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Abstract 

Hodgkin lymphoma (HL) is an unusual malignancy in that the tumour cells, the 

Hodgkin and Reed-Sternberg (HRS) cells, are a minor component of the 

tumour mass, the bulk of which is a mixed cellular infiltrate.  There is 

compelling evidence that HRS cells are clonal B-cells that have lost their B-

cell phenotype.  Mature B-cells lacking B-cell receptors would normally die by 

apoptosis and therefore HRS cells must have developed mechanisms to 

facilitate survival.  The escape from apoptosis and transcriptional 

reprogramming of HRS cells are interlinked and appear central to disease 

pathogenesis.  The Epstein-Barr virus (EBV) is present in the HRS cells of a 

proportion of cases and expresses genes with a plausible oncogenic function.  

It is likely that EBV plays a role in reprogramming and survival through 

dysregulation of several signalling networks and transcription factors, 

including NF-κB.  Activation of NF-κB is a feature of all HRS cells and gene 

mutations affecting this pathway appear common in EBV-negative HL.  The 

HRS cell furthers its own survival by attracting a supportive microenvironment 

of immune and stromal cells, and suppressing local immune responsiveness.  

Although many questions remain unanswered, the last two decades have 

witnessed a considerable increase in our knowledge of this complex disease. 

Word count: 200 
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Body of Text 

Introduction 

Hodgkin lymphoma (HL) is one of the commonest lymphomas in the 

developed world, with an incidence of approximately 3 per 100,000 person 

years.1  First described in 1832 by Thomas Hodgkin2 and subsequently called 

Hodgkin’s disease, it is now recognised as a clonal B-cell neoplasm and has 

therefore been renamed Hodgkin lymphoma.  HL comprises two entities, 

nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) and classical 

Hodgkin lymphoma (cHL.) A striking feature of both entities is that the 

malignant cell is rare in the involved tissue, accounting for only around 1% of 

the tumour mass.3  The remainder of the tumour comprises a cellular infiltrate 

with an admixture of different cell types.  Despite these similarities, the clinical 

features, cell of origin and molecular pathogenesis of NLPHL and cHL are 

distinct and they are best regarded as separate diseases.  In NLPHL, the 

malignant cell is the LP cell (formerly called L&H cell) or “popcorn” cell, so-

named because of its characteristic multilobated morphology.  cHL is 

characterised by the presence of the Reed-Sternberg cell, a large bi-or 

multinucleate cell, and its mononuclear equivalent, the Hodgkin cell, which 

together are referred to as HRS cells.  cHL is further divided into nodular 

sclerosing (NS), mixed cellularity (MC), lymphocyte rich classical (LR) and 

lymphocyte-depleted (LD) subtypes on the basis of the morphology of the 

HRS cells and the composition of the background cellular infiltrate. 

Approximately one-third of cases of cHL in the developed world are 

associated with Epstein-Barr Virus (EBV), where the virus is believed to play a 

causal role.4  cHL accounts for 95% of cases and will be the focus of this 

review. 
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Cell of Origin 

The cellular origin of the tumour cells in HL remained elusive for many years 

but microdissection coupled with analysis of immunoglobulin (Ig) genes 

revealed that these cells are usually clonal B-cells.  HRS cells, from nearly all 

cHL cases, and LP cells have detectable rearrangements of Ig heavy and/or 

light chain genes, confirming a B-cell origin5,6 and, in any given case, the 

rearrangements are identical, proving the clonal nature of the disease.5,7,8  

Furthermore, the Ig variable (IgV) gene regions show evidence of somatic 

hypermutation, revealing a germinal centre (GC) or post-GC origin.9  The cHL 

and B-cell non-Hodgkin lymphoma (B-NHL) components of composite 

lymphomas generally harbour identical IgV gene rearrangements but have 

distinct somatic Ig gene mutations.  This strongly  suggests that both have 

arisen from a common precursor which is a pre-GC or GC B-cell.10 In LP cells 

intraclonal IgV gene diversity is observed indicating on-going somatic 

hypermutation whereas HRS cells show identical somatic hypermutations 

consistent with a later stage of B-cell differentiation.5,7,8  “Crippling” mutations, 

