The momentum mapping of the affine real symplectic group

Richard Cushman

In this paper we explain how the cocycle of the momentum map of the action of the affine symplectic group on $\mathbb{R}^{2 n}$ gives rise to a coadjoint orbit of the odd real symplectic group with a modulus.

1 Basic setup

Consider the set $\operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ of invertible affine real symplectic mappings

$$
(A, a):\left(\mathbb{R}^{2 n}, \omega\right) \rightarrow\left(\mathbb{R}^{2 n}, \omega\right): v \mapsto A v+a .
$$

Using the multiplication $(A, a) \cdot(B, b)=(A B, A b+a)$, which corresponds to composition of affine linear mappings, $\operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ is a group. Identifying (A, a) with the matrix $\left(\begin{array}{cc}A & a \\ 0 & 1\end{array}\right), \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ becomes a closed subgroup of $\operatorname{Sp}\left(\mathbb{R}^{2 n}, \omega\right) \times \mathbb{R}^{2 n}$. Thus $\operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ is a Lie group. Its Lie algebra is $\operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)=\left\{(X, x) \in \operatorname{sp}\left(\mathbb{R}^{2 n}, \omega\right) \times \mathbb{R}^{2 n}\right\}$ with Lie bracket

$$
\begin{equation*}
[(X, x),(Y, y)]=([X, Y], X y-Y x) \tag{1}
\end{equation*}
$$

$\operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ acts on $\left(\mathbb{R}^{2 n}, \omega\right)$ by

$$
\begin{equation*}
\Phi: \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right) \times\left(\mathbb{R}^{2 n}, \omega\right) \rightarrow\left(\mathbb{R}^{2 n}, \omega\right):((A, a), v) \mapsto A v+a \tag{2}
\end{equation*}
$$

Since the symplectic form ω on $\mathbb{R}^{2 n}$ is invariant under translation, for every $(A, a) \in \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ the affine linear mapping $\Phi_{(A, a)}$ preserves ω. The infinitesimal generator $X^{(X, x)}$ of the action Φ in the direction $(X, x) \in$ $\operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)$ is the vector field $X^{(X, x)}(v)=X v+x$ on $\mathbb{R}^{2 n}$. We now show
Claim 1.1. The $\operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ action Φ (2) is Hamiltonian.
Proof. For every $(Y, y) \in \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)$ let

$$
\begin{equation*}
J^{(Y, y)}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}: v \mapsto J^{Y}(v)+\omega^{\sharp}(y) v=\frac{1}{2} \omega(Y v, v)+\omega(y, v) \tag{3}
\end{equation*}
$$

and set

$$
\begin{equation*}
J: \mathbb{R}^{2 n} \rightarrow \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)^{*} \tag{4}
\end{equation*}
$$

[^0]where $J(v)(Y, y)=J^{(Y, y)}(v)$. Then for every $(X, x) \in \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)$, every $v \in \mathbb{R}^{2 n}$, and every $w \in T_{v} \mathbb{R}^{2 n}=\mathbb{R}^{2 n}$
\[

$$
\begin{aligned}
\mathrm{d} J^{(X, x)}(v) w & =\left(T_{v} J(X, x)\right) w=\omega(X v, w)+\omega(x, w) \\
& =\omega(X v+x, w)=\omega\left(X^{(X, x)}(v), w\right),
\end{aligned}
$$
\]

that is, $X^{(X, x)}=X_{J^{(X, x)}}$. Hence the action Φ is Hamiltonian.
The above argument shows that the map J (4) is the momentum map of the Hamiltonian action Φ (2). The following discussion is motivated by theorem 11.34 of Souriau [5, p.143].
Lemma 1.2. The mapping

$$
\begin{equation*}
\sigma: \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right) \rightarrow \operatorname{afsp}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)^{*}: g \mapsto J\left(\Phi_{g}(v)\right)-\operatorname{Ad}_{g^{-1}}^{T} J(v) \tag{5}
\end{equation*}
$$

does not depend on $v \in \mathbb{R}^{2 n}$.
Proof. For each $\eta \in \operatorname{afsp}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$ we have

$$
\begin{aligned}
\mathrm{d}\left(J \circ \Phi_{g}\right)^{\eta}(v) & =T_{v} \Phi_{g} X^{\eta}(v) _\omega(v)=X^{\operatorname{Ad}_{g} \eta}(v) _\omega(v) \\
& =\mathrm{d} J^{\operatorname{Ad}_{g} \eta}(v)=\mathrm{d}\left(\operatorname{Ad}_{g^{-1}}^{T} J\right)^{\eta}(v),
\end{aligned}
$$

