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The molecular landscape of colorectal cancer cell
lines unveils clinically actionable kinase targets
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Salvatore Siena4, Andrea Sartore-Bianchi4, Marco Beccuti5, Marcella Mottolese6, Michael Linnebacher7,

Francesca Cordero5, Federica Di Nicolantonio1,2,** & Alberto Bardelli1,2,**

The development of molecularly targeted anticancer agents relies on large panels of tumour-

specific preclinical models closely recapitulating the molecular heterogeneity observed in

patients. Here we describe the mutational and gene expression analyses of 151 colorectal

cancer (CRC) cell lines. We find that the whole spectrum of CRC molecular and transcrip-

tional subtypes, previously defined in patients, is represented in this cell line compendium.

Transcriptional outlier analysis identifies RAS/BRAF wild-type cells, resistant to EGFR block-

ade, functionally and pharmacologically addicted to kinase genes including ALK, FGFR2,

NTRK1/2 and RET. The same genes are present as expression outliers in CRC patient

samples. Genomic rearrangements (translocations) involving the ALK and NTRK1 genes are

associated with the overexpression of the corresponding proteins in CRC specimens. The

approach described here can be used to pinpoint CRCs with exquisite dependencies to

individual kinases for which clinically approved drugs are already available.
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K
nowledge of tumour biology and the development of new
anticancer agents depend on robust preclinical model
systems that reflect the genomic heterogeneity of human

cancers and for which detailed genetic and pharmacologic
annotations are available. Cell lines represent a mainstay to
functionalize molecular data as they allow experimental manip-
ulation, global and detailed mechanistic studies and high-
throughput applications1–4. Virtually all commonly used cancer
cells were continuously grown in vitro for years, and decades have
often passed since they were originally derived from patients. The
in vitro culture conditions used to propagate cancer cells are far
from the histological landscape in which they originated. These
considerations are often cited to question the relevance of cell
lines as cancer models. We further observe that, for a given cancer
type, only few cell lines (o10) are employed in most preclinical
studies. The evidence that cancer patients have heterogeneous
genetic features implies that a large number of lineage-specific cell
lines is needed to capture the diversity observed in the clinic.
Furthermore, cells commonly used to model a tumour type may
not represent the patients that they intend to recapitulate. For
instance, colorectal cancer (CRC) cell lines ordinarily used in
preclinical studies often display microsatellite instability (MSI).
MSI colorectal tumours are found in 10–15% patients5, but they
show an indolent clinical behaviour and are less prevalent in
more advanced stages of the disease, accounting for o5% in the
metastatic setting6,7. Consequently, MSI cell lines do not properly
recapitulate the clinical setting in which targeted agents are most
commonly administered to CRC patients.

In addition to the ‘genetic’ driven subtypes, tumour lineages
can be subdivided based on their transcriptional profiles.
Transcriptional profiling has been recently used to identify
distinct CRC subtypes8–12. The subtypes are associated with
biological and clinical features such as cell of origin, MSI,
prognosis and response to treatments. Whether the trans-
criptional subtypes are maintained in CRC cell models and how
this knowledge can be used to discover novel pharmacogenetic
relationships has not been explored. To address these challenges,
we assembled and annotated a comprehensive collection of 151
human CRC cells.

We find that the molecular heterogeneity (oncogenic muta-
tions and transcriptional subtypes), previously defined in CRC
patients, is maintained in CRC cells. Individual lines can be
stratified as responders or non-responders to epidermal growth
factor receptor (EGFR) blockade based on clinically validated
biomarkers. Transcriptional outlier analysis identifies CRC cells,
resistant to EGFR blockade, pharmacologically addicted to kinase
genes including ALK, FGFR2, NTRK1/2 and RET.

Results
Genetic and transcriptional profiling of CRC cells. A collection
of 152 CRC cell lines was initially genotyped at 10 different
microsatellite loci (short tandem repeat (STR) profile) to
unequivocally define their genetic identities (Supplementary Data
1). This analysis revealed that a few cell lines, previously thought
to be unrelated, were derived from the same patient
(Supplementary Data 1). Global mRNA expression profiling was
carried out on the entire cell bank and TiGER (tissue-specific
gene expression database)13 was exploited to perform a ‘tissue of
origin’ analysis (Supplementary Fig. 1a). The analysis revealed a
probable non-intestinal origin for one line, COLO741, found to
express skin-specific genes, including Tyrosinase (Supplementary
Fig. 1b,c). This, together with the lack of expression of the
neuroendocrine markers CHGA, SYP, ENO2, ACPP and
NCAM1, suggested that these cells are not derived from a CRC
nor from a neuroendocrine tumour, but rather from a melanoma.
For this reason, COLO741 cells were withdrawn from further
analyses. HuTu80 cells displayed a small intestine-like signature
(Supplementary Fig. 1d) and were included in subsequent
analyses due to their intestinal origin. Gene expression-based
hierarchical clustering revealed that cell lines with identical
genetic background consistently clustered together (Fig. 1),
indicating that the genotype maintained strong control over the
transcriptome. The only exception was the COGA5/COGA5L
pair; these lines were derived respectively from the primary
tumour and a lymph node metastasis of the same patient14.

The 151 CRC cell line collection was then assessed for the
occurrence of MSI. MSI was detected in 63/151 cases
(42%; Supplementary Data 1). It has been previously noted that
a higher than expected fraction of CRC cell lines are MSI,
conceivably because MSI tumours can be more easily propagated
in vitro15. We also observed that the rare hypermutator/
MSI-negative subgroup, identified in about 2% of CRC cases,
is represented by three lines, HT115, HCC2998 and
HT55 (ref. 16).

The mutational status of KRAS, NRAS, BRAF and PIK3CA was
next assessed as these genes are implicated in the response of
CRC to EGFR-targeted therapies and are often ascertained in the
clinic (Supplementary Data 1). KRAS, NRAS and BRAFmutations
were mutually exclusive and were present in 47, 0.7 and 18% of
the lines, respectively. PIK3CA mutations and absence of PTEN
expression were detected in 18 and 14% of the cells, respectively,
and occurred together with KRAS and BRAF at rates comparable
to those previously reported17–19 (Supplementary Data 1).
Overall, the complexity reached in this compendium effectively
reflects the genetic heterogeneity recognized in sporadic CRCs.
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Figure 1 | Expression clustering of 151 CRC cell lines. Unsupervised hierarchical clustering of 151 CRC cell lines based on their global expression profile.

