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THE MOMENT-SOS HIERARCHY

JEAN B. LASSERRE

Abstract. The Moment-SOS hierarchy initially introduced in opti-
mization in 2000, is based on the theory of the K-moment problem
and its dual counterpart, polynomials that are positive on K. It turns
out that this methodology can be also applied to solve problems with
positivity constraints “f(x) ≥ 0 for all x ∈ K” and/or linear constraints
on Borel measures. Such problems can be viewed as specific instances of
the “Generalized Problem of Moments” (GPM) whose list of important
applications in various domains is endless. We describe this methodol-
ogy and outline some of its applications in various domains.

1. Introduction

Consider the optimization problem:

(1.1) P : f∗ = inf
x
{ f(x) : x ∈ Ω },

where f is a polynomial and Ω ⊂ R
n is a basic semi-algebraic set, that is,

(1.2) Ω := {x ∈ R
n : gj(x) ≥ 0, j = 1, . . . ,m },

for some polynomials gj , j = 1, . . . ,m. Problem P is a particular case of
Non Linear Programming (NLP) where the data (f, gj , j = 1, . . . ,m) are
algebraic, and therefore the whole arsenal of methods of NLP can be used
for solving P. So what is so specific about P in (1.1)? The answer depends
on the meaning of f∗ in (1.1).

If one is interested in a local minimum only then efficient NLP methods
can be used for solving P. In such methods, the fact that f and gj ’s are
polynomials does not help much, that is, this algebraic feature of P is not
really exploited. On the other hand if f∗ in (1.1) is understood as the global
minimum of P then the picture is totally different. Why? First, to eliminate
any ambiguity on the meaning of f∗ in (1.1), rewrite (1.1) as:

(1.3) P : f∗ = sup {λ : f(x)− λ ≥ 0, ∀x ∈ Ω }

because then indeed f∗ is necessarily the global minimum of P.

1991 Mathematics Subject Classification. 90C26 90C22 90C27 65K05 14P10 44A60.
Key words and phrases. K-Moment problem; positive polynomials; global optimization;

semidefinite relaxations.
Research supported by the European Research Council (ERC) through ERC-Advanced

Grant # 666981 for the TAMING project.

1



2 JEAN B. LASSERRE

In full generality, most problems (1.3) are very difficult to solve (they are
labelled NP-hard in the computational complexity terminology) because:

Given λ ∈ R, checking whether “f(x)− λ ≥ 0 for all x ∈ Ω” is difficult.

Indeed, by nature this positivity constraint is global and therefore cannot
be handled by standard NLP optimization algorithms which use only local
information around a current iterate x ∈ Ω. Therefore to compute f∗ in
(1.3) one needs an efficient tool to handle the positivity constraint “f(x)−
λ ≥ 0 for all x ∈ Ω”. Fortunately if the data are algebraic then:

(1) Powerful positivity certificates from Real Algebraic Geometry (Posi-
tivstellensätze in german) are available.

(2) Some of these positivity certificates have an efficient practical imple-
mentation via Linear Programming (LP) or Semidefinite Program-
ming (SDP). In particular and importantly, testing whether a given
polynomial is a sum of squares (SOS) simply reduces to solving a
single SDP (which can be done in time polynomial in the input size
of the polynomial, up to arbitrary fixed precision).

After the pioneers works of Shor [51] and Nesterov [39], Lasserre [22, 23] and
Parrilo [43, 44] have been the first to provide a systematic use of these two
key ingredients in Control and Optimization, with convergence guarantees.
It is also worth mentioning another closely related pioneer work, namely the
celebrated SDP-relaxation of Goemans & Williamson [10] which provides
a 0.878 approximation guarantee for MAXCUT, a famous problem in non-
convex combinatorial optimization (and probably the simplest one). In fact
it is perhaps the first famous example of such a successful application of the
powerful SDP convex optimization technique to provide guaranteed good
approximations to a notoriously difficult non-convex optimization problem.
It turns out that this SDP relaxation is the first relaxation in the Moment-
SOS hierarchy (a.k.a. Lasserre hierarchy) when applied to the MAXCUT
problem. Since then, this spectacular success story of SDP relaxations has
been at the origin of a flourishing research activity in combinatorial opti-
mization and computational complexity. In particular, the study of LP- and
SDP-relaxations in hardness of approximation is at the core of a central topic
in combinatorial optimization and computational complexity, namely prov-
ing/disproving Khot’s famous Unique Games Conjecture1 (UGC) in Theo-
retical Computer Science.

Finally, another “definition” of the global optimum f∗ of P reads:

(1.4) f∗ = inf
µ
{

∫

Ω

f dµ : µ(Ω) = 1 }

1For this conjecture and its theoretical and practical implications, S. Khot was awarded
the prestigious Nevanlinna prize at the last ICM 2014 in Seoul [18] .
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where the ‘inf” is over all probability measures on Ω. Equivalently, writing
f as

∑

α fα x
α in the basis of monomials (where xα = xα1

1 · · · x
αn
n ):

(1.5) f∗ = inf
y
{
∑

α

fα yα : y ∈M (Ω); y0 = 1 },

where M (Ω) = {y = (yα)α∈Nn : ∃µ s.t. yα =
∫

Ω
xα dµ, ∀α ∈ N

n}, a convex
cone. In fact (1.3) is the LP dual of (1.4). In other words standard LP
duality between the two formulations (1.4) and (1.3) illustrates the duality
between the “Ω-moment problem” and “polynomials positive on Ω”.

Problem (1.4) is a very particular instance (and even the simplest in-
stance) of the more general Generalized Problem of Moments (GPM):

(1.6) inf
µ1,...,µp

{

p
∑

j=1

∫

Ωj

fj dµj :

p
∑

j=1

fij dµj ≥ bi, i = 1, . . . , s },

for some functions fij : Rnj → R, i = 1, . . . , s, and sets Ωj ⊂ R
nj , j =

1, . . . , p. The GPM is an infinite-dimensional LP with dual:

(1.7) sup
λ1,...,λs≥0

{
s∑

i=1

λi bi : fj −
s∑

i=1

λi fij ≥ 0 on Ωj, j : 1, . . . , p}.

Therefore it should be of no surprise that the Moment-SOS hierarchy, ini-
tially developed for global optimization, also applies to solving the GPM.
This is particularly interesting as the list of important applications of the
GPM is almost endless; see e.g. Landau [21].

2. The MOMENT-SOS hierarchy in optimization

2.1. Notation, definitions and preliminaries. Let R[x] denote the ring
of polynomials in the variables x = (x1, . . . , xn) and let R[x]d be the vector

space of polynomials of degree at most d (whose dimension is s(d) :=
(n+d

n

)
).

