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Abstract 

Molecular replacement can be used for obtaining 

approximate phasing of an unknown structure from 

a known related molecule and for phase improvement 
as well as extension in the presence of noncrystallo- 

graphic symmetry. Emphasis is placed on the latter 

procedure. It is shown that the real-space method of 

iterative electron density averaging and Fourier back 

transformation corresponds to iterative phase substi- 

tution in the right-hand side of expressions to give a 

set of improved phases. Analysis of these expressions 

(the 'molecular replacement equations') provides 
insight into the limits of possible phase extension, 

and the implications for the use of calculated structure 
factors when there are no observed amplitudes. It is 

shown that the percentage of observed data and inac- 

curacy of the observed amplitudes available for phase 

extension are compensated by the extent of noncrys- 

tallographic redundancy and the fraction of crystal 

cell volume that may be flattened because it is outside 

the control of noncrystallographic symmetry. 

Introduction 

Structural redundancy, a consequence of noncrys- 

tallographic symmetry, can be used to solve the phase 

problem. The significance of this possibility for the 

solution of virus structures, in part, initiated my 

interest in virus structure (Rossmann & Blow, 1962). 
Nevertheless, it has taken until today for such a 

procedure to be fully implemented to a real structure 
determination. The Mengo virus (Luo, Vriend, 

Kamer, Minor, Arnold, Rossmann, Boege, Scraba, 

Duke & Palmenberg, 1987) and foot-and-mouth dis- 

ease virus (Acharya, Fry, Stuart, Fox, Rowlands & 

Brown, 1989) structure determinations are the most 

powerful applications so far. Yet even now there is 

no example of a truly ab initio phase determination. 
There was an initially slow, but now ever faster, 

acceptance and use of the molecular replacement 

method. Indeed, today, in conjunction with the 
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knowledge of probably most major types of protein 

folds, molecular replacement is a frequently used 

technique for the solution of macromolecular struc- 

tures. The first exposition of noncrystallographic sym- 

metry as a tool for structure determination was given 
by Rossmann & Blow (1962). The term Molecular 

Replacement was introduced as the name of the book 

in which the early papers were collected and briefly 

reviewed (Rossmann, 1972). This book remains a 

useful reference source. Another review was written 

in 1980 by Argos & Rossmann (1980), but there exists 

no review which has been written since noncrystallo- 

graphic symmetry has been used successfully for 

phase extension (as opposed to phase improvement 
at a given resolution limit). I therefore hope that this 
mini-review, in which I shall emphasize phase deter- 

mination, may be of some value. Examples are taken 

primarily from my own experience, but I hope that 

credit to important advances are correctly acknowl- 
edged. 

Stages in molecular replacement 

The original concept of the molecular replacement 

method (Rossmann & Blow, 1962) was of a three- 
stage process: 

(1) Determination of relative orientation ('rota- 

tion') of identical unknown structures in the same or 
different crystals. 

(2) Use of information from (1) to determine the 

position of the local noncrystallographic operators 

relative to the crystallographic symmetry elements 
('translation'). 

(3) Phase determination using a knowledge of the 

noncrystallographic operators derived in (1) and (2). 

With time and experience the types of applications 

have widened to include any of the following: 

(1) Rotation 

The determination of the relative orientation of 

unknown structures in the same crystal form might 

be of two or more molecules in one crystallographic 

asymmetric unit or between components of an 
oligomer or virus. The latter problem is one of finding 

the relative orientation of molecular axes, such as the 
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three perpendicular twofold axes in a tetramer with 

222 symmetry or the symmetry axes of an icosahedral 
virus with 532 point symmetry. Thus, it is also possible 

to establish the point symmetry of an oligomer or 

biological assembly and hence the number of subunits 

of which it is composed. It is also possible to deter- 

mine the relative orientation of the same molecule in 

different unit cells. This application can be used, for 

instance, in finding the relative orientation of a known 

molecular structure in an unknown unit cell. The 
purpose here is to use the known analogous molecule 

to solve the structure of the unknown crystal; that is, 
the known molecule is being used to search the 

unknown cell for a similar pattern. This is the most 

widely used application of the molecular replacement 

technique. 
The rotation function is the tool for determining 

relative orientation. Hoppe (1957) and Huber (1965) 
had suggested the 'Faltmolekfil Methode' for this 

purpose. However, the rotation function as proposed 

by Rossmann & Blow (1962), or its fast version 

(Crowther, 1972), is the usual tool. 

(2) Translation 

Having determined the relative orientation, one 
may now be able to place the molecule in space with 
respect to the crystallographic symmetry elements. 