Cell lines derived from the same individual (same STR) are highlighted by the same colour. Names of the cell lines with identical STR are reported below the

dendrogram in the order by which they occur in the cluster, from left to right.
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Sensitivity to cetuximab is an intrinsic trait of CRC cells. The
anti-EGFR monoclonal antibodies cetuximab or panitumumab
are approved to treat metastatic CRC but achieveo10% objective
response rates in unselected CRC patients when given in
monotherapy20. Clinical benefit to EGFR blockade is confined to
25% of cases carrying tumours wild-type for KRAS, NRAS and
BRAF21. To assess whether CRC lines recapitulated the above
pharmacogenetic relationships, we determined sensitivity to
cetuximab in the entire cell collection over a wide range of
drug concentrations (Fig. 2, Supplementary Fig. 2 and
Supplementary Data 1). Ten RAS/BRAF wild-type cell lines (7%
of the total or 20% of RAS/BRAF wild-type cells) were highly
susceptible to cetuximab inhibition (Fig. 2, Supplementary
Fig. 2a). Pharmacological parameters such as the area under the
curve (AUC) or the percentage of cell growth inhibition at a
clinically relevant drug concentration of 10mgml� 1 (ref. 22)
closely paralleled the response rates observed in
patients20,21(Supplementary Fig. 3a). Cells classified as sensitive
died on anti-EGFR treatment (Supplementary Fig. 3b–d), while
partially sensitive cells were mainly growth impaired
(Supplementary Fig. 3e). As observed in the clinical setting,
KRAS, BRAF or NRAS mutations conferred complete resistance
to EGFR blockade in CRC cells (Fisher exact text P valueo0.001;
Fig. 2).

CRC molecular subtypes are maintained in cell lines. Colorectal
tumours can be classified in up to six unique subtypes with
diverse clinical features according to the genes they express8–12.
To what extent the transcriptional subtypes are cell intrinsic or
depend on the microenvironment is unclear. Expression profiles
were therefore used to assign each cell line to a molecular
subtype8–12 by the Nearest Template Prediction (NTP) algorithm,
which also estimates the classification false discovery rate
(FDR)23. Each of the five classifiers was able to assign
(FDRo0.2) the large majority of the cell lines to a subtype.
Classifications of cell lines according to the five systems, together
with the respective FDRs, are reported in Supplementary Data 2.
Significant overlaps were detected among distinct classifiers. We
found that the CRC-assigner (CRCA) classification system
established by Sadanandam et al.12 shared the highest overlap
with all other classifiers (Supplementary Fig. 4a). It was therefore

considered as a reference for reconciling the five classifiers into a
unified consensus (Supplementary Fig. 4b).

Molecular and pharmacological associations, which previously
emerged in CRC samples using the CRCA-based classification,
were recapitulated in the cell collection (Fig. 3). MSI cells were
significantly enriched in inflammatory and goblet subtypes (P
values: 0.0334 for inflammatory, 0.008 for goblet) and less
prevalent in the Transit Amplifying (TA) and Stem groups, which
were instead mainly composed of microsatellite stable (MSS) cell
lines (P valueo0.0005). BRAF-mutated cell lines clustered in the
inflammatory subtype (P value¼ 0.0005), while RAS mutations
were equally distributed among subgroups. Notably, six out of
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nine RAS/BRAF wild-type cetuximab-sensitive cells belonged to
the TA subtype (P¼ 0.038). Such enrichment is in line with data
on CRC specimens12 (Fig. 3).

Outlier tyrosine kinases overexpressed in CRC cells. To unveil
actionable targets likely to be driver oncogenes in CRC, we car-
ried out an outlier expression analysis focused on protein kina-
ses24, as the latter are frequently implicated in cancer and are
ideally suited for therapeutic inhibition. Of the 448 kinase genes
expressed in the data set25, 32 (7.1%) displayed an outlier
expression profile. A striking increase in the prevalence of outliers
was observed in the tyrosine kinase (TK) subfamily (15 out of 74,
2.84� enrichment, hypergeometric P value o0.0001). Of these
15 TKs, nine were outliers only in RAS/BRAF wild-type cells,
and were therefore named )WT specific*. The enrichment for
WT-specific outliers in the TK subgroup was significant (9 out
of 15, 3.21� enrichment, hypergeometric P valueo0.0005).
Interestingly, eight out of the nine WT-specific outlier TKs
clustered in cell lines resistant to cetuximab. The list of
WT-specific outliers’ genes comprises ALK, FER, FGFR2, KIT,
NTRK1, NTRK2, PDGFRA and RET (Fig. 4a).

Outlier kinase genes are therapeutic targets in CRC cells. We
next performed genetic and functional validation of the TK
outliers. We decided to focus on TKs for which targeted agents
are in clinical trial or are already approved for treatment, namely
ALK, FGFR2, KIT, NTRK1, NTRK2, RET and PDGFRA. This
analysis revealed that the overexpression of NTRK1 and FGFR2 is
associated to molecular alterations, such as gene translocation
(NTRK1) or gene amplification (FGFR2; Supplementary Figs 5
and 6), previously described in cellular models and in cancer
patients26–28, thus validating the experimental approach. The
other TK outlier genes were not previously reported in CRC cells.
We detected an in-frame gene fusion event between exon 20 of
ALK and exon 13 of EML4 in C10 cells (Fig. 4b). Break-apart
fluorescent in situ hybridization (FISH), complementary DNA
(cDNA) PCR and western blot analysis confirmed the EML4–
ALK translocation in C10 cells (Fig. 4c–e). We reasoned that if
the outlier kinase genes were causally implicated as oncogenic
drivers, they should be functionally relevant in the corresponding
cell models. We also postulated that the functional dependencies
would be cell specific. To formally test these possibilities, we
used two complementary approaches—reverse genetics and
pharmacological inhibition. Candidate-specific gene suppression
was achieved with short interfering RNA (siRNA). In all cases,
reduced protein expression of the ‘outlier’ TK resulted in
significant impairment of cell growth, which was often
accompanied by downstream signalling inhibition and
apoptosis (Fig. 4f; Supplementary Figs 5–8).

