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caused by Pseudomonas aeruginosa: from
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Abstract

Pseudomonas aeruginosa is the most common gram-negative pathogen causing pneumonia in immunocompromised
patients. Acute lung injury induced by bacterial exoproducts is associated with a poor outcome in P. aeruginosa

pneumonia. The major pathogenic toxins among the exoproducts of P. aeruginosa and the mechanism by
which they cause acute lung injury have been investigated: exoenzyme S and co-regulated toxins were found
to contribute to acute lung injury. P. aeruginosa secretes these toxins through the recently defined type III
secretion system (TTSS), by which gram-negative bacteria directly translocate toxins into the cytosol of target
eukaryotic cells. TTSS comprises the secretion apparatus (termed the injectisome), translocators, secreted toxins,
and regulatory components. In the P. aeruginosa genome, a pathogenic gene cluster, the exoenzyme S regulon,
encodes genes underlying the regulation, secretion, and translocation of TTSS. Four type III secretory toxins,
namely ExoS, ExoT, ExoU, and ExoY, have been identified in P. aeruginosa. ExoS is a 49-kDa form of exoenzyme S,
a bifunctional toxin that exerts ADP-ribosyltransferase and GTPase-activating protein (GAP) activity to disrupt endocytosis,
the actin cytoskeleton, and cell proliferation. ExoT, a 53-kDa form of exoenzyme S with 75% sequence homology
to ExoS, also exerts GAP activity to interfere with cell morphology and motility. ExoY is a nucleotidal cyclase that
increases the intracellular levels of cyclic adenosine and guanosine monophosphates, resulting in edema formation.
ExoU, which exhibits phospholipase A2 activity activated by host cell ubiquitination after translocation, is a major
pathogenic cytotoxin that causes alveolar epithelial injury and macrophage necrosis. Approximately 20% of clinical
isolates also secrete ExoU, a gene encoded within an insertional pathogenic gene cluster named P. aeruginosa

pathogenicity island-2. The ExoU secretory phenotype is associated with a poor clinical outcome in P. aeruginosa

pneumonia. Blockade of translocation by TTSS or inhibition of the enzymatic activity of translocated toxins has the
potential to decrease acute lung injury and improve clinical outcome.
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Introduction
Pseudomonas aeruginosa is one of the most common

gram-negative pathogens causing pneumonia in immuno-

compromised patients [1-4]. Ventilated patients are at par-

ticularly high risk of developing P. aeruginosa pneumonia

[5,6], and the mortality rate of ventilator-associated pneu-

monia (VAP) due to P. aeruginosa is significantly higher

than that due to other pathogens [7-9]. Some P. aeruginosa

strains possess the ability to destroy the integrity of the al-

veolar epithelial barrier, causing rapid necrosis of the lung

epithelium and bacterial dissemination into the circulation

[10,11]. Understanding the mechanism by which virulent

strains of P. aeruginosa cause acute lung injury is critical

for preventing subsequent sepsis and death. The present

review summarizes the progress and explains the mecha-

nisms causing acute lung injury and sepsis, focusing on the

type III secretion system (TTSS) of P. aeruginosa.

Review
Acute lung epithelial injury caused by P. aeruginosa

Acute lung injury in animal models

P. aeruginosa secretes various toxic exoproducts (Table 1).

Investigation of the toxic exoproducts of P. aeruginosa
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with major roles in acute lung injury began in the late

1980s. In animal models, acute lung epithelial injury was

quantified through the measurement of bidirectional pro-

tein movement across the lung epithelial barrier [12-14].

In this model, the airspace instillation of live P. aeruginosa

resulted in increased movement of the alveolar tracer into

the vascular compartment, a twofold increase in the vas-

cular tracer in the airspace, and a significant reduction in

liquid clearance by the lung, while instillation of Escheri-

chia coli endotoxin did not cause lung epithelial injury.

