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Germany, 51 Department of Economics, Oulu Business School, University of Oulu, Oulu, Finland, 52 College of Medicine, Florida State University, Tallahassee, Florida,

United States of America, 53 Department of Medicine, Turku University Hospital, Turku, Finland, 54 Department of Medicine, University of Turku, Turku, Finland,

55 Institute of Epidemiology I, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany, 56 Institute of Medical

Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany, 57 Klinikum Grosshadern, Munich, Germany,

58 Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany, 59 Department of Medicine 2,

University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany, 60 Econometric Institute, Erasmus School of Economics, Erasmus University

Rotterdam, Rotterdam, The Netherlands, 61 Panteia, Zoetermeer, Netherlands, 62 GSCM-Montpellier Business School, Montpellier, France

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e60542

The 



Abstract

Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as
cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes
influence economic variables, although these genes may have both a direct and an indirect effect on health. We report
results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–
entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that
common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in
twin data (sg

2/sP
2 = 25%, h2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies

comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p,1025 were tested in a
replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were
previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based
genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an
independent sample (p$0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-
employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily
environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and
biologically more proximate outcomes, such as height, intelligence, personality, and several diseases.
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Introduction

Economic variables such as income, education, and occupation

are well-known to be related to health outcomes and longevity [1–

10]. Specifically, there is a consistent inverse relation between

indicators of socioeconomic status and cardiovascular disease [11].

For example, occupational choice is associated with the incidence

of coronary heart disease among women [12]. Intriguingly, health

outcomes, longevity, income, educational attainment, and occu-

pational choice have all been shown to be partly heritable (see ref.

[13] for complex diseases, refs. [14–17] for longevity, refs. [18–22]

for education, refs. [23–25] for income, and refs. [26–28] for

occupational choice). This suggests that the same genetic factors

could be linked to socioeconomic status and health outcomes, or

that indirect causal pathways from genetic variants to health

outcomes exist that are mediated by individual behavior and the

environment. For example, a potential mismatch between

personal disposition and occupational choice may result in stress

and decreased happiness, which have been shown to negatively

affect (cardiovascular) disease incidence and longevity [29–32].

Therefore, knowledge about the specific molecular genetic

architecture of socioeconomic variables and about the effects of

mismatches between genetic predispositions and realized choices

could yield important insights for epidemiology and public health

policy. Unfortunately, most efforts to investigate the influence of

genes on economic variables were until now limited to candidate

gene studies that often failed to replicate later [33,34].

This study reports results from the first large-scale collaboration

that studies the molecular genetic architecture of a specific

economic behavior–entrepreneurship–using data from high-den-

sity SNP arrays. Entrepreneurship has been associated with poor

health [35], increased stress [36], relatively low average incomes

[37], but also with greater job and life satisfaction [38–40]. The

analysis of entrepreneurship is complicated by the fact that it is a

multi-faceted phenomenon [41]. Individuals may engage in

entrepreneurial activity for a variety of reasons. For example,

certain individuals may be motivated to pursue a business

opportunity or to gain independence, whereas others may do so

because of unemployment and a lack of viable alternatives in paid

employment. Despite this complexity, empirical evidence suggests

that entrepreneurship tends to run in families [42–47], and recent

twin studies consistently estimate the heritability of this behavior to

be on the order of 50% [26–28]. As these results suggest that

entrepreneurship is partly influenced by genetic variation, specific

markers that are associated with entrepreneurship should, in

principle, exist. Research that is aimed at discovering these specific

markers has thus far been limited to one candidate gene study.

This study [48] found evidence for an association between a

specific genetic variant in the DRD3 gene and entrepreneurship in

a sample of n = 1,335. However, a more recent study [49] failed to

replicate this association in three larger samples of n = 5,374,

n = 2,066, and n = 1,925.

The molecular genetic architecture of entrepreneurship there-

fore remains largely unknown. A variety of alternative architec-

tures could account for heritable variation. For example, there

may be a small number of rare variants with strong effects,

multiple common variants with small or modest effects, or some

combination of these possibilities [50,51]. Therefore, we aimed to

identify the molecular genetic architecture of entrepreneurship to

facilitate a more sophisticated understanding of the nature of the

associated heritable variation.

We use self-employment as a proxy for entrepreneurship in this

study, which is the most widely available proxy for entrepreneur-

ship. Self-employment is defined as having started, owned, and

managed a business. Initially, we used a classical twin design to

estimate the heritability of the tendency to engage in self-

employment. We performed this analysis to determine the

comparability of our results with (1) estimates of previous twin

studies, and (2) estimates from a novel method from molecular

genetics. This recently described method [52] is used here to

quantify the proportion of variance that is explained by common

SNPs (and unknown causal variants that are in linkage disequi-

librium with these SNPs) in the tendency to engage in self-

employment.

Furthermore, we performed a meta-analysis of genome-wide

association studies (GWASs) of self-employment from sixteen

studies to identify genetic variants that are robustly associated with

self-employment. Together, these studies comprised 50,627

participants of European ancestry who are part of the Gentrepre-

neur Consortium [53,54]. This study is the first large-scale effort to

identify common genetic variants that are associated with an

economic variable. We also tested whether self-employment could

be predicted out-of-sample solely using genotype data and the

results of our meta-analysis.

Theoretical and empirical evidence from entrepreneurship

research suggests that there may be differences between males

and females with respect to the type of businesses they start. These

differences also extend to individuals’ motivations, goals, and

resources [55–59] and exist because women face different–and

typically more–barriers to entrepreneurship than men [60–62].

Therefore, we performed both pooled and sex-stratified analyses

for all of our investigations.

Materials and Methods

Participating studies and self-employment measures
The analyses were performed within the Gentrepreneur

Consortium [53,54], which included two out of the five studies

that participate in the Cohorts for Heart and Aging Research in

Genomic Epidemiology (CHARGE) Consortium [63] and four-

teen additional studies. The discovery studies included the Age,

Gene/Environment Susceptibility–Reykjavik Study (AGES), the

Austrian Stroke Prevention Study (ASPS), the Erasmus Rucphen

Family study (ERF), the Gutenberg Health Study (GHS), Health

2000 (H2000), the Helsinki Birth Cohort Study (HBCS), the

Health and Retirement Study (HRS), the Cooperative Health

Research in the Region of Augsburg (KORA S4), the Northern

Finland Birth Cohort 1966 (NFBC1966), the Netherlands Twin

Molecular Genetic Architecture of Self-Employment
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Register Cohort 1 (NTR1), the Netherlands Twin Register Cohort

2 (NTR2), the Rotterdam Study Baseline (RS-I), the Rotterdam

Study Extension of Baseline (RS-II), the Rotterdam Study Young

(RS-III), the SardiNIA Study of Aging (SardiNIA), the Study of

Health in Pomerania (SHIP), The Hellenic study of Interactions

between SNPs & Eating in Atherosclerosis Susceptibility (THI-

SEAS), the UK Adult Twin Registry (TwinsUK), and the

Cardiovascular Risk in Young Finns Study (YFS). The Swedish

Twin Registry (STR) served as an in silico replication study, as

genome-wide data were only available following the completion of

the discovery stage.