that is, $\mathrm{d}\left(J \circ \Phi_{g}-\operatorname{Ad}_{g^{-1}}^{T} J\right)(v)=0$. Since $\mathbb{R}^{2 n}$ is connected the function $J \circ \Phi_{g}-\operatorname{Ad}_{g^{-1}}^{T} J: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ is constant.
Corollary 1.2A For every $g, g^{\prime} \in \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$

$$
\begin{equation*}
\sigma\left(g g^{\prime}\right)=\sigma(g)+\operatorname{Ad}_{g^{-1}}^{T} \sigma\left(g^{\prime}\right) \tag{6}
\end{equation*}
$$

Proof. We compute.

$$
\begin{aligned}
\sigma\left(g g^{\prime}\right) & =J \circ \Phi_{g g^{\prime}}-\operatorname{Ad}_{\left(g g^{\prime}\right)^{-1}}^{T} J \\
& =\left(J \circ \Phi_{g}-\operatorname{Ad}_{g^{-1}}^{T} J\right) \circ \Phi_{g^{\prime}}+\operatorname{Ad}_{g^{-1}}^{T}\left(J \circ \Phi_{g^{\prime}}-\operatorname{Ad}_{\left(g^{\prime}\right)^{-1}}^{T} J\right) \\
& =\sigma(g)+\operatorname{Ad}_{g^{-1}}^{T} \sigma\left(g^{\prime}\right) .
\end{aligned}
$$

Evaluating σ (5) at $\exp t \eta$ and then at $\zeta \in \operatorname{afsp}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$ gives

$$
\begin{equation*}
(\sigma(\exp t \eta)) \zeta=J^{\zeta}\left(\Phi_{\exp t \eta}(v)\right)-\left(\operatorname{Ad}_{\exp -t \eta}^{T} J(v)\right) \zeta \tag{7}
\end{equation*}
$$

Differentiating (7) with respect to t and then setting t equal to 0 gives

$$
\left(T_{e} \sigma \eta\right) \zeta=\mathrm{d} J^{\zeta}(v) X^{\eta}(v)+\left(\operatorname{ad}_{\eta}^{T} J(v)\right) \zeta
$$

$$
\begin{equation*}
=L_{X^{\eta}} J^{\zeta}(v)+J(v) \operatorname{ad}_{\eta} \zeta=\left\{J^{\zeta}, J^{\eta}\right\}(v)-J^{[\zeta, \eta]}(v) . \tag{8}
\end{equation*}
$$

Let $\Sigma^{\sharp}: \operatorname{afsp}\left(\mathbb{R}^{2 n}, \mathbb{R}\right) \rightarrow \operatorname{afsp}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)^{*}$ be the linear mapping $\eta \mapsto$ $\Sigma^{\sharp}(\eta)=-\left(T_{e} \sigma\right) \eta \in \operatorname{afsp}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)^{*}$. Equation (8) may be written as

$$
\begin{equation*}
\left\{J^{\eta}, J^{\zeta}\right\}(v)=J^{[\eta, \zeta]}(v)+\Sigma(\eta, \zeta), \tag{9}
\end{equation*}
$$

where $\Sigma(\eta, \zeta)=\Sigma^{\sharp}(\eta) \zeta$. From equation (19) it follows that the bilinear map Σ is skew symmetric.

Lemma 1.3. Σ is an $\operatorname{afsp}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$ cocycle, that is, for every ξ, η, and $\zeta \in \operatorname{afsp}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$

$$
\begin{equation*}
\Sigma(\zeta,[\xi, \eta])=\Sigma([\zeta, \xi], \eta)+\Sigma(\xi,[\zeta, \eta]) . \tag{10}
\end{equation*}
$$

Proof. Since $\left(C^{\infty}\left(\mathbb{R}^{2 n}\right),\{\},\right)$ is a Lie algebra

$$
\left\{J^{\zeta},\left\{J^{\xi}, J^{\eta}\right\}\right\}=\left\{\left\{J^{\zeta}, J^{\xi}\right\}, J^{\eta}\right\}+\left\{J^{\xi},\left\{J^{\zeta}, J^{\eta}\right\}\right\} .
$$