For every d ∈ N, let N
n
d := {α ∈ N

n : |α| (=
∑

i αi) ≤ d}, and let vd(x) =
(xα), α ∈ N

n, be the vector of monomials of the canonical basis (xα) of
R[x]d. Given a closed set X ⊆ R

n, let P(X ) ⊂ R[x] (resp. Pd(X ) ⊂ R[x]d)
be the convex cone of polynomials (resp. polynomials of degree at most 2d)
that are nonnegative on X . A polynomial f ∈ R[x]d is written

x 7→ f(x) =
∑

α∈Nn

fα x
α,

with vector of coefficients f = (fα) ∈ R
s(d) in the canonical basis of monomi-

als (xα)α∈Nn . For real symmetric matrices, let 〈B,C〉 := trace (BC) while
the notation B � 0 stands for B is positive semidefinite (psd) whereasB ≻ 0
stands for B is positive definite (pd).
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The Riesz functional. Given a sequence y = (yα)α∈Nn , the Riesz func-
tional is the linear mapping Ly : R[x]→ R defined by:

(2.1) f (=
∑

α

fα x
α) 7→ Ly(f) =

∑

α∈Nn

fα yα.

Moment matrix. The moment matrix associated with a sequence y =
(yα), α ∈ N

n, is the real symmetric matrix Md(y) with rows and columns
indexed by N

n
d , and whose entry (α, β) is just yα+β, for every α, β ∈ N

n
d .

Alternatively, let vd(x) ∈ R
s(d) be the vector (xα), α ∈ N

n
d , and define the

matrices (Bo,α) ⊂ S
s(d) by

(2.2) vd(x)vd(x)
T =

∑

α∈Nn
2d

Bo,α x
α, ∀x ∈ R

n.

Then Md(y) =
∑

α∈Nn
2d
yαBo,α. If y has a representing measure µ then

Md(y) � 0 because 〈f ,Md(y)f〉 =
∫
f2dµ ≥ 0, for all f ∈ R[x]d.

A measure whose all moments are finite, is moment determinate if there is
no other measure with same moments. The support of a Borel measure µ on
R
n (denoted supp(µ)) is the smallest closed set Ω such that µ(Rn \Ω) = 0.

Localizing matrix. With y as above and g ∈ R[x] (with g(x) =
∑

γ gγx
γ),

the localizing matrix associated with y and g is the real symmetric matrix
Md(g y) with rows and columns indexed by N

n
d , and whose entry (α, β) is

just
∑

γ gγyα+β+γ , for every α, β ∈ N
n
d . Alternatively, let Bg,α ∈ S

s(d) be
defined by:

(2.3) g(x)vd(x)vd(x)
T =

∑

α∈Nn
2d+deg g

Bg,α x
α, ∀x ∈ R

n.

Then Md(g y) =
∑

α∈Nn
2d+degg

yαBg,α. If y has a representing measure µ

whose support is contained in the set {x : g(x) ≥ 0} then Md(g y) � 0 for
all d because 〈f ,Md(g y)f〉 =

∫
f2 gdµ ≥ 0, for all f ∈ R[x]d.

SOS polynomials and quadratic modules. A polynomial f ∈ R[x] is
a Sum-of-Squares (SOS) if there exist (fk)k=1,...,s ⊂ R[x], such that f(x) =
∑s

k=1 fk(x)
2, for all x ∈ R

n. Denote by Σ[x] (resp. Σ[x]d) the set of
SOS polynomials (resp. SOS polynomials of degree at most 2d). Of course
every SOS polynomial is nonnegative whereas the converse is not true. In
addition, checking whether a given polynomial f is nonnegative on R

n is
difficult whereas checking whether f is SOS is much easier and can be done
efficiently. Indeed let f ∈ R[x]2d (for f to be SOS its degree must be even),
x 7→ f(x) =

∑

α∈Nn
2d
fα x

α. Then f is SOS if and only if there exists a real

symmetric matrix XT = X of size s(d) =
(n+d

n

)
, such that:

(2.4) X � 0; fα = 〈X,Bo,α〉, ∀α ∈ N
n
2d,

and this can be checked by solving an SDP.
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Next, let x 7→ g0(x) := 1 for all x ∈ R
n. With a family (g1, . . . , gm) ⊂ R[x]

is associated the quadratic module Q(g) (= Q(g1, . . . , gm)) ⊂ R[x]:

(2.5) Q(g) :=







m∑

j=0

σj gj : σj ∈ Σ[x], j = 0, . . . ,m






,

and its truncated version

(2.6) Qk(g) :=







m∑

j=0

σj gj : σj ∈ Σ[x]k−dj , j = 0, . . . ,m






,

where dj = ⌈deg(gj)/2⌉, j = 0, . . . ,m.

Definition 1. The quadratic module Q(g) associated with Ω in (1.2) is said
to be Archimedean if there exists M > 0 such that the quadratic polynomial
x 7→M − ‖x‖2 belongs to Q(g) (i.e., belongs to Qk(g) for some k).

If Q(g) is Archimedean then necessarily Ω is compact but the reverse is
not rue. The Archimedean condition (which depends on the representation
of Ω) can be seen as an algebraic certificate that Ω is compact. For more
details on the above notions of moment and localizing matrix, quadratic
module, as well as their use in potential applications, the interested reader
is referred to Lasserre [25], Laurent [36], Schmüdgen [49].

2.2. Two certificates of positivity (Positivstellensätze). Below we de-
scribe two particular certificates of positivity which are important because
they provide the theoretical justification behind the so-called SDP- and LP-
relaxations for global optimization.

Theorem 2.1 (Putinar [48]). Let Ω ⊂ R
n be as in (1.2) and assume that

Q(g) is Archimedean.
(a) If a polynomial f ∈ R[x] is (strictly) positive on Ω then f ∈ Q(g).
(b) A sequence y = (yα)α∈Nn ⊂ R has a representing Borel measure on

Ω if and only if Ly(f
2 gj) ≥ 0 for all f ∈ R[x], and all j = 0, . . . ,m.

Equivalently, if and only if Md(y gj) � 0 for all j = 0, . . . ,m, d ∈ N.

There exists another certificate of positivity which does not use SOS.

Theorem 2.2 (Krivine-Vasilescu [19, 20, 52]). Let Ω ⊂ R
n as in (1.2) be

compact and such that (possibly after scaling) 0 ≤ gj(x) ≤ 1 for all x ∈ Ω,
j = 1, . . . ,m. Assume also that [1, g1, . . . , gm] generates R[x].