resulting in non-functional Ig genes, are observed in around 25% of cHL 

cases.5,7,10,11  Rarely (<2%) HRS cells harbour rearranged T-cell receptor 

genes suggesting a T-cell origin in a small minority of cases.12-14   

The phenotype of the HRS cell does not reveal its B-cell origin.  Markers of B-

lineage, such as CD20, CD19, CD79 and surface Ig, and the transcription 

factors OCT2, BOB1 and PU1 are generally down-regulated in the HRS 

cell.15,16  Expression of the B-cell-specific transcription factor PAX5 is usually 

retained, albeit at low levels, and can be helpful in distinguishing cHL from T-

cell lymphomas.17  HRS cells classically express the tumour-necrosis factor-
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receptor (TNFR) family member CD30 and the myeloid marker CD15.  

Aberrant expression by the HRS cell of T-cell markers such as CD3, CD4 and 

granzyme B18, and dendritic cell markers such as fascin and TARC (Thymus 

activation regulated chemokine, also known as CCL17) is observed.19  In 

contrast, LP cells express B-cell markers including CD20, CD79, PAX5, OCT2 

and BOB1.  

Normally, GC B-cells which lack a functional B-cell receptor (BCR) complex 

would undergo apoptosis. The survival of the HRS cell in the face of apoptotic 

triggers is therefore considered central to cHL oncogenesis.  Mutation or viral 

infection may counter apoptosis; alternatively, transcriptional reprogramming 

with loss of the B-cell signature may abrogate the intrinsic requirement for 

tonic BCR signalling. 

Reprogramming of HRS cells 

Although HRS cells in some cases have crippling mutations of Ig genes 

leading to lack of functional BCRs, it is clear that epigenetic modification plays 

an important role in transcriptional down-regulation of B-lineage-specific 

genes.  The simultaneous silencing of a group of genes by promoter 

methylation suggests that a master transcriptional regulator(s) may be 

involved.20,21  Activation of Notch1 signalling and inhibition of the transcription 

factors E2A and EBF, appear important in this regard.  Notch1 promotes 

transcription of T-cell genes and suppresses the B-cell programme of 

differentiation through promoting the degradation of E2A 22 and blocking the 

DNA binding of EBF.23  E2A function is also inhibited by over-expression of 

activated B-cell factor 1 (ABF1) and inhibitor of differentiation and DNA 

binding 2 (ID2.)24-26  In addition, activation of Notch1 inhibits PAX5 both at 
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transcriptional and post-translational levels.27  Notch1 up-regulation is caused 

in part by stimulation by Jagged1, which is produced by the reactive cells 

surrounding the HRS cell.  28,29   

Survival and proliferation of HRS cells 

Nuclear factor kappa B (NF-κB) is a family of transcription factors which play 

a key role in numerous cellular responses including inflammatory responses 

and cell fate decisions.30  This protein family includes five members, RelA 

(p65), RelB, c-Rel, NF-κB1 (p50 and its precursor p105) and NF-κB2 (p52 

and its precursor p100), which function as homodimers and heterodimers.31  

In the absence of stimulation, NF-κB is maintained in an inactive state, mostly 

in the cytoplasm, by binding the inhibitory proteins IκBα, IκBβ, IκBε, and the 

precursor proteins p105 and p100.  NF-κB is activated following ligation of 

cellular receptors, including the tumour necrosis factor (TNF) receptor 

superfamily, resulting in IκB-kinase (IKK) activation and proteolytic 

degradation of IκBs.  The NF-κB complex is then free to bind its DNA target.  