The studies collected data regarding occupational status using

questionnaires or interviews, from which self-employment status

was distilled. Self-employment measures were defined in collab-

oration with the consortium leaders to minimize heterogeneity

across participating studies. The cases were defined as individuals

who were self-employed at least once, and the controls were

defined as individuals who were never self-employed during their

working life. However, for a number of studies, reliable data

regarding work-life history were unavailable, possibly resulting in

the inclusion of previously self-employed individuals in the control

group. The details regarding the background and self-employment

measures of each of the discovery studies and of the replication

study are given in Table S1.

Ethics statement
All participating studies were approved by the relevant

institutional review boards or the local research ethics committees,

including the Icelandic National Bioethics Committee (VSN: 00-

063), the Icelandic Data Protection Authority, and the Institu-

tional Review Board for the National Institute on Aging (AGES);

the Ethics Committee of the Medical Faculty of the University of

Graz (ASPS); the Medical Ethics Committee at Erasmus

University which approved the protocols for the ascertainment

and examination of human subjects (ERF); the local ethics

committee and data safety commissioner, the sampling design

was approved by the federal data safety commissioner (GHS); the

Ethics Committee for Epidemiology and Public Health in the

Hospital District of Helsinki and Uusimaa in Finland, in

accordance with the ethical standards of the Declaration of

Helsinki (H2000); the Ethics Committee of Epidemiology and

Public Health of the Hospital District of Helsinki and Uusimaa

(HBCS); the Health Sciences Institutional Review Board at the

University of Michigan (HRS); the Ethics Committee of the

Bavarian Medical Association (KORA S4); the Ethics Committee

of the University Hospital of Oulu (NFBC1966); the VU

University Medical Ethical Committee (NTR); the Medical Ethics

Committee of the Erasmus Medical Center (RS); the local Ethics

Committee for the Istituto di Ricerca Genetica e Biomedica,

Consiglio Nazionale delle Ricerche and the MedStar Research

Institute, responsible for intramural research at the National

Institute of Aging (SardiNIA); the Ethics Committee of the

University of Greifswald (SHIP), the Ethical Review Board in

Stockholm (STR); the Bioethics Committee of the Harokopio

University of Athens (THISEAS); the NRES Committee London-

Westminster (TwinsUK); the local Ethics Committees of the

participating universities (YFS). Written informed consent was

provided by all of the participants.

Genotyping, imputation, and quality control
The seventeen participating studies used a variety of commer-

cially available SNP genotyping platforms to genotype their

participants. Each study performed quality control of their

genotypic data and imputed the genotypes of each participant to

a common set of approximately 2.5 million SNPs from the

HapMap CEU population. The exceptions to this were THI-

SEAS, which only supplied results for directly genotyped SNPs,

and HRS, which imputed to the 1,000 Genomes Project Phase I

v3 panel. Prior to the meta-analysis, we performed parallel quality

control of the association results for each study. SNPs were

excluded on the basis of minor allele frequency (MAF,0.01 or

MAF,0.05 if deemed necessary) and if the imputation quality (a

measure of the observed variance divided by the expected variance

of the imputed allele dosage from the imputation software output)

was less than 0.4. Following these exclusions, approximately 2.4

million SNPs remained. Study-specific details regarding the

genotyping, imputation, and quality control are given in Table S2.

Statistical analysis
Tetrachoric correlations were used to calculate self-employment

correlations for MZ and DZ twin pairs. This analysis assumes a

latent normally distributed tendency to engage in self-employ-

ment. We estimated the heritability of the tendency to engage in

self-employment in the replication study using standard twin study

methods, which were implemented in the program Mx [64]. Only

complete twin pairs with data regarding self-employment status

were included in the analysis and opposite-sex DZ twin pairs were

excluded, resulting in a final sample size of 4,464 individuals.

Specifically, for pooled males and females, males only, and females

only, we fitted the three following nested models using the

maximum likelihood approach on the raw data: (1) a model

including an additive genetic effect, a shared common environ-

ment effect, and an individual-specific environment effect (the ACE

model); (2) a model that included only an additive genetic and an

individual-specific environment effect (the AE model); and (3) a

model including only a common environment effect and an

individual-specific environment effect (the CE model). For all of

the samples, we controlled for a z-score of age by estimating age-

specific thresholds. For the pooled sample, we additionally

controlled for sex in a similar way.

We used the method that was recently developed by Yang et al.

[52] to estimate the proportion of variance in the tendency to

engage in self-employment that is explained by all of the common

genotyped SNPs. The method is implemented in the GCTA

software [65] and hinges on the assumption that in a sample of

unrelated individuals, environmental factors segregate indepen-

dently in the pedigree from the degree of genetic relatedness. In

contrast to the twin study design, genetic relatedness is not inferred

from the pedigree but is estimated directly from genome-wide SNP

data. Under the assumption of no confounding by environmental

variables, we can then estimate the accounted-for variance by

relating the estimated genetic relatedness between pairs of

individuals to their phenotypic correlation. The resulting estimate

is actually a lower bound of the heritability that is estimated from

classic twin and family studies. The reason for this is that twin and

family studies capture the variation that is due to all of the additive

causal variants, whereas the more recently developed method only

captures the variants that are either directly genotyped or in

linkage disequilibrium.

We used a combined sample of individuals from one of the

discovery studies (RS-I) and the replication study (STR) to

estimate the accounted-for variance. We restricted the sample

from each study to individuals for whom data regarding self-

employment were available. Additionally, we included only one

randomly selected individual from each family in the STR sample.

A second round of quality control of the genotypic data was then

performed for both studies. In the RS-I sample, we excluded 3,748

SNPs because they failed a test of Hardy-Weinberg equilibrium at
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p,161026. We removed 24,993 SNPs with minor allele

frequencies that were lower than 0.01 and another 6,665 due to

data missingness greater than 5%. In total, 5,374 individuals and

561,466 autosomal SNPs were included in the analysis. In the

STR sample, we removed two SNPs because they failed a test of

Hardy-Weinberg equilibrium at p,161026. Another 628 SNPs

with a minor allele frequency lower than 0.01 were removed, as

were two SNPs with data missingness greater than 5%. Therefore,

643,924 autosomal SNPs and 2,589 individuals were included in

the analysis.