Pharmacological validation of the TK outliers was performed
using the following kinase-targeted drugs—CEP701 (TRK
inhibitor), AZD4547 (FGFR2 inhibitor), crizotinib (ALK inhi-
bitor), ponatinib (RET inhibitor) and imatinib and nilotinib (KIT
and PDGFRA inhibitor). The drug inhibition profiles were cell
specific and paralleled the expression profiles of individual TKs
confirmed by RNA-seq in the corresponding cell models
(Figs 4g,h and 5 and Supplementary Figs 5–8). In two cases
(KIT and PDGFRA) drug inhibition did not affect cell growth
(Supplementary Fig. 8d,h). Nonetheless, in KIT-overexpressing
cells, a reverse genetic experiment revealed functional depen-
dency (Supplementary Fig. 8b,c).

Translocation of ALK and NTRK1 genes in CRC samples. To
establish the clinical relevance of the cell line-based findings, we
assessed whether the outlier TKs might be identified in CRC
specimens using the same methodology. To this end, we down-
loaded from cBbioPortal29,30 (http://www.cbioportal.org) the
RNA-seq expression Z scores for 352 CRC tissue samples
generated by the Cancer Genome Atlas (TCGA) network5. The
entire set of candidates described above, with the exception of
KIT, was independently validated as RNA expression outliers in
the TCGA CRC data set (Fig. 6a). As a further validation, we
verified whether the ‘outlier’ strategy could lead to retrieval of TK
candidates in archival CRC specimens for which RNA is typically
not readily available. In this scenario, the most practical screening
method should be capable of interrogating protein (rather than
RNA) expression, on formalin-fixed paraffin-embedded (FFPE)
samples. As a proof of principle, we focused on NTRK1/Trk-A
and ALK. An immunohistochemistry (IHC)-based screen was
applied to 742 CRC FFPE samples using a Trk-A (the protein
encoded by NTRK1 gene)-specific antibody. One Trk-A outlier
sample was unequivocally identified (Fig. 6b,c). The IHC
profile was followed by break-apart FISH analysis, which
detected NTRK1 genetic rearrangement in the TrK-A positive
sample (Fig. 6d). Screening with and ALK-specific antibody of
742 CRC FFPE retrieved a sample with high levels of the ALK
protein (Fig.6e,f). In the same specimen, break-apart FISH
highlighted a genetic translocation involving the ALK gene
(Fig. 6g).

Discussion
Human neoplasms are highly heterogeneous, and clinical
evidence indicates that pharmacogenetic relationships often
involve oncogenic events occurring at low prevalence. Accord-
ingly, precision oncology depends on the ability to functionally
interrogate preclinical models capturing the molecular hetero-
geneity observed in patients. While collections of cancer cells
derived from multiple tumor types have been previously
described1,2,4, comprehensive databases of cells derived from

Figure 4 | Identification of outlier kinase genes in 151 CRC cell lines. (a) Scatter-plot representation of transcriptional outlier kinases in 151 CRC cells.

Coloured circles represent outlier kinases with 45 s.d. and 45-fold differential expression compared with median expression. Asterisk labels the KM12

family of cells—KM12, KKM12C, KM12SM and KM12L4. (b) RNA-seq analysis unveiled an in-frame gene fusion event between exon 20 of the ALK gene

and the exon 13 of the EML4 gene on chromosome 2 in the C10 CRC cell line. (c) Break-apart FISH analysis of ALK in C10 cells shows clear separation of

green (50) and red (30) signals corresponding to the ALK gene (original � 63 magnification; scale bar, 10mm). Scale bars, 10mm (d) PCR on the cDNA of

C10 cells confirmed the EML4–ALK translocation. (e) Western blot analysis confirmed overexpression of ALK protein in C10 cells, at a molecular weight

compatible with an EML4–ALK genetic rearrangement. (f) RNAi knockdown of ALK inhibits cell proliferation of C10 cell line harbouring the EML4–ALK

fusion gene. C10 cells were analysed by ATP lite proliferation assay 5 days after transfection with ALK-specific pooled siRNAs, scrambled siRNA or

transfection reagent (mock). Data are expressed as average±s.d. of three independent experiments. siRNA-mediated downregulation of ALK levels were

verified by western blot analysis. (g) C10 cells, resistant to the EGFR inhibitor cetuximab, are sensitive to the ALK inhibitor crizotinib. Cell viability was

assessed by measuring ATP content after 5 days of treatment. Data are expressed as average±s.d. of three independent experiments. (h) Crizotinib

treatment downregulates MAPK and PI3K pathways in C10 cells harbouring the ALK genetic rearrangement. C10 cell lines were treated with crizotinib (an

ALK inhibitor) for 12 h, after which whole-cell extracts were subjected to western blot analysis.
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single tumour lineages are much less common16,31. To capture
the clinical heterogeneity of CRCs, we assembled a collection of
151 cell lines. Notably, genetic finger printing and transcriptional
profiling highlighted that several CRC lines previously thought to
be unrelated are in fact derived from the same individual. This
finding should be helpful in designing future studies and may

facilitate the interpretation of previous analysis involving
‘redundant’ cell models.

The clinical relevance of the cell database was confirmed by
showing that common oncogenic events (KRAS, NRAS, BRAF,
PIK3CA and PTEN alterations) are present in the collection at
rates similar to those found in CRC patients. Previous studies
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evaluated sensitivity to EGFR blockade (with the anti-EGFR
antibody cetuximab) in a fraction of the CRC lines described
in this work32. We found a strong concordance among
measurements obtained in independent laboratories, indicating
that sensitivity to EGFR inhibition is a stable phenotype of
colorectal tumours. While the molecular determinants of EGFR
sensitivity are presently unknown, our data suggest a prominent
intrinsic (cell autonomous) component. We conclude that genetic
and pharmacological profiling CRC lines can successfully
nominate clinically-relevant molecular determinants of response
to targeted therapies.

In addition to the mutation-based categories described above,
CRC can be subdivided in up to six transcriptional subtypes with
distinct molecular and clinical features8–12, which we found to be
robustly maintained in cells grown in vitro. This observation,
along with the evidence that independent cell lines derived from
the same patient consistently co-cluster transcriptionally, suggests
that the transcriptional profile is stable and predominantly
controlled by the genome in the absence of environmental inputs.