Thus, for instance, if the orientation of a molecule 
has already been determined with a known search 

model, then it is necessary to define its position in 

the cell with respect to the selected origin. If there is 

no known or related structure but the molecule or 
macromolecular assembly has noncrystallographic 
symmetry, theri it is necessary to define the position 

of a selected origin of the molecule (e.g. the center 

of the noncrystallographic point group, such as the 

intersection of the twofold axes in an object with 222 

s),mmetry) relative to the chosen crystallographic 

origin. 
Determination of the translation problem is often 

the most difficult part in the application of the 

molecular replacement method. When a search model 
of sufficient size is available, then such techniques as 
have been described by Crowther & Blow (1967), 

Argos & Rossmann (1980) and Blow, Rossmann & 

Jeffery (1964) or, more recently, the powerful pro- 

cedure described by Read & Schierbeek (1988) and 

Schierbeek et al. (1989) should succeed. The determi- 

nation of the point-group center of an unknown struc- 

ture can be done by means of a translation function 

(Rossmann, Blow, Harding & Coller, 1964) only if 

there exists a twofold axis in the molecule. This re- 
solves itself into a special case when the molecular 
twofold axis is parallel to a crystallographic twofold 

axis [ cf. the Mengo virus structure determination (Luo 

et al., 1987)] where inspection of the corresponding 

Harker section is sufficient. If these special symmetry 

conditions do not pertain, then it may be necessary 

to locate heavy atoms in the molecule which are 
themselves related by the molecular point-group 

symmetry (cf. Buehner, Ford, Moras, Olsen & Ross- 

mann, 1974; Lin, Konno, Abad-Zapatero, Wierenga, 

Murthy, Ray & Rossmann, 1986). 

Solution of the translation problem is often helped 

by packing considerations. A systematic application 

of this approach was made by Hendrickson & Ward 

(1976) or a less quantitative example is the determina- 

tion of the virus center position of canine parvovirus 

(Luo, Tsao, Rossmann, Basak & Compans, 1988). 

Results from the rotation function can be useful 

for the detection of heavy-atom positions, for these 

will (in general) be related by the same noncrystallo- 

graphic symmetry as the molecule itself. A heavy- 

atom difference Patterson map (Rossmann, 1960) or, 
in the presence of anomalous dispersion, a Bijovet 

difference Patterson map (Rossmann, 1961) can be 

used for a search of the self vectors between heavy 

atoms related by the noncrystallographic point group 

(Argos & Rossmann, 1976; Arnold, Vriend, Luo, 

Grittith, Kamer, Erickson, Johnson & Rossmann, 

1987). Similarly, as mentioned above, the cross vec- 

tors between molecules (usually related by crystallo- 
graphic symmetry) can be used to determine the posi- 

tion of a molecule in crystallographic space. 

(3) Phase determination 

Three major applications exist: 

(i) When a search molecule has been used to deter- 

mine the orientation and position of the noncrystallo- 
graphic symmetry operation, it can also be used to 
determine an initial set of phases. These can then be 

used for computing an electron density map whose 

structural interpretation should be easy. This struc- 

ture can be refined using standard techniques which 

will also include the elucidation of that part of the 

structure that differs from the search model. Alterna- 

tively, the initial phases could be refined either by 
use of any available noncrystallographic symmetry 

or by density modification and solvent flattening 
(Wang, 1985; Bhat & Blow, 1982). 

(ii) Phase improvement can be achieved at a given 

resolution in the presence of noncrystallographic 

symmetry. Normally this is achieved by averaging of 

the noncrystallographically related units and then 

back transformation of the average electron density. 

The resultant calculated (and presumably improved) 

phases are then applied, with suitable weighting, to 

the original Fobs for the computation of a new electron 
density map. The averaging is then repeated for the 

next cycle of phase refinement. That part of the struc- 
ture outside the molecular envelope, and hence bey- 

ond the limits of the applicability of the local (non- 

crystallographic) symmetry, is usually flattened to 

represent solvent. Hence, the special case where the 
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noncrystallographic redundancy is unity corresponds 
to the Wang (1985) procedure. The averaged and 
modified density can then be Fourier back trans- 
formed to yield an improved set of phases. The cycle 
can then be repeated as often as computational 
resources permit or until convergence appears to 
have been achieved. Among the early successes of 
this procedure are the structure determinations of 
a-chymotrypsin (Matthews, Sigler, Henderson & 
Blow, 1967), hexokinase (Fletterick & Steitz, 1976) 
and lobster glyceraldehyde 3-phosphate dehy- 
drogenase (Buehner, Ford, Moras, Olsen & Ross- 
mann, 1974). The determination of hexokinase is 
particularly noteworthy as it involved a comparison 
of molecules in different crystal forms. More recently, 
the structure determination of the influenza virus 
neuraminidase spike (Varghese, Laver & Colman, 
1983) and the major histocompatibility protein 
(Bjorkman, Saper, Samraoui, Bennett, Strominger & 
Wiley, 1987) are other examples of the use of a 
number of crystal forms. The most popular program 
is one written by Bricogne (1974, 1976), although 
others exist (cf. Johnson, 1978). 