We then estimated the genetic relationships among 7,963

individuals in the combined sample from the 301,115 common

autosomal SNPs. We dropped one of any pair of individuals with

an estimated genetic relationship that was .0.025 while maxi-

mizing the remaining sample size to exclude the possibility of

ascribing shared environmental effects to genetic effects and/or

including the effects of causal variants not correlated with the

genotyped SNPs but captured by the pedigree. The maximum

relatedness in the remaining sample of 6,223 individuals therefore

approximately corresponds to cousins two to three times removed

[52].

Next, the linear mixed model y = m+g+e was fitted, where y is the

binary phenotype, g the total additive genetic effect of the SNPs,

and e is a residual effect. The restricted maximum likelihood

(REML) was used to estimate the variance of the total additive

genetic effect sg
2 of the SNPs by fitting the genetic relationships as

the covariance structure. Because the analyzed phenotype is

binary, sg
2 is the variance of the total additive genetics effects on

the observed 0–1 scale. A latent normally distributed tendency to

engage in self-employment was assumed when transforming the

explained variance from the observed 0–1 scale to the latent scale

using the transformation that is derived in the appendix of

Dempster and Lerner [66]. For all of the analyses, we controlled

for a z-score of age, study, and the first ten principal components

of the genetic relationships of the combined sample. In the pooled

sample, we also controlled for sex.

In addition to the Yang et al. [52] method, we employed a novel

method developed by So et al. [67] that serves the same purpose,

i.e., estimating the proportion of variance in the tendency to

engage in self-employment that is explained by all of the common

SNPs. However, in contrast to the Yang et al. [52] method, So et

al.’s method does not require raw genotype data but attempts to

recover the accounted-for variance from the meta-analysis results.

Using PLINK [68], we restricted the meta-analysis results to SNPs

that were present in the HapMap Phase II CEU panel (release

23a) and pruned those in strong linkage disequilibrium with other

SNPs using a pairwise r2 threshold of 0.25 in a window of 100

SNPs that slides in 25 SNP increments. After this procedure

172,742, 175,970, and 172,989 SNPs remained in the pooled

males and females, males only, and females only sample,

respectively. We used the Gaussian Kernel function, considered

under the null-hypothesis of no association, and ran the simulation

500 times in each sample.

The genome-wide association analysis of self-employment was

independently performed by each study according to a predefined

analysis plan. The analyses were performed for pooled males and

females, males only, and females only using an additive genetic

model, controlling for age (#29 [reference]; 30–39; 40–49;$50)

and sex in the pooled sample. To control for population

stratification, the first four principal components of the genotypic

data were also included if available. We provide details regarding

the statistical analysis within each study in Table S2.

Following the association analyses, the genomic inflation factor

l was calculated for each sample to quantify any remaining

population stratification or cryptic relatedness. The lowest

inflation factor was 0.989, and the highest was 1.156, although

this latter value was for a study that did not include the first four

principal components of the genotypic data in the analysis (Table

S3). Genomic control [69] was applied in samples with inflation

factors that were greater than one by adjusting the test statistics.

We next performed fixed-effect meta-analyses of the association

results from the discovery studies for pooled males and females,

males only, and females only using METAL software [70].

Although the phenotype was defined as self-employment in each

participating study, we could not harmonize the exact wording of

the question on which the self-employment measure was based. In

addition, the connotations of self-employment may depend to

some extent on the level of economic development and culture.

This may lead to unobserved gene-environment interactions that

could introduce additional noise in the GWAS results pooled

across studies. We combined the association results using weighted

z-scores that were based on the p-values and the direction of the

effects. This method first computes a per-study signed z-score for

each SNP based on its p-value and the effect direction. The z-

scores are then summed with weights that are proportional to the

square root of the sample size of each study. Following the meta-

analyses, only autosomal SNPs that were present in the Hapmap

Phase II CEU panel (release 22, NCBI build 36) and in at least half

of the contributing samples in each meta-analysis were retained

prior to both reporting p-values and the creation of the Q–Q and

Manhattan plots. We a priori set the genome-wide significance

threshold to p,561028. SNPs with p,161025 were considered

suggestive and also carried forward to the replication stage. The

heterogeneity of the test statistics between the studies was assessed

using the I2 metric [71,72] and Cochran’s Q statistic [73].

Replication was attempted for significant and suggestive SNPs

from each meta-analysis using an in silico replication study

comprising 3,271 individuals. The association results for these

SNPs were looked up in the replication study and meta-analyzed

together with the discovery samples for pooled males and females,

males only, and females only. To adjust for family relationships in

the replication study, we performed family-based association tests

implemented in the MERLIN software [74].

We used the discovery meta-analyses results to calculate gene-

based p-values using the VEGAS program [75]. The positions of

the UCSC Genome Browser hg18 assembly were employed to

assign SNPs to genes, which included regions that were 650 kb

from the 59 and 39 UTRs.

For the prediction analyses, we followed the approach that was

pioneered by The International Schizophrenia Consortium [76]

and used the association results from the discovery meta-analyses

to predict self-employment in the STR. Specifically, twelve

overlapping sets of SNPs that were nominally associated in the

discovery meta-analyses were created for different significance

thresholds (pT,0.01, pT,0.05, pT,0.1, pT,0.2, pT,0.3, pT,0.4,

pT,0.5, pT,0.6, pT,0.7, pT,0.8, pT,0.9, and pT#1). These sets

were used as inputs for score calculation in the STR. We restricted

the STR sample to individuals for whom data regarding self-

employment were available and included only one randomly

selected individual from each family, resulting in a final sample

size of 2,589 individuals for the prediction analyses.

Prior to calculating the scores for each individual in the STR,

we followed [76] and selected all of the autosomal SNPs, pruning

those in strong linkage disequilibrium with other SNPs. This

process was performed using a pairwise r2 threshold of 0.25 in a

window of 200 SNPs that slides in five SNP increments. Following

this exclusion process, 135,823 SNPs remained. The PLINK [68]

‘score’ function was then used to calculate the total score for each
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individual in the STR. The score is defined as the sum of the

number of score alleles, weighted by the estimated coefficients

from the discovery meta-analyses, divided by the number of non-

missing genotypes. If an individual was missing a genotype, it was

imputed as the mean genotype based on the score allele frequency

in the STR. On average, the score was calculated from

approximately 120,000 SNPs given that (1) the coefficients were

only estimated for SNPs in the HapMap CEU population in the

discovery meta-analyses, and (2) the overlap with the genotyped

SNPs was not perfect. Lastly, we regressed self-employment onto

the score using a logistic regression model. The variance that was

explained by the score was estimated using the Nagelkerke pseudo-

R2 of the fitted model. We also calculated the area under the

receiver operating characteristic curve (AUC) to evaluate the

prediction accuracy.