These results further support the functional correspondence of
CRC cell panel described here with CRC specimens. Previous
studies have also suggested that transcriptional CRC subtypes
may be associated with drug response. The cell models described
here recapitulated the association between response to EGFR
inhibitors and enrichment for the TA transcriptional class, which
was identified in CRC clinical samples12. Along this line, the
classification of cells we present will facilitate future screenings
with chemical or RNA interference libraries aimed at identifying
novel pharmacogenomic relationships in specific transcriptional
subtypes.

We previously reported that a subset of colorectal tumours, in
which resistance to EGFR blockade occurs in a RAS/RAF wild-
type background, display overexpression of two TK genes, HER2
or MET33,34. In 41/151 lines, which were analysed in this study,
the mechanism of resistance to cetuximab is unaccounted for. We
hypothesized that in some of these cells resistance might likewise
be driven by the overexpression of a kinase gene. We therefore
employed an outlier analysis based on expression levels of TK
genes to identify additional kinase (and therefore actionable)
targets in the subset of WT RAS/BRAF CRC cells intrinsically
resistant to EGFR therapies.

Seven of the TKs retrieved by this approach (ALK, FGFR2,
KIT, NTRK1, NTRK2, RET and PDGFRA) are the target of drugs
undergoing clinical testing or approved. In some instances
(FGFR2, ALK or NTRK1), overexpression of the TK gene was
associated with amplification or translocation of the correspond-
ing locus. The same genetic alterations have been previously
reported in CRC cells and patients26–28, thus validating our
approach. Our data further suggest that overexpression of TK
sustains primary resistance to EGFR blockade, and could be used
to identify patients unlikely to respond to cetuximab or
panitumumab. Of note, with the exception of RET and FGFR2,
which coexisted in NCIH716 cells, outlier expression of TKs was
mutually exclusive.

Our results have broad implications for the use of kinase
inhibitors in CRCs and potentially other cancer types. First,
companion diagnostic assays are essential to identify those (rare)
patients with tumours bearing aberrantly expressed kinases. Since
the molecular events leading to protein overexpression can be
multiple (gene amplification, gene fusions and translocations with
different partners and break points), we propose that IHC should
be better suited than other methods to serve this purpose. As a
test case, we demonstrated the feasibility of this approach to
identify CRC patients carrying overexpressed and genetically
altered Trk-A and ALK kinases. Additional work is warranted to
develop and validate IHC assays for the other outlier TK genes.
Importantly, given the low prevalence of these outlier events,
strategies aimed at concomitantly screen for multiple molecular
alterations should be implemented. Eventually, it is likely that
next-generation sequencing will become the most effective
approach to detect molecularly deregulated kinase genes as it
allows concomitant assessment of single-nucleotide variants as
well as a gene copy number alterations and translocations.

Our results also highlight the relevance of clinical trials
involving CRC patients carrying molecularly altered TK genes,
which can be readily identified using FFPE specimens. Our data
suggest that these patients are unlikely to benefit from anti-EGFR
antibodies but likely to profit from currently available drugs such
as ALK and TRK inhibitors. It is important to note that in some
instances (that is, KIT), blockade of the kinase activity with a
specific kinase inhibitor did not impair growth, while TK
suppression with siRNA revealed functional dependency and
triggered apoptosis. This suggests that downregulation of the
candidate protein, for example, through specific antibodies, might
be necessary in some instances. Our data further suggest that TK
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inhibitors effectively impair tumour growth in cell lines in which
transcriptional deregulation is accompanied by the genetic
activation of the kinase (TRK, ALK and FGFR2), but not in the
cell lines where no genetic activation was identified (PDGFR
and KIT).

In conclusion, our results describe a powerful preclinical
resource capturing the heterogeneity of CRC patients, which can
be used to define multidimensional information of clinical
relevance and applicability.

Methods
Cell lines and reagents. A collection of 152 cell lines of intestinal origin was
assembled from different worldwide cell line banks or academic laboratories as
indicated in Supplementary Data 1. All cell lines were maintained in their original
culturing conditions according with supplier guidelines. Cells were ordinarily
supplemented with fetal bovine serum at different concentrations, 2mM L-gluta-
mine, antibiotics (100Uml� 1 penicillin and 100mgml� 1 streptomycin) and
grown in a 37 �C and 5% CO2 air incubator. Cells were routinely screened for
absence of Mycoplasma contamination using the Venor GeM Classic kit (Minerva
Biolabs). The identity of each cell line was checked by Cell ID System and by Gene
Print 10 System (Promega), throught STR at 10 different loci (D5S818, D13S317,
D7S820, D16S539, D21S11, vWA, TH01, TPOX, CSF1PO and amelogenin).
Amplicons from multiplex PCRs were separated by capillary electrophoresis (3730
DNA Analyzer, Applied Biosystems) and analysed using GeneMapperID software
from Life Technologies. Resulting cell line STR profiles were cross-compared and
matched with the available STR from ATCC, DSMZ, JCRB, Korean Cell Line Bank,
ECCAC and CellBank Australia repositories online databases. Results of the ana-
lysed loci for each cell line are provided in Supplementary Data 1.

Cetuximab was obtained from the Pharmacy at Niguarda Ca’ Granda Hospital
in Milan, Italy; Crizotinib, AZ4547, imatinib, ponatinib and nilotinib were
purchased from Selleck Chemicals. CEP701 was purchased from Sigma-Aldrich.

DNA analysis. Genomic DNA samples were extracted by Wizard SV Genomic
DNA Purification System (Promega). The MSI status has been evaluated by mean
of MSI Analysis System kit (Promega). The analysis requires a multiplex amplifi-
cation of seven markers including five mononucleotide repeat markers (BAT-25,
BAT-26, NR-21, NR-24 and MONO-27) and two pentanucleotide repeat markers
(Penta C and Penta D). The products were analysed by capillary electrophoresis in
a single injection (3730 DNA Analyzer, ABI capillary electrophoresis system
(Applied Biosystems). The results were analysed using GeneMarker V2.2.0 soft-
ware. As cell lines do not have a corresponding normal tissue available for com-
parison, their profile has been analysed with an MSS cell line of control, K562.
Samples with instability in one, two or more markers (mononucleotide repeat) are
defined as MS-instable (MSI). Samples with no detectable alterations are
MS-stable (MSS). The same samples of genomic DNAs were used for PCR
amplification to check 16 hotspot CRC mutations in all cells (reported in
Supplementary Data 1). The mutational status of KRAS (exons 2, 3 and 4),
NRAS (exons 2 and 3), HRAS (exons 2 and 3), BRAF (exon 15) and PIK3CA (exons
9 and 20) was determined by Sanger sequencing (primers’ sequences are listed in
Supplementary Data 3).