Activation of NF-κB is normally transient and tightly controlled; however, in 

HRS cells NF-κB is constitutively active.32,33  

NF-κB activation in HRS cells may be explained by a number of different 

mechanisms.  First, many TNF receptors are over-expressed by HRS cells, 

including CD30, CD40, RANK and CD95.34,35  In addition, the cellular milieu in 

which the HRS cell resides produces ligands of these receptors, leading to 

paracrine stimulation.  Moreover, intrinsic over-expression of CD30 by the 

HRS cell has been suggested to contribute to NF-κB activation in the HRS 

cell.36 EBV can directly contribute to activation of NF-κB though its protein 
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LMP-1 which mimics CD40 signalling.  Secondly, deleterious mutations of the 

genes encoding IκB proteins, in particular IκBα, have been described in 10-

20% of cases of cHL.37-41  Thirdly, amplification of the chromosomal region 

including the c-Rel gene has been reported in nearly 50% of cases of cHL 

cells.42-44 

More recently, inactivating mutations of the TNFα-induced protein 3 

(TNFAIP3) gene, which encodes the protein A20, have been described in 

cHL.45,46  A20 is a deubiquitinase and ubiquitinase which negatively regulates 

NF-κB and prevents excessive or prolonged activation.45  Schmitz et al 

(2010)46 using cHL-derived cell lines and single microdissected HRS cells, 

demonstrated that A20 was mutated or deleted in a clonal, somatic fashion in 

16 of 36 primary cases. In most cases, the mutation was bi-allelic and 

reconstitution of A20 activity reduced NF-κB transcriptional activity and led to 

cytotoxicity.  Kato and colleagues (2010)45 verified the importance of this gene 

in a genome-wide analysis of genetic lesions in lymphoma, where pooled 

microdissected cells from 5 of 24 primary cases of cHL demonstrated a 

mutation or deletion in this gene.  All clearly inactivating mutations were found 

in EBV-negative cHL cases, suggesting that EBV infection and A20 mutations 

are alternative ways of providing sustained NF-κB activation signal in HRS 

cells.46   

Activation and dysregulation of the JAK-STAT pathway have also been 

implicated in the proliferation and apoptosis resistance of HRS cells.  JAK-

STAT signalling is one of the central mechanisms of signalling by cytokines 

including IL-5, IL-6, IL-9, IL-13 and GM-CSF.47  In cHL, cytokines which can 
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initiate JAK-STAT activation are produced in abundance, and phosphorylated 

STAT3, STAT5 and STAT6 are present at high levels in the nuclei of HRS 

cells.,48-52  Genomic lesions affecting the JAK-STAT pathway have also been 

demonstrated with copy number amplifications of the JAK2 gene (9p24)53 and 

mutations of SOCS-1, a negative regulator of JAK.54  Several other signalling 

pathways have been shown to be deregulated in HL, including PI3K-Akt-

mTOR,55 MAPK-MEK-ERK56 and the AP1-JUN/Fos pathway whose targets 

include CD30 and Galectin-1.57,58 

Small non-coding RNAs (microRNAs) are now recognised to be important in 

cancer development and it is clear that they are differentially expressed in HL.  

miR-155 is expressed at very high levels in HL cell lines and primary tissue59 

where it may be targeting the B-cell transcription factor PU.1 for down-

regulation.  MicroRNA expression profiling of microdissected HRS cells 

demonstrated the upregulation of miRs 9, 16, 18a, 20a, 21,30b, 30a-5p, 140, 

155, 186, 196a, & 374, and the downregulation of miRs 200, 520a & 614.60  

Analysis of whole cHL tumours produced different results, probably reflecting 

alterations of microRNA profile in the infiltrating cells.61  Whilst putative targets 

for these microRNAs, such as BCL2, HOXA7 and PTEN, would imply a role in 

the survival, proliferation and reprogramming of HRS cells, functional studies 

to prove these associations have not been performed.  Ongoing studies are 

likely to elucidate a more precise role for microRNAs in the transcriptional 

regulation of the HRS cell.  

Thus, multiple transcriptional and signalling pathways are disrupted in HL, and 

are thought to co-operate to increase HRS cell proliferation, reduce apoptosis 
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and promote a favourable cellular environment through the release of multiple 

cytokines and chemokines (see below.) 