These early animal experiments initiated the search for a

major virulence factor responsible for acute lung epithelial

injury among the exoproducts of P. aeruginosa [15,16].

Discovery of a major cytotoxin: ExoU

The P. aeruginosa toxin exoenzyme S was identified in

the late 1970s as an ADP-ribosyltransferase distinct from

exotoxin A [17,18]. Early studies revealed that the exo-

enzyme S-positive phenotype correlated with increased

virulence in lung infections and burn wounds [19-24].

The protein transcriptional regulator ExsA was found to

regulate the production of exoenzyme S and co-regulated

proteins [25-27]. PAO-S21, an insertional mutant of trans-

poson Tn501 in the exsA gene of P. aeruginosa, is exo-

enzyme S-deficient [15,19]. PAO-S21 infection did not

result in altered protein flux across the alveolar epithelial

barrier [15]. Based on these findings, exoenzyme S, or an

unknown exoenzyme S-related toxin regulated by ExsA,

was determined to play a major role in acute lung injury.

Exoenzyme S activity was later determined to be the result

of two highly homologous toxins, ExoS (a 49-kDa form of

exoenzyme S) and ExoT (a 53-kDa form of exoenzyme S),

encoded by two separate regions of the P. aeruginosa gen-

ome [28-31].

The virulent P. aeruginosa strain PA103, lacking the

49-kDa form of the exoenzyme S gene (exoS) but posses-

sing the 53-kDa form (exoT), causes a high degree of

acute injury [16]. Because the isogenic mutant lacking

the 49-kDa form of exoenzyme S remained capable of

causing acute lung injury in a rabbit model, it was ini-

tially considered possible that ExoT is the major factor

underlying acute lung injury [16]. However, an isogenic

mutant lacking ExoT remained capable of causing alveo-

lar epithelial injury in a mouse model [32]. Thus, neither

ExoT nor ExoS was the major virulence factor. PA103

was found to secrete a unique unknown 74-kDa protein,

the production of which decreased with a transposon

mutation in exsA. The gene encoding this 74-kDa pro-

tein was cloned, and a mutant missing this protein was

created in PA103. PA103 lacking this 74-kDa protein

failed to cause acute lung injury in our mouse model

[33,34]. This protein, regulated by ExsA, was named

ExoU. Clinical isolates with a cytotoxic phenotype in vitro

were found to express ExoU and cause acute epithelial in-

jury in a mouse model [33]. Cytotoxic P. aeruginosa

isolates were identified to possess exoU, while noncyto-

toxic isolates lacked the gene [33]. High cytotoxicity,

severity of lung epithelial injury, and bacterial dissemin-

ation into the circulation appeared to show a high cor-

relation with the exoU genotype [35,36]. Therefore, it

was concluded that the ability of P. aeruginosa to cause

acute lung epithelial injury and sepsis is highly linked

to the expression of ExoU, regulated by the transcrip-

tional activator ExsA [33,34].

Type III secretion system

The secretion systems of gram-negative bacteria

Gram-negative bacteria, which have inner and outer bac-

terial membranes, use dedicated secretion systems to

transport proteins synthesized to the outside environ-

ment. The secretion systems of gram-negative bacteria

can be classified into six subtypes [37]. The type I secre-

tion system is relatively simple, consisting of only a few

proteins. Unlike proteins secreted by the type II secre-

tion system, proteins secreted by the type I secretion

system contain no signal sequence at their amino ter-

mini; instead, they contain domains at their carboxyl ter-

mini necessary for recognition by the type I secretion

complex. The type II system conducts so-called sec-

dependent secretion [38]. Proteins secreted by the type

II system possess amino-terminal signal sequences of

16–26 residues [38].