RNA extraction and gene expression profiling. RNA was extracted using
miRNeasy Mini Kit (Qiagen), according to the manufacturer’s protocol. The
quantification and quality analysis of RNA was performed on a Bioanalyzer 2100
(Agilent), using RNA 6000 nano Kit (Agilent). Synthesis of cDNA and biotinylated
cRNA was performed using the IlluminaTotalPrep RNA Amplification Kit
(Ambion), according to the manufacturer’s protocol using 500 ng of total RNA.
Quality assessment and quantification of cRNAs were performed with Agilent
RNA kits on Bioanalyzer 2100. Hybridization of cRNAs (750 ng) was carried out
using Illumina Human 48 k gene chips (Human HT-12 V4 BeadChip). Array
washing was performed using Illumina High Temp Wash Buffer for 100 at 55 �C,
followed by staining using streptavidin-Cy3 dyes (Amersham Biosciences). Probe
intensity data were obtained using the Illumina Genome Studio software (Genome
Studio V2011.1). Raw data were Loess normalized with the Lumi R package and
further processed with Excel software.
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Figure 6 | NTRK1 and ALK molecular alterations in CRC specimen. (a) Scatter plot representation of transcriptional outlier kinases in 352 CRC tissue
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Tissue of origin analysis. Thirty panels of genes with tissue-specific expression
were retrieved from the TIGER portal13 (http://bioinfo.wilmer.jhu.edu/tiger/) and
filtered to remove gene symbol redundancies. Similarly, to avoid probe redundancy
in array data, when multiple probes matched the same gene we selected the one
with the highest s.d.. For the tissue of origin analysis, we assumed that the vast
majority of the cell lines present in this data set were of colorectal origin, while only
a very small fraction could possibly derive from other tissues. Therefore, to increase
sensitivity of the colon-specific gene panel, genes not expressed (L2So9) in at least
50 of the 152 CRC cells were removed from the panel. To increase the specificity of
other tissue-specific gene panels, genes from these panels expressed (L2S49) in
more than three CRC cell lines (2%) were also removed. For each gene of a tissue-
specific panel, the TIGER database provided an ‘EST Enrichment’ (EE) score,
proportional to the extent of tissue specificity. To give more weight to genes with
high EE score in the estimation of the tissue of origin, EE scores were squared and
summed. Then, the squared EE score of each gene was divided by the sum, to
obtain a ‘Scaled EE score’ representing what fraction of the tissue specificity of the
gene panel is brought by each individual gene. Finally, a ‘tissue score’ was
calculated for each gene panel by summing the products of gene expression and
scaled EE score, and using the resulting value as exponential of 2 to obtain linear
values.

Unsupervised expression clustering. After removing the COLO741 melanoma
cell line from the data set, we assessed global transcriptional correlations across the
remaining 151 cell lines by unsupervised clustering A detection filter was applied to
the 151 cell line data set by requesting that the reported detection P value reported
in GSE59857 was zero in at least one of the 151 samples. After detection filtering,
when multiple probes matched the same gene, we selected the one with the highest
s.d. This led to the identification of 19,828 unique genes detected in at least one cell
line. Before clustering, we applied a further filter based on s.d. across samples (s.d.
of Log2 Signal40.8). We then employed the Log2 signal of 3,132 genes passing this
filter for hierarchical clustering with maximum linkage based on Pearson corre-
lation, using the GEDAS software35.

Drug proliferation assay. CRC cell lines were seeded at different densities
(2–4� 103 cells per well) in 100 ml complete growth medium in 96-well plastic
culture plates at day 0. The following day, serial dilutions of the indicated drugs
were added to the cells in serum-free medium, while medium-only (in case of
cetuximab) or dimethylsulphoxide-only (for all the other drugs)-treated cells were
included as controls. Plates were incubated at 37 �C in 5% CO2 for 4 or 5 days, after
which the cell viability was assessed by measuring ATP content through Cell Titer-
Glo Luminescent Cell Viability assay (Promega). Luminescence was measured by
Perkin Elmer Victor X4. On the basis of cell viability after 4 days of treatment with
clinical relevant concentration of 10 mgml� 1 of cetuximab and on the shape of the
drug screening-cell response growth curves, CRC cells were defined sensitive when
cell viability was r40% at 10mgml� 1 of cetuximab. We then calculated the AUC
for each cell line of the panel and selected the threshold of AUC index Z13,000
based on the values of AUC obtained in the subgroup of sensitive cell lines. The
area under the concentration–inhibition curve (index AUC) was computed using
Excel36. The ‘cetuximab effect arbitrary index’ was calculated by subtracting the
threshold value of 13,000 from the AUC index of each cell line to highlight the
subpopulation of sensitive cell lines (those with a negative index).

Classification of CRC cell lines into intrinsic subtypes. To classify cell lines into
CRC subtypes according to previously published transcriptional classification
systems, gene lists for the five classifiers were obtained from the supplementary
information of the relevant publications. We then employed the NTP algorithm23

on the 151 CRC lines expression data set of 19,828 genes described above. NTP is a
nearest neighbour classifier developed to classify samples with defined gene
signatures also when generated in a different microarray platform, and to provide
an estimate of classification robustness by computing FDR and P value. NTP
analysis was conducted using the GenePattern Bioportal37 (http://
www.broadinstitute.org/cancer/software/genepattern/).

For NTP implementation, we selected genes positively and specifically
associated to one subtype. The CRC subtype classifiers were generated by different
procedures. To perform reciprocal comparisons in an independent data set, based
on a different microarray platform, we had to adapt them to a common
classification strategy. The thresholds for gene selection described below were
chosen to remove genes with low class discrimination power (to improve sensitivity
and specificity), while at the same time maintaining a reasonable number of
classifying genes (for the stability and platform independence of the classifier).

De Sousa9 and Sadanandam12 gene signatures have originally been defined
using the same approach, that is, significance analysis of microarrays38 followed by
prediction analysis for microarrays (PAM)39, to build lists of genes positively or
negatively associated to each molecular subtype. The extent and sign of association
is represented by the PAM score. To select only genes with a strong positive
association to one class, we associated each gene to the class corresponding to the
maximum PAM value, and only if the difference between the maximum and
second highest value was sufficiently high (40.1).