Results

Heritability of self-employment and the degree of
variance that is accounted for by common SNPs

We used data from the Swedish Twin Registry (STR) and the

classical twin design to estimate the heritability of the tendency to

engage in self-employment. We computed the tetrachoric corre-

lations between the tendencies to engage in self-employment

within monozygotic (MZ) and dizygotic (DZ) twin pairs. Table 1

indicates that the correlations within the MZ twin pairs were

consistently higher than within the DZ twin pairs for males only,

for females only, and for pooled males and females. We note that

the correlation within DZ twin pairs in the pooled sample was

higher than for the DZ correlations in males and females when the

two sexes are considered separately. This effect most likely results

from imprecise estimation of the tetrachoric correlations due to the

small number of cases. When we computed Pearson correlations,

the pooled DZ twin pairs correlation was in between the male and

female DZ twin pairs correlations. Applying Falconer’s formula

[77] to the correlations in Table 1, yields h2 estimates of 0.39 for

pooled males and females, 0.69 for males only, and 0.34 for

females only.

A maximum likelihood approach was employed to estimate the

relative contributions of the additive genetic (A), shared common

environment (C), and individual-specific environment (E) compo-

nents. This approach was performed using an ACE model and two

nested submodels for pooled males and females, males only, and

females only. Table 2 gives the estimates of the A component as

0.54 for pooled males and females, 0.67 for males only, and 0.38

for females only. The estimates of the C component were 0.01 for

pooled males and females, 0.00 for males only, and 0.02 for

females only. The A component was significant at the 95%

confidence level for pooled males and females, and for males only,

although the confidence intervals were very wide. This component

was not significant for the females only analysis. However, the x2

test for goodness-of-fit and Akaike information criterion indicated

that the AE model was the best-fitting model in all samples. In this

submodel, the estimate for the A component for females only did

not change markedly compared to the ACE model but was

significant at the 95% confidence level. The estimates of the A

component for pooled males and females, and males only were

0.55 and 0.67, respectively; these results were significant.

The recently developed method by Yang et al. [52] was

employed to estimate the degree of variance in the tendency to

engage in self-employment that is explained by all of the

genotyped autosomal SNPs in the GWAS datasets. The propor-

tion of the explained variance was estimated for pooled males and

females, males only, and females only. To maximize the power of

the analysis, we used a combined sample of one of the discovery

studies (Rotterdam Study Baseline [RS-I]) and the STR. We

estimated that 25% (p = 0.032) of the variance in the tendency to

engage in self-employment could be explained by the common

genotyped autosomal SNPs for pooled males and females (Table 3).

The variance that could be explained for males only and for

females only was 25% (p = 0.152) and 0% (p = 0.499), respectively.

The estimates for males and females separately were not

significantly different from one other. The fact that the variance

that is explained was zero for females is most likely due to the very

low number of female cases (n = 353) compared to the number of

controls (n = 3,482). The estimation of the explained variance is

therefore very imprecise. We also estimated the variance that was

explained for pooled males and females, males only, and females

only in the RS-I and the STR separately. The estimates were not

significant because the standard errors of these estimates depend

heavily on the sample size. However, considered in their entirety,

the results were consistent with the estimates that we present for

the combined RS-I and STR samples. Overall, the results for

pooled males and females and for males indicated that the degree

of variance in the tendency to engage in self-employment that is

explained by all of the common autosomal SNPs simultaneously is

only approximately half of the narrow-sense heritability that is

estimated using the STR and the classical twin design. Further-

more, estimates using the method developed by So et al. [67] also

provide non-zero estimates for heritability. Specifically, the

accounted-for variance was 7% for pooled males and females,

21% for males only, and 15% for females only. However,

confidence intervals and standard errors could not be calculated

for these estimates because not all raw genotype data were

available, prohibiting further interpretation of these results.

Meta-analyses of genome-wide association studies
We performed genome-wide association analyses of self-

employment using the data from sixteen discovery studies. These

studies comprised 7,734 participants who had been self-employed

at least once and 42,893 participants who did not report being self-

employed. Table 4 includes the descriptive statistics for the studies.

The mean ages in the pooled samples of males and females ranged

from 31 to 68.8 years, and the average age across all of the studies

was 53.4 years. Following independent association analyses for

each study, we performed a fixed-effect meta-analysis of the study-

level results for approximately 2.4 million SNPs using a pooled z-

score approach.

The discovery meta-analysis Q–Q plot (Figure 1A) did not

indicate a strong deviation for the lowest p-values. However, no

Table 1. Tetrachoric correlations in the tendency to engage
in self-employment for MZ and DZ twin pairs in STR for
pooled males and females, males only, and females only.

Pooled Males Females

MZ DZ MZ DZ MZ DZ

n 1,062 1,170 419 469 643 701

Concordant pairs 839 868 320 307 519 561

Discordant pairs 223 302 99 162 124 140

Pairwise concordance (%) 79.0 74.2 76.4 65.5 80.7 80.0

Tetrachoric r 0.560 0.363 0.677 0.332 0.401 0.230

s.e. 0.042 0.052 0.053 0.072 0.078 0.090

n refers to the number of twin pairs; s.e.: standard error.
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confounding issues related to population stratification, cryptic

relatedness, or genotyping errors were detected, as no systematic

deviation from the expectation under the null hypothesis of no

association was observed [78]. As illustrated in the Manhattan plot

(Figure 2A), we observed twenty SNPs with

4.161026#p,161025 (Tables 5 and S4). The SNP with the

lowest p-value, rs6906622 (p = 4.1061026), was located near the

RNF144B gene, with most studies indicating that the minor allele

increased the probability of being self-employed (Table 5).

We next attempted to replicate in silico the twenty suggestive

SNPs in the STR (n = 3,271). Two of the twenty SNPs associated

with self-employment were statistically significant at the 5% level

in the replication study. However, the SNP effects were not in the

same direction as in the majority of the discovery studies (Table

S4), indicating that these SNPs were potential false positives. We

then performed a combined meta-analysis of the discovery and

replication studies. For all SNPs, the p-values were larger in the

combined sample than in the discovery sample and did not reach

genome-wide significance (Table S4).

The Q–Q plot for the male only meta-analysis (Figure 1B) gave

a certain degree of suggestive evidence of association; however, no

evidence of population stratification, cryptic relatedness, or

genotyping errors was observed, as only certain SNPs–those with

particularly low p-values–deviated from their expectation under

the null hypothesis of no association. The female only meta-

analysis Q–Q plot (Figure 1C) did not indicate a strong deviation

for the lowest p-values and no evidence of population stratification,

cryptic relatedness, or genotyping errors was observed. No SNPs

reached genome-wide significance in the sex-stratified meta-

analyses (Table 5), as can be observed in the Manhattan plots

(Figures 2B and C). The male meta-analysis resulted in 22

suggestive SNPs with p,161025, and the female meta-analysis

resulted in sixteen suggestive SNPs (Tables 5, S5, and S6). The top

SNP in males, rs6738407 (p = 1.5261027), was located in the

HECW2 gene, and most studies reported that carrying the minor

allele decreased the probability of being self-employed. The top

SNP in females, rs2331548 (p = 1.9361026), was located near the

CBR4 gene, and most studies estimated that carrying the minor

allele decreased the probability of being self-employed.