The type III and IV secretion systems have been more

recently defined (Figure 1). Recently, a high degree of

Table 1 The major toxic exoproducts of Pseudomonas aeruginosa

Exoproducts Locus ID, PA number Effect on host Secretion type Regulation system

Exotoxin A toxA, PA1148 Antiphagocytic, cytotoxic Type II (LasR-LasI quorum sensing)

Exoenzyme S exoS, PA3841 Antiphagocytic, cytotoxic Type III ExsA-activated type III system

Elastase (LasA, LasB) lasA, PA1871 Elastolytic activity Type II LasR-LasI quorum sensing

lasB, PA3724

Alkaline proteinase aprA, PA1249 Type I LasR-LasI quorum sensing

Phospholipase C plcH, PA0844 Disturbance of membrane lipid metabolism Type II Inorganic phosphate

plcN, PA3319
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association has been reported to exist between the type

III and IV secretion systems and the pathogenesis of

gram-negative bacteria [37,39]. In both the secretion sys-

tems, bacteria directly deliver proteins into the cytosol

of target eukaryotic cells [40]. Evolutionarily, TTSS is de-

rived from flagella, while the type IV system is derived from

a conjugational system [39,41]. TTSS is utilized by most

pathogenic gram-negative bacteria, including Yersinia,

Salmonella, Shigella, E. coli, and P. aeruginosa (Table 2)

[42]. TTSS functions as a molecular syringe, directly

delivering toxins into the cytosol of cells [43]. The

translocated toxins modulate eukaryotic cell signaling.

All TTSSs studied till date share an important feature:

the genes encoding this system are upregulated by dir-

ect contact between bacteria and host cells, with conse-

quent direct delivery of bacterial virulence products (type

III secretory toxins or effector molecules) into the host

cell via the secretion and translocation apparatus [42]. In

P. aeruginosa, exoenzyme S was initially thought to be se-

creted via the type II secretion pathway. However, based

on the genomic homology to other gram-negative bac-

teria, this toxin and co-regulated toxins (ExoT, ExoU, and

ExoY) were ultimately determined to be translocated as

effector proteins into host cells via TTSS [44].

Genomic organization of P. aeruginosa TTSS

TTSS of P. aeruginosa is highly homologous to the

prototypical Yersinia TTSS [45,46]. The whole genome

of P. aeruginosa strain PAO1 was sequenced by the

Pseudomonas Genome Project and published in 2000

(Figure 2) [47]. It was found that the 25.6-kb genomic

region, named the exoenzyme S regulon, encodes genes

underlying the regulation, secretion, and translocation of

TTSS [48]. Expression of these genes is under the regu-

lation of the transcriptional activator protein ExsA, and

ExsA itself is encoded by the exsCBA operon in the exo-

enzyme S regulon [28,48].

In the genome of P. aeruginosa PAO1, three type III

secretory toxins (excluding ExoU), co-regulated with

the exoenzyme S regulon by ExsA, have been identified

(Figure 2). These are ExoS (a 49-kDa form of exoenzyme

S), ExoT (a 53-kDa form of exoenzyme S, also known as

exoenzyme T), and ExoY [31,49]. The genes encoding

these type III secretory toxins (exoS, exoT, and exoY) are

distributed in regions of the genome separate from the

exoenzyme S regulon [47,48]. Later, two distinct P. aerugi-

nosa pathogenicity islands, PAPI-1 (108 kb) and PAPI-2

(11 kb), which are absent from the less virulent strain

PAO1, were found in the highly virulent clinical strain

PA14, and exoU was discovered in the PAPI-2 region of

this strain [50,51]. Approximately 20% of clinical isolates

are more virulent; they possess exoU, but not exoS [52].

The exoenzyme S regulon

Transcriptional activator ExsA

ExsA, encoded by the exsCBA operon (the trans-regulatory

locus for exoenzyme S secretion) in the exoenzyme S regu-

lon, is a transcriptional activator of the P. aeruginosa TTSS

[48]. In the exoenzyme S regulon, ExsA regulates the tran-

scription of five operons (exsD-pscL, exsCBA, pscG-popD,

popN-pcrR, and pscN-pscU) encoding TTSS and the trans-

location machinery (Figure 2) [48]. Another four or five

Figure 1 Gram-negative bacterial protein secretion system. In
the type I and II secretion systems, bacteria secrete toxins into the
extracellular space (upper image). In the type III and IV secretion
systems, bacteria directly secrete toxins into the cytosol of target
eukaryotic cells through the secretion apparatus (lower image).