(iii) Phase extension was and remains the most 
controversial aspect of the molecular replacement 
method. It follows by induction that if phases can be 
successfully extended gradually from, say, 8 to 3 
resolution [as was done for the Mengo virus structure 
determination (Luo et al., 1987)] then there is no 
reason why phases should not be extended from 10 
to 8 A or from 20 to 10 A resolution. An initial set 
of phases can normally be determined at 20 A either 
from electron-microscopy studies or by making rea- 
sonable assumptions about molecular shape (e.g. a 

virus can usually be considered as a hollow shell of 
easily determinable outer and inner radii). Thus, in 
this application, the early ambitions of the molecular 
replacement method of ab initio phase determination 
have come true. 

Phase extension 

The procedure for phase extension, as currently used, 
depends on very gradual phase extension (about one 
or two reciprocal-lattice units at a time) interleaved 
with phase improvement at the current resolution. All 
this is normally done in real space by electron density 
averaging as briefly described above. 

The original concept was of molecular averaging 
in reciprocal space (Rossmann & Blow, 1962). A 
notable success was an application to a made-up 
triclinic structure with fourfold redundancy (Main, 
1967). Crowther (1967, 1969) had also made a 
series of elegant investigations of the procedure 
in reciprocal space. The molecular replacement 
equations of Main & Rossmann (1966) correspond 
closely to the [H] matrix of Crowther. However, lack 
of computing power, the difficulty of bug-free pro- 

gramming in reciprocal space and a lack of true belief 
in the success of the method caused a great deal of 
skepticism as to the possibility of ab initio phase 
determination for 'real' structure determinations. 

Early success with phase extension using real-space 
averaging came with an application to lobster gly- 
ceraldehyde 3-phosphate dehydrogenase (Buehner et 

al., 1974; Argos, Ford & Rossmann, 1975) where the 
already known molecular envelope was assumed. 
Then, using 222 noncrystallographic symmetry, 
phases were obtained at 21.4 A and extended to 6.3 
resolution. The remarkable structure determination 
of polyoma virus at 22.5/~ resolution (Rayment, 
Baker, Caspar & Murakami, 1982) was a critical suc- 
cess for real-space phase extension. In this case the 
results contradicted the anticipated properties of 
quasi-symmetry (Caspar & Klug, 1962) and, thus, the 
structure determination had to be shown to be correct 
(Rayment, Baker & Caspar, 1983; Baker, Caspar & 
Murakami, 1983) in spite of widely held dogmatic 
views. An important milestone was reached with the 
phase extension at higher resolution from 4-0 to 3.2 
in the structure determination of hemocyanin 
(Gaykema, Hol, Vereijken, Soeter, Bak & Beintema, 
1984; Gaykema, Volbeda & Hol, 1986), providing 
confidence for the 1985 phase extension from 6 to 
3A in the structure determination of human 
rhinovirus (Rossmann, Arnold, Erickson, Franken- 
berger, Griffith, Hecht, Johnson, Kamer, Luo, 
Mosser, Rueckert, Sherry & Vriend, 1985). Since that 
time numerous other virus structures have been deter- 
mined by using an initially poor low-resolution phas- 
ing set and then improving and extending it to high 
resolution (Hogle, Chow & Filman, 1985; Luo et al., 

1987; Hosur, Schmidt, Tucker, Johnson, Gallagher, 
Selling & Rueckert, 1987; Chen, Stauffacher, Li, 
Schmidt, Bomu, Kamer, Shanks, Lomonossoff & 
Johnson, 1989; Acharya et al., 1989). 

I continue to believe that there may be advantages 
in computing time and rates of convergence by using 
reciprocal-space phase extension as originally pro- 
posed (Rossmann & Blow, 1963; Main & Rossmann, 
1966), and am currently developing such a program. 
This time, however, I am certain in the knowledge 
that phase extension does work. Nevertheless, there 
are those who maintain that phase extension in 
reciprocal space is a waste of time - both for the 
computer and the researcher. Here, as on previous 
occasions (cf. Rossmann, 1972), it is difficult to tread 
a fine line between the frequently useful and impor- 
tant considerations of the pessimists and the perhaps 
equally convincing opposing and often lonely point 
of view. 

Noncrystallographic symmetry 

Crystallographic symmetry, by definition, holds 
throughout the infinite crystal. For instance, a 
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fourfold axis is true not only in the immediate neigh- 

borhood of a selected tetrad, but also implies that 

a unit cell some thousand A from the origin super- 
imposes on an identical unit cell after a 90 ° rotation. 

In contrast, noncrystallographic symmetry is true only 

within a defined envelope. The identical local sym- 
metry will be true in neighboring unit cells, but does 

not extend from one cell to the next (Fig. 1). It follows 
that any part of the structure outside the defined 

envelope does not obey noncrystallographic sym- 
metry. Conversely, if the envelope completely fills the 

crystallographic asymmetric unit then the presumed 

noncrystallographic symmetry is space filling and is, 
in fact, crystallographic symmetry. 

