
The MOLEN Polymorphic Processor
Stamatis Vassiliadis, Fellow, IEEE, Stephan Wong, Member, IEEE,

Georgi Gaydadjiev, Member, IEEE, Koen Bertels, Member, IEEE,

Georgi Kuzmanov, Student Member, IEEE, and Elena Moscu Panainte

Abstract—In this paper, we present a polymorphic processor paradigm incorporating both general purpose and custom computing

processing. The proposal incorporates an arbitrary number of programmable units, exposes the hardware to the programmers/

designers, and allows them to modify and extend the processor functionality at will. To achieve the previously stated attributes, we

present a new programming paradigm, a new instruction set architecture, a microcode-based microarchitecture, and a compiler

methodology. The programming paradigm, in contrast with the conventional programming paradigms, allows general-purpose

conventional code and hardware descriptions to coexist in a program. In our proposal, for a given instruction set architecture, a one-

time instruction set extension of eight instructions is sufficient to implement the reconfigurable functionality of the processor. We

propose a microarchitecture based on reconfigurable hardware emulation to allow high-speed reconfiguration and execution. To prove

the viability of the proposal, we experimented with the MPEG-2 encoder and decoder and a Xilinx Virtex II Pro FPGA. We have

implemented three operations, SAD, DCT, and IDCT. The overall attainable application speedup for the MPEG-2 encoder and decoder

is between 2.64-3.18 and between 1.56-1.94, respectively, representing between 93 percent and 98 percent of the theoretically

obtainable speedups.

Index Terms—Custom computing machines, FPGA, firmware, reconfigurable microcode, polymorphic processors, reconfigurable

processors.
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1 INTRODUCTION

GENERAL-PURPOSE processors allow us to run the same
program over a range of implementations of the same

architectural family [1] in a compatible manner. Further-
more, they allow various programs to run on the same
system and the same program to run over multiple
processing families. One of the major continuous concerns
of general-purpose processors is performance. Reconfigur-
able hardware coexisting with a core processor has been
considered a good candidate to address such a concern.
Even though such an approach is promising and several
processor paradigms have been proposed, see numerous
examples in [2], [3], the organization of such a hybrid
processor can be viewed mostly as an open topic. In this
paper, we propose a polymorphic processor that substan-
tially improves various aspects, including performance, of
such a hybrid general purpose processor paradigm. The
main contributions of the proposed approach can be
summarized by the following:

. For a given ISA, a one-time architectural extension
(based on the coprocessor architectural paradigm)
comprised of eight instructions suffices to provide an
almost arbitrary number of reconfiguration “func-
tions” per single programming space. This realiza-
tion resolves the opcode space explosion and
modularity problems and provides ISA compatibility

and portability of reconfigurable programs, present
in previous proposals, such as the ones described
in [4], [5], [6].

. We propose a new processor organization and we
describe a programming paradigm based on se-
quential consistency that allows the proposed
coprocessor environment to coexist with the gen-
eral-purpose processor and to resolve parameter
limitations and parallel execution problems, present
in other proposals (see, for example, [7], [8]).

. We propose a back-end compiler technology that
allows us to target the proposed processor architec-
ture, a microarchitecture based on reconfigurable
emulation (��-code), and an implementation that
allows the compiled code to execute.

The paper is organized as follows: Section 2 discusses
related work and describes the general approach of how to
modify an existing program to support reconfigurable
computing. Section 3 introduces the Molen organization,
the Molen programming paradigm, and the polymorphic
instruction set architecture (�ISA). Section 4 discusses the
sequencing and compiler extensions required to implement
the Molen programming paradigm. Section 5 describes in
detail the underlyingmicroarchitecture and the ��-code unit.
Section 6 presents an evaluation of the proposed Molen
architecture. Section 7 presents the overall conclusions.

2 RELATED WORK AND GENERAL APPROACH

As indicated earlier, reconfigurable hardware coexisting
with a core general-purpose processor has been con-
sidered by several researchers as a good candidate for
speeding up applications. For the description of most of
the existing proposals, the interested reader is referred
to two review/classification articles [2], [3]. Current

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 11, NOVEMBER 2004 1363

. The authors are with the Computer Engineering Laboratory, Delft
University of Technology, Mekelweg 4, 2628CD Delft, The Netherlands.
E-mail: {S.Vassiliadis, J.S.S.M.Wong, G.N.Gaydadjiev, K.L.M.Bertels,
G.Kuzmanov}@ewi.tudelft.nl, elena@ce.et.tudelft.nl.

Manuscript received 10 Dec. 2003; revised 10 Apr. 2004; accepted 16 Apr.
2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-0278-1203.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



reconfigurable computing proposals, where the possibility

exists to combine general-purpose computing with reconfi-

gurable fabric, fall short of expectation because of the

following shortcomings:

. Opcode space explosion. For reconfigurable fabric, a
common approach (e.g., [4], [5], [6]) is to introduce a
new instruction for each portion of the application
mapped on the field-programmable gate array
(FPGA). The consequence is the limitation of the
number of operations implemented on the FPGA,
due to the limitation of the opcode space. More
specifically stated, for a specific application domain
intended to be implemented on the FPGA, the
designer and compiler are restricted by the unused
opcode space. Furthermore, this results in ad hoc
instruction set architecture (ISA) extensions, which
excludes compatibility.

. No modularity. Each approach has a specific
definition and implementation bounded for a spe-
cific reconfigurable technology and design. Conse-
quently, the applications cannot be (easily) ported to
a new reconfigurable platform. Further, there are no
mechanisms allowing reconfigurable implementa-
tions to be developed separately and ported trans-
parently, as indicated in [9]. This implies that a
reconfigurable implementation developed by ven-
dor A cannot be included without substantial effort
by the compiler developed for an FPGA implemen-
tation provided by vendor B.