(a) If a polynomial f ∈ R[x] is (strictly) positive on Ω then

(2.7) f(x) =
∑

α,β∈Nn

cα,β

m∏

j=1

gj(x)
αj (1− gj(x))

βj ,

for finitely many positive coefficients (cα,β)α,β∈Nm .
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(b) A sequence y = (yα)α∈Nn ⊂ R has a representing Borel measure on Ω

if and only if Ly





m∏

j=1

gj(x)
αj (1− gj(x))

βj



 ≥ 0 for all α, β ∈ Nm.

The two facets (a) and (b) of Theorem 2.1 and Theorem 2.2 illustrate
the duality between polynomials positive on Ω (in (a)) and the Ω-moment
problem (in (b)). In addition to their mathematical interest, both Theorem
2.1(a) and Theorem 2.2(a) have another distinguishing feature. They both
have a practical implementation. Testing whether f ∈ R[x]d is in Q(g)k is
just solving a single SDP, whereas testing whether f van be written as in
(2.7) with

∑m
i=1 αi + βi ≤ k, is just solving a single Linear Program (LP).

2.3. The Moment-SOS hierarchy. The Moment-SOS hierarchy is a nu-
merical scheme based on Putinar’s theorem. In a nutshell it consists of
replacing the intractable positivity constraint “f(x) ≥ 0 for all x ∈ Ω” with
Putinar’s positivity certificate f ∈ Qd(g) of Theorem 2.1(a), i.e., with a fixed
degree bound on the SOS weights (σj) in (2.6). By duality, it consists of re-
placing the intractable constraint y ∈M (Ω) with the necessary conditions
Md(gj y) � 0, j = 0, . . . ,m, of Theorem 2.1(b) for a fixed d. This results in
solving an SDP which provides a lower bound on the global minimum. By
allowing the degree bound d to increase, one obtains a hierarchy of SDPs
(of increasing size) which provides a monotone non-decreasing sequence of
lower bounds. A similar strategy based on Krivine-Stengle-Vasilescu posi-
tivity certificate (2.7) is also possible and yields a hierarchy of LP (instead
of SDPs). However even though one would prefer to solve LPs rather than
SDPs, the latter Moment-LP hierarchy has several serious drawbacks (some
explained in e.g. [26, 29]), and therefore we only describe the Moment-SOS
hierarchy.

Recall problem P in (1.1) or equivalently in (1.3) and (1.4), whereΩ ⊂ R
n

is the basic semi-algebraic set defined in (1.2).

The Moment-SOS hierarchy. Consider the sequence of semidefinite pro-
grams (Qd)d∈N with d ≥ d̂ := max[deg(f),maxj deg(gj)]:

(2.8) Qd : ρd = inf
y
{Ly(f) : y0 = 1; Md(gj y) � 0, 0 ≤ j ≤ m }

(where y = (yα)α∈Nn
2d
)2, with associated sequence of their SDP duals:

(2.9) Q∗
d : ρ∗d = sup

λ,σj

{λ : f − λ =
m∑

j=0

σj gj ; σj ∈ Σ[x]d−dj , 0 ≤ j ≤ m}

(where dj =⌉(deggj)/2⌉). By standard weak duality in optimization ρ∗d ≤ ρd
for every d ≥ d̂. The sequence (Qd)d∈N forms a hierarchy of SDP-relaxations

of P because ρd ≤ f∗ and ρd ≤ ρd+1 for all d ≥ d̂. Indeed for each d ≥ d̂, the
constraints of Qd consider only necessary conditions for y to be the moment

2In Theoretical Computer Science, y is called a sequence of “pseudo-moments”.
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sequence (up to order 2d) of a probability measure on Ω (cf. Theorem
2.1(b)) and therefore Qd is a relaxation of (1.5).

By duality, the sequence (Q∗
d)d∈N forms a hierarchy of SDP-strenghtenings

of (1.3). Indeed in (2.9) one has replaced the intractable positivity constraint
of (1.3) by the (stronger) Putinar’s positivity certificate with degree bound
2d− 2dj on the SOS weights σj’s.

Theorem 2.3 ([22, 23]). Let Ω in (1.2) be compact and assume that its
associated quadratic module Q(g) is Archimedean. Then:

(i) As d → ∞, the monotone non-decreasing sequence (ρd)d∈N (resp.
(ρ∗d)d∈N) of optimal values of the hierarchy (2.8) (resp. (2.9)) converges
to the global optimum f∗ of P.

(ii) Moreover, let yd = (ydα)α∈Nn
2d

be an optimal solution of Qd in (2.8),

and let s = maxj dj (recall that dj = ⌈(deg gj)/2⌉). If

(2.10) rankMd(y
d) = rankMd−s(y

d) (=: t)

then ρd = f∗ and there are t global minimizers x∗
j ∈ Ω, j = 1, . . . , t, that

can be “extracted” from yd by a linear algebra routine.

The sequence of SDP-relaxations (Qd), d ≥ d̂, and the rank test (2.10) to
extract global minimizers, are implemented in the GloptiPoly software [14].

Finite convergence and a global optimality certificate. After being
introduced in [22], in many numerical experiments it was observed that
typically, finite convergence takes place, that is, f∗ = ρd for some (usually
small) d. In fact there is a rationale behind this empirical observation.

Theorem 2.4 (Nie [40]). Let P be as in (1.3) where Ω in (1.2) is compact
and its associated quadratic module is Archimedean. Suppose that at each
global minimizer x∗ ∈ Ω:
• The gradients (∇gj(x

∗))j=1,...,m are linearly independent. (This implies
existence of nonnegative Lagrange-KKT multipliers λ∗

j , j ≤ m, such that

∇f(x∗)−
∑m

j=1 λ
∗
j ∇gj(x

∗) = 0 and λ∗
jgj(x

∗) = 0 for all j ≤ m.)

• Strict complementarity holds, that is, gj(x
∗) = 0⇒ λ∗

j > 0.
• Second-order sufficiency condition holds, i.e.,

〈u,∇2
x (f(x

∗)−

m∑

j=1

λ∗
j gj(x

∗))u〉 > 0,

for all 0 6= u ∈ ∇(f(x∗)−
∑m

j=1 λ
∗
j gj(x

∗))⊥.