Using equation (9) the above equation reads

$$
\begin{aligned}
\left\{J^{\zeta}, J^{[\xi, \eta]}\right\} & +\left\{J^{\zeta}, \Sigma(\xi, \eta)\right\}=\left\{J^{[\zeta, \xi]}, J^{\eta}\right\}+\left\{\Sigma(\zeta, \xi), J^{\eta}\right\} \\
& +\left\{J^{\xi}, J^{[\zeta, \eta]}\right\}+\left\{J^{\zeta}, \Sigma(\zeta, \eta)\right\} .
\end{aligned}
$$

Using (9) again gives

$$
J^{[\zeta,[\xi, \eta]}+\Sigma(\zeta,[\xi, \eta])=J^{[[\zeta, \xi], \eta]}+\Sigma([\zeta, \xi], \eta)+J^{[\xi,[\zeta, \eta]}+\Sigma(\xi,[\zeta, \eta]),
$$

since $\Sigma(\xi, \eta), \Sigma(\zeta, \xi)$ and $\Sigma(\zeta, \eta)$ are constant functions on $\mathbb{R}^{2 n}$. By linearity and the Jacobi identity $J^{[\zeta,[\zeta \eta \eta]}=J^{[\zeta \zeta, \xi], \eta]}+J^{[\xi,[\zeta, \eta]]}$ equation (10) holds.
Claim 1.4. The momentum map J (4) has the cocycle

$$
\begin{equation*}
\Sigma: \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right) \times \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right) \rightarrow \mathbb{R}:((Y, y),(Z, z)) \mapsto \omega(y, z) . \tag{11}
\end{equation*}
$$

Proof. We compute.

$$
\begin{aligned}
\left\{J^{(Y, y)}, J^{(Z, z)}\right\}(v) & =\left(L_{X(Z, z)} J^{(Y, y)}\right)(v)=\mathrm{d} J^{(Y, y)}(v) X^{(Z, z)}(v) \\
& =\omega(Y v, Z v+z)+\omega(y, Z v+z) \\
& =\omega(Y v, Z v)+\omega(Y v, z)+\omega(y, Z v)+\omega(y, z) .
\end{aligned}
$$

Now

$$
\frac{1}{2} \omega([Y, Z] v, v)=\frac{1}{2} \omega((Y Z-Z Y) v, v)=\frac{1}{2} \omega(Y Z v, v)-\frac{1}{2} \omega(Z Y v, v)
$$

$$
=-\frac{1}{2} \omega(Z v, Y v)+\frac{1}{2} \omega(Y v, Z v)=\omega(Y v, Z v) .
$$

Thus

$$
\begin{aligned}
\left\{J^{(Y, y)}, J^{(Z, z)}\right\}(v) & =\frac{1}{2} \omega([Y, Z] v, v)+\omega(Y z-Z y, v)+\omega(y, z) \\
& =J^{[Y, Z]}(v)+\omega(Y z-Z y, v)+\omega(y, z) \\
& =J^{[(Y, y),(Z, z)]}(v)+\omega(y, z) .
\end{aligned}
$$

Define the map

$$
\begin{gather*}
\Psi: \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right) \times \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)^{*} \rightarrow \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)^{*} \\
(g, \alpha) \longmapsto \operatorname{Ad}_{g^{-1}}^{T} \alpha+\sigma(g), \tag{12}
\end{gather*}
$$

where σ is given by equation (5).
Claim 1.5 The map Ψ (12) is an action of $\operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ on $\operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)^{*}$.
Proof. We compute. For $g, g^{\prime} \in \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ and $\alpha \in \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)^{*}$ we have

$$
\begin{aligned}
\Psi_{g g^{\prime}} \alpha= & \operatorname{Ad}_{\left(g g^{\prime}\right)^{-1}}^{T} \alpha+\sigma\left(g g^{\prime}\right) \\
= & \operatorname{Ad}_{g^{-1}}^{T}\left(\operatorname{Ad}_{\left(g^{\prime}\right)^{-1}}^{T} \alpha\right)+\sigma(g)+\operatorname{Ad}_{g^{-1}}^{T} \sigma\left(g^{\prime}\right) \\
& \quad \text { using corollary 1.2A } \\
= & \operatorname{Ad}_{g^{-1}}^{T}\left(\operatorname{Ad}_{\left(g^{\prime}\right)^{-1}}^{T} \alpha+\sigma\left(g^{\prime}\right)\right)+\sigma(g) \\
= & \operatorname{Ad}_{g^{-1}}^{T}\left(\Psi_{g^{\prime}} \alpha\right)+\sigma(g)=\Psi_{g}\left(\Psi_{g^{\prime}} \alpha\right) .
\end{aligned}
$$