Subtype signatures of the Marisa10 classifier were defined by filtering the list of
1,108 genes provided in Supplementary Table S10 of their work, using the
associated log fold changes and adjusted P values for each gene in each of the six
CRC subtypes. In particular, we assigned a gene to a class signature if two
conditions were met: (i) its fold change in the class was the highest among its fold
changes in all the classes; (ii) the adjusted P value in the same class was the
minimum between the adjusted P values of all the other classes with a positive fold
change. As done for De Sousa and Sadanandam classifiers, to select only genes with
a strong association to a single subtype, we selected only those genes having a
difference between the highest and second highest log fold change greater than 0.2.
The Roepman11 signatures were defined based on positive genes provided in
Table 2 of the original work. The Budinska8 gene signatures were provided on
Table 1 of the original work as metagenes, each with statistical assessment of
differential expression across subtypes. Adaptation to NTP required two steps: (i)
selection of the metagenes specifically upregulated in each subtype and (ii)
extraction of the lists of genes belonging to the selected metagenes. A metagene was
associated with a subtype if it was significantly upregulated in that subtype, had the
highest positive fold change (Log2 ratio versus median) in that subtype and if the
difference against the second highest subtype was greater than a log2 ratio of 0.2.
Then, for each subtype, the lists of genes belonging to the specifically upregulated
metagenes were merged to build the subtype signatures. To compare the results
obtained by the five different classifiers employed, we computed hypergeometric
tests performing a paired-sample enrichment analysis, with Bonferroni correction
of the resulting P values. Associations between CRC subtypes and MSI status,
BRAF/KRAS mutations and cetuximab sensitivity were evaluated by
hypergeometric distribution analysis and Fisher’s exact test.

Outlier expression analysis. Outlier analysis was performed starting from the 151
CRC lines expression data set. Expression of a gene in a cell line was considered
outlier if it was both45 s.d. and45-fold greater than its median expression across
all cells. Kinase-encoding genes were obtained from (http://kinase.com/human/
kinome/)25, after annotation with updated gene symbols and mapped on the
detection-filtered expression data set of 19,828 unique genes described above.

Gene copy number analysis. CRC cell lines were trypsinized, washed with PBS
and centrifuged; pellets were lysed and DNA was extracted as described above.
Real-time PCR was performed with 10 ng of DNA per single reaction using GoTaq
QPCR Master Mix (Promega) with an ABI PRISM 7900HT apparatus (Applied
Biosytems; primers’ sequences are available on request). Gene copy numbers were
normalized to a control diploid cell line, HCEC40.

siRNA screening. The siRNA targeting reagents were purchased from Dharma-
con, as a SMARTpool of four distinct siRNA species targeting different sequences
of the target transcript. Cell lines were grown and transfected with SMARTpool
siRNAs using RNAiMAX (Invitrogen) transfection reagents following the manu-
facturer’s instructions. In brief, RNAi screening conditions were as follows—on day
one, siRNAs were distributed in each well of a 96-wellplate at final concentration of
20 nmol l� 1. Transfection reagents were diluted in OptiMEM and aliquoted at
10 ml per well; after 20min of incubation, 70 ml of cells in media without antibiotics
were added to each well. After 5 days, cell viability was estimated with a lumi-
nescent assay measuring cellular ATP levels with CellTiter-Glo Luminescent Assay
(Promega). Each plate included the following controls: mock control (transfection
lipid only), AllStars (Qiagen) as negative control; Polo-like Kinase 1 (Dharmacon)
as positive control41. siRNA sequences are listed in Supplementary Data 4.

RNA-seq. Total RNA extracted from C10, KM12, SNU503, HCA24, CACO2 and
NCIH716 cells was processed for RNA-seq analysis with Ion TotRNA Seq kit v2
following the manufacturer’s instruction and sequenced with the Ion Proton
System (Ambion—Life Technology). Each fastq file was realigned using Tophat2
v2.0.11 (ref. 42). Version hg19 of the genome was used and Gencode v19 as
reference transcriptome database. The average value of the reads aligned by
Tophat2 is 61%. The fragments per kilobase of exon per million fragments mapped
was computed on the aligned reads using Cufflinks software v2.2.1 (ref. 43).
Moreover, each fastq file was analysed by FusionMap software v 7.0.1.25 (ref. 44)
obtaining the list of fusion transcripts for each cell line.

Immunohistochemistry. FFPE CRC samples were available through the clinical
database of Ospedale Niguarda and Istituto Nazionale Tumori Regina Elena.
Additional CRC specimens’ tissue microarrays were purchased from Abcam (Cat.
ab128127). Trk-A and ALK protein expression was evaluated by IHC performed on
3–4 mm-thick tissue sections, using specific antibodies to assess Trk-A expression,
the monoclonal antibody (Clone ID EP1058Y, Epitomics, dilution 1:200), which
recognizes the carboxyl-terminal portion of the protein was used and the analysis
was performed with the automated system BenchMark Ultra (Ventana Medical
System Inc., Roche) according to the manufacturer’s instructions, with minimum
modifications. Samples were incubated with the primary antibody for 1 h at 42 �C,
after which a chromogenic reaction was performed using the ultraView Universal
Alkaline Phosphatase Red Detection kit (Ventana, Roche). ALK protein expression
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was detected using the anti-ALK mouse monoclonal antibody (clone 5A4), which
recognizes the intracellular region of ALK. The analysis was performed manually,
using N-Histofine ALK Detection Kit, according to the manufacturer’s instructions
(Nichirei Biosciences Inc.). Samples were incubated with the primary antibody for
30min at room temperature and DAB was used as chromogen. For both proteins,
specimens were considered positive when the expression was strong and cyto-
plasmic and present in at least 10% of cells. Healthy tissue, that is, normal colon
mucosa, was used as internal negative control. Images were captured with the
AxiovisionLe software (Zeiss) using an Axio Zeiss Imager 2 microscope (Zeiss).