If a periodic structure such as a crystal is superim- 

posed on itself after operation with a noncrystallo- 
graphic operator it will superimpose only within the 

envelope defining the local symmetry. A product of 

the superimposed periodic structures will be non- 
periodic, containing only the point symmetry of the 

noncrystallographic operators (Fig. 2). This fact can 
frequently be used to select a molecular envelope 

where it was not obvious prior to noncrystallographic 
averaging (e.g. Buehner et al., 1974; Lin et al., 1986). 

Although no knowledge of the crystallographic 

envelope is needed for this first averaging, it is 
necessary to have determined it for the averaged 

Fig. 1. Two-dimensional periodic design shows crystallographic 

twofold axis perpendicular to the page and local noncrystallo- 
graphic rotation axes in the plane of the paper (design by Audrey 

Rossmann). [Reprinted with permission from Rossmann (1972). 
Copyright by Gordon & Breach.] 

molecular structure within the crystallographic cell 

to permit Fourier back transformation. 

Two kinds of nonerystallographie symmetry ele- 
ments may be defined: proper and improper. The 

(a) 

(b) 

~l  " . 

Fig. 2. (a) Noncrystallographic symmetry in a triclinic cell. 
(b) Superposition of the pattern in (a) on itself after operation 

with the noncrystallographic fivefold axis. (c) Superposition of 

the pattern in (a) on itself after a rotation of 1/5th, 2/5th, 3/5th 
and 4/5th. Note that the sum or product of periodic patterns is 

aperiodic and in (c) has the point symmetry of the noncrystallo- 

graphic operation. 

(c) 
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former satisfies a closed point group [e.g. a 17-fold 

rotation as occurs in tobacco mosaic virus disc protein 

(Champness, Bloomer, Bricogne, Butler & Klug, 

1976)]. Here it does not matter whether a rotation 

axis is applied right- or left-handedly. The result is 

indistinguishable. On the other hand, the relationship 
between different molecules in a crystallographic 

asymmetric unit is unlikely to be a closed point group. 

Thus a rotation one way round (followed, no doubt, 

by a translation) might achieve superposition of the 

two molecules, while the other way round would not. 
This is called an improper noncrystallographic sym- 

metry operator. An operation which takes a molecule 

in one unit cell to that in another unit cell (initially 

the cells are lined up with, say, their orthogonalized 

a, b and c axes parallel) must equally be an improper 
rotation. 

It is irrelevant where in space a noncrystallographic 

rotation-symmetry operator is situated. The rotation 

operation will orient the two molecules similarly. A 

subsequent translation, whose magnitude depends on 

the location of the noncrystallographic symmetry 

operator, will always be able to superimpose the 

molecules (Fig. 3). Nevertheless, it is possible to select 
the position of the noncrystallographic symmetry axis 

such that the translation is a minimum, and that will 

occur when the translation is entirely parallel to the 
noncrystallographic rotation axis. 

The positian of a noncrystallographic symmetry 

axis, like everything else in the unit cell, must be 

defined with respect to the selected origin. Let us 
consider the noncrystallographic rotation defined by 

the 3×3 matrix [C].  Then, if the point x is rotated 

A 

~ "-7 

Fig. 3. The position of the twofold rotation axis which relates the 

two piglets is completely arbitrary. The diagram on the left shows 

the situation when the translation is parallel to the rotation axis. 

The diagram on the right has an additional component of transla- 

tion perpendicular to the rotation axis, but the component 

parallel to the axis remains unchanged. [Reprinted with per- 
mission from Rossmann et al. (1964). Copyright by the Inter- 
national Union of Crystallography.] 

to x' (both defined with respect to a selected origin 
and axial system) we may write 

x ' = [ C ] x + d  

where d is a three-dimensional vector which expresses 
the translational component of the noncrystallo- 

graphic symmetry operation. The values of d are quite 
arbitrary unless the position of the rofation axis is 

defined. Let us now assume that we are dealing with 
a proper rotation axis. Hence, there exists a point x 

on the axis (if placed to eliminate translation) such 
that it rotates onto x'. It follows that 

x = [ C ] x + d .  

If the molecular center is known, or if a point on the 

noncrystallographic symmetry element is known, then 

it is now possible to determine the components of 

the vector d. Note that d = 0 when, and only when, 

the noncrystallographic rotation axis passes through 
the selected crystallographic origin. 

There are considerable advantages in the use of 

proper noncrystallographic symmetry. Consider, for 
example, a tetramer with 222 symmetry (such as lac- 

tate dehydrogenase). It is not necessary to define the 
chemical limits of one polypeptide chain. The non- 

crystallographic symmetry is true everywhere within 

the molecular envelope containing (in this example) 

four noncrystallographic asymmetric units. The 

boundaries of the polypeptide chain are irrelevant to 

the geometrical considerations. The electron density 

at every point within the molecular envelope (which 
itself must have 222 symmetry) can be averaged 

among all four 222 related points. On the other hand, 
if there is only improper noncrystallographic sym- 

metry then the envelope must define the limits of one 

noncrystallographic asymmetric unit although the 
crystallographic asymmetric unit contains two or 
more such units. 

