers a hierarchical view of all compo-
nents of a given molecule. It reflects the logical organiza-
tion of the derived StructureMap data including Molecule,
Chain, Residue, and Atom objects. The tree view provides a
convenient mechanism to select portions of a molecule
based upon the biological relationship between atoms,
residues, and chains.

Finally, the MBT provides a repository of data and meth-
ods that can be used for the retrieval and/or derivation of
physical, chemical and structural information associated
with the molecules loaded by an application. For exam-
ple, the package contains a periodic table with physico-
chemical properties of the elements, as well as methods
for the derivation of the secondary structure information,
using the Kabsch-Sander algorithm [6]. Full details of all
these features are provided with the documentation.

Applications built using the MBT

Applications can be explored and downloaded from the
MBT Website [7]. They have been tested on a variety of
UNIX, Windows and MAC OS X platforms.

The Ligand Explorer [8] (a.k.a. LigPro; Figure 4) is an inte-
gral part of the reengineered RCSB Protein Data Bank
(PDB) [9,10], which is currently in beta testing. In the
present PDB, a user interested in protein-ligand interac-
tions must download the structure, decide on a graphics
program and likely learn a scripting language to provide
details of hydrophilic and hydrophobic interactions
between protein and ligand at different cutoff distances.
Ligand Explorer achieves this at the push of a button. This
produces a view with all ligands highlighted. The user
then selects a ligand for a review of detailed interactions.
Ligand Explorer can be downloaded as a separate applica-
tion and used to access local files or files on the PDB's
servers.

The protein kinase exploration tool (Fig 5.) is part of the
new protein kinase resource [11]. It uses the 3D viewer
supplied by the toolkit with a few modifications that
allow more extensive coloring and rendering options. The
multiple sequence viewer presents the multiple sequence
alignments resulting from the multiple structure align-
ments which are stored in the database. Another viewer
displays the superfamily relationship of the sequences
present in the database.

Conclusions
The molecular biology toolkit (MBT) provides a set of
pluggable and extensible classes for use by application

The class hierarchy of the geometry engineFigure 3
The class hierarchy of the geometry engine.

BMC Bioinformatics 2005, 6:21 http://www.biomedcentral.com/1471-2105/6/21

Page 5 of 7

(page number not for citation purposes)

developers interested in the visualization and analysis of
macromolecular data. The MBT provides a set of pre-writ-
ten data loaders, viewers, a common data model and the
means to add to and customize the toolkit for specific
applications delivered as applets through the Web or as
standalone applications. Base functionality and compara-
ble tools (where applicable) are as follows:

• Classes to load raw data from a number of common pro-
tein structure and sequence data sources (PDB, mmCIF,
FASTA, etc.) and a means to easily add new "loader" mod-
ules independent of the applications they might serve.

• A common data model to which raw information is
imported, mapped, and indexed. A number of data record
types (StructureComponent objects) are provided (e.g.,
Atom, Bond, Residue, Chain) and new data types are eas-
ily registered. Further the data model provides an extensi-
ble means to describe viewable or visible attributes (e.g.,
color, radius, drawing style) of these objects.

• Written entirely in Java, programs may be embedded
(using Java WebStart or the Java Plug-In) directly inside
web pages. This enables the deployment of tightly cou-
pled interactive web content much like the popular MDL
Chime plug-in.

• Applications are not restricted to the features provided
by the MBT APIs. The Programmers Guide details how to
extend the system.

• With source code provided, core features of the toolkit
may be directly modified or extended for independent use
(though, this may cause your code to diverge from and
become incompatible with subsequent releases of MBT).
However, adding code within the existing framework and
contributing it back for others to use is encouraged. The
source code has been extensively commented to produce
a rich and complete set of hyper-linked javadoc API
documents.

• A set of pre-written viewers (Sequence, Structure, Tree)
that can be extended, replaced, omitted, or augmented
with completely new viewers that implement entirely new
visualization techniques.

• The 3D StructureViewer module provides visual represen-
tations similar to RasMol and Molscript such as balls-and-
sticks, CPK spheres, split-bonds, extrusion/ribbon-style
backbone traces, and secondary structure cartoons (Helix,
Turn, Coil, Strand). It also provides 3D labeling.

• A scripting interface is being developed for MBT to ena-
ble toolkit functionality to be command-line or even
script-driven (similar to MDL Chime or PyMol).