Additional shortcomings of current proposals regarding

performance gains include the following:

. Limitation of the number of parameters. In a
number of approaches, the operations mapped on
an FPGA can only have a small number of input and
output parameters (e.g., [7], [8]). For example, in the
architecture presented in [7], due to the encoding
limits, the fragments mapped onto the FPGA have at
most four inputs and two outputs; also, in [8], the
maximum number of input registers is nine and it
has one output register.

. No support for parallel execution on the FPGA of
sequential operations. An important and powerful
feature of FPGAs can be the parallel execution of
sequential operations when they have no data
dependencies. Many architectures (see, for example,
[2]) do not take into account this issue and their
mechanism for FPGA integration cannot be ex-
tended to support parallelism.

In the discussion to follow, we present the general

concept of transforming an existing program to one that can

be executed on the reconfigurable computing platform we
propose and hints to the new mechanisms, intended to
improve existing approaches.

The conceptual view of how program P (intended to
execute only on the general-purpose processor (GPP) core)
is transformed into program P’ (executing on both the GPP
core and the reconfigurable hardware) is depicted in Fig. 1.
The purpose is to obtain a functionally equivalent program
P’ from program P which (using specialized instructions)
can initiate both the configuration and execution processes
on the reconfigurable hardware. The steps involved in this
transformation are the following:

1. Identify code “�” in program P to be mapped in
reconfigurable hardware.

2. Show that “�” can be implemented in hardware in
an existing technology, e.g., FPGA, and map “�”
onto reconfigurable hardware (RH).

3. Eliminate the identified code “�” and add “equiva-
lent” code (A) assuming that code A “calls” the
hardware with functionality “�.” Code A is com-
prised of the following:

. Repair code inserted to communicate para-
meters and results to/from the reconfigurable
hardware from/to the general-purpose proces-
sor core.

. “HDL”-like hardware code and emulation code
inserted to configure the reconfigurable hard-
ware and to perform the functionality that is
initialized by the “execute code”.

4. Compile and execute program P’ with original
code plus code having functionality A (equivalent
to functionality “�”) on the GPP/reconfigurable
processor.

The mentioned steps illustrate the need for a new
programming paradigm in which both software and
hardware descriptions are present in the same program. It
should also be noted that the only constraint on “�” is
implementability, which possibly implies complex hard-
ware. Consequently, the microarchitecture may have to
support emulation [11] via microcode. We have termed this
reconfigurable microcode (��-code) as it is different from
the traditional microcode. The difference is that such a
microcode does not execute on fixed hardware facilities. It
operates on facilities that the ��-code itself “designs” to
operate upon. The methodology of the transformation
described previously for the reconfigurable computing
platform is depicted in Fig. 2. First, the code to be executed
on the reconfigurable hardware must be determined. This is
achieved by high-level to high-level instrumentation and
benchmarking. This results in several candidate pieces of
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code. Second, we must determine which piece of code is
suitable for implementation on the reconfigurable hard-
ware. The suitability is solely determined by whether the
piece of code is implementable (i.e., “fits in hardware”).
Those parts can then be mapped into hardware via a
hardware description language (HDL). In case the HDL
corresponds to “critical” hardware in terms of, for instance,
area, performance, memory, and power consumption, the
translation will be done manually (see Fig. 2). Otherwise,
the translation can be done automatically, as, for example,
described in [10], [12], [13], or be extracted from a library.

3 ORGANIZATION, ISA, AND PROGRAMMING

The two main components in the Molen machine organiza-
tion [14] (depicted in Fig. 3) are the “Core Processor,” which
is a general-purpose processor (GPP), and the “Reconfigur-
able Processor” (RP). Instructions are issued to either
processor by the “Arbiter” and data are fetched (stored)

by the “Data Fetch” unit. The “Memory MUX” unit is
responsible for distributing(collecting) data.

The reconfigurable processor is further subdivided into
the ��-code unit (discussed in Section 5) and the custom
configured unit (CCU). The CCU consists of reconfigurable
hardware, e.g., a field-programmable gate array (FPGA),
and memory. All code runs on the GPP except pieces of
(application) code implemented on the CCU in order to
speed up program execution. Exchange of data between the
GPP and the RP is performed via the exchange registers
(XREGs) (described in Section 4) depicted in Fig. 3. The
envisioned support of operations1 by the reconfigurable
processor can be initially divided into two distinct phases:
set and execute. In the set phase, the CCU is configured to
perform the supported operations. Subsequently, in the
execute phase, the actual execution of the operations is
performed. This decoupling allows the set phase to be
scheduled well ahead of the execute phase, thereby hiding
the reconfiguration latency. As no actual execution is
performed in the set phase, it can even be scheduled
upward across the code boundary in the code preceding the
RP targeted code.

In order to target the ��-code processor, we propose a
sequential consistency programming paradigm [15]. The
paradigm allows for parallel and concurrent hardware
execution and it is intended (currently) for single program
execution. It requires only a one-time architectural exten-
sion of a few instructions to provide a large user
reconfigurable operation space. The complete list of the
eight required instructions, denoted as polymorphic
(�o���o���	�oo) Instruction Set Architecture (�ISA), is as
follows:

. Six instructions are required for controlling the
reconfigurable hardware, namely:
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1. An operation can be as simple as a single instruction or as complex as

a piece of code.



- Two set instructions. These instructions initiate
the configurations of the CCU. Two instructions
are added for partial reconfiguration:

* The partial set (p-set < address > ) instruc-
tion performs those configurations that cover
common parts of multiple functions and/or
frequently used functions. In this manner, a
considerable number of reconfigurable
blocks in the CCU can be preconfigured.