The replication strategy for the 38 suggestive SNPs from the

sex-stratified meta-analysis that were carried forward into the

replication stage was similar to that used for the meta-analysis

replication of the pooled data. We performed an in silico replication

study using the data from the STR. None of the SNPs reached

nominal significance (p,0.05) in the replication study for males

only (n = 1,409, Table S5) and females only (n = 1,862, Table S6).

In addition, for the majority of the suggestive SNPs, the direction

of the effect was not consistently in the same direction as was

reported in the majority of the discovery studies, again indicating

that these SNPs were potential false positives. We meta-analyzed

the results from the sex-stratified discovery meta-analysis and the

replication study in a combined meta-analysis. For males, five

Table 2. Results of fitting ACE, AE, and CE models to the tendency to engage in self-employment in STR for pooled males and
females, males only, and females only.

Sample Model A (95% CI) C (95% CI) E (95% CI) x 2 p-value AIC

Pooled ACE 0.54 (0.25–0.63) 0.01 (0.00–0.25) 0.45 (0.37–0.55) – – 24,707.96

AE 0.55 (0.46–0.63) – – 0.45 (0.37–0.54) 0.01 0.929 24,709.95

CE – – 0.42 (0.35–0.49) 0.58 (0.51–0.65) 13.60 ,0.001 24,696.36

Males ACE 0.67 (0.33–0.76) 0.00 (0.00–0.28) 0.33 (0.24–0.44) – – 21,417.15

AE 0.67 (0.56–0.76) – – 0.33 (0.24–0.44) 0.00 1.000 21,419.15

CE – – 0.50 (0.41–0.59) 0.50 (0.41–0.59) 14.27 ,0.001 21,404.88

Females ACE 0.38 (0.00–0.53) 0.02 (0.00–0.38) 0.60 (0.47–0.76) – – 23,276.62

AE 0.40 (0.26–0.53) – – 0.60 (0.47–0.75) 0.01 0.919 23,278.61

CE – – 0.31 (0.19–0.42) 0.69 (0.58–0.81) 2.50 0.114 23,276.12

For pooled males and females the analyses are based on 2,232 twin pairs (1,062 MZ and 1,170 DZ), for males only on 888 twin pairs (419 MZ and 469 DZ), and for
females only on 1,344 twin pairs (643 MZ and 701 DZ). The share of self-employed was 21% for the pooled, 32% for the male, and 13% for the female sample. In all
samples we controlled for age and in the pooled sample for sex; A: additive genetic component; C: shared common environment component; E: individual-specific
environment component; 95% CI: 95% confidence interval; x2: x2 test for goodness-of-fit, the baseline model is the ACE model; AIC: Akaike information criterion.
doi:10.1371/journal.pone.0060542.t002

Table 3. Variance in the tendency to engage in self-employment explained by all autosomal SNPs in a combined sample of RS-I
and STR for pooled males and females, males only, and females only.

Sample sg
2/sP

2 s.e. p-value n Cases (%) Controls (%)

Pooled 0.25 0.14 0.032 6,223 905 (14.5) 5,318 (85.5)

Males 0.25 0.24 0.152 2,986 618 (20.7) 2,368 (79.3)

Females 0.00 0.28 0.499 3,835 353 (9.2) 3,482 (90.8)

The genetic relationships were estimated from 301,115 directly genotyped autosomal SNPs that were available in both studies. All analyses controlled for age, study,
and the first 10 principal components of the genetic similarity matrix of the combined sample of RS-I and STR. In the pooled sample we also controlled for sex. The
results did not change markedly when 4 or 20 principal components were included; sg

2/sP
2: proportion of phenotypic variance explained by the variance of the total

additive genetic effects of the 301,115 autosomal SNPs; s.e.: standard error; p-value: p-value from a likelihood ratio (LR) test assuming that the LR is distributed as a 50:50
mixture of zero and x1

2.
doi:10.1371/journal.pone.0060542.t003
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Table 4. Descriptive statistics of the sixteen discovery studies and the replication study.

Pooled Males Females Demographics

Study Cases Controls Cases Controls Cases Controls Mean age SD age

AGES 529 2,690 439 913 90 1,777 51.2 6.5

ASPS 46 788 26 336 20 452 65.2 8.1

ERF 214 857 113 366 101 491 47.2 13.4

GHS 424 2,706 282 1,332 142 1,374 55.9 10.9

H2000 228 1,895 145 890 83 1,005 50.7 11.1

HBCS 265 1,459 141 595 124 864 61.5 2.9

HRS 1947 4273 1048 1780 899 2493 63.6 7.9

KORA S4 177 1,588 121 760 56 828 53.8 8.8

NFBC1966 462 3,772 322 1,718 140 2,054 31.0 0.0

NTR1 201 1,354 94 494 107 860 46.4 13.3

NTR2 166 818 77 355 89 463 51.0 13.8

RS-I 531 4,843 319 1,994 212 2,849 68.8 8.8

RS-II 197 1,869 113 848 84 1,021 64.8 8.0

RS-III 209 1,716 138 746 71 970 56.1 5.8

SardiNIA 740 3,402 515 1,207 225 2,195 46.3 17.1

SHIP 157 3,906 107 1,891 50 2,015 49.7 16.3

THISEAS 204 481 176 243 28 238 51.1 11.2

TwinsUKa 822 2,333 – – 730 2,165 54.5 12.4

YFS 215 2,143 89 1,194 126 949 37.6 5.0

Total discovery 7,734 42,893 4,265 17,662 3,377 25,063 53.4 9.4

STR 737 2,534 484 925 253 1,609 60.6 4.3

Total combined 8,471 45,427 4,749 18,587 3,630 26,672 53.8 9.1

AGES: Age, Gene/Environment Susceptibility–Reykjavik Study; ASPS: Austrian Stroke Prevention Study; ERF: Erasmus Rucphen Family study; GHS: Gutenberg Health
Study; H2000: Health 2000; HBCS: Helsinki Birth Cohort Study; HRS: Health and Retirement Study; KORA S4: Cooperative Health Research in the Region of Augsburg;
NFBC1966: Northern Finland Birth Cohort 1966; NTR1: Netherlands Twin Register Cohort 1; NTR2: Netherlands Twin Register Cohort 2; RS-I: Rotterdam Study Baseline;
RS-II: Rotterdam Study Extension of Baseline; RS-III: Rotterdam Study Young; SardiNIA: SardiNIA Study of Aging; SHIP: Study of Health in Pomerania; THISEAS: The
Hellenic study of Interactions between SNPs & Eating in Atherosclerosis Susceptibility; TwinsUK: the UK Adult Twin Registry; YFS: the Cardiovascular Risk in Young Finns
Study; STR: Swedish Twin Registry; Cases: number of participants that were at least once self-employed; Controls: number of participants that were not, and ideally
never, self-employed; SD: standard deviation.
aThe number of male participants was insufficient for a male stratified analysis.
doi:10.1371/journal.pone.0060542.t004