Chromosomal genetic abnormalities in the HRS cell 

Unlike many B-NHLs where single recurrent cytogenetic abnormalities are a 

feature, no single pathognomonic cytogenetic abnormality has been 

demonstrated in HL.  Conventional comparative genomic hybridisation (CGH) 

studies have demonstrated numerous chromosomal imbalances including 

recurrent gains of 2p (including the REL oncogene), 9p (including JAK2), 16p, 

17p, 17q and 22q and loss of 13q.53,62,63A recent array-based CGH analysis64 

found gains of 2p, 9p, 12p, 16p, 17p, 17q, 19p, 19q, 20q, 21q and losses of 

1p, 6q,7q, 8p, 11q, and 13q.  Minimally gained and lost regions were defined, 

including regions harbouring genes involved in NFκB signalling such as REL 

(2p), IKBKB, CD40, MAP3K14  and TNFAIP3.  An association between 

cytogenetic findings and clinical outcome was also demonstrated, with 

patients who had gains of 16p11.2-13.3, which harbours the multi-drug 

resistance gene ABCC1, having poorer disease-specific survival.  

Multiple cytogenetic abnormalities have been demonstrated by FISH and 

FICTION, including breakpoints at 7q22, 7q32, 11q23, 13p11 and 14q32.65  A 

proportion of NLPHL and cHL cases have been shown to have translocations 

involving the IgH gene (14q32), as seen in various B-NHLs.  BCL6 has been 

found to be a translocation partner in NLPHL, but only infrequently in cHL.66,67  

Other genes commonly associated with Ig translocations in B-NHL, including 

cyclin D1, BCL2 and MYC are not implicated in HL, where the partner genes 

are yet to be discovered.   
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Biological overlap with B-NHL 

Some types of B-NHL share morphological features and immunophenotype 

with cHL, hence the occasional diagnostic difficulty.  These include the 

anaplastic variant of diffuse large B-cell lymphoma (DLBCL),68 primary 

mediastinal B-cell lymphoma (PMBCL),69 and “grey zone lymphoma”, which 

has features intermediate between DLBCL and cHL.70  Gene expression 

profiling has identified PMBCL as being more closely related to cHL than 

DLBCL.71-73  It has been shown that some of the key players involved in the 

pathogenesis of cHL, such as REL74,75 and JAK-STAT76,77, are also important 

in these “intermediate” B-NHLs.  It is likely that these lymphomas represent a 

true biological overlap with cHL, arising from a putative thymic B-cell and 

sharing some clinical features.   

A Hodgkin lymphoma stem cell? 

Stem cells are defined by their facility for unlimited self-renewal, and their 

capacity to produce progeny of multiple different lineages.  Leukaemic stem 

cells, subpopulations with the capacity for unlimited self-renewal, have been 

well-described. However, lymphomas, including HL arise from mature 

lymphocytes and the existence of a ‘lymphoma stem cell’ or ‘lymphoma-

originating cell’ has yet to be proven and remains controversial.  A recent 

study, using flow cytometry to detect the stem-cell marker aldehyde 

dehydrogenase, demonstrated rare populations of small cells within the cHL-

derived cell lines L428 and KM-H2, which were capable of generating the 

predominant HRS cells.78  Shafer and colleagues (2010) 79 recently 

demonstrated the presence of side-population cells, associated with a “stem” 

or progenitor cell phenotype, in both HL cell lines and primary tumour 
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specimens.  Much further work remains to be done to characterise these cells 

and determine whether they are clonogenic as well as clonotypic.   

Interaction with the cellular microenvironment 

Almost all of the cells present in HL tumour tissue comprise a reactive 

infiltrate including T-cells, B-cells, eosinophils, fibroblasts, macrophages, mast 

cells and plasma cells.80  This infiltrate may be, in part, a response to the 

tumour; however, it is ineffective (see below) and there is evidence that HRS 

and LP cells actively recruit these infiltrating cells to the tumour, where the 

paracrine signals they provide promote survival of the tumour cells.  The 

interaction between the tumour cells and the infiltrating cells is therefore a 

critical feature of HL pathogenesis.    