Analysis of phase determination 

No attempt will be made here to review the back- 

ground of the rotation function or translation function 

as these procedures have been well reviewed 

frequently (Rossmann, 1972; Argos & Rossmann, 

1980; Rossmann & Arnold, 1989) and are generally 

in use in many laboratories. On the other hand, phase 

extension in the presence of noncrystallographic sym- 

metry appears to be poorly understood and it is, 

therefore, well worth some space here. Apart from 

the work prior to 1973 (with the exception of the 

a-chymotrypsin determination), phase extension has 

been used only in real space. Yet there is an exact 

equivalence in reciprocal space. It is my contention 

not only that the reciprocal-space view is more infor- 

mative as to the mechanism of phase determination, 

but it is also a general expression of the rotation 

function, translation functions, density modification 
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and solvent flattening as well as direct methods such 
as are implied by Sayre's equations (Sayre, 1952; 
Arnold & Rossmann, 1986). A simple derivation of 

the molecular-replacement equations (Main & Ross- 
mann, 1966) in terms of real-space averaging is given 

here. 
The electron density for the averaged copy at x is 

given by 

N 

Pavg(X)=(1/N) E p(x~), (1) 
n = l  

where the averaging is over the N copies p(x,,). The 
noncrystallographic symmetry relating the different 

copies is given by 

x, = [Cn]x,+d~, (2) 

where [C,] is the rotation matrix relating the nth 

copy to the reference copy, and dn is the correspond- 

ing translational component with respect to an 
arbitrarily selected origin. By replacing the electron 

density p(xn) by its corresponding Fourier summa- 
tion, it is seen that 

N 

Pavg(X)=(1/N) ~ (1/V)~Fhexp(-2"n'ih.x,,), (3) 
n = l  h 

where h is the Miller index. Now, recomputing struc- 
ture factors using the averaged density and assuming 

zero density outside the molecular envelopes, we have 

for reflection p 

N 

e p  = E ~ Pavg(X,) exp (27rip.x,,).dx,,, ( 4 )  
n = l  Un 

where U,, bounds the volume containing the nth copy. 

By substitution of (3) into (4) it follows that 

N 

Fv=(1/NV) EFh ~'. exp(-2"n'ih.d,,) 
h n = l  

x ~ exp{27r i ( -h[C, ]+p) .x .} .dx . .  (5) 
Un 

If we now define 

Ghp,,=(1/U) ~ exp{27ri(p-h[C,,]).xn}.dx,,  (6) 
U. 

where U is the sum of the volumes bounded by U. 
(n = 1, 2 , . . .  ,N), and define 

Thp,,=exp (-merih.d,,), (7) 

then (5) simplifies to 

N 

Fp = ( U~ NV) ~, Fn ~, Ghp.Tnpn (8) 
h n = l  

o r  

N[ ] Fp= E (U/NV) EFhGhpnThpn 
n = l  h 

N 

= ~ Fh;, 
n = l  

(9) 

where h" = [C~r]-~p and corresponds to the rotation 

of p in reciprocal space equivalent to [Cn] in real 
space. Thus, Fh;. is the structure factor at the nonin- 

tegral reciprocal-lattice point h" corresponding to the 
rotation of p by the n th noncrystallographic symmetry 
element. Hence, Fp represents the complex averaging 
of structure factors at the N noncrystallographically 
equivalent positions in reciprocal space. 

If we simplify (8) by putting 

N 

ahp = Y. Ghp,,Thp,,, 
n = l  

then 

Fp = ( U~ NV) Y~ Fhahp. (10) 
h 

These are the molecular replacement equations 
defined by Main & Rossmann (1966), whose 

coefficients are equivalent to the [H] matrix of Crow- 

ther (1967, 1969). Here the complex coefficients ahp 
are determined entirely from a knowledge of the 

orientation, position and extent of the noncrystallo- 
graphic symmetry elements. The molecular-replace- 
ment equations are exact other than the assumptions 
that the noncrystallographic symmetry holds to within 

the resolution limits of the available data and that 
the solvent regions of the cell can be approximated 
by a constant level of electron density. 

Substitution of currently available approximate 
phases on the right-hand side of (10) will produce 
an improved set of phases on the left-hand side in a 

process which is entirely equivalent and the same as 
the real-space averaging and back-transformation 

procedure. Approximation enters in as far as many 

terms must be neglected in setting up the molecular 

replacement equations because they are deemed too 
small in magnitude to matter. The same approxima- 
tion occurs in calculating a rotation function (Ross- 

mann & Blow, 1962). In real space the approximations 
relate to linear (Bricogne, 1974) or nonlinear (Nord- 
man, 1980) interpolation to obtain the value of elec- 
tron density at nonintegral grid points. The elegance 

of merely substituting phases in a set of complex 
linear equations is self-apparent (at least to me!) and 
is als6 highly suitable for rapid arithmetic in parallel 
processing computers. 