Table 2 Type III secretion systems in animal-associated

gram-negative bacteria

Bacteria Effect on host Secreted
proteins

Secretion
apparatus

Pseudomonas
aeruginosa

Cytotoxic, antiphagocytic Exo, Pop Psc

Bordetella spp. Cytotoxic Bop Bsc

Burkholderia
pseudomallei

Facilitates invasion, etc. Bop Bsa

Chlamydia spp. Prevents microtubule
assembly, etc.

Cop Cds

Pathogenic E. coli A/E lesion formation Esp, Tir Sep

Salmonella spp. Bacterial entry, apoptosis Sip, Sop Inv, Prg,
Spa, Sip

Shigella spp. Bacterial entry, apoptosis Ipa, VirA Spa, Mxi

Yersinia spp. Cytotoxic, antiphagocytic Yop, Lcr Ysc
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ExsA-binding sites have been found in the genome for the

regulation of effector molecules (type III secretory toxins)

and their chaperones [47].

Secretion apparatus

In TTSS, secretion describes the process by which toxins

are transferred from the bacterial cytosol to the surround-

ing medium across the inner and outer bacterial mem-

branes [43]. This process seems to require secretion

apparatus involving many protein components (Figure 3).

All known TTSSs in animals and pathogenic bacteria share

a number of highly conserved core structural components.

The TTSS-specific export apparatus is termed the needle

complex in Salmonella [53,54], Shigella [55], and E. coli

[56]. This structure spans both the inner and outer mem-

branes of the bacterial envelope and closely resembles the

flagella basal body, further supporting the evolutionary re-

lationship between the flagella and TTSS [41,57].

In Yersinia, ysc genes in the Yop virulon largely encode

components of TTSS, and P. aeruginosa possesses hom-

ologous psc genes in its exoenzyme regulon [45,48]. Ysc

proteins from Yersinia ysc genes and Psc proteins from P.

aeruginosa psc genes are considered as components of

their respective needle complexes because of their se-

quence homology to Salmonella Spa, Prg, and Inv; Shigella

Spa and Mxi; and E. coli Esc proteins.

Translocators and V-antigen

In TTSS, translocation, which describes the process of

direct toxin transfer into the eukaryotic cytosol across

the eukaryotic plasma membrane, has been thoroughly

investigated in Yersinia [45,58-60]. In P. aeruginosa, the

pcrGVHpopBD operon, under regulation by ExsA, en-

codes five proteins, namely PcrG, PcrV, PcrH, PopB, and

PopD, homologous to Yersinia LcrG, LcrV, LcrH, YopB,

and YopD, respectively (Table 3) [61,62]. Translocation

in the P. aeruginosa TTSS is mediated by PcrV, PopB, and

PopD. In fact, in P. aeruginosa, isogenic mutants lacking

pcrV or popD were unable to intoxicate eukaryotic cells

[63,64]. Historically,Yersinia LcrV was designated Yersinia

V-antigen and thought to protect mice from lethal in-

fections with yersiniae strains [65,66]. PcrV (P. aerugi-

nosa V-antigen) corresponds to the Yersinia V-antigen

LcrV. Antibodies against LcrV and PcrV are likely to

block type III protein translocation by interfering with

pore formation by LcrV/YopB/YopD and PcrV/PopB/

PopD, respectively [63,64].