The infiltrating cells are largely CD4+ T-cells and those in close proximity to 

the HRS cells, often forming so-called rosettes, generally demonstrate a TH2 

phenotype; CD8+ cytotoxic T-lymphocytes (CTLs), TH1 CD4+ T-helper cells 

and natural killer (NK) cells are notable by their absence.  It is thought that 

these TH2 cells are attracted by chemokines produced by the HRS cell, 

including TARC81,CCL5 (RANTES) and CCL22.82  They express CD40 ligand 

which may stimulate CD40 expressed on the surface of HRS cells, triggering 

signalling cascades mentioned above.  CD4+CD25+FOXP3+ regulatory T-

cells (Tregs) are also abundant among the infiltrating cells 83  Tregs suppress 

tumour-antigen specific CTLs and NK cells, and may therefore protect the 

tumour cell from immune attack, particularly in the case of EBV-associated 

disease where viral antigens are expressed and would be expected to trigger 

an immune response.84,85  Secretion of galectin1 58,86 and chemokines 

including IL-10, TGF-β,83 TARC, CCL5, CCL20 and CCL22.82,87 by the HRS 
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cell is likely to lead to recruitment of Tregs to the tumour.  In addition, mRNA 

expression studies suggest that TH17 cells are present in the infiltrating 

cells.88   

HRS cells and fibroblasts secrete eotaxin, IL5, IL9, CCL5, CCL11 and CCL28 

which may act to recruit eosinophils, which are frequently present in HL 

tissue.89  The eosinophils secrete TGFβ, and express CD30 ligand which 

stimulates CD30 expressed on the tumour cell surface90.  Mast cells present 

in the infiltrate also express CD30 ligand, and in addition may contribute to 

angiogenesis.91  Other cytokines involved in the pathogenesis of HL include 

IL-13, which is produced by HRS cells in some cases and, since the IL-13 

receptor is also expressed by HRS cells, may function in an autocrine manner 

to promote HRS cell survival.92,93 

Gene expression studies have demonstrated that the genes most highly up-

regulated in HL include those encoding key cytokines such as TARC and 

Galectin 1, thus confirming their importance in disease pathogenesis 62,94  

Proteomic analysis of cell lines and primary tissue has also revealed elevated 

levels of TARC, IL1R2, MIF, CD26, CD44, and cathepsin S.95  A summary of 

these, and other, molecules implicated in the cross-talk between HRS cells 

and their micro-environment is given in Table 124,34,36,58,81,86,87,90,91,93,96,96-116 

Epstein-Barr virus and Hodgkin lymphoma 

Epstein-Barr virus (EBV) is a lymphotropic γ-herpesvirus which infects more 

than 95 % of the world’s population.  Primary infection generally occurs in 

childhood and is asymptomatic or subclinical but late exposure can led to the 

development of infectious mononucleosis (IM).  Following primary infection, 
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the virus remains latent in memory B-cells for the lifetime of the host.117 and is 

kept in check by the cytotoxic T-lymphocyte (CTL) response.118  Although viral 

infection is usually asymptomatic, EBV is associated with a number of 

cancers including cHL and some B-NHLs.  