Then f − f∗ ∈ Q(g), i.e., there exists d∗ and SOS multipliers σ∗
j ∈

Σ[x]d∗−dj , j = 0, . . . ,m, such that:

(2.11) f(x)− f∗ = σ∗
0(x) +

m∑

j=1

σ∗
j (x) gj(x).
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With (2.11), Theorem 2.4 provides a certificate of global optimality in
polynomial optimization, and to the best of our knowledge, the first at this
level of generality. Next, observe that x∗ ∈ Ω is a global unconstrained
minimizer of the extended Lagrangian polynomial f − f∗ −

∑n
j=1 σ

∗
j gj, and

therefore Theorem 2.4 is the analogue for non-convex polynomial optimiza-
tion of the Karush-Kuhn-Tucker (KKT) optimality conditions in the convex
case. Indeed in the convex case, any local minimizer is global and is also a
global unconstrained minimizer of the Lagrangian f − f∗ −

∑m
j=1 λ

∗
jgj .

Also interestingly, whenever the SOS weight σ∗
j in (2.11) is non trivial,

it testifies that the constraint gj(x) ≥ 0 is important for P even if it is not
active at x∗ (meaning that if gj ≥ 0 is deleted from P then the new global
optimum decreases strictly). The multiplier λ∗

j plays the same role in the

KKT-optimality conditions only in the convex case. See [26] for a detailed
discussion.
Finite convergence of the Moment-SOS-hierarchies (2.8) and (2.9) is an
immediate consequence of Theorem 2.4. Indeed by (2.11) (f∗, σ∗

0 , . . . , σ
∗
m)

is a feasible solution of Q∗
d∗ with value f∗ ≤ ρ∗d ≤ f∗ (hence ρ∗d = ρd = f∗).

Genericity: Importantly, as proved in Nie [40], the conditions in Theorem
2.4 are generic. By this we mean the following: Consider the class P(t,m)
of optimization problems P with data (f, g1, . . . , gm) of degree bounded by
t, and with nonempty compact feasible set Ω. Such a problem P is a “point”
in the space R

(m+1)s(t) of coordinates of (f, g1, . . . , gm). Then the “good”
problems P are points in a Zariski open set. Moreover, generically the rank
test (2.10) is also satisfied at an optimal solution of (2.8) (for some d); for
more details see Nie [41].
Computational complexity: Each relaxation Qd in (2.8) is a semidefinite

program with s(2d) =
(n+2d

n

)
variables (yα), and a psd constraint Md(y) �

0 of size s(d). Therefore solving Qd in its canonical form (2.8) is quite
expensive in terms of computational burden, especially when using interior-
point methods. Therefore its brute force application is limited to small to
medium size problems.
Exploiting sparsity: Fortunately many large scale problems exhibit a
structured sparsity pattern (e.g., each polynomial gj is concerned with a
few variables only, and the objective function f is a sum

∑

i fi where each
fi is also concerned with a few variables only). Then Waki et al. [53] have
proposed a sparsity-adapted hierarchy of SDP-relaxations which can handle
problems P with thousands variables. In addition, if the sparsity pattern
satisfies a certain condition then convergence of this sparsity-adapted hier-
archy is also guaranteed like in the dense case [31]. Successful applications
of this strategy can be found in e.g. Camps and Sznaier [3] in Control (sys-
tems identification) and in Molzahn and Hiskens [37] for solving (large scale)
Optimum Power Flow problems (OPF is an important problem encountered
in the management of energy networks).
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2.4. Discussion. We claim that the Moment-SOS hierarchy and its ra-
tionale Theorem 2.4, unify convex, non-convex (continuous), and discrete
(polynomial) Optimization. Indeed in the description of P we do not pay
attention to what particular class of problems P belongs to. This is in sharp
contrast to the usual common practice in (local) optimization where several
classes of problems have their own tailored favorite class of algorithms. For
instance, problems are not treated the same if equality constraints appear,
and/or if boolean (or discrete variables) are present, etc. Here a boolean
variable xi is modeled by the quadratic equality constraint x2i = xi. So it is
reasonable to speculate that this lack of specialization could be a handicap
for the moment-SOS hierarchy.

But this is not so. For instance for the sub-class of convex3 problems P
where f and (−gj)j=1,...,m are SOS-convex4 polynomials, finite convergence
takes place at the first step of the hierarchy. In other words, the SOS
hierarchy somehow “recognizes” this class of easy problems [26]. In the
same time, for a large class of 0/1 combinatorial optimization problems on
graphs, the Moment-SOS hierarchy has been shown to provide the tightest
upper bounds when compared to the class of lift-and-project methods, and
has now become a central tool to analyze hardness of approximations in
combinatorial optimization. For more details the interested reader is referred
to e.g. Lasserre [29], Laurent [35], Barak [1], Khot [17, 18] and the many
references therein.

3. The Moment-SOS hierarchy outside optimization

3.1. A general framework for the Moment-SOS hierarchy. Let Ωi ⊂
R
ni be a finite family of compact sets, M (Ωi) (resp. C (Ωi)) be the space

of finite Borel signed measures (resp. continuous functions) on Ωi, i =
0, 1, . . . , s, and let T be a continuous linear mapping with adjoint T∗:

T : M (Ω1)× · · · ×M (Ωs) → M (Ω0)

C (Ω1)× · · · × C (Ωs) ← C (Ω0) : T∗

Let φ := (φ1, . . . , φs) and let φi ≥ 0 stand for φi is a positive measure. Then
consider the general framework:

(3.1) ρ = inf
φ≥0
{

s∑

i=1

〈fi, φi〉 : T(φ) = λ;
s∑

i=1

〈fij, φi〉 ≥ bj, j ∈ J},

where J is a finite or countable set, b = (bj) is given, λ ∈M (Ω0) is a given
measure, (fij)j∈J , i = 1, . . . , s, are given polynomials, and 〈·, ·〉 is the duality
bracket between C (Ωi) and M (Ωi) (〈h, φi〉 =

∫

Ωi
hdφi), i = 1, . . . , s.

3Convex problems P where f and (−gj)j=1,...,m are convex, are considered “easy” and
can be solved efficiently.

4A polynomial f ∈ R[x] is SOS-convex if its Hessian ∇2f is a SOS matrix-polynomial,
i.e., ∇f2(x) = L(x)L(x)T for some matrix-polynomial L ∈ R[x]n×p.
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As we will see, this general framework is quite rich as it encompasses a
lot of important applications in many different fields. In fact Problem (3.1)
is equivalent to the Generalized Problem of Moments (GPM):

(3.2)

ρ = inf
φ≥0

{

s∑

i=1

〈fi, φi〉 : 〈T
∗ pk, φ〉 = 〈pk, λ〉, k = 0, 1, . . .

s∑

i=1

〈fij, φi〉 ≥ bj, j ∈ J},

where the family (pk)k=0,... is dense in C (Ω0) (e.g. a basis of R[x1, . . . , xn0
]).