Just as is the case for the G function in its applica- 

tion to the rotation function, so here also the largest 

coefficient ahp will be between terms of about the 
same resolution. Thus, the interactions represented 
by (10) will be significant only in a relatively thin 
shell at the same resolution as that of the structure 
factor Fp. If we approximate the molecular envelope 
to be spherical with a radius R and if it is, say, in a 
unit cell with cell dimensions 4R (about eight parti- 
cles in the cell), then the argument H.R of G is given 
by (n/4R)R where n is the number of reciprocal- 
lattice points represented by the difference p -  hi C T] 

[see (6)]. Now G for a spherical envelope (Fig. 4) 
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becomes zero for the first time when its argument is 

0.7. Thus, the thickness of a shell required to include 

the larger interactions in the molecular-replacement 

equations (10) has a half-width when n / 4 = 0 . 7  or 

n = 2.8 that is about three reciprocal-lattice units. The 

interpolation for each value of Fh; within a radius of 

three reciprocal-lattice points around h" is equivalent 

in real space to the interpolation required to find the 

electron density at a nonintegral grid point. 

Omission of a significant coefficient Fh on the right- 

hand side of (10) will cause an error in the value of 

Fp. It is clearly more prudent to include an estimate 

of that value if there is no observed value available. 

This can be obtained by the calculation of F h from 

the molecular replacement equation when p = h. This 

process is identical to the inclusion of Fcalc values 

obtained by back transformation of an averaged elec- 

tron density map in the computation of a new and 

improved map. Rayment (1983) and Arnold e t  al. 

(1987) have shown that such a procedure leads to a 

truer phase determination. Here is, then, the theoreti- 

cal reason. Furthermore, it is now seen that if there 

were, say, no observed amplitudes, then the value of 

Fp on substituting all the Fcalc values on the right 

would not change from the previous Fca~c value. Thus, 

absence of some observed amplitudes slows down 

convergence but does not entirely stop progress 

towards a phase solution. 

Similarly, omission of structure factors outside the 

current resolution limit leads to a decrease of satisfac- 

tion of the molecular replacement equations. An 

equation on the exact limit of resolution will have 

half its,terms missing and cannot give a reasonable 

estimate of Fp. The lack of agreement between 

observed and calculated amplitudes at the limit of 

resolution is typical (Fig. 5) and its necessity is easily 

appreciated. Since the sum of the terms on the right- 

hand side is essentially the sum of a random set of 

vectors, omission of some terms will cause an overall 

reduction of calculated Fp values. Hence, calculated 

/ 

-2"0 --1-0 / 
I ,~,,,"~; '~ I , 

~. 2-0 , 1 iO ~/'T'~ I 

HR • 

Fig. 4. Shape of the interference function G for a spherical 
envelope of radius R at a distance H from the reciprocal-space 
origin. [Reprinted with permission from Rossmann & Blow 
(1962). Copyright by the International Union of Crystal- 
lography.] 

structure factors will require progressively further 

up-scaling as they approach the limit of current resol- 

ution, as is indeed found in practice (Arnold et  al . ,  

1987; Luo, Vriend, Kamer & Rossmann, 1989). 

The correlation coefficient C is defined as 

C _ 
( < F o b s > - -  F o b s ) ( < F c a l c >  - F c a l c )  

[ ~  ( < F o b s > - - F o b s ) 2  ~ '. ( < F c a l c  > - Fcalc)2] 1/2 

where (> denotes averages in local resolution ranges. 

It has been found to be a particularly useful way of 

checking the progress of refinement (Fig. 5). This was 

first introduced in the structure determination of 

tomato bushy stunt virus (TBSV) (Harrison, Olson, 

Schutt, Winkler & Bricogne, 1978; Harrison, Olson 

& Bricogne, 1977) and has been adopted generally. 

In Fig. 5 it is seen that the initial phase determina- 

tion at 8 A  for Mengo virus using the crudely 

homologous HRV14 structure gave C=0 .54 .  

Refinement at that resolution rapidly improved the 
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Fig. 5. Correlation coetficients plotted against resolution for selec- 
ted phase extension steps: (a) For HRV14 from 4.3 to 3.0 J. 
resolution. [Reprinted with permission from Arnold et al. (1987). 
Copyright by the International Union of Crystallography.] 
(b) For Mengo virus from 8.0 to 3.0/~,. [Reprinted with per- 
mission from Luo et al. (1987). Copyright by the American 
Association for the Advancement of Science.] 



80 THE MOLECULAR REPLACEMENT METHOD 

correlation coefficient to 0.87. The phase extensions 

maintained this correlation coefficient until high res- 

olution was attained where the lower accuracy and 

fewer data caused a diminution of the correlation 

coefficient (matched by an increase in the R factor 

between Fob s and F¢~1¢). 