A proportion of cases of HL are associated with EBV, where the virus is 

believed to play a causal role.4  In EBV-associated tumours, EBV is detected 

in all of the HRS cells (see Figure 1) and the viral infection is clonal, proving 

that infection occurred prior to transformation and supporting a causative 

role.119-121. Furthermore, HRS cells express EBV proteins including EBNA-1, 

LMP-1, LMP-2 antigens and the EBER and BART RNAs – a pattern referred 

to as “latency II” 117 EBNA-1 and LMP-1 are essential for transformation of B-

cells by EBV and recent data suggest that LMP-2 plays a critical role in B-cell 

survival.122  EBNA-1 is essential for maintaining the viral genome as an 

episome and ensuring genome partitioning during mitosis.  In addition, EBNA-

1 may support the development of the tumour through up-regulating CCL22, 

and thus attracting Tregs.98  LMP-1 can mimic the signal provided by CD40, 

thus providing a means of constitutively activating NF-κB.  LMP-1 is also 

capable of activating p38, PI3K, AP1 and JAK-STAT signalling.123  LMP-2 is 

thought to play an important role in B-cell survival and, in vitro, is essential for 

the rescue and transformation by EBV of GC B-cells lacking BCRs.124-126  

LMP-1 and LMP-2 may also contribute to the reprogramming of the B-cell 

phenotype that occurs in HRS cells;127,128 in particular, LMP-2 constitutively 

activates the Notch pathway leading to alteration of levels of the transcription 

factors E2A and EBF (see above).  The non-coding EBER RNAs have been 

shown to suppress p21cip/waf transcription, thereby increasing apoptosis 
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resistance through down-regulation of p53, EGR1 and STAT1.129  The BARTs 

are a group of alternatively spliced RNAs derived from the BamHI A fragment 

of the EBV genome, which encode a large number of microRNAs.  At present, 

their function is poorly understood but it would seem likely that they have a 

role in viral pathogenesis.  

Although the morphology, phenotype and gene expression profile of EBV-

associated and non-associated cases of cHL appear similar, there is 

increasing evidence that the molecular pathogenesis of these two groups of 

cases is distinct.  First, mutations of genes encoding inhibitors of NF-κB, in 

particular TNFAIP3 (A20), are more common in EBV-negative cases 

suggesting that these mutations substitute for LMP-1 expression 46.  

Secondly, crippling mutations of Ig genes appear almost exclusive to EBV-

associated cases indicating that EBV is required to rescue cells harbouring 

these mutations from apoptosis.  Thirdly, expression of multiple receptor 

tyrosine kinase pathways130 is more frequent in non-EBV-associated cases, 

suggesting that EBV is replacing vital oncogenic signals.  

Epidemiological data also support a role for EBV in HL pathogenesis. The 

proportion of EBV-associated cHL cases is significantly higher in cases 

occurring in early childhood and older adult age groups (aged >50 years) 

compared to younger adults, in developing countries compared to 

industrialised countries, and in males compared to females.,131,132  Cases of 

mixed-cellularity subtype are also significantly more likely to be EBV-

associated than nodular sclerosis cases.   
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There is an increased risk of EBV-associated HL following infectious 

mononucleosis,133,134 which decreases with increasing time from the illness.  

The frequency of circulating EBV-infected cells is also significantly higher in 

pre-treatment blood samples from EBV-associated cases when compared 

with non-EBV-associated cases,135 and patients with HL also have been 

shown to have higher titres of anti-EBV antibody both at time of diagnosis and 

several years prior.136  Collectively, these data suggest that control of EBV 

infection is related to risk of developing EBV-associated HL.  

The immune response and cHL 

An association between cHL, particularly EBV-associated disease, and 

immunosuppression has been recognised for many years.  Patients with 

HIV/AIDS are at increased risk and, in this context, the disease is almost 

always EBV-positive.  EBV-associated HL is also seen following allogeneic 

bone marrow transplant and solid organ-transplantation.137  More subtle 

immune suppression may also lie behind development of cHL.  For instance, 

reactivation of varicella zoster virus (VZV), a surrogate of immune 

suppression, is a risk factor for development of HL.138,139  Patients with EBV-

associated HL were more likely to have reactivated VZV in the year prior to 

diagnosis than patients with EBV-negative disease.140  Such subtle immune 

suppression, possibly occurring as part of immune senescence, may account 

for the greater predominance of EBV-associated cHL in older adults, and may 

suggest an aetiological overlap with EBV-positive DLBCL of the elderly141. 