Four type III secretory toxins of P. aeruginosa

Till date, P. aeruginosa is known to secrete at least four

effector molecules (type III secretory toxins) via TTSS:

ExoS, ExoT, ExoU, and ExoY (Table 4, Figure 4). The

Figure 2 The Pseudomonas aeruginosa genome and type III secretion regulon and toxin genes. The genomic DNA of P. aeruginosa strain
PAO1 was completely sequenced by the Pseudomonas Genome Project in 2000. Within the 6.3-Mb region, 5,570 open reading frames were
found. The type III secretion regulatory region (25.5 kb) was found as a gene cluster and named the exoenzyme S regulon. It comprised five
operons, including 36 genes for transcription (exsA-exsD), secretion apparatus (pscB-pscU), and translocation (pcrGVHpopBD). The genes of the type
III secretory toxins exoS, exoT, and exoY, but not exoU, were scattered throughout the genome. The exoU gene was found to be located in an
insertional pathogenic gene cluster named P. aeruginosa pathogenicity island-2 (PAPI-2) discovered in the virulent clinical strain PA14.

Figure 3 Pseudomonas aeruginosa type III secretory apparatus:

the needle complex or injectisome. The type III secretory
apparatus comprises many protein components: a cap component,
PcrV; a needle component, PscF; an outer ring component, PscC;
and basal components, including PscJ, ATPase PscN, and others.
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virulence of each strain differs depending on the geno-

types and phenotypes of the type III secretory toxins

[32,33,52].

ExoS

P. aeruginosa exoenzyme S was originally characterized

as a toxin distinct from exotoxin A exhibiting ADP-

ribosyltransferase activity [17]. Exoenzyme S ADP-ribosylates

vimentins and several Ras-related GTP-binding proteins, in-

cluding Rab3, Rab4, Ral, Rap1A, and Rap2 [67,68]. The

enzymatic reaction requires a soluble eukaryotic pro-

tein, termed factor-activating exoenzyme S (FAS), to

ADP-ribosylate all substrates [69,70]. Analysis of sev-

eral deletion peptides showed that 222 amino acids at

the carboxyl terminal of exoenzyme S possessed FAS-

dependent ADP-ribosyltransferase activity [69,70]. Expres-

sion of the ADP-ribosyltransferase domain of exoenzyme

S is cytotoxic to eukaryotic cells [71].

The amino-terminal domain of exoenzyme S has been

characterized as a GTPase-activating protein (GAP) for

Rho GTPases [72], suggesting that exoenzyme S is a bi-

functional type III secreted cytotoxin [71]. In vivo data

indicate that the Rho GAP activity of ExoS stimulates

the reorganization of the actin cytoskeleton by inhibiting

Rac and Cdc42 and stimulates actin stress fiber forma-

tion by inhibiting Rho [73].

ExoT

Two immunologically undistinguishable proteins, with ap-

parent molecular sizes of 53- and 49-kDa, co-fractionated

with exoenzyme S activity [18]. Later, these two exoen-

zymes were found to be the products of two different

genes [31]. ExoT was found to encode a protein of 457

amino acids, with 75% amino acid homology to ExoS.

However, ExoT possessed approximately 0.2% of its ADP-

ribosyltransferase activity [74]. ExoT diminishes macro-

phage motility and phagocytosis, at least in part through

disruption of the actin cytoskeleton of eukaryotic cells,

and blocks wound healing [75,76]. Biochemical studies

have shown that ExoT is a GAP for RhoA, Rac1, and

Cdc42 [77,78]. These data show that ExoT interferes with

the Rho signal transduction pathways, which regulate

actin organization, exocytosis, cell cycle progression, and

phagocytosis [77,79].