The Moment-SOS hierarchy can also be applied to help solve the Gener-
alized Problem of Moments (GPM) (3.2) or its dual :
(3.3)

ρ∗ = sup
(θj≥0,γ)

{
∑

k

γk 〈pk, λ〉+ 〈θ,b〉 :

s.t. fi −
∑

k

γk (T
∗ pk)i −

∑

j∈J

θj fij ≥ 0 on Ωi for all i },

where the unknown γ = (γk)k∈N is a finite sequence.

3.2. A hierarchy of SDP-relaxations. Let

(3.4) Ωi := {x ∈ R
ni : gi,ℓ(x) ≥ 0, i = 1, . . . ,mi }, i = 1, . . . , s,

for some polynomials (gi,ℓ) ⊂ R[x1, . . . , xni
], ℓ = 1, . . . ,mi. Let di,ℓ =

⌈deg(gi,ℓ)/2⌉ and d̂ := maxi,j,ℓ[deg(fi),deg(fij),deg(gi,ℓ)]. To solve (3.2),
define the “moment” sequences yi = (yi,α), α ∈ N

ni , i = 1, . . . , s, and with
d ∈ N, define Γd := {pk : deg(T ∗pk)i ≤ 2d, i = 1, . . . , s}. Consider the

hierarchy of semidefinite programs indexed by d̂ ≤ d ∈ N:

(3.5)

ρd = inf
(yi)

{

s∑

i=1

Lyi
(fi) :

s∑

i=1

Lyi
((T ∗pk)i) = 〈pk, λ〉, pk ∈ Γd

s∑

i=1

Lyi
(fij) ≥ bj , j ∈ Jd

Md(yi), Md−dℓ(giℓ yi) � 0, ℓ ≤ mi; i ≤ s},

where Jd ⊂ J is finite
⋃

d∈N Jd = J . Its dual SDP-hierarchy reads:

(3.6)

ρ∗d = sup
(θj≥0,γk)

{
∑

pk∈Γd

γk 〈pk, λ〉+ 〈θ,b〉 :

s.t. fi −
∑

pk∈Γd

γk (T
∗ pk)i −

∑

j∈J

θj fij =

mi∑

ℓ=0

σi,ℓ gi,ℓ

σi,ℓ ∈ Σ[x1, . . . , xni
]d−di,ℓ ; i = 1, . . . , s},

As each Ωi is compact, for technical reasons and with no loss of generality,
in the sequel we may and will assume that for every i = 1, . . . , s, gi,0(x) =
Mi − ‖x‖

2, where Mi > 0 is sufficiently large.
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Theorem 3.1. Assume that ρ > −∞ and that for every i = 1, . . . , s, fi0 =
1. Then for every d ≥ d̂, (3.5) has an optimal solution, and limd→∞ ρd = ρ.

3.3. Examples in Probability and Computational Geometry.

Bounds on measures with moment conditions. Let Z be a random
vector with values in a compact semi-algebraic set Ω1 ⊂ R

n. Its distribution
λ on Ω1 is unknown but some of its moments

∫
xα dλ = bα, α ∈ Γ ⊂ N

n,
are known (b0 = 1). Given a basic semi-algebraic set Ω2 ⊂ Ω1 we want
to compute (or approximate as closely as desired) the best upper bound on
Prob(Z ∈ Ω2). This problem reduces to solving the GPM:

(3.7)
ρ = sup

φ1,φ2≥0
{〈1, φ2〉 : 〈x

α, φ1〉+ 〈x
α, φ2〉 = bα, α ∈ Γ;

φi ∈M (Ωi), i = 1, 2 },

With Ω1 and Ω2 as in (3.4) one may compute upper bounds on ρ by solv-
ing the Moment-SOS hierarchy (3.5) adapted to problem (3.7). Under the
assumptions of Theorem 3.1, the resulting sequence (ρd)d∈N converges to ρ
as d→∞; for more details the interested reader is referred to [30].

Lebesgue & Gaussian measures of semi-algebraic sets. Let Ω2 ⊂ R
n

be compact. The goal is to compute (or approximate as closely as desired)
the Lebesgue measure λ(Ω2) of Ω2. Then take Ω1 ⊃ Ω2 be a simple set,
e.g. an ellipsoid or a box (in fact any set such that one knows all moments
(bα)α∈Nn of the Lebesgue measure on Ω1). Then:

(3.8)
λ(Ω2) = sup

φ1,φ2≥0
{〈1, φ2〉 : 〈x

α, φ1〉+ 〈x
α, φ2〉 = bα, α ∈ N

n;

φi ∈M (Ωi), i = 1, 2 }.

Problem (3.8) is very similar to (3.7) except that we now have countably
many moment constraints (Γ = N

n). Again, with Ω2 and Ω2 as in (3.4) one
may compute upper bounds on λ(Ω2) by solving the Moment-SOS hierarchy
(3.5) adapted to problem (3.8). Under the assumptions of Theorem 3.1, the
resulting monotone non-increasing sequence (ρd)d∈N converges to λ(Ω2) from
above as d→∞. The convergence ρd → λ(Ω2) is slow because of a Gibb’s
phenomenon5. Indeed the semidefinite program (3.6) reads:

ρ∗d = inf
p∈R[x]2d

{

∫

Ω1

p dλ : p ≥ 1 on Ω2; p ≥ 0 on Ω1},

i.e., as→∞ one tries to approximate the discontinuous function x 7→ 1Ω2
(x)

by polynomials of increasing degrees. Fortunately there are several ways to
accelerate the convergence, e.g. as in [15] (but loosing the monotonicity) or
in [28] (preserving monotonicity) by including in (3.5) additional constraints
on y2 coming from an application of Stokes’ theorem.

For the Gaussian measure λ we need and may take Ω1 = R
n and Ω2

is not necessarily compact. Although both Ω1 and Ω2 are allowed to be

5The Gibbs’ phenomenon appears at a jump discontinuity when one approximates a
piecewise C1 function with a continuous function, e.g., by its Fourier series.
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non-compact, the Moment-SOS hierarchy (3.5) still converges, i.e., ρd →
λ(Ω2) as d→∞. This is because the moments of λ satisfy the generalized
Carleman’s condition

(3.9)

∞∑

k=1

(∫

Rn

x2ki dλ

)−1/2k

= +∞, i = 1, . . . , n,

which imposes implicit constraints on y1 and y2 in (3.5), strong enough
to guarantee ρd → λ(Ω2) as d → ∞. For more details see [28]. This
deterministic approach is computationally demanding and should be seen
as complementary to brute force Monte-Carlo methods that provide only an
estimate (but can handle larger size problems).