Recent data have shown a strong association between EBV-associated HL 

and HLA class I genotype suggesting that HLA-restricted CTL responses play 

a key role in determining risk of EBV-associated HL.  Increased risk was 
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associated with HLA-A*01 and decreased risk with HLA-A*02.  The effects of 

A*01 and A*02 were independent of each other but dependent on allele copy 

number, such that HLA-A*01 homozygotes had an almost 10-fold greater 

odds of EBV-associated HL than HLA-A*02 homozygotes.142  Whereas CTL 

responses to many HLA-A*02-restricted EBV epitopes have been described, 

there are no confirmed HLA-A*01-restricted responses to epitopes derived 

from either lytic or latent viral proteins.118,143  This raises the suspicion that the 

increased risk of EBV-associated cHL is related to a weak EBV-specific CTL 

response.  A weak response could influence disease risk in two ways: first, it 

could allow expansion of EBV-infected tumour cells; and secondly, a sub-

optimal response to primary and persistent EBV infection could lead to a 

higher level of EBV and an increased risk of transformation.   

Conclusions 

The molecular pathogenesis of HL is complex; however, this remarkable 

disease is beginning to give up its secrets.  There is good evidence that HL is 

a clonal B-cell neoplasm and that the global suppression of the B-cell 

signature results from transcriptional reprogramming.  EBV is thought to play 

a critical role in the pathogenesis of a proportion of cases of HL, and EBV 

gene products appear to contribute to HRS cell survival, proliferation and 

reprogramming.  Multiple transcription factors and signalling pathways are 

dysregulated in the HRS cell, most notably the NF-κB pathway.  EBV infection 

most likely leads to NF-κB activation in EBV-associated cases and mutations 

of genes encoding inhibitors and regulators of NF-κB have been detected in a 

large proportion of EBV-negative cases.  Crosstalk between the HRS cell and 

the reactive component of tumours also appears important in the survival and 
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proliferation of HRS cells and immune evasion.  However, many questions 

remain: is there a 'HL-initiating' cell and what is the phenotype of this cell; is 

there another virus present in EBV-negative cases and does this explain the 

unusual epidemiology of these cases; what are the targets of the viral and 

non-viral miRNAs expressed by HRS cells; how do host factors, such as HLA 

genotype, contribute to disease risk?  It is hoped that a better understanding 

of these issues can be exploited for the benefit of patients, with less-toxic, 

more-effective targeted therapies and potentially preventative measures 
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Table 1: Cytokines, chemokines, receptors and ligands altered in classical 
Hodgkin lymphoma144,145 

 
 

Function Cytokine/ Chemokine/ Receptor/ Ligand Reference 
TARC/CCL17 81 
MDC/CCL22 96,97 
CCL-20 98 
MIG 96,99 
IP-10 96 
IL-13 93 
GATA-3 24,100 

Promote Th2 Response 

CCR-4 101 

IL-10 91 

TGF-β  102,103 
PD-1L 104 

Suppress Th1 
Response 

Galectin-1 58,86 
IL-5 105 
IL-9 106 
Eotaxin (produced by fibroblasts) 107 

Promote influx of 
eosinophils 

CCL28 108 
IL-9 106 

Promote influx of mast 
cells 

RANTES/CCL5 (also monocytes, T-cells 
& eosinophils) 87 

Promote influx of 
plasma cells IL-6 109 

IL-8 110 Promote influx of 
neutrophils GM-CSF 111 

IL-13 93 

TGF-β  102,103 

TNF-α  112,113 
MMP 114 

Promote influx of 
fibroblasts 

TIMP1 & 2 115 
IL-13/IL-13-R (via STAT6 activation) 93 
TIMP-1 115 Autocrine growth factor 

IL-6 109 
CD40/CD40-R 116 

CD30/CD30-R 36,90 

TNF-α-  112,113 
Activates NF-κB  

RANK/RANK-L 34 
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Figure 1: EBV EBER in situ hybridisation showing positive staining in the 
nuclei of all the tumour cells.  x1000 
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