ExoU

In 1997, a novel cytotoxin, ExoU (termed PepA by Hauser

et al. [34]), was found to be a major contributory factor to

lung injury, and the gene exoU was cloned from the cyto-

toxic PA103 strain. A region downstream of exoU was

found to encode a specific Pseudomonas chaperone for

ExoU (SpcU) [80]. In P. aeruginosa, ExoU and SpcU are

coordinately expressed as an operon controlled at the

transcriptional level by ExsA [80]. Acquisition of the

Table 3 Proteins required for the translocation of Pseudomonas aeruginosa Exo effectors

Protein PA
number

Size
(kDa)

Amino
acids

Homolog in
Yersinia

Features Localization Role

PcrG PA1705 11 98 LcrG (56%) Binds to PcrV Bacterial cytosol Negative regulator

PcrV PA1706 32.3 294 LcrV (57%) Cap, Pore Bacterial Surface Translocational pore

PcrH PA1707 18.4 167 LcrH/SycD (76%) Binds to PopB and
PopD

Bacterial cytosol Chaperone for PopB and
PopD

PopB PA1708 40.1 390 YopB (60%–61%) Pore On eukaryotic cell
membrane

Translocational pore

PopD PA1699 31.3 295 YopD (59%–60%) Pore On eukaryotic cell
membrane

Translocational pore

Table 4 Pseudomonas aeruginosa type III effector molecules

Effectors Other names Genes PA
number

Protein
size

Amino
acids

Homologous proteins Activity Effect on host

ExoS 49-kDa exoenzyme S exoS PA3841 49 kDa 453 Yersinia YopE ADP-ribosyltransferase Antiphagocytosis

Salmonella SptP GAP activity

ExoT 53-kDa exoenzyme S exoT PA0044 53 kDa 457 Yersinia YopE GAP activity Inhibition of wound
healing

Exoenzyme T Salmonella SptP

ExoU PepA exoU - 72 kDa 687 Mammalian cPLA2 Patatin-like phospholipase Cell death

Plant patatins Acute lung injury

Bacteremia, sepsis

ExoY - exoY PA2191 42 kDa 378 B. anthoracis EF Adenylate cyclase Edema, inhibition of
inflammatory cytokine
secretionBordetella CyaA
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expression of P. aeruginosa ExoU caused increased bacter-

ial virulence and systemic spread in a mouse model of

acute pneumonia [33]. Hauser et al. determined the type

III secretion genotypes and phenotypes of isolates cultured

from patients with VAP: in vitro assays indicated that

ExoU most closely linked to mortality in animal models

was secreted in detectable amounts in vitro by 10 (29%) of

the 35 isolates examined [34].

ExoU has a potato patatin-like phospholipase (PLA)

domain (pfam01734 in the Conserved Domain Database

of BLAST (National Center for Biotechnology Informa-

tion, National Library of Medicine, National Institutes of

Health, Bethesda, MA, USA); Figure 5). Patatin is a

member of a multigene family of vacuolar storage glyco-

proteins with lipid acyl hydrolase and acyltransferase ac-

tivities; it represents 40% of the total soluble protein in

potato tubers [81]. Sequence alignment of ExoU, potato

patatin, and human PLA2 revealed three highly con-

served regions in the amino acid sequence of ExoU [82].

In the alignment, Ser-142 and Asp-344 of ExoU corre-

sponded to the catalytic serine and aspartate of PLA2, re-

spectively [82]. Subsequently, using in vitro models, it was

shown that ExoU exhibits Ser-142- and Asp-344-dependent

catalytic PLA2 activity, which requires eukaryotic cell fac-

tors for its activation [82,83]. Then, it was finally concluded

that virulent P. aeruginosa causes acute lung injury, thereby

causing sepsis and mortality, through cytotoxic activity de-

rived from the patatin-like phospholipase domain of ExoU

[84]. The cells targeted by ExoU injection through TTSS

comprise not only epithelial cells but also macrophages

[85]. Through TTSS, ExoU is activated after its transloca-

tion into the eukaryotic cell cytosol. It has been recently re-

ported that ubiquitin and ubiquitin-modified proteins are

associated with ExoU activation [86,87].