* The complete set (c-set < address > ) in-
struction performs the configurations of the
remaining blocks of the CCU (not covered
by the p-set) to complete the CCU function-
ality.

We must note that, in case no partial reconfigur-
able hardware is present, the c-set instruction
alone can be utilized to perform all the necessary
configurations.

- execute < address > . This instruction controls
the execution of the operations implemented on
the CCU. These implementations are configured
onto the CCU by the set instructions.

- set prefetch < address > . This instruction pre-
fetches the needed microcode responsible for
CCU reconfigurations into a local on-chip
storage facility (the ��-code unit) in order to
possibly diminish microcode loading times.

- execute prefetch < address > . The same rea-
soning as for the set prefetch instruction holds,
but now relating to microcode responsible for
CCU executions.

- break. This instruction is utilized to facilitate the
parallel execution of both the reconfigurable
processor and the core processor. More pre-
cisely, it is utilized as a synchronization
mechanism to complete the parallel execution.

. Two move instructions for passing values between
the register file and exchange registers (XREGs):

- movtx XREGa  Rb. The (move to XREG)
instruction used to move the content of gen-
eral-purpose register Rb to XREGa.

- movfx Ra  XREGb. The (move from XREG)
instruction used to move the content of ex-
change register XREGb to general-purpose
register Ra.

The < address > field in instructions introduced above
denotes the location of the reconfigurable microcode
responsible for the configuration and execution processes
(see Section 5). It must be noted that a single address space
is provided with at least 2ðn�opÞ addressable functions for
reconfiguration, where n represents the instruction word
length and op the opcode length. If 2ðn�opÞ is found to be
insufficient, indirect pointing or GPP-like status word
mechanisms can extend the addressing of the reconfigur-
able function space at will. Code fragments constituted of
contiguous statements (as they are represented in high-level
programming languages) can be isolated as generally
implementable functions (that is, code with multiple
identifiable input/output values). The parameters are
passed via the exchange registers (XREGs). In order to
maintain correct program semantics, the code is annotated

and a hardware description file provides the compiler with
implementation specific information, such as the addresses,
where the reconfigurable microcode is to be stored, the
number of exchange registers, etc. It should be noted that it
is not imperative to include all instructions when imple-
menting the Molen organization. The programmer/imple-
mentor can opt for different ISA extensions depending on
the performance that needs to be achieved and the available
technology. There are basically three distinctive �ISA

possibilities with respect to the Molen instructions intro-
duced earlier—the minimal, the preferred, and the complete
�ISA extension. In more detail, they are the following:

. The minimal �ISA. This is essentially the smallest
set of Molen instructions needed to provide a
working scenario. The four basic instructions needed
are set (more specifically: c-set), execute,movtx, and
movfx. By implementing the first two instructions
(set/execute), any suitable CCU implementation can
be loaded and executed in the reconfigurable
processor. Furthermore, reconfiguration latencies
can be hidden by scheduling the set instruction
considerably earlier than the execute instruction.
The movtx and movfx instructions are needed to
provide the input/output interface between the RP
targeted code and the remaining application code.

. The preferred �ISA. In order to address reconfi-
guration latencies both p-set and c-set instructions
are utilized. In this case, as the reconfiguration
latencies are substantially (or completely) hidden,
the loading time of microcode will play an increas-
ingly important role. In these cases, the two prefetch
instructions (set prefetch and execute prefetch)
provide a way to diminish the microcode loading
times by scheduling them well ahead of the moment
that the microcode is needed. Parallel execution, for
both minimal and preferred �ISA is initiated by a
set/execute instruction and ended by a general-
purpose instruction (see Fig. 4a).

. The complete �ISA. This scenario involves all �ISA
instructions including the break instruction. In some
applications, it might be beneficial performance-wise
to execute instructions on the core processor and the
reconfigurable processor in parallel. In order to
facilitate this parallel execution, the preferred ISA is
further extended with the break instruction. The
break instruction provides a mechanism to synchro-
nize the parallel execution of instructions by halting
the execution of instructions following the break
instruction. The sequence of instructions performed
in parallel is initiated by an execute instruction. The
end of the parallel execution is marked by the break
instruction. It indicates where the parallel execution
stops (see Fig. 4b). The set instructions are executed
in parallel according to the same rules.

4 COMPILER AND PROGRAM SEQUENCE CONTROL

We begin by discussing the exchange registers (XREGs) and
the parameter and result passing mechanism between the
general-purpose processor and the reconfigurable processor.

The Exchange Registers. The XREGs are used for
passing operation parameters to the reconfigurable hard-
ware and returning the computed values after operation
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execution. Parameters are moved from the register file to
the XREGs (movtx) and the results stored back from the
XREGs in the register file (movfx) and the reconfigurable
microcode is responsible for managing the parameters from
the XREGs and returning the result(s). The following
conventions are introduced for single and parallel execu-
tion: All parameters of an operation are allocated by the
compiler in consecutive XREGs forming a block of XREGs.
The microcode of each execute instruction has a fixed
XREG, which has been assigned during the microcode
development. The compiler places in this XREG a link to the
block of XREGs where all parameters are stored. This link is
the number of the first XREG in the block. Based on these
conventions, the parameters for all operations can be
efficiently allocated by the compiler and the microcode of
each execute instruction is able to locate its associated block
of parameters. An example is presented in Fig. 5, where two
operations, namely, op1 and op2, are executed in parallel.
Their fixed XREGs (XREG0 and XREG1) are communicated
to the compiler in a hardware description file. As indicated
by the number stored in XREG0, the compiler allocates, for
operation op1, two consecutive XREGs for passing para-
meters and returning results, namely, XREG2 and XREG3.
The operation op2 requires only one XREG for parameters
and results passing, which, in the example, is XREG4, as
indicated by the content of XREG1.