FISH analysis. Tissue sections and cyto-embedded cell lines for fluorescent in situ
hybridization (FISH) experiment were prepared according to the manufacturer’s
instructions of Histology FISH Accessory kit (Dako). For both types of samples
(tissue and cell lines), the last steps before hybridization were: dehydration in
ethanol series (70, 90 and 100%), three washes (50 each) and air drying. To identify
the possible NTRK1 gene rearrangements, a dual-colour break-apart probe has
been designed a contiguous of two BAC (bacterial artificial chromosome; http://
genome.ucsc.) probes, RP11-349I17(1q23.1) and RP11-1038N13 (1q23.1), all
together spanning an B335 kb region encompassing the NTRK1 gene. A dual-
colour FISH analysis was performed using respectively: 10 ml mix-probe made up
by 1.5 ml BAC genomic probe RP11-349I17 (1q23.1) labelled in Spectrum Orange
(Empire Genomics), 1.5 ml BAC genomic probe RP11-1038N13 (1q23.1) labelled in
SpectrumGreen and 7 ml LSI-WCP hybridisation buffer (Vysis) for each slide. To
identify possible ALK gene rearrangements, an LSI ALK (2p23) Dual-Colour,
Break-Apart (Vysis) probe was used. Probes and target DNA of specimens were
co-denatured in HYBRite System (DakoGlostrup) respectively at 75 �C for 5min
using NTRK1 probe and at 73� for 5min for ALK probe, therefore hybridized
overnight at 37 �C. Slides were washed with post-hybridization buffer
(DakoGlostrup) at 73 �C for 5min and counterstained wit 40,6-diamino-2pheny-
lindole (Vysis, Downers Grove, IL. USA). FISH signals were evaluated with a Zeiss
Axioscope Imager. Z1 (Zeiss) equipped with single and triple band-pass filters.
Images for documentation were captured with CCD camera and processed using
the MetaSystems Isis software. Samples were scored as positive either for NTRK1 or
ALK gene’s rearrangement when a split signal of the probes was observed, in at
least 15% of 100 cells analysed in 10 different fields. Healthy tissue, that is, normal
colon mucosa, was used as internal negative control.

Western blotting analysis. Before biochemical analysis, all cells were grown in
their specific media supplemented with 10% fetal bovine serum. Total cellular
proteins were extracted by solubilizing the cells in EB buffer (50mM Hepes pH 7.4,
150mM NaCl, 1% Triton-X-100, 10% glycerol, 5mM EDTA, 2mM EGTA; all
reagents were from Sigma-Aldrich, except for Triton-X-100 from Fluka) in the
presence of 1mM sodium orthovanadate, 100mM sodium fluoride and a mixture
of protease inhibitors. Extracts were clarified by centrifugation, normalized with
the BCA Protein Assay Reagent kit (Thermo). Western blot detection was per-
formed with enhanced chemiluminescence system (GE Healthcare) and peroxidase
conjugated secondary antibodies (Amersham). The following primary antibodies
were used for western blotting (all from Cell Signaling Technology, except where
indicated): anti-FGFR2 (1:1000); anti-ALK; anti-Trk-A (Santa Cruz; 1:500);
anti-Trk (Santa Cruz; 1:500); anti-cKIT (1:1,000); anti-PDGFRA (1:1,000);
anti-phospho-p44/42 ERK (Thr202/Tyr204; 1:1,000); anti-p44/42 ERK (1:1,000);
anti-phospho-MEK1/2 (Ser217/221; 1:1,000); anti-MEK1/2 (1:1,000); anti-phospho
AKT (Ser473; 1:1,000); anti-AKT (1:1,000); anti-PARP (1:1,000); anti-actin (Santa
Cruz; 1:3,000); anti-vinculin (Millipore; 1:5,000); anti-PTEN (1:1,000). Anti-RET
antibody45 (1:500) was kindly provided by Professor Massimo Santoro (Federico II,
Naples). The full-length western blot membranes are shown in Supplementary
Figs 9–13.

References
1. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive

modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).
2. Garnett, M. J. et al. Systematic identification of genomic markers of drug

sensitivity in cancer cells. Nature 483, 570–575 (2012).
3. Park, E. S. et al. Integrative analysis of proteomic signatures, mutations, and

drug responsiveness in the NCI 60 cancer cell line set. Mol. Cancer Ther. 9,
257–267 (2010).

4. Basu, A. et al. An interactive resource to identify cancer genetic and lineage
dependencies targeted by small molecules. Cell 154, 1151–1161 (2013).

5. Network CGA. Comprehensive molecular characterization of human colon and
rectal cancer. Nature 487, 330–337 (2012).

6. Smith, C. G. et al. Somatic profiling of the epidermal growth factor receptor
pathway in tumors from patients with advanced colorectal cancer treated with
chemotherapy±cetuximab. Clin. Cancer Res. 19, 4104–4113 (2013).

7. Roth, A. D. et al. Integrated analysis of molecular and clinical prognostic
factors in stage II/III colon cancer. J. Natl Cancer Inst. 104, 1635–1646 (2012).

8. Budinska, E. et al. Gene expression patterns unveil a new level of molecular
heterogeneity in colorectal cancer. J. Pathol. 231, 63–76 (2013).

9. De Sousa, E. et al. Poor-prognosis colon cancer is defined by a molecularly
distinct subtype and develops from serrated precursor lesions. Nat. Med. 19,
614–618 (2013).

10. Marisa, L. et al. Gene expression classification of colon cancer into molecular
subtypes: characterization, validation, and prognostic value. PLoS Med. 10,
e1001453 (2013).

11. Roepman, P. et al. Colorectal cancer intrinsic subtypes predict chemotherapy
benefit, deficient mismatch repair and epithelial-to-mesenchymal transition.
Int. J. Cancer 134, 552–562 (2014).

12. Sadanandam, A. et al. A colorectal cancer classification system that
associates cellular phenotype and responses to therapy. Nat. Med. 19, 619–625
(2013).

13. Liu, X., Yu, X., Zack, D. J., Zhu, H. & Qian, J. TiGER: a database for tissue-
specific gene expression and regulation. BMC Bioinformatics 9, 271 (2008).

14. Vécsey-Semjén, B. et al. Novel colon cancer cell lines leading to better
understanding of the diversity of respective primary cancers. Oncogene 21,
4646–4662 (2002).

15. Wilding, J. L. & Bodmer, W. F. Cancer cell lines for drug discovery and
development. Cancer Res. 74, 2377–2384 (2014).