Ab initio phase determination 

Phase extension from rather low (8 ~ )  to high (3 

or better) resolution has had its greatest success in 

the structure determinations of Mengo virus (Luo et 

al., 1987) and foot-and-mouth disease virus (Acharya 

et al., 1989). In both cases a rather poor low-resolution 

phasing model based on other, crudely homologous, 

picorna virus structures was used as a starting phasing 

set. It would, however, be useful to initiate phasing 

from a model at, say, about 30 A resolution, which 

could be based on an electron-microscopy study or 

on simple assumptions such as a hollow shell for a 

spherical virus. Indeed, the radial distribution of 

structure amplitudes usually follows that of a shell 

or sphere at very low resolution and, hence, can be 

used to assign starting phases. This was indeed done 

in a 22.5 ]k resolution study of southern bean mosaic 

virus (SBMV; Johnson, Akimoto, Suck, Rayment & 

Rossmann, 1976; Fig. 6) where phases had been 

extended from 30 to 22.5 A. Similarly, the analysis 

of polyoma virus (Rayment et aL, 1982) started with 

a very simple low-resolution model. 

If the model contains a center of symmetry, as is 

the case for a hollow shell, and if the distribution of 

particles in the cell is also centric (e.g. in the R32 

cell of SBMV which has one particle per rhombohe- 
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DIFFRACTION SPACING 2 SIN ~ / k ( ~"  ) x I0 5 

Fig. 6. The averaged radial distribution of structure amplitudes of 

R32 southern bean mosaic virus corresponds to that of  a solid 

sphere. The radius of the sphere can be determined from the 

distance between nodes. Note that here there is only one virus 

particle per rhombohedral unit cell. Where there is more than 

one particle, the distribution will be the vector combination of 

the structures of  all particles. In that case it will be necessary to 

know, at least roughly, the particle positions in order to extract 

a transform of the sphere (Johnson & Hollingshead, 1981). 

[Reprinted with permission from Johnson et  al. (1976). Copy- 

right by Academic Press Inc.] 

dral cell), then the initial phases will also be centric. 

However, if the symmetry elements of the averaged 

structure are not coincident with the crystallographic 

symmetry elements, then, when the averaged structure 

is put back into the crystal cell, the center of symmetry 

will be broken. Thus, the phases from the back-trans- 

formed averaged map will lack a center of symmetry, 

permitting phase improvement and then phase 

extension. The hand will have been chosen when the 

averaged structure was replaced into the cell, for there 

will have been two ways of doing this. The alternative 

ways are related by the center of symmetry in the 

crystal lattice. 

An example where the center of symmetry can be 

broken in the manner described above is in the struc- 

ture determination of P21 canine parvovirus (Luo et 

aL, 1988 and work in progress). Here there are two 

particles in the cell related by a 21 axis. If spherical 

particles are placed at (0.25, 0.25, 0.25) and (-0-25,  

-0.25,  -0 .25)  there will be a center of symmetry at 

(000). However, one of the icosahedral axes is 

inclined by 2.5 ° to the crystallographic axis. Thus, 

the averaged particle, derived from an electron 

density map based on assigning signs according to 

the variation of the observed spherical transforms, 

will contain a mirror plane inclined by 2.5 ° to the 

crystallographic mirror plane perpendicular to the 21 

axis. Hence, the electron density map produced by 

placing two averaged particles in the cell related by 

the 21 crystallographic axis will lack a center of sym- 

metry at least at resolutions sufficient to be able to 

differentiate the 2.5 ° inclination. This procedure has 

worked in a test case and is now waiting to be applied 

to real data. 

An example where the center of symmetry cannot 

be broken in this manner would have been rhombohe- 

dral SBMV. Here the 32 point symmetry of the crystal 

and icosahedron are coincident. Nevertheless, it may 

be possible to break the symmetry even in this case. 

A low-resolution large-intensity reflection might be 

arbitrarily assigned a phase of 90 or 270 ° (thus select-, 

ing a hand). If the arbitrarily selected reflection has 

a phase near 0 or 180 ° then the rest of the procedure 

will not work. However, if the reflection has a phase 

well away from 0 or 180 ° its presence in the Fourier 

map will perturb the electron density slightly away 

from centricity. Thus, the subsequent molecular 

replacement should gradually refine into that hand 

consistent with the selected phase angle for the 

arbitrarily selected reflection (cf. Rossmann & Blow, 

1963). 