3.4. In signal processing and interpolation. In this application, a sig-
nal is identified with an atomic signed measure φ supported on few atoms
(xk)k=1,...,s ⊂ Ω, i.e., φ =

∑s
k=1 θk δxk

, for some weights (θk)k=1,...,s.

Super-Resolution. The goal of Super-Resolution is to reconstruct the un-
known measure φ (the signal) from a few measurements only, when those
measurements are the moments (bα)α∈Nn

t
of φ, up to order t (fixed). One

way to proceed is to solve the infinite-dimensional program:

(3.10) ρ = inf
φ
{‖φ‖TV :

∫

xα dφ = bα, α ∈ N
n
t },

where the inf is over the finite signed Borel measures on Ω, and ‖φ‖TV =
|φ|(Ω) (with |φ| being the total variation of φ). Equivalently:

(3.11) ρ = inf
φ+,φ−≥0

{〈1, φ+ + φ−〉 : 〈xα, φ+ − φ−〉 = bα, α ∈ N
n
t },

which is an instance of the GPM with dual:

(3.12) ρ∗ = sup
p∈R[x]t

{
∑

α∈Nn
t

pα bα : ‖p‖∞ ≤ 1 },

where ‖p‖∞ = sup{|p(x)| : x ∈ Ω}. In this case, the Moment-SOS hierarchy

(3.5) with d ≥ d̂ := ⌈t/2⌉, reads:

(3.13)
.ρd = inf

y+,y−

{y+0 + y−0 : y+α − y−α = bα, α ∈ N
n
t

Md(y
±) � 0; Md(gℓ y

±) � 0, ℓ = 1, . . . ,m},

where Ω = {x : gℓ(x) ≥ 0, ℓ = 1, . . . ,m}.
In the case where Ω is the torus T ⊂ C, Candès and Fernandez-Granda

[4] showed that if δ > 2/fc (where δ is the minimal distance between the
atoms of φ, and fc is the number of measurements) then (3.10) has a unique
solution and one may recover φ exactly by solving the single semidefinite
program (3.10) with d = ⌈t/2⌉. The dual (3.12) has an optimal solution p∗

(a trigonometric polynomial) and the support of φ+ (resp. φ−) consists of
the atoms z ∈ T of φ such that p∗(z) = 1 (resp. p∗(z) = −1). In addition,
this procedure is more robust to noise in the measurements than Prony’s
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method; on the other hand, the latter requires less measurements and no
separation condition on the atoms.

In the general multivariate case treated in [6] one now needs to solve

the Moment-SOS hierarchy (3.11) for d = d̂, . . . (instead of a single SDP in
the univariate case). However since the moment constraints of (3.11) are
finitely many, exact recovery (i.e. finite convergence of the Moment-SOS
hierarchy (3.13)) is possible (usually with a few measurements only). This
is indeed what has been observed in all numerical experiments of [6], and
in all cases with significantly less measurements than the theoretical bound
(of a tensorized version of the univariate case).

In fact, the rank condition (2.10) is always satisfied at an optimal solu-
tion (y+,y−) at some step d of the hierarchy (3.13), and so the atoms of
φ+ and φ− are extracted via a simple linear algebra routine (as for global
optimization). Nie’s genericity result [41] should provide a rationale which
explains why the rank condition (2.10) is satisfied in all examples.

Sparse interpolation. Here the goal is to recover an unknown (black-box)
polynomial p ∈ R[x]t through a few evaluations of p only. In [16] we have
shown that this problem is in fact a particular case of Super-Resolution (and
even discrete Super-Resolution) on the torus Tn ⊂ C

n. Indeed let z0 ∈ T
n

be fixed, arbitrary. Then with β ∈ N
n, notice that

p(zβ0 ) =
∑

α∈Nn
d

pα (z
β1

01 · · · z
βn

0n )
α =

∑

α∈Nn
d

pα (z
α1

01 · · · z
αn

0n )
β

=

∫

Tn

zβ d




∑

α∈Nn
d

pα δzα0



 =

∫

Tn

zβ dφ.

In other words, one may identify the polynomial p with an atomic signed
Borel measure φ on T

n supported on finitely many atoms (zα0 )α∈Nn
t
with

associated weights (pα)α∈Nn
t
.

Therefore, if the evaluations of the black-box polynomial p are done at

a few “powers” (zβ0 ), β ∈ N
n, of an arbitrary point z0 ∈ T

n, then the
sparse interpolation problem is equivalent to recovering an unknown atomic
signed Borel measure φ on T

n from knowledge of a few moments, that is,
the Super-Resolution problem that we have just described above. Hence one
may recover p by solving the Moment-SOS hierarchy (3.13) for which finite
convergence usually occurs fast. For more details see [16].

3.5. In Control & Optimal Control. Consider the Optimal Control
Problem (OCP) associated with a controlled dynamical system:

(3.14)
J∗ = inf

u(t)

∫ T

0
L(x(t),u(t)) dt : ẋ(t) = f(x(t),u(t)), t ∈ (0, T )

x(t) ∈ X, u(t) ∈ U, ∀t ∈ (0, T )
x(0) = x0; x(T ) ∈ XT ,
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where L, f are polynomials, X,XT ⊂ R
n and U ⊂ R

p are compact basic
semi-algebraic sets. In full generality the OCP problem (3.14) is difficult
to solve, especially when state constraints x(t) ∈ X are present. Given an
admissible state-control trajectory (t,x(t),u(t)), its associated occupation
measure φ1 up to time T (resp. φ2 at time T ) are defined by:

φ1(A×B × C) :=

∫

[0,T ]∩C
1(A,B)((x(t),u(t)) dt; φ2(D) = 1D(x(T )),

for all A ∈ B(X), B ∈ B(U), C ∈ B([0, T ]), D ∈ B(XT ). Then for every
differentiable function h : X× [0, T ]→ R

h(T,x(T ))−h(0, x0) =

∫ T

0
(
∂h(x(t),u(t))

∂t
+

∂h(x(t),u(t))

∂x
f(x(t),u(t))) dt,

or, equivalently, with S := [0, T ]×X×U:
∫

XT

h(T,x) dφ2(x) = h(0,x0)+

∫

S

(
∂h(x,u)

∂t
+
∂h(x,u)

∂x
f(x,u)) dφ1(t,x,u).

Then the weak formulation of the OCP (3.14) is the infinite-dimensional
linear program:

(3.15)

ρ = inf
φ1,φ2≥0

{

∫

S

L(x,u) dφ1 :

s.t.

∫

XT

h(T, ·) dφ2 −

∫

S

(
∂h

∂t
+

∂h

∂x
f) dφ1 = h(0,x0)

∀h ∈ R[t,x] }.