The Compiler. Currently, the compiler [16] relies on the
Stanford SUIF2 [17] (Stanford University Intermediate
Format) Compiler Infrastructure for the front-end and for
the back-end on the Harvard Machine SUIF [18] framework.
The following essential features for a compiler targeting a
custom computing machines (CCM) have currently been
implemented:

. Code identification. For the identification of the code
mapped on the reconfigurable hardware, we added a
special pass in the SUIF front-end. This identification

is based on code annotation with special pragma
directives (similar to [6]). In this pass, all the calls of
the recognized functions are marked for further
modification.

. Instruction set extension. The instruction set has
been extended with set/execute instructions at both
the medium intermediate representation level and
low intermediate representation (LIR) level.

. Register file extension. The register file set has been
extended with the exchange registers. The register
allocation algorithm allocates the XREGs in a distinct
pass applied before the register allocation; it is
introduced in Machine SUIF, at LIR level. The
conventions introduced for the XREGs are imple-
mented in this pass.

. Code generation. Code generation for the reconfi-
gurable hardware (as previously presented) is
performed when translating SUIF to Machine SUIF
intermediate representation and affects the function
calls marked in the front-end.

An example of the code generated by the extended
compiler for the Molen programming paradigm is pre-
sented in Fig. 6. On the left, the C code is depicted. The
function implemented in reconfigurable hardware is anno-
tated with a pragma directive named call_fpga. It has
incorporated the operation name, op1, as specified in the
hardware description file. In the middle, the code generated
by the original compiler for the C code is depicted. The
pragma annotation is ignored and a normal function call is
included. On the right, the code generated by the compiler
extended for the Molen programming paradigm is de-
picted; the function call is replaced with the appropriate
instructions for sending parameters to the reconfigurable
hardware in XREGs, hardware reconfiguration, preparing
the fixed XREG for the microcode of the execute instruction,
execution of the operation, and the transfer of the result
back to the general-purpose register file. The presented
code is at medium intermediate representation level in
which the register allocation pass has not yet been applied.

The compiler extracts from a hardware description file
the information about the target architecture such as the
microcode address of the set and execute instructions for
each operation implemented in the reconfigurable hard-
ware, the number of XREGs, the fixed XREG associated
with each operation, etc.

Parameter exchange, parallelism and modularity. As
shown earlier, the exchange registers solve the limitation on
the number of parameters present in other reconfigurable
computing approaches. If the parameters do not exceed the
numberofXREGs, parameters arepassedbyvalue, otherwise
—by reference. The Molen architecture also addresses an
additional shortcoming of other reconfigurable computing
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approaches concerning parallel execution. In case two or
more functions considered for CCU implementation do
not have any true dependencies, they can be executed in
parallel. An example of how this can be performed is
depicted in Fig. 7. It should be noted that kernels can, as far
as such kernels can, be appropriately transformed to the
Molen programming paradigm by: 1) rewriting the kernel
as a separate function and 2) defining a clear set of
parameters as interface and passing them as values (or
references) between the modified “old” and the new
function code. All of the communication between the two
functions should be done as much as possible via input/
output parameters since both parts will execute in different
contexts. The Molen paradigm facilitates modular system
design. For instance, hardware implementations described
in an HDL (VHDL, Verilog, or System-C) are mappable to
any FPGA technology in a straightforward manner. The
only requirement is to satisfy the Molen set and execute
interface. In addition, a wide set of functionally similar
CCU designs (from different providers), e.g., the sum of
absolute differences (SAD) or IDCT, can be collected in a
database allowing easy design space explorations.

Interrupts and miscellaneous considerations. Our ap-
proach is based on the GPP coprocessor paradigm (see, for
example, [19], [20]). Consequently, all known coprocessor
interrupt techniques [21] are applicable. In order to support
the core processor interrupts properly, the following parts
are essential for any Molen implementation:

1. Hardware to detect interrupts and terminate the
execution before the state of the machine is changed

is assumed to be implemented in both the core
processor (as usual) and the reconfigurable processor.

2. Interrupt policies, e.g., priorities, are usually
handled by the core processor. Consequently, hard-
ware to communicate interrupts to the core proces-
sor is implemented in the reconfigurable processor.

3. Initialization (via the core processor) of the appro-
priate routines for interrupt handling.

The compiler assumption is that the programmer/
implementor of a reconfigurable hardware follows a
coprocessor paradigm and that (as in the GPP paradigm)
the reconfigurable coprocessor facility can be viewed as an
extension of the core processor architecture, the way
coprocessors, such as floating-point, vector facilities, etc.,
have been viewed in conventional architectures.

5 A MICROARCHITECTURE AND ITS
IMPLEMENTATION

In this section, we discuss issues encountered in imple-
menting a microarchitecture supporting the minimal Molen
�ISA on the Virtex II Pro with the embedded PowerPC 405
serving as the core processor. Experienced microcode
designers will recognize that, for performance reasons,
there is the necessity of having microcode that resides
permanently in the control store and microcode that is
pageable. We borrow a “bit” from the instruction to
implement resident/pageable microcode. In the instruction
format (see Fig. 8), the location of the microcode is indicated
by the resident/pageable-bit (R/P-bit) which implicitly
determines the interpretation of the address field, i.e., as a
memory address � (R/P = 1) or as a �-control store address
�CS-� (R/P = 0) indicating a location within the ��-code

unit. This location contains the first instruction of the
microcode which must always be terminated, e.g., by an
end_op microinstruction.