An exciting recent result is that of the determination 

of the structure of the RNA phage MS2 (K. Valeg~rd, 

L. Liljas and others, unpublished) and should be read 

by all those interested in the subject as soon as poss- 

ible. A very-low-resolution structure of SBMV at 13 

resolution was used as a starting phasing model. At 

this resolution the model is little more than a spherical 
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Table 1. Tabulation of  phasing power, P, for typical 
values of  redundancy ( N) ,  solvent content, U~ V, and 

errors on amplitude expressed as R values 

N 

R 1 2 4 5 10 20 30 60 

0.05 40 56 80 90 126 179 219 310 

0.10 20 28 40 45 63 89 110 155 

0.15 13 19 27 30 42 60 73 103 

0.20 10 14 20 22 32 45 55 78 

The error R can conveniently be expressed as 

h i  h i  

where F 2 is the mean of i observations of reflections F2~. U/V is a.ssumed 

to be equal to 0-5. - 

envelope. The structure, obtained by phase extension, 
turned out to be totally different from SBMV and any 
other virus structure. Furthermore, the density had 
the opposite Babinet solution - the negative density 
was the structure. 

The quality of phase determination 

Phase determination by molecular replacement 
depends entirely on the accuracy of the observed 

amplitudes in much the same way as phase determina- 
tion using the isomorphous replacement method is 
largely dependent on the accuracy of the differences 
in amplitude between the various heavy-atom deriva- 
tives and native data. It was, therefore, not clear 

whether a unique solution to the phase problem could 
be achieved where the only physical input is the 
noncrystallographic symmetry and solvent flattening. 
This problem was considered by Crowther (1972), 
but a semi-quantitative relationship was also derived 
by Arnold & Rossmann (1986). The latter concluded 
that the 'power', P, of phase determination could be 
related to the noncrystaUographic redundancy, N; 
the ratio of the volume to be averaged, U, to the total 
volume of the unit cell, V; the accuracy of structure- 

factor amplitudes, R; and the proportion of data, f, 
measured in a thin resolution shell by the expression 

P = (Nf)~/2/[ R( U~ V)]. (11) 

It is assumed that the noncrystallographic symmetry 
is known absolutely correctly. While this might be 

almost true for the rotational and translational par- 
ameters, it is unlikely that the limits of the molecular 
envelope are known particularly well although they 
can be refined as the structure emerges. An example 
of the consequence of this relationship is given in 

Table 1. 
The formula (11) also shows the relative import- 

ance of noncrystallographic symmetry in relation to 
the effect of solvent flattening. When there is no 
noncrystallographic symmetry, N = 1. If there is a lot 
of solvent, ( U / V )  (usually about 0.5) decreases and 

P increases proportionately. The effect of partiality 
of available data (a problem with crystals that are 

difficult to grow) is also seen to be less drastic than 
might be supposed. Indeed, the structure of human 
rhinovirus 1A was determined with only 55% of the 

observed amplitudes in the presence of tenfold redun- 
dancy (N = 10) (Kim, Smith, Chapman, Rossmann, 

Pevear, Dutko, Felock, Diana & McKinlay, 1989). 
Someone inexperienced in phase extension might 

be wise to read one of the technique papers (Ross- 
mann, 1989; Arnold et al., 1987; Luo et al., 1989). 
For instance, weighting coefficients using either the 
Rayment (1983) exponential factor or Sim (1959, 
1960) weighting is useful. Checking the overall distri- 

bution of the Feast's for unobserved structure factors 
- they should follow the same distribution as Fobs - 
is useful. Checking phase changes is helpful to deter- 

mine convergence. 

Concluding remarks 

The molecular replacement method has been shown 
to be extremely powerful. Phase determination in the 

presence of high noncrystallographic symmetry has 
been seen to be very accurate. Mean phase differences 

between molecular replacement phases and those 
calculated from an atomic model can differ by only 
about 10 °, while multiple isomorphous replacement 
phases are usually accurate to only 60 ° (Arnold et al., 
1987). Thus, maps of virus structures are frequently 
of great beauty and extraordinarily easy to interpret. 

Some major program packages are available for 
structural analysis using molecular replacement. 
Steigemann's PROTEIN  package (Steigemann, 
1974) includes E. Lattman's rotation function and 
translation function programs (cf. Crowther & Blow, 
1967). Fitzgerald's M E R L O T  package (Fitzgerald, 
1988) also includes Lattman's translation function 
and Crowther's fast rotation function (Crowther, 
1972). Read's BRUTE package is particularly useful 
for translation functions (Read & Schierbeek, 1988). 
Bricogne's programs (Bricogne, 1974) are frequently 
used for phase improvement by molecular averaging, 
as is also Johnson's program (Johnson, 1978). A 
vectorized version of the original rotation function 

(Rossmann & Blow, 1962) has excellent versatility 
for exploring self- and cross-rotation functions. 
However, there are many other programs available 
too numerous to catalog here, many of which have 
probably never been mentioned in publications. 

It has taken almost three decades to see the full 
acceptance and power of the molecular replacement 
method both as a technique for phase determination 
from a homologous model and for ab initio phase 
determination. I had originally thought it would take 
only six months to arrive at this point! The success 
is due to the enthusiastic and original work in many 
laboratories, but I would particularly like to express 
my appreciation to the many postdoctoral fellows 
who have participated in these studies over many 
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