ExoY

ExoY is the fourth type III secretion effector protein con-

trolled by ExoS regulon. ExoY is homologous to the extra-

cellular adenylate cyclases of Bortedella pertussis (CyaA),

Bacillus anthracis (EF), and Yersinia pestis (insecticidal

toxin) [49]. In assays for adenylate cyclase activity, recom-

binant ExoY (rExoY) catalyzed the formation of cyclic ad-

enosine monophosphate (cAMP). In contrast to CyaA and

EF, rExoY activity was not stimulated or activated by cal-

modulin. Infection of eukaryotic cells with P. aeruginosa

producing catalytically active ExoY resulted in the elevation

of intracellular cAMP levels and changes in cell morph-

ology [88,89]. It is more recently reported that ExoY is

likely to be a promiscuous nucleotidal cyclase that increases

the intracellular levels of cyclic adenosine and guanosine

monophosphates, resulting in edema formation [90].

Epidemiology of the P. aeruginosa TTSS

Analysis of type III secretory protein phenotypes was

performed in 108 isolates derived from patients with

P. aeruginosa infections [52]. The mortality rate in

Figure 4 Contact-dependent toxin translocation during type III secretion in Pseudomonas aeruginosa. P. aeruginosa translocates toxins
after direct contact with the surface of the target eukaryotic cell. ExoS and ExoT modulate the cytoskeleton and endocytosis through interaction
with Ras and/or Rho GTPases; ExoU disrupts the integrity of the lipid membrane by targeting phospholipids; and ExoY causes edema formation
by increasing cyclic adenosine monophosphate.
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patients with P. aeruginosa isolates expressing at least one

of the type III secretory proteins was 21% compared with

the rate of 3% in patients with isolates expressing no type

III secretory protein. In another study, infection with iso-

lates secreting TTSS proteins, particularly isolates with an

ExoU-positive phenotype, correlated with severe disease

[91]. Recently, additional reports have demonstrated an

association between the ExoU genotype or phenotype and

a poor clinical outcome of P. aeruginosa pneumonia.

exoU-positive isolates were more likely to be fluoroquino-

lone resistant and exhibit both a gyrA mutation and efflux

pump overexpression [92]. Clinical isolates containing the

exoU gene were more likely to be resistant to cefepime,

ceftazidime, piperacillin tazobactam, carbapenems, and

gentamicin [93]. A fluoroquinolone-resistant phenotype

in an ExoU-positive strain contributes to the pathogen-

esis of P. aeruginosa in pneumonia [94]. However, the ex-

pression of TTSS exoenzymes in P. aeruginosa isolates

from bacteremic patients confers a poor clinical outcome,

independent of antibiotic susceptibility [95]. Severity of

the illness and expression of type III secretory proteins

were the strongest predictors of 30-day mortality from

P. aeruginosa bacteremia [96].

Update the clinical approach against

P. aeruginosa pneumonia

P. aeruginosa expresses a variety of factors that confer re-

sistance to a broad array of antibacterial agents. Multidrug-

resistant P. aeruginosa (MDRP) is defined as the resistance

to carbapenems, aminoglycosides, and fluoroquinolones.

The current increase in the incidence of lethal out-

breaks of MDRP is especially a serious concern. Mul-

tiple genetic rearrangements, such as chromosomal

mutations or horizontal gene transfers (plasmids, inte-

grons, phages), are associated with the acquisition of

multidrug resistance in these bacteria. The various

mechanisms, such as β-lactamases, carbapenemases or

aminoglycoside-modifying enzymes, and mutations in

antibiotic targets, efflux pumps, impermeability, are as-

sociated in these multidrug resistances. In the management

of P. aeruginosa pneumonia, the increasing resistance level

of these bacteria to most classes of antibacterial agents fre-

quently leads to failure of effective treatment, which is

associated with high mortality of the infected patients.