The ��-code unit. The reconfigurable microcode
(��-code) unit can be implemented in configurable or fixed
hardware. In this section, for simplicity, we assume that the
��-code unit is hardwired. The internal organization of the
��-code unit is depicted in Fig. 9. The ��-code unit is
comprised of three main parts: the sequencer, the �-control

store, and the ��-code loading unit. The sequencer mainly
determines the microcode execution sequence. The �-control
store is used as a storage facility for microcode. The ��-code
loading unit, as its name suggests, is responsible for the
loading of reconfigurable microcode from the memory. The
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execution of microcode starts with the sequencer receiving
an address from the arbiter (see Fig. 3) and interpreting it
according to the R/P-bit. When receiving a memory
address, it must be determined whether the microcode is
already cached in the �-control store or not. This is done by
checking the residence table (see Fig. 10) which stores the
most frequently used translations of memory addresses into
�-control store addresses and keeps track of the validity of
these translations. It can also store other information: least
recently used (LRU) and possibly additional information
required for virtual addressing2 support. In the case that a
memory address is received and the associated microcode is
not present in the �-control store, the ��-code unit initiates
the loading of microcode from the memory into the
�-control store. In case a �CS-� is received or a valid
translation into a �CS-� is found, the �CS-� is transferred to
the “determine next microinstruction”-block. This block
determines which (next) microinstruction needs to be
executed:

. When receiving the address of the first microinstruc-
tion. Depending on the R/P-bit, the correct �CS-� is
selected, i.e., from the instruction field or from the
residence table.

. When already executing microcode. Depending on
previous microinstruction(s) and/or results from
the CCU, the next microinstruction address is
determined.

The resulting �CS-� is stored in the �-control store address
register (�CSAR) before entering the �-control store. Using
the �CS-�, a microinstruction is fetched from the �-control

store and then stored in the microinstruction register (MIR)
before it controls the CCU reconfiguration or before it is
executed by the CCU. The �-control store is comprised of
two sections,3 namely, a set section and an execute section.
Both sections are further divided into a fixed part and a
pageable part (see Fig. 11). The fixed part stores the resident
reconfiguration and execution microcode of the set and
execute phases, respectively. Resident microcode is com-
monly used by several invocations (including reconfigura-
tions) and it is stored in the fixed part so that the
performance of the set and execute phases is possibly
enhanced. Which microcode resides in the fixed part of the
�-control store is determined by performance analysis of
various applications and by taking into consideration
various software and hardware parameters. Other micro-
code is stored in memory and the pageable part of the
�-control store acts like a cache to provide temporal storage.
Consequently, cache mechanisms are required to ensure
proper �-control store operation. The residence table

invalidates entries when microcode has been replaced
(utilizing the valid (V) bit) or substitutes the least recently
used (LRU) entries with new ones. Finally, the residence
table can be separate or common (requiring an additional
S/E-bit to allow separation) for both the set and execute
pageable �-control store sections. In the remainder of this
section, we present some implementation issues of the
minimal Molen �ISA utilizing a PowerPC 405 as the core
processor, as used in our experimental validation. The
minimal �ISA consists of the following instructions: set,
execute, movtx, and movfx. The arbiter (described in detail
in [22]) performs a partial decoding of instructions in order
to determine where instructions should be issued. The set
and execute instructions will be issued to the reconfigurable
processor and, in this specific implementation, the movtx
andmovfx instructions are issued to the core processor. The
latter is due to the fact that both move instructions are
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2. For simplicity of discussion, we assume that the system only allows
real addressing.

3. Both sections can be identical, but they probably only differ in
microinstruction word sizes. Fig. 10. The sequencer’s residence table.



mapped to existing PowerPC instructions, namely, mtdcr

and mfdcr, respectively.
General requirements of the arbiter. The arbiter controls

the proper coprocessing of the core processor and the

reconfigurable processor (see Fig. 3) by directing instruc-

tions to either of these processors. It arbitrates the data

memory access of the reconfigurable and core processors

and it distributes control signals and the starting microcode

address to the ��-code unit.
In Fig. 12, a general view of an arbiter organization is

depicted. The arbiter operation is based on the decoding of

the incoming instructions and either directs instructions to

the core processor or generates an instruction sequence to

control the state of the core processor. The latter instruction

sequence is referred to as “arbiter emulation instructions.”

Upon decoding of either a set or an execute instruction, the

following actions are initiated:

1. Arbiter emulation instructions are multiplexed to the
core processor instruction bus and essentially drive
the processor into a wait state.

2. Control signals from the decode block are trans-
mitted to the control block in Fig. 12, which performs
the following:

a. Redirect the microcode location address to the
��-code unit.

b. Generate an internal code representing either a
set or execute instruction (Ex/Set) and deliver-
ing it to the ��-code unit.

c. Initiate the reconfigurable operation by gen-
erating “start reconf. operation” signal to the
��-code unit.

d. Reserve the data memory control for the ��-code
unit by generating a memory occupy signal to the
(data) memory controller.

e. Enter a wait state until the signal “end of reconf.
operation” arrives.

An active “end of reconf. operation” signal initiates the

following actions: 1) Datamemory control is released back to

the core processor. 2) An instruction sequence is generated to

ensure proper exiting of the core processor from the wait

state. 3) After exiting the wait state, the program execution

continues with the instruction immediately following the
last executed reconfigurable processor instruction.