Figure 1. Q–Q plots of the self-employment discovery meta-analyses. Q–Q plot of the self-employment discovery meta-analysis for (A)
pooled males and females, (B) males only, and (C) females only. The grey shaded areas in the Q–Q plots represent the 95% confidence bands around
the p-values.
doi:10.1371/journal.pone.0060542.g001
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SNPs had lower p-values compared to the male discovery meta-

analysis, although none reached genome-wide significance (Table

S5). In the combined meta-analysis for females, we observed that

one SNP, rs562487, had a smaller p-value in this combined meta-

analysis; however, this SNP did not reach genome-wide signifi-

cance (p = 4.0161026; Table S6).

Gene-based association analyses
The findings from the discovery meta-analyses were used to

perform gene-based association tests for seventeen genes that have

been previously suggested to be candidate genes for entrepreneur-

ship [48,79], including ADORA2A, ADRA2A, COMT, DDC, DRD1,

DRD2, DRD3, DRD4, DRD5, DYX1C1, HTR1B, HTR1E, HTR2A,

KIAA0319 (DYX2), ROBO1, SLC6A3 (DAT1), and SNAP25. Genes

with p,0.003 (0.05/17 genes) were considered significant, but

none of the candidate genes reached this level (Table S7).

To identify novel genes that may be associated with self-

employment, we tested 17,697 genes for pooled males and females,

17,698 genes for males only, and 17,699 genes for females only,

implying a significance level of p,2.861026. None of the analyzed

genes reached this predetermined significance level (Tables S8, S9,

and S10). The gene with the lowest p-value was SLC15A3 for the

pooled male and female analysis (p = 1.6361024). For males only,

the lowest p-value was for TMEM156 (1.6161024), and for

females only, the lowest p-value was for PCP4 (p = 4.7061025).

We also sought to replicate the association that was reported by

Nicolaou et al. [48] to exist between a common variant,

rs1486011, which is located in the DRD3 gene, and the tendency

to be an entrepreneur. The SNP was nominally significant in the

discovery meta-analysis (p = 0.011; Table S11); however, most

studies reported a positive effect of the C allele–opposite to that

reported by Nicolaou et al. [48], corroborating the results from an

earlier replication study [49]. We also sought to replicate this SNP

Figure 2. Manhattan plots of the self-employment discovery meta-analyses. Manhattan plot of the self-employment discovery meta-
analysis for (A) pooled males and females, (B) males only, and (C) females only. SNPs are plotted on the x-axis according to their position on each
chromosome against association with self-employment on the y-axis (shown as 2log10 p-value). The solid line indicates the threshold for genome-
wide significance (p,561028) and the dashed line the threshold for suggestive SNPs (p,161025).
doi:10.1371/journal.pone.0060542.g002
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in the sex-stratified discovery meta-analyses. In this analysis, we

observed a certain degree of evidence for a positive effect of the C

allele in males (p = 0.046; Table S11) but not in females (p = 0.112;

Table S11).

Predicting self-employment from genotype data
We examined whether the results from the discovery meta-

analyses could be used to predict self-employment in the

replication study [76]. We pruned the set of autosomal SNPs to

a subset of approximately 120,000 SNPs that are in approximate

linkage equilibrium. In an initial prediction analysis, we included

only the subset of these 120,000 SNPs that reached a 1%

significance level. We calculated a predictive score for each

individual in the replication study by determining, for each SNP,

the product of the individual’s number of effect alleles and the

estimated regression coefficient from the discovery meta-analysis.

This product was then summed across the included SNPs and

divided by the number of included SNPs. We evaluated the

predictive power of the SNPs by calculating the degree of variance

in the tendency to engage in self-employment that was explained

by the score and the area under the receiver operating

characteristic curve (AUC). We repeated this prediction analysis

eleven additional times, each time with a less stringent significance

threshold required for a SNP to be included in the score. Hence,

each time this analysis was performed, a larger subset of the

120,000 SNPs was analyzed.

For the pooled analysis of males and females (n = 2,589), the

variance that was explained by the score reached a maximum of

0.184% when all SNPs were included (p = 0.039; Table S12). The

scores for males only (n = 1,110) and for females only (n = 1,479)

showed no evidence for association with self-employment (all

p$0.144, Table S12). Furthermore, we did not observe a

consistent positive relationship between the variance in the

tendency to engage in self-employment that was explained by

the score and the significance threshold pT (Figure 3).

Discussion

We present results from four methods of analysis, three of which

are based on genome-wide molecular genetic data, to investigate

the molecular genetic architecture of self-employment.

First, using a classical twin design, we report that 55% of the

variance in the tendency to engage in self-employment is due to

additive genetic effects, with higher heritability for males (67%)

than for females (40%). Our estimates are in agreement with those

of previous twin studies. These earlier studies suggested heritabil-

ities of 48% in a sample of primarily female British twins [26] and

Table 5. Top SNPs (p,161025) from the self-employment discovery meta-analyses for pooled males and females, males only, and
females only.