It turns out that under some conditions the optimal values of (3.14) and
(3.15) are equal, i.e., J∗ = ρ. Next, if one replaces “for all h ∈ R[t,x,u]”
with “for all tkxαuβ”, (t, α, β) ∈ N

1+n+p”, then (3.15) is an instance of
the GPM (3.2). Therefore one may apply the Moment-SOS hierarchy (3.5).
Under the conditions of Theorem 3.1 one obtains the asymptotic convergence
ρd → ρ = J∗ as d → ∞. For more details see [32] and the many references
therein.

Robust control. In some applications (e.g. in robust control) one is often
interested in optimizing over sets of the form:

G := {x ∈ Ω1 : f(x,u) ≥ 0, ∀u ∈ Ω2},

where Ω2 ⊂ R
p, and Ω1 ⊂ R

n is a simple set, in fact a compact set such
that one knows all moments of the Lebesgue measure λ on Ω1.

The set G is difficult to handle because of the universal quantifier. There-
fore one is often satisfied with an inner approximation Gd ⊂ G, and if
possible, with (i) a simple form and (ii) some theoretical approximation
guarantees. We propose to approximate G from inside by sets of (simple)
form Gd = {x ∈ Ω1 : pd(x) ≥ 0} where pd ∈ R[x]2d.
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To obtain such an inner approximation Gd ⊂ G, define F : Ω1 → R,
x 7→ F (x) := min

u
{f(x,u) : u ∈ Ω2}. Then with d ∈ N, fixed, solve:

(3.16) inf
p∈R[x]2d

∫

Ω1

(F − p) dλ : f(x,u)− p(x) ≥ 0, ∀(x,u) ∈ Ω1 ×Ω2}.

Any feasible solution pd of (3.16) is such that Gd = {x : pd(x) ≥ 0} ⊂ G.
In (3.16)

∫

Ω1
(F −p) dλ = ‖F −p‖1 (with ‖ ·‖1 being the L1(Ω1)-norm), and

inf
p

∫

Ω1

(F − p) dλ =

∫

Ω1

F dλ

︸ ︷︷ ︸

=cte

+ inf
p

∫

Ω1

−p dλ = cte− sup
p

∫

Ω1

p dλ

and so in (3.16) it is equivalent to maximize
∫

Ω1
pdλ. Again the Moment-

SOS hierarchy can be applied. This time one replaces the difficult positivity
constraint f(x,u) − p(x) ≥ 0 for all (x,u) ∈ Ω1 ×Ω2 with a certificate of
positivity, with a degree bound on the SOS weights. That is, if Ω1 = {x :
g1,ℓ(x) ≥ 0, ℓ = 1, . . . ,m1} and Ω2 = {u : g2,ℓ(u) ≥ 0, ℓ = 1, . . . ,m2}, then
with di,ℓ := ⌈(deg(σi,ℓ)/2⌉, one solves

(3.17)

ρd = sup
p∈R[x]2d

∫

Ω1

p dλ : f(x,u)− p(x) = σ0(x,u)

+

m1∑

ℓ=1

σ1,ℓ(x,u) gi,ℓ(x) +

m2∑

ℓ=1

σ2,ℓ(x,u) gi,ℓ(u)

σi,ℓ ∈ Σ[x,u]d−di,ℓ , ℓ = 1, . . . ,mi, i = 1, 2.

Theorem 3.2 ([27]). Assume that Ω1 × Ω2 is compact and its associated
quadratic module is Archimedean. Let pd be an optimal solution of (3.17). If
λ({x ∈ Ω1 : F (x) = 0}) = 0 then lim

d→∞
‖F−pd‖1 = 0 and lim

d→∞
λ(G\Gd) = 0.

Therefore one obtains a nested sequence of inner approximations (Gd)d∈N ⊂
G, with the desirable property that λ(G \Gd) vanishes as d increases. For
more details the interested reader is referred to [27].

Example 1. In some robust control problems one would like to approximate
as closely as desired a non-convex set G = {x ∈ Ω1 : λmin(A(x)) � 0}
for some real symmetric r × r matrix-polynomial A(x), and where x 7→
λmin(A(x)) denotes its smallest eigenvalue. If one rewrites

G = {x ∈ Ω1 : u
TA(x)u ≥ 0, ∀u ∈ Ω2}; Ω2 = {u ∈ R

r : ‖u‖ = 1},

one is faced with the problem we have just described. In applying the above
methodology the polynomial pd in Theorem 3.2 approximates λmin(A(x))
from below in Ω1, and ‖pd(·) − λmin(A(·))‖1 → 0 as d increases. For more
details see [13].

There are many other applications of the Moment-SOS hierarchy in Con-
trol, e.g. in Systems Identification [5, 3], Robotics [46], for computing Lya-
punov functions [44], largest regions of attraction [12], to cite a few.
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3.6. Some inverse optimization problems. In particular:

Inverse Polynomial Optimization. Here we are given a polynomial optimiza-
tion problem P : f∗ = min{f(x) : x ∈ Ω} with f ∈ R[x]d, and we are
interested in the following issue: Let y ∈ Ω be given, e.g. y is the current
iterate of a local minimization algorithm applied to P. Find

(3.18) g∗ = arg min
g∈R[x]d

{‖f − g‖1 : g(x) − g(y) ≥ 0, ∀x ∈ Ω },

where ‖h‖1 =
∑

α |hα| is the ℓ1-norm of coefficients of h ∈ R[x]d. In other
words, one searches for a polynomial g∗ ∈ R[x]d as close as possible to f
and such that y ∈ Ω is a global minimizer of g∗ on Ω. Indeed if ‖f − g∗‖1
is small enough then y ∈ Ω could be considered a satisfying solution of
P. Therefore given a fixed small ǫ > 0, the test ‖f − g∗‖1 < ǫ could be
a new stopping criterion for a local optimization algorithm, with a strong
theoretical justification.

Again the Moment-SOS hierarchy can be applied to solve (3.18) as posi-
tivity certificates are perfect tools to handle the positivity constraint “g(x)−
g(y) ≥ 0 for all x ∈ Ω”. Namely with Ω as in (1.2), solve:

(3.19) ρt = min
g∈R[x]d

{ ‖f − g‖1 : g(x) − g(y) :=

m∑

j=0

σj(x) gj(x), ∀x },

where g0(x) = 1 for all x, and σj ∈ Σ[x]t−dj , j = 0, . . . ,m. Other norms
are possible but for the sparsity inducing ℓ1-norm ‖ · ‖1, it turns out that an
optimal solution g∗ of (3.19) has a canonical simple form. For more details
the interested reader is referred to [33].