Software considerations For performance reasons,
PowerPC special operating modes instructions were not
used—exiting special operating modes is usually per-
formed by an interrupt. We employed the “branch to link
register” (blr) instruction to emulate a wait state and “branch
to link register and link” (blrl) instruction to move the
processor out of this state. The difference between these
instructions is that blrlmodifies the link register (LR), while
blr does not. The next instruction address is the effective
address of the branch target, stored in the link register.
When blrl is executed, the new value loaded into the link
register is the address of the instruction following the
branch instruction. Thus, the arbiter emulation instructions,
stored into the corresponding block in Fig. 12, are reduced
to only one instruction for wait and one for “wake-up”
emulation. The PowerPC architecture allows out-of-order
execution of memory and I/O transfers, which has to be
taken into account in the implementation. To guarantee that
data dependency conflicts do not occur during reconfigur-
able operation, the PowerPC “synchronization” instruction
(sync) can be utilized before a set or execute instruction. In
other out-of-order execution architectures, data dependency
conflicts should be resolved by specific dedicated features
of the target architectures. In in-order architecture imple-
mentations, this problem does not exist.

Instruction encoding. Previously, we discussed that the
movtx and movfx instructions are mapped to the existing
PowerPC instructions mtdcr and mfdcr. This implemented
solution is imposed by the fact that the Virtex II Pro PowerPC
core has a dedicated interface to the so-called Device Control
Registers (DCR) [23] and two instructions that support DCR
transfers (namely,mtdcr andmfdcr). It should be noted that
this is a PowerPC specific implementation and not applicable
in the general case. This leaves only the set and execute
instructions to be encoded. We follow the PowerPC I-form
and choose unused opcodes for both instructions. The
manner todistinguisha set instruction, anexecute instruction
(using the same opcode), and resident/pageable (R/P)
addresses is via instruction modifiers.

Arbiter hardware requirements. To implement the
arbiter, we have considered the following: 1) Information,
related to instruction decoding, arbitration, and timing is
obtained only through the instruction bus (from memory).
2) The PowerPC instruction bus is 64-bit wide and
instructions are fetched in couples. 3) Speculative prefetches
should not disturb the correct timing of a reconfigurable
processor instruction execution. The arbiter for PowerPC
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Fig. 11. Internal organization of one section of the �-control store.
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has been described in synthesizable VHDL and mapped on
the Virtex II Pro FPGA of Xilinx.

Microcode configuration, termination, and finalization.
The FPGA reconfiguration files generated after synthesis
contain unpredictable bit patterns and will highly depend
on the targeted FPGA technology. It is essential to note that
the same high-level HDL description results in completely
different configuration bitstreams when different technolo-
gies are targeted. In case of execution microcode, the end op

microinstruction at the end of the microcode segment is
sufficient for the proper termination of the reconfigurable
operation provided that the microcode is properly aligned
into the memory. This technique, however, would not work
for reconfiguration microcode because the reconfiguration
bitstreams are an arbitrary bit sequence. Therefore, it is
possible that the reconfiguration microcode loading is
terminated earlier by a false end op microinstruction. One
approach to resolve early termination is the following: An
additional microcode word may be aligned at the starting
address of the microprogram segment. This word may
contain either the length of the microprogram or its end
address. Since both methods do not differ in either
implementation or microcode size, we have arbitrarily
selected the latter one in our current implementation. The
process of preparing the microcode for its final alignment
into the targeted main memory is called microcode
finalization. In microcode termination, additional termina-
tion information should be explicitly added to the micro-
programmable configuration code. The automated process
of microcode finalization for Molen indicating the place of
the finalization tool in the Molen CCU design process is
depicted in Fig. 13. The CCU design, described in HDL, can
be targeted to different FPGA technologies. This allows
descriptions that can be synthesized to any particular
technology utilized by Molen.

The configuration file (indicated as conf) contains
information about the Molen organization needed for the
reconfiguration microcode finalization. The product of the
finalization tool is a binary file ready to be used inside the
Molen paradigm and can be a linkable object or a high-level
data structure, incorporating the binary information, that

can be included directly in a C project before compilation. It
should be noted that the reconfiguration microcode end-
ianness is transparent to the proposed approach and does
not require special consideration.

��-code loading unit implementation. The ��-code

loading unit (see Fig. 9) is responsible for loading micro-
programs from the external memory. The start_op signal (not
depicted in Fig. 9) is generated by the arbiter and initiates a
reconfigurable operation. The ��-code loading unit sequen-
tially generates the addresses of the microprogram in the
main memory and the desired microprogram is loaded into
the �-control store. Once themicroprogram is available in the
�-control store, i.e., the end address of the microprogram in
the external memory is reached, the sequencer starts the
execution of the microcode generating microcode addresses
toward the �CSAR. We have to note that other parts of the
��-codeunit arenotdiscussedas theyareessentiallymemory-
like elements with appropriate controls.

6 EVALUATION

In order to evaluate our proposal, we experimented with
the Alpha Data XPL Pro lite development board
(ADM-XPL) and the Xilinx Project Navigator ISE 5.1
(Service Pack #3) design environment. As reconfigurable
hardware platform, we used the latest Xilinx xc2vp20
devices (speed grade 5) from the Virtex II Pro family. For
our experimentation, we target and profile the MPEG-2
application. As implemented in the platform hardware,
partial reconfiguration is severely limited because it is
allowed only on fixed frame boundaries (the xc2vp20
incorporates 8,214,624 bit configuration memory divided
into 1,756 frames) with no possibilities for frame reduction.
This limits the flexibility on CCU reconfiguration sizes. For
our experiments, we reconfigure the device at the system
initialization stage. There is an additional platform restric-
tion, namely, the available on-chip block RAM (BRAM)
memory of xc2vp20 is limited to 128kBytes for both
instructions and data. Due to the space limitation, we were
unable to run any file, I/O, and operating system calls. As a
consequence, we used the profiling information to design
the kernels as CCU implementations and estimated the
performance gains rather than directly run the entire
MPEG-2 application on the Molen processor. Furthermore,
the following has been assumed: The parts of the applica-
tions which can be implemented on the reconfigurable
hardware are isolated in functions. The core processor and
the reconfigurable processor do not run concurrently. The
operations performed on the reconfigurable processor are
sequential (for now, we do not consider potential paralle-
lism due to the lack of compiler support). The applications
are compiled without optimizations. The PowerPC proces-
sors in VirtexII Pro do not implement floating-point
instructions. Therefore, the floating-point data type of the
DCT coefficients utilized in the MPEG-2 encoder bench-
mark has been converted to integer data types. The proper
integer arithmetic has been implemented for fairness.