Therefore, choosing adequate antibiotics is crucial to

increase the survival rate, especially in patients infected

with MDRP. Therefore, surveillance in antibiotic resist-

ance must be important to reduce the risk of inad-

equate antibacterial therapy. In addition, surveillance in

TTSSgenotype- and phenotype-associated acute lung

injury and sepsis may help to predict the higher risk of

lethal outbreaks.

Polymyxin E (colistin) remains the most consistently

effective agent against MDPR, while colistin-resistant

P. aeruginosa has been already reported as a caution of the

emergence of pan-resistant strains in the near future [97].

Figure 5 The molecular structure and functional targets of ExoU. P. aeruginosa ExoU, a major factor causing cytotoxicity and epithelial injury in the
lung, contains a patatin domain that catalyzes membrane phospholipids through phospholipase A2 activity. Homology in the amino acid sequence, with
a catalytic dyad in the primary structure, was found between patatin, mammalian phospholipase A2 (cPLA2-α and iPLA2), and ExoU. FFA free fatty acid.
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Different strategies against the different targets must be re-

quired before the spread of super-resistant strains. Among

various experimental therapeutic approaches, the anti-

TTSS therapy is reasonable because acute lung injury due

to P. aeruginosa is highly depending on its TTSS-associated

virulence as described above. PcrV has a critical role in the

TTS-associated virulence of P. aeruginosa as follows [63].

In a series of these studies, active and passive immunization

against PcrV in animal models of P. aeruginosa-induced

lung injury greatly increased survival [63]. Virulent P. aeru-

ginosa strains expressing PcrV disabled macrophage phago-

cytosis. However, antibodies against PcrV blocked this

critical antiphagocytic effect [63]. Passive protection with

anti-PcrV reduced the inflammatory response, minimized

bacteremia, and prevented septic shock in mice and rabbits

[98]. The protective capacity of the antibody was Fc-

independent as F(ab′)2 fragments of polyclonal anti-PcrV

were also effective [98]. A murine monoclonal anti-PcrV

antibody mAb166 was developed, and its protective effects

on acute lung injury were demonstrated when co-instilled

with the bacterial challenge or passively transferred to

infected animals [99]. The administration of either

mAb166 or Fab of mAb166 showed comparable thera-

peutic effects to rabbit polyclonal anti-PcrV IgG [100].

Based on mAb166, humanized anti-PcrV antibody that

was developed by molecular engineering has recently

entered phase I/II clinical trials in the USA and Europe

for prophylactic and therapeutic uses against P. aeruginosa

pneumonia in artificially ventilated patients and cystic fi-

brosis patients [101-103].

Conclusions
Summary and future implications

P. aeruginosa possesses a sophisticated toxin secretion

system to directly inject toxins into the cytosol of target

eukaryotic cells. This system, called TTSS, is regulated

by the exoenzyme S regulon of P. aeruginosa. Through

TTSS, P. aeruginosa translocates the type III secretory

toxins ExoS, ExoT, ExoU, and ExoY. By injecting these

toxins into the cytosol of eukaryotic cells, P. aeruginosa

exploits mammalian enzyme functions to modulate

eukaryotic cell signaling.

Of these four toxins, ExoU is the major virulence factor

responsible for alveolar epithelial injury in P. aeruginosa

pneumonia. Virulent strains of P. aeruginosa possess the

exoU gene, whereas nonvirulent strains lack the same.

The major pathogenesis of P. aeruginosa-induced acute

epithelial lung injury and subsequent bacteremia and sep-

sis is highly dependent on the ExoU phenotype of the

strain, while the type III secretory toxins ExoS, ExoT, and

ExoY modulate host immunity and cause lung edema

(Figure 6). Progress in the field of translational research

is now anticipated to prevent the acute lung injury and

improve the poor clinical outcome of P. aeruginosa

pneumonia. What we have learned from our attempts

to elucidate the molecular mechanisms underlying

acute lung injury over the last 30 years is how well

pathogenic bacteria utilize our cell signaling to cause

diseases: bacteria know our cell signaling better than

we do.
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