Inverse Optimal Control. With the OCP (3.14) in §3.5, we now consider the
following issue: Given a database of admissible trajectories (x(t;xτ ),u(t,xτ )),
t ∈ [τ, T ], starting in initial state xτ ∈ X at time τ ∈ [0, T ], does there exist
a Lagrangian (x,u) 7→ L(x,u) such that all these trajectories are optimal
for the OCP problem (3.14)? This problem has important applications, e.g.,
in Humanoid Robotics to explain human locomotion [34].

Again the Moment-SOS hierarchy can be applied because a weak version
of the Hamilton-Jacobi-Bellman (HJB) optimality conditions is the perfect
tool to state whether some given trajectory is ǫ-optimal for the OCP (3.14).
Indeed given ǫ > 0 and an admissible trajectory (t,x∗(t),u∗(t)), let ϕ :
[0, T ]×X→ R, and L : X×U→ R, be such that:

(3.20) ϕ(T,x) ≤ 0, ∀x ∈ X;
∂ϕ(t,x)

∂t
+

∂ϕ(t,x)

∂x
f(x,u) + L(x,u) ≥ 0,

for all (t,x,u) ∈ [0, T ]×X×U, and: ϕ(T,x∗(T )) > −ǫ,

(3.21)
∂ϕ(t,x∗(t))

∂t
+

∂ϕ(t,x∗(t))

∂x
f(x∗(t),u∗(t)) + L(x∗(t),u∗(t)) < ǫ,
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for all t ∈ [0, T ]. Then the trajectory (t,x∗(t),u∗(t)) is an ǫ-optimal solution
of the OCP (3.14) with x0 = x∗(0) and Lagrangian L. Therefore to apply
the Moment-SOS hierarchy:

(i) The unknown functions ϕ and L are approximated by polynomials
in R[t,x]2d and R[x,u]2d, where d is the parameter in the Moment-SOS
hierarchy (3.6).

(ii) The above positivity constraint (3.20) on [0, T ] ×X ×U is replaced
with a positivity certificate with degree bound on the SOS weights.

(iii) (3.21) is stated for every trajectory (x(t;xτ ),u(t,xτ )), t ∈ [τ, T ], in
the database. Using a discretization {t1, . . . , tN} of the interval [0, T ], the
positivity constraints (3.21) then become a set of linear constraints on the
coefficients of the unknown polynomials ϕ and L.

(iv) ǫ in (3.21) is now taken as a variable and one minimizes a criterion of
the form ‖L‖1 + γ ǫ, where γ > 0 is chosen to balance between the sparsity-
inducing norm ‖L‖1 of the Lagrangian and the error ǫ in the weak version
of the optimality conditions (3.20)-(3.21). A detailed discussion and related
results can be found in [45].

3.7. Optimal design in statistics. In designing experiments one models
the responses z1, . . . , zN of a random experiment whose inputs are repre-
sented by a vector t = (ti) ∈ R

n with respect to known regression functions
Φ = (ϕ1, . . . , ϕp), namely: zi =

∑p
j=1 θj ϕj(ti) + εi, i = 1, . . . , N , where

θ1, . . . , θp are unknown parameters that the experimenter wants to estimate,
εi is some noise and the (ti)’s are chosen by the experimenter in a design
space X ⊆ R

n. Assume that the inputs ti, i = 1, . . . , N , are chosen within a
set of distinct points x1, . . . ,xℓ ∈ X , ℓ ≤ N, and let nk denote the number
of times the particular point xk occurs among t1, . . . , tN . A design ξ is then
defined by:

(3.22) ξ =

(
x1 . . . xℓ
n1

N
. . . nℓ

N

)

.

The matrix M(ξ) :=
∑ℓ

i=1
ni

N Φ(xi)Φ(xi)
T is called the information matrix

of ξ. Optimal design is concerned with finding a set of points in X that opti-
mizes a certain statistical criterion φ(M(ξ)), which must be real-valued, pos-
itively homogeneous, non constant, upper semi-continuous, isotonic w.r.t.
Loewner ordering, and concave. For instance in D-optimal design one max-
imizes φ(M(ξ)) := log det(M(ξ)) over all ξ of the form (3.22). This is a
difficult problem and so far most methods have used a discretization of the
design space X .

The Moment-SOS hierarchy that we describe below does not rely an any
discretization and works for an arbitrary compact basic semi-algebraic de-
sign space X as defined in (1.2). Instead we look for an atomic measure on
X (with finite support) and we proceed in two steps:
• In the first step one solves the hierarchy of convex optimization problems
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indexed by δ = 0, 1, . . ..

(3.23)
ρδ = sup

y
{log det(Md(y)) : y0 = 1

Md+δ(y) � 0; Md+δ−dj (gj y) � 0},

where d is fixed by the number of basis functions ϕj considered (here the
monomials (xα)α∈Nn

d
). (Note that (3.23) is not an SDP because the criterion

is not linear in y, but it is still a tractable convex problem.) This provides
us with an optimal solution y∗(δ). In practice one chooses δ = 0.
• In a second step we extract an atomic measure µ from the “moments”
y∗(δ), e.g. via Nie’s method [42] which consists of solving the SDP:

(3.24)
ρr = sup

y
{Ly(fr) : yα = y∗α(δ), ∀α ∈ N

n
2d

Md+r(y) � 0; Md+r−dj (gj y) � 0},

where fr is a (randomly chosen) polynomial strictly positive on X . If
(y∗α(δ))α∈Nn

2d
has a representing measure then it has an atomic representing

measure, and generically the rank condition (2.10) will be satisfied. Extrac-
tion of atoms is obtained via a linear algebra routine. We have tested this
two-steps method on several non-trivial numerical experiments (in particu-
lar with highly non-convex design spaces X ) and in all cases we were able
to obtain a design. For more details the interested reader is referred to [7].

Other applications & extensions. In this partial overview, by lack of
space we have not described some impressive success stories of the Moment-
SOS hierarchy, e.g. in coding [2], packing problems in discrete geometry
[9, 50]. Finally, there is also a non-commutative version [47] of the Moment-
SOS hierarchy based on non-commutative positivity certificates [11] and
with important applications in quantum information [38].

4. Conclusion

The list of important applications of the GPM is almost endless and we
have tried to convince the reader that the Moment-SOS hierarchy is one
promising powerful tool for solving the GPM with already some success
stories. However much remains to be done as its brute force application
does not scale well to the problem size. One possible research direction is
to exploit symmetries and/or sparsity in large scale problems. Another one
is to determine alternative positivity certificates which are less expensive
in terms of computational burden to avoid the size explosion of SOS-based
positivity certificates.
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