16. Mouradov, D. et al. Colorectal cancer cell lines are representative models
of the main molecular subtypes of primary cancer. Cancer Res. 74, 3238–3247
(2014).

17. Barault, L. et al. Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-
OH kinase) signaling network correlate with poor survival in a population-
based series of colon cancers. Int. J. Cancer 122, 2255–2259 (2008).

18. De Roock, W. et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on
the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory
metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol.
11, 753–762 (2010).

19. Sartore-Bianchi, A. et al. Multi-determinants analysis of molecular alterations
for predicting clinical benefit to EGFR-targeted monoclonal antibodies in
colorectal cancer. PLoS ONE 4, e7287 (2009).

20. Cunningham, D. et al. Cetuximab monotherapy and cetuximab plus irinotecan
in irinotecan-refractory metastatic colorectal cancer. N. Engl. J. Med. 351,
337–345 (2004).

21. De Roock, W., De Vriendt, V., Normanno, N., Ciardiello, F. & Tejpar, S. KRAS,
BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in
metastatic colorectal cancer. Lancet Oncol. 12, 594–603 (2011).

22. Tabernero, J. et al. Cetuximab administered once every second week to patients
with metastatic colorectal cancer: a two-part pharmacokinetic/
pharmacodynamic phase I dose-escalation study. Ann. Oncol. 21, 1537–1545
(2010).

23. Hoshida, Y. Nearest template prediction: a single-sample-based flexible class
prediction with confidence assessment. PLoS ONE 5, e15543 (2010).

24. Kothari, V. et al. Outlier kinase expression by RNA sequencing as targets for
precision therapy. Cancer Discov. 3, 280–293 (2013).

25. Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The
protein kinase complement of the human genome. Science 298, 1912–1934
(2002).

26. Lin, E. et al. Exon array profiling detects EML4-ALK fusion in breast,
colorectal, and non-small cell lung cancers. Mol. Cancer Res. 7, 1466–1476
(2009).

27. Ardini, E. et al. The TPM3-NTRK1 rearrangement is a recurring event in
colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase
inhibition. Mol. Oncol. 8, 1495–1507 (2014).

28. Mathur, A. et al. FGFR2 is amplified in the NCI-H716 colorectal cancer cell line
and is required for growth and survival. PLoS ONE 9, e98515 (2014).

29. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical
profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

30. Cerami, E. et al. The cBio cancer genomics portal: an open platform for
exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404
(2012).

31. Beaufort, C. M. et al. Ovarian Cancer Cell Line Panel (OCCP): clinical
importance of in vitro morphological subtypes. PLoS ONE 9, e103988 (2014).

32. Ashraf, S. Q. et al. Direct and immune mediated antibody targeting of ERBB
receptors in a colorectal cancer cell-line panel. Proc. Natl Acad. Sci. USA 109,

21046–21051 (2012).
33. Bertotti, A. et al. A molecularly annotated platform of patient-derived

xenografts (‘‘xenopatients’’) identifies HER2 as an effective therapeutic
target in cetuximab-resistant colorectal cancer. Cancer Discov. 1, 508–523
(2011).

34. Bardelli, A. et al. Amplification of the MET receptor drives resistance to anti-
EGFR therapies in colorectal cancer. Cancer Discov. 3, 658–673 (2013).

35. Fu, L. & Medico, E. FLAME, a novel fuzzy clustering method for the analysis of
DNA microarray data. BMC Bioinformatics 8, 3 (2007).

36. Whitehouse, P. A. et al. Heterogeneity of chemosensitivity of colorectal
adenocarcinoma determined by a modified ex vivo ATP-tumor
chemosensitivity assay (ATP-TCA). Anticancer Drugs 14, 369–375 (2003).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8002 ARTICLE

NATURE COMMUNICATIONS | 6:7002 | DOI: 10.1038/ncomms8002 | www.nature.com/naturecommunications 9

& 2015 Macmillan Publishers Limited. All rights reserved.

http://genome.ucsc
http://genome.ucsc
http://www.nature.com/naturecommunications


37. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).
38. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays

applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98,
5116–5121 (2001).

39. Tibshirani, R., Hastie, T., Narasimhan, B. & Chu, G. Diagnosis of multiple
cancer types by shrunken centroids of gene expression. Proc. Natl Acad. Sci.
USA 99, 6567–6572 (2002).

40. Roig, A. I. et al. Immortalized epithelial cells derived from human colon
biopsies express stem cell markers and differentiate in vitro. Gastroenterology
138, 1012–1021 (2010).

41. Brough, R. et al. Functional viability profiles of breast cancer. Cancer Discov. 1,
260–273 (2011).

42. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28, 511–515 (2010).

43. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

44. Ge, H. et al. FusionMap: detecting fusion genes from next-generation
sequencing data at base-pair resolution. Bioinformatics 27, 1922–1928 (2011).

45. De Falco, V. et al. Ponatinib (AP24534) is a novel potent inhibitor of oncogenic
RET mutants associated with thyroid cancer. J. Clin. Endocrinol. Metab. 98,
E811–E819 (2013).

46. Valtorta, E. et al. KRAS gene amplification in colorectal cancer and impact on
response to EGFR-targeted therapy. Int. J. Cancer. 133, 1259–1265 (2013).

Acknowledgements
We thank Lazzari L., Lallo A., Misale S., Arena S. and Rossi T. for helping in the

cetuximab pharmacological screening; Cantarella D. and Porporato R. for microarray

expression profiling. We thank Professor Massimo Santoro for supplying RET antibody.

We are grateful to the researchers named in Supplementary Table S1 for the kind gift of

the cell lines. Supported by the European Community’s Seventh Framework Programme

under grant agreement no. 602901, MErCuRIC (A.B.); Associazione Italiana per la

Ricerca sul Cancro (AIRC) IG grant no. 12812 (A.B.) and no. 12944 (E.M.); AIRC MFAG

no. 11349 (F.D.N.); grant ‘Farmacogenomica’—5 per mille 2009 MIUR—Fondazione

Piemontese per la Ricerca sul Cancro—ONLUS (F.D.N.); AIRC 2010 Special Program

Molecular Clinical Oncology 5 per mille, project no. 9970 (A.B. and E.M.); FPRC 5 per

mille 2010 and 2011 Ministero della Salute (A.B., F.D.N. and E.M.); Ministero dell’Is-
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