SNP Chr. Pos.
Effect /non-
effect allele EAF p-value Direction Nearest gene

Number of
SNPs in region

Pooled

rs6906622 6 18,596,287 T/C 0.21 4.1061026 ++2++++++++2++++?++ RNF144B 12

rs2358531 5 75,515,542 A/G 0.71 4.7961026 222?222222+22+22?22 SV2C 2

rs10776614 10 49,433,172 T/C 0.16 4.7961026 2+22222+22222222?22 ARHGAP22 2

rs17166082 7 131,363,900 A/G 0.06 5.8261026 2?2?22?22+222222?22 PLXNA4 1

rs994208 14 33,531,622 C/G 0.66 6.1161026 2+22222222222222?22 EGLN3 1

rs3847697 12 57,282,257 T/C 0.44 6.7961026 22+22222?2+2+2?2?22 LRIG3 1

rs3742467 14 49,709,284 T/C 0.88 9.1161026 +++++2?+2+++2+++?++ SOS2 1

Males

rs6738407 2 196,851,876 A/G 0.20 1.5261027 222222222+222222?2 HECW2 18

rs6825440 4 183,636,063 A/T 0.24 4.2561026 2+22222222+222+2?2 ODZ3 1

rs7904494 10 72,056,694 A/T 0.78 6.7461026 +2+222?22++22222?2 PRF1 1

rs4867424 5 32,331,331 T/C 0.49 8.3961026 22+2222222222222?2 MTMR12 1

rs2712008 4 38,752,396 T/G 0.14 9.9461026 +2++++?+++++2+++?+ KLHL5 1

Females

rs2331548 4 170,199,179 A/G 0.96 1.9361026 ??+?++++++++++++?++ CBR4 1

rs521326 6 52,927,336 A/G 0.61 2.9261026 222222222222+222?22 GSTA4 5

rs1022335 2 145,813,253 A/T 0.37 3.0261026 222222?22222+222?22 ZEB2 1

rs10753804 1 168,583,032 T/C 0.49 3.9261026 222222?2222+2222?22 SCYL1BP1 2

rs562487 5 78,442,190 A/G 0.48 4.4961026 +++++2++2+2++2++?++ BHMT 2

rs9557259 13 99,031,403 T/C 0.06 5.1661026 ??2?++?++++++?????+ TM9SF2 1

rs1383043 4 123,562,066 A/G 0.38 6.0561026 22+2222+22222222??+ ADAD1 2

rs9578700 13 23,775,308 A/G 0.67 6.5361026 2+++222222222222?2+ SPATA13 2

Chr.: chromosome; Pos.: position; EAF: average effect allele frequency; In the column ‘‘direction’’, the studies are in the following order: 1. AGES, 2. ASPS, 3. ERF, 4. GHS, 5.
H2000, 6. HBCS, 7. HRS, 8. KORA, 9. NFBC1966, 10. NTR1, 11. NTR2, 12. RS-I, 13. RS-II, 14. RS-III, 15. SardINIA, 16. SHIP, 17. THISEAS, 18. TwinsUK (pooled and female
sample)/YFS (male sample), 19. YFS (pooled and female sample); A question mark indicates that the SNP was not tested in that specific study; For SNPs that were located
close together in the same region, only the most significant SNP is included in the table. The last column shows the number of neighboring SNPs that exceed the
threshold for suggestive SNPs.
doi:10.1371/journal.pone.0060542.t005
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of 38% in a sample of US twins [28]. In addition, Zhang et al. [27]

estimated the heritability of current business ownership and self-

employment in a sample of Swedish twins and observed evidence

of a significant additive genetic effect for females but not for males.

Our results suggest significant heritability among males as well;

however, the confidence intervals of the estimates are very wide for

both our study and for that of Zhang et al. [27]. At least a portion

of the differences between these two studies may be explained by

imprecision and/or by the different samples and definitions of

entrepreneurship that were used.

Second, by applying a method that was recently developed by

Yang et al. [52] to entrepreneurship, we estimate that approxi-

mately 25% of the variance in the tendency to engage in self-

employment (about half of the h2 estimated in twin studies) could

in principle be explained by the additive effects of common SNPs

that are in linkage disequilibrium with the unknown causal

variants. These results are in line with previous studies, which have

estimated that common SNPs account for one-quarter to half of

the narrow-sense heritability for height [52], intelligence [80,81],

personality [51,82], several common diseases [83], schizophrenia

[84], and recently for several economic and political preferences

[22].

Several explanations may explain why the heritability estimate

for self-employment using common SNPs is approximately half of

the estimate that was obtained using the classical twin design. First,

the causal variants may be in regions of the genome that are

currently not covered by the available SNP arrays. Second, it is

possible that the genotyped SNPs and the causal variants are not

in complete linkage disequilibrium because, for example, the true

causal variants have on average lower minor allele frequencies

than the genotyped SNPs. Yang et al. [52] provide evidence for

this in the case of human height. They estimated that 45% of the

variance in height is accounted for by common SNPs, while the

heritability of height is consistently estimated to be approximately

80%. The authors then developed a method that estimated the

variance that was accounted for by common SNPs, assuming

imperfect linkage disequilibrium between the genotyped SNPs and

the unobserved causal variants. This method revealed that 84% of

the variance in height, the complete heritability, could be

explained by the causal variants. Twin and family studies do not

suffer from this issue, as genetic relatedness is inferred from the

expected relationships within the pedigree and include all of the

additive genetic variation. Both of these explanations imply that

the estimates that we obtained for self-employment using the more

novel method are at the lower bounds of the heritability that is

commonly estimated in twin and family studies. A third,

alternative, explanation for the different results that were obtained

using these techniques is that the twin-based heritability estimates

are biased upwards because of, for example, genetic interactions

[85] or a violation of the identical common environment

assumption in twin studies [86].

Third, we perform the first meta-analysis of GWASs of an

economic behavior (i.e., self-employment) using data from sixteen

studies that together comprise approximately 50,000 participants.

The discovery stage had 80% power to detect a variant at genome-

wide significance with a minor allele frequency of 0.25 and odds

ratios of approximately 1.11 for pooled males and females, 1.15 for

males only, and 1.17 for females only [87], assuming we had a

non-noisy, harmonized measure of self-employment across studies.

Yet, we do not identify genome-wide significant associations. This

result suggests that there are no common SNPs for self-

employment with moderate to large effect sizes, thus placing an

upper bound on the effect sizes of common SNPs that we can

expect to exist. Gene-based tests for approximately 17,700 genes,

including several candidate genes for entrepreneurship that have

been previously suggested in the literature [48,79], do not reveal

significant associations. In addition, we are unable to replicate a

previously reported correlation, namely, rs1486011, a SNP that is

located in the DRD3 gene. This common variant was identified by

Nicolaou et al. [48], who reported its association with the tendency

to be an entrepreneur. The non-replication of associations is

common in candidate gene studies of human traits and behaviors.

This failure to identify replicable associations is likely due to a

combination of underpowered sample sizes (due to optimistic

assumptions regarding plausible effect sizes) and publication bias

[88]. Examples of non-replication of candidate genes studies on

complex human traits include general intelligence [81], personality

[89–94], and trust [95,96]. We therefore stress that caution is

warranted when interpreting claims from candidate gene studies of

SNPs or genes with strong effects on complex behavioral traits like

self-employment.