Software Profiling Results. The first step involves
identifying the functions that are most suitable for hard-
ware implementation. For this purpose, we performed the
measurements on a PowerPC 970 running at 1,600 MHz.
The considered applications are a set of multimedia
benchmarks consisting of the Berkeley implementation of
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the MPEG-2 encoder and the MPEG-2 decoder included in
libmpeg2. The objective is to identify the most time-
consuming operations among the following operations,
namely, SAD (sum of absolute-difference), 2D-DCT
(2-dimensional discrete cosine transform) and 2D-IDCT
(2-dimensional inverse DCT). As input data, we used a
representative series of video sequences consisting of
frames with varying resolutions, presented in Table 1,
column two.

For our measurements, we used the GNU profiler gprof
to determine the amount of time spent in each function and
its descendants. The results for the considered benchmarks,
input data and operations are presented in Table 1. For the
MPEG2 encoder application, we notice that the SAD
function consumes more than 50 percent of the application
time (Table 1, column three) and, consequently, it is the best
candidate for hardware implementation. The integer DCT
function accounts for around 11 percent of the application
time (Table 1, column four). For the IDCT function, we
notice that, although in the MPEG2 encoder it takes only
around 1 percent of the application time (Table 1,
column five), in the MPEG2 decoder it requires, on average,
42 percent of the application time (Table 1, column seven).
The total execution time spent in the SAD, DCT, and IDCT
operations in the MPEG2 encoder (presented in Table 1,
column six) emphasizes that these functions require around
2/3 of the total application time. Consequently, all
considered functions are good candidates for hardware
implementations, although their contribution to the perfor-
mance improvement may differ per application.

Molen organization synthesis results. The Molen
organization has been described in VHDL and simulated
with Modeltech’s ModelSim SE 5.7c. The synthesis has been
performed with Project Navigator ISE 5.2 SP3 from Xilinx
and the Virtex II Pro has been considered as a target
reconfigurable technology. For the prototype implementa-
tion, we have considered a microcode word length of 64 bits.
A 32 MByte memory segment has been considered for
storing microprograms into a 64-bit organized main
memory. The �-control store has been designed to handle
up to 8 KBytes of 64-bit microcode words. As primary
microcode storage units for the �-control store, we have
used the BRAM blocks of the FPGA fabric, configured as a
dual port memory. Each port is unidirectional—a read-only
port is used to feed the MIR, while a write-only one loads
microcodes from the external memory into the pageable
section of the �-control store. The XREGs have been
implemented in a single BRAM organized as 512� 32-bit

storage. Hardware costs reported by the synthesis tools are

presented in Table 2. The first column presents the FPGA
resources considered. Column two reports the actual values
of these resources, consumed by the reconfigurable proces-
sor, without considering any CCU implementation, i.e., the
��-code unit and the associated infrastructure. This includes
the ��-code loading unit, the sequencer, and the �-control

store. Column three presents resource utilization of the
arbiter. In column four, the resources consumed by the
entire Molen organization are displayed, including the
reconfigurable processor infrastructure, the arbiter, and the
XREGs. Finally, columns five and six, respectively, present
the available FPGA resources in the xc2vp20 chip and the
utilized part of these resources by the Molen organization
(in percentages). The results strongly suggest that the
Molen infrastructure consumes trivial hardware resources,
leaving almost the entire area for CCU implementation.

Synthesis results of the CCU implementations. We
implemented the functionalities of the kernels, suggested by
the profiling results, into reconfigurable hardware. Synth-
esis results for the xc2vp20 chip are reported in Table 3.

For the SAD function, we implemented the organization
proposed in [24]. The super-pipelined 16-byte version of
this SAD organization (SAD16) is capable of processing one
16-pixel line (1 pixel is 1 byte) of a macroblock in 17 cycles
at over 300 MHz. The 128-byte version (SAD128) processes
eight macroblock lines in 23 cycles and the 256-byte version
(SAD256), processes an entire 16� 16-pixel macroblock in
25 cycles at 300 MHz. The latter design (SAD256) requires
more resources than available in the xc2vp20 chip used for
this experimentation; therefore, we consider it for future
implementation when the larger xc2vp50 becomes avail-
able. To support the DCT and IDCT kernels, we synthesized
the 2-D DCT and 2D-IDCT v.2.0 cores available as IPs in the
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Molen Organization Synthesis Results



Xilinx Core Generator Tool. The parameters for their
synthesis are presented in Table 4.

Since the recommended maximum PowerPC frequency
for the xc2vp20-5 FPGA is 250 MHz, the ADM-XPL
prototyping board vendors recommend obtaining this
frequency from a user clock of 83MHz multiplied by 3
using the on-chip FPGA Digital clock managers (DCMs).
Considering these recommendations and synthesis results
from Table 3 for our experiments, we have to run the DCT
and IDCT functions at a frequency three times lower than
the PowerPC clock. The SAD designs were clocked at the
same frequency as the PowerPC.