Version 1.0 of the toolkit and sample applications, includ-
ing those described here, are available for download from
the project web page [7]. The same site contains links to
various documentation pages (Project Introduction, Talk/
Presentation Slides, Related Links, Installation Guide,
Build Guide, Programmers Guide, Examples Source, and
Toolkit API). The MBT has been tested on common hard-
ware and UNIX, Windows and MAC OS X operating sys-
tems. A good consumer-level graphics card is
recommended. The loading and generation of a 3D scene
when representing a typical protein structure takes a few
seconds. Large structures from the PDB [9] that contain
over 105 atoms require physical memory in excess of 500
MBytes and on a notebook computer with a 1.2 GHz
processor can take nearly one minute. Efforts at optimiza-
tion are on-going.

New applications are on-going including the generation
of high quality images for all structures in the Protein
Data Bank and new ways of visualizing protein-protein
interactions. We invite contributions to the MBT by send-
ing mail to mbt@sdsc.edu. Bugs may be reported to a bug
tracker available on the project web site [7].

Availability and requirements
• Project Name: Molecular Biology Toolkit (MBT)

• Project Home Page: http://mbt.sdsc.edu

• Operating System: Platform independent

Ligand ExplorerFigure 4
Ligand Explorer. The structure of cAMP dependant protein
kinase (PDB id 1ATP) showing the hydrophilic interactions of
the bound ATP to the protein and bound inhibitor which
mimics substrate in the phosphotransfer reaction from the
gamma phosphate of ATP.

http://mbt.sdsc.edu

BMC Bioinformatics 2005, 6:21 http://www.biomedcentral.com/1471-2105/6/21

Page 6 of 7

(page number not for citation purposes)

• Programming Language: Java

• Other requirements: Java 1.3.1 or higher, Java3D

• License: Free for educational, research and non-profit
purposes

• Any restrictions to use by non-academics: Contact the
University of California at San Diego's Technology Trans-
fer Office (invent@ucsd.edu, 1-858-534-5815)

Authors' contributions
JLM is one of the designers of the API and co-developer of
the toolkit. AG designed and implemented the geometry

Protein kinase explorerFigure 5
Protein kinase explorer. An alternative view of a cAMP dependant protein kinase with residues from the multiple structure
alignment mapped to the corresponding aligned sequences and to a single template structure from the set.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Bioinformatics 2005, 6:21 http://www.biomedcentral.com/1471-2105/6/21

Page 7 of 7

(page number not for citation purposes)

generation modules, implemented the algorithms for sec-
ondary structure generation and bond detection, and
drafted the paper. OVB developed the PKR Explorer. QZ
developed the Ligand Explorer. PEB coordinated the
whole project, suggesting the general functionality and
scientific objectives of the toolkit.

Acknowledgements
We are very grateful to Drs. Paul Craig, John Westbrook and members of

the developer and user community at the San Diego Supercomputer

Center for their suggestions and valuable feedback.

This work was supported by NIH grant 1-P01-GM63208. SB is supported

by the Protein Kinase Resource project NSF grant DBI-0217951. QZ is sup-

ported by the RCSB Protein Data Bank, a multi-agency project led by the

NSF.

References
1. Kraulis PJ: MOLSCRIPT: a program to produce both detailed

and schematic plots of protein structures. J Appl Cryst 1991,
24:946-950.

2. DeLano WL: The PyMol Molecular Graphics System on the
World Wide Web. 2002 [http://www.pymol.org].

3. Sayle RA, Milner-White EJ: RASMOL: biomolecular graphics for
all. Trends Biochem Sci 1995, 20:374-376.

4. Guex N, Peitsh MC: SWISS-MODEL and Swiss-PdbViewer: an
environment for comparative modeling. Electrophoresis 1997,
18:2714-2723.

5. Can T, Wang Y, Wang Y-F, Su J: FPV: fast protein visualization
using Java 3D. Bioinformatics 2003, 19:913-922.

6. Kabsch W, Sander C: Dictionary of protein secondary struc-
ture: Pattern recognition of hydrogen-bonded and geomet-
rical features. Biopolymers 1983, 22:2577-2637.

7. MBT Home page [http://mbt.sdsc.edu]
8. Ligand Explorer (LigPro) Home page [http://ligpro.sdsc.edu]
9. Berman HM, Westbrook J, Feng J, Gilliland G, Bhat TN, Weissig H,

Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids
Res 2000, 28:235-242.

10. PDB Home page [http://pdbbeta.rcsb.org]
11. Protein kinase resource Home page [http://pkr.sdsc.edu]

http://www.pymol.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7482707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9504803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9504803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12761052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6667333
http://mbt.sdsc.edu
http://ligpro.sdsc.edu
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592235
http://pdbbeta.rcsb.org
http://pkr.sdsc.edu
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results and discussion
	Core components
	Applications built using the MBT

	Conclusions
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