Finally, we report that a genetic score that was estimated in our

meta-analysis sample has only limited predictive power in our

replication study. The variance that was explained by the score

was always lower than 0.26%. However, this result does not

contradict our finding that approximately half of the narrow-sense

heritability can be explained by common SNPs. This latter

heritability analysis uses the measured SNPs to estimate realized

relatedness between individuals, and given the large number of

SNPs in a dense SNP array, realized relatedness can be estimated

fairly accurately. In contrast, estimating a strongly predictive score

from a sample requires good estimates of the effects of individual

SNPs. If our discovery sample was infinitely large, it would have

been possible to precisely estimate all of the SNP effects and to

obtain a score with the theoretically highest possible predictive

power, as estimated using the Yang et al. [52] method. The

smaller the discovery sample, the noisier the estimates of the

individual SNP effects; therefore, the predictive power of the score

will be lower [97,98]. Our estimates of the effects of the individual

SNPs are still too imprecise to allow out-of-sample prediction with

SNP data that would have practical utility.

Figure 3. Prediction results. Variance explained (Nagelkerke pseudo-
R2 from logistic regression) vs. p-value threshold pT for including SNPs in
the score calculation.
doi:10.1371/journal.pone.0060542.g003
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Together, our results demonstrate that common SNPs jointly

account for a substantial share of the variance in the tendency to

engage in self-employment (sg
2/sP

2 = 25%). However, because we

do not find specific SNPs in our large-scale meta-analyses of

GWASs that examined self-employment, this heritability is not due

to SNPs with moderate to large effects. A plausible interpretation

of these results therefore appears to be that the molecular genetic

architecture of self-employment is highly polygenic, implying that

there are hundreds or thousands of variants that individually have

a small effect and which together explain a substantial proportion

of the heritability. We cannot rule out the possibility that rare

genetic variants, or other, currently unmeasured, variants that are

insufficiently correlated with the SNPs on the genotyping

platforms, have large effects on an individual’s tendency to be

self-employed. However, if these genetic variants are rare, they

would still not contribute a great deal to the population-based

variance in self-employment, and large samples would still be

required to identify these variants [51,83,99].

Our results are similar to those that have been reported for

biologically more proximate human traits [51,52,80–82] and

diseases [76,83,84] for which a polygenic molecular genetic

architecture has also been suggested. One implication of this

similarity is that, with sufficiently large sample sizes, SNPs that are

associated with self-employment–and possibly also other economic

variables–can in principle be discovered, as has been the case for,

e.g., height [100] and BMI [101]. However, a discovery sample of

approximately 50,000 individuals is apparently still too small for a

meta-analysis of GWASs on a biologically distal, complex, and

relatively rare human behavior such as self-employment. A

potential opportunity for future research are GWASs of endophe-

notypes such as risk preferences, confidence, and independence.

The effect sizes of individual SNPs on these endophenotypes may

be larger because of their greater biological proximity. However,

these variables are difficult to measure reliably and not (yet)

available in many genotyped samples.

Given the need for very large samples in meta-analyses of

GWASs on complex traits, an important challenge of the present

study was to identify a measure of entrepreneurship that is

available in a sufficiently large sample. We opted to maximize the

available sample size in this study and operationalized entrepre-

neurship as self-employment, which is also the most frequently

used measure of entrepreneurship in the economics literature

[102].

We included every study we were aware of in the analysis that

included a measure of self-employment and which was willing to

contribute data, although this approach necessitated that data

from diverse populations (e.g., Eastern German self-employed

individuals and US business owners) were pooled. The available

measures of self-employment varied across studies, including

different single- and multiple-item measures, data from stand-

alone surveys, and data from repeated measures or retrospective

employment histories of the participants. For a number of studies,

this approach resulted in a lack of detailed and reliable data

regarding work-life history. Substantial measurement error,

especially with respect to the definition of the control group, was

therefore unavoidable. Ideally, the control group would encom-

pass only participants who had never been self-employed and who

will never be self-employed. Such an analysis would have required

data regarding the complete work-life history of participants and

participants who had reached an appropriate age. However, only

data regarding current employment status were available in the

majority of the contributing studies. It is therefore possible that

there was a certain degree of misclassification in the studies that

included only single-item, single-response measures of self-

employment, thereby adding noise to the phenotype definition

and potentially reducing the statistical power with respect to

association detection.

Statistical power may have also been reduced by heterogeneity

within the case group, as this group comprised individuals who

became self-employed for very different reasons. For example,

certain individuals may have chosen self-employment because they

had no viable alternatives in paid employment, whereas others

may have done so because of their desire to pursue a business

opportunity. The motivations, goals, and resources of these two

groups of individuals are obviously very different, and the genetics

underlying these various characteristics may likewise differ greatly.

Unfortunately, more detailed information regarding the motiva-

tions, activities, and success of entrepreneurs was unavailable for

most of the genotyped samples.

In general, GWASs face a practical trade-off between pheno-

type quality and sample size. Surprisingly, statistical power

calculations suggest that studying a more noisy phenotype in a

larger sample is often more likely to be successful than studying a

perfect phenotype in a small sample. For example, assume that a

common SNP exists with a minor allele frequency of 0.5 that

increases the odds for all types of entrepreneurship by a factor of

1.13 on average (assuming 15% of the population are entrepre-

neurs and the data are population samples). The required sample

size to detect this SNP with 80% power for a perfectly-measured

outcome is approximately 30,000. Measuring entrepreneurship

perfectly would require a lengthier survey that is administered

more than once. Such a large genotyped sample with perfect

measures of entrepreneurship does not currently exist. Smaller

samples with perfect measures would be underpowered to detect

the SNP. In contrast, if the available measures for entrepreneur-

ship are noisy and have a test-retest reliability of only 0.6-which is

typical for behavioral traits measured by brief surveys [103–

105]280% power to detect this SNP requires a discovery sample

of approximately 50,000 individuals. Thus, our study was well-

powered to detect effects of this magnitude even if there was

substantial measurement error and noise in the data.

The results of our study have three implications for this future

research agenda. First, the high share of variance in self-

employment that can be attributed towards interpersonal differ-

ences in common SNPs suggests that this research agenda is in

principle feasible. Second, to investigate if and how genes that are

related to economic variables influence medical outcomes, it will

be necessary in the future to identify either the specific genetic

variants that are underlying the heritability of economic variables

(i.e., to investigate causal pathways from genes to medical

outcomes), or to calculate genetic scores that have at least

moderate out-of-sample predictive power (i.e., to investigate the

medical consequences of a mismatch between genetic predispo-

sition and economic outcomes). Even larger samples than what we

had available in our present study will be needed to identify

genome-wide significant SNPs and to estimate more accurate

genetic scores for economic variables. Third, our results suggest

that the effects of single SNPs on self-employment are likely to be

very small. Given these effect sizes, statistical power calculations

suggests that a research strategy that aims to maximize sample size

by pooling data with slightly inaccurate measures of self-

employment is more likely to be successful than a research

strategy that aims to collect perfect phenotype measures in a much

smaller sample. If successful, this research could shed new light on

the complex interaction of genes, environment, and personal

choices on health and longevity.
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