MPEG-2 performance experiments. We have embedded
the considered CCU implementations within the Molen
organization and executed the corresponding software
kernels for performance measurements. For our experi-
ments, we first compiled the software kernels for the
original PowerPC ISA and ran them on one of the
PowerPC405 processors, embedded in the xc2vp20 device.
The kernels have been extracted from the original applica-
tion source code (the ANSI C code used for the profiling)
without any further code modifications. For our experi-
ments, we considered the same data sequences as used in
the profiling phase. The PowerPC timers are initialized
before a kernel is executed and are read immediately after
the kernel execution has completed. Thus, the exact number
of PowerPC cycles required for the entire kernel execution
can be obtained. After we derived the cycle counts for the
PowerPC ISA software runs, we initiated the next stage of
the experimentation. At this stage, similar to the code
transformation discussed in Section 2, the kernel software
code is substituted with a new piece of code to support the
�ISA. The corresponding kernel CCU configuration is
present in the reconfigurable processor considering the

discussion in the beginning of this section. Identically to the
preceding experimentation stage, we obtain the exact
number of PowerPC cycles required to complete the entire
kernel operation on Molen. The measurements include
cycle numbers for transferring parameters to/from the
exchange registers (implemented as DCRs), cycles for
memory transfers, and data processing cycles. Fig. 14
depicts the measured cycles obtained in the latter two
experimentation phases. The first four chart groups present
cycle counts for the original PowerPC ISA. The last chart
group presents the cycle numbers, consumed by Molen
while processing the same data. It should be noted that the
performance of the PowerPC software implementations of
the three kernels is highly dependent on the data contents.
On the contrary, for all four data sequences, the cycle
number for the Molen implementation depends only on the
amount of data and not on the data contents due to the data
independent CCU designs. Therefore, only a single group
of results for all data sequences in the Molen execution is
presented in Fig. 14. In this figure, only fixed microcode
implementations are depicted.

In addition, we have implemented both fixed and
pageable microcode implementations for SAD16 and
SAD128. Table 5 reports measured cycle numbers for
executing the SAD kernel over a single macroblock in
different Molen configurations. As has been noted, the
SAD256 implementation hardware requirements exceed the
capabilities of the xc2vp20 device we used. Therefore, the
corresponding SAD256 cycle numbers in Table 5 have been
extrapolated from the results of SAD16 and SAD128.

After the cycle numbers for the execution of each kernel
have been obtained, both for PowerPC and Molen, the
speedup of each kernel can be estimated. Table 6 presents
the calculated speedups for each of the considered data
sequences with respect to each CCU implementation.

Projected application speedup. Results in Table 6
suggest that the considered kernels can be speeded up to
300 times and one can incorrectly assume that the entire
application can be speeded up to the same orders of
magnitude.4 In the following, we are going to prove
theoretically, combined with experiments, that, in fact,
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TABLE 4
Synthesis Parameters for the 2-D DCT and 2-D IDCT IPs

Fig. 14. Cycle numbers for kernels execution in original PowerPC ISA

and fixed microcode in �ISA.

TABLE 3
Synthesis Results per CCU Implementation

4. If the considered kernels are the entire application, speedups of the
same orders of magnitude can be expected. If this is not the case, as in the
considered MPEG-2, the above assumption is incorrect.



lower, yet considerable and impressive for the GPP domain,
overall application speedups could be expected. As
indicated earlier, due to space limitations, no file, I/O, or
operating system calls have been implemented on the
prototype FPGA, thus the application speedup can only be
estimated. To calculate the projected speedup of the entire
application with respect to the CCU implementations and
the �ISA, we employed the well-known Amdahl’s law,
utilizing the following notations: Let us assume T to be the
execution time of the original program (say measured in
cycles) and TSEi—time to execute kernel i in software,
which we would like to speed up in reconfigurable
hardware. Assume T�i is the execution time (in �ISA) for
the reconfigurable implementation of kernel i. Assuming
ai ¼

TSEi

T
and si ¼

TSEi

T�i
, the speedup of the program with

respect to the reconfigurable implementation of kernel i is:

Si ¼
T

T � TSEi þ T�i

¼
1

1� ðai �
ai
si
Þ
: ð1Þ

Identically, assuming a ¼
P

i ai, all the kernels considered
for reconfigurable implementation would speed up the
program with:

S ¼
1

1� ða�
P

i
ai
si
Þ
; Smax ¼ lim

8si!1
S ¼

1

1� a
; ð2Þ

where Smax is the theoretical maximum speedup. Parameters
ai are the profiling results from Table 1 and parameters si are
the results from Table 6. The projected overall speedup
figures for the entire MPEG-2 encoder and MPEG-2 decoder
applications are reported in Table 7. Columns labeled
“theory” present the theoretically achievable maximum
speedup calculatedwith respect to (2). Columns labeledwith
“impl.” contain data for the projected speedups with respect
to the considered Molen implementation. For the MPEG-2
encoder, the simultaneous configurationof theSAD128,DCT,
and IDCT operations employing fixedmicrocode implemen-
tations has been considered. For the MPEG-2 decoder, only
the IDCTreconfigurable implementationhasbeen employed.
Columns with label “imp./th.” in Table 7 indicate (in
percentages) howclose the real speedup is to the theoretically
attainable one. Reported results strongly suggest that the
actual speedupof theMPEG-2 encoder anddecoder obtained
during our practical experimentation very closely approach
the theoretically estimated maximum possible speedups.

7 CONCLUSIONS

In this paper, we presented a polymorphic processor

paradigm that allows the programmer/designer to modify

and extend the processor functionality and hardware at will

without architectural and design modifications. The

proposal solves a number of limitations of existing

approaches, such as the opcode space explosion, and it

requires only a one time extension of the instruction set to

incorporate an almost unlimited number of reconfiguration

functions per single programming space. Finally, it intro-

duces a modular approach allowing easy porting of

applications to different reconfigurable platforms and

allows compiler controlled parallelism.
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