Claim 1.6 The momentum mapping J (4) is coadjoint equivariant under the action Ψ (12).
Proof. We compute. For every $g \in \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right)$ and every $w \in \mathbb{R}^{2 n}$

$$
\begin{aligned}
\Psi_{g}(J(w)) & =\operatorname{Ad}_{g^{-1}}^{T} J(w)+\sigma(g), \text { using (12) } \\
& =\operatorname{Ad}_{g^{-1}}^{T} J(w)+J\left(\Phi_{g}(w)\right)-\operatorname{Ad}_{g^{-1}}^{T} J(w), \text { using (5) } \\
& =J\left(\Phi_{g}(w)\right) .
\end{aligned}
$$

2 Extension

Following Wallach [6] we find a central extension of Lie algebra $\operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)$ the dual of whose adjoint map is

$$
\begin{align*}
T_{e} \Psi(X, x) \alpha & =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \Psi_{\exp t(X, x)} \alpha=-\operatorname{ad}_{(X, x)}^{T} \alpha+T_{e} \sigma(X, x) \\
& =-\operatorname{ad}_{(X, x)}^{T} \alpha+\Sigma^{\sharp}(X, x), \tag{13}
\end{align*}
$$

where $(X, x) \in \operatorname{sp}\left(\mathbb{R}^{2 n}, \omega\right) \times \mathbb{R}^{2 n}=\operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)$.
Consider the Lie algebra $\widehat{\mathfrak{g}}=\left\{(X, v, \xi) \in \operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right) \times \mathbb{R}\right\}$ whose Lie bracket is

$$
\begin{equation*}
[(X, v, \xi),(Y, w, \eta)]=([X, Y], X w-Y v, \omega(v, w)) \tag{14}
\end{equation*}
$$

From (14) it follows that $(0,0,1)$ lies in the center of $\widehat{\mathfrak{g}}$, that is, $[(0,0,1),(X, v, \xi)]$ $=(0,0,0)$. Also

$$
\begin{equation*}
[(X, v, 0),(Y, v, 0)]=([X, Y], X w-Y v, 0)+\omega(v, w)(0,0,1) \tag{15}
\end{equation*}
$$

Thus the Lie algebra $\widehat{\mathfrak{g}}$ is a central extension of the Lie algebra $\operatorname{afsp}\left(\mathbb{R}^{2 n}, \omega\right)$ by the cocycle ω. Since we can write (14) as

$$
\begin{equation*}
\operatorname{ad}_{[X, x, \xi]}[Y, y, \eta]=\operatorname{ad}_{[X, x]}[Y, y]+\Sigma(\xi, \eta) \tag{16}
\end{equation*}
$$

$\widehat{\mathfrak{g}}$ is the sought for Lie algebra.

3 The odd real symplectic group

We now find a connected linear Lie group \widehat{G} whose Lie algebra is $\widehat{\mathfrak{g}}$. Consider the group $\widehat{G} \subseteq \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \frac{1}{2} \omega\right) \times \mathbb{R}$ with multiplication

$$
((A, v), r) \cdot((B, w), s)=\left((A B, A w+v), r+s+\frac{1}{2} \omega\left(A^{-1} v, w\right)\right)
$$

The map

$$
\widehat{\pi}: \widehat{G} \rightarrow \operatorname{AfSp}\left(\mathbb{R}^{2 n}, \omega\right):(A, v, r) \mapsto(A, v)
$$

is a surjective group homomorphism, whose kernel is the normal subgroup $\widehat{Z}=\{(I, 0, r) \in \widehat{G} \mid r \in \mathbb{R}\}$, which is the center of \widehat{G}. Note that $\pi_{1}(\widehat{G})=$ $\pi_{1}\left(\operatorname{Sp}\left(\mathbb{R}^{2 n}, \omega\right)\right)=\mathbb{Z} . \widehat{G}$ is a Lie group with Lie algebra $\widehat{\mathfrak{g}}$, whose Lie bracket is given by (14).
Claim 3.1. The group \widehat{G} is isomorphic to the odd real symplectic group.
Proof. Consider the map

$$
\rho: \widehat{G} \rightarrow \mathrm{Gl}\left(\mathbb{R}^{2 n+2}, \mathbb{R}\right):(A, v, r) \mapsto\left(\begin{array}{ccc}
1 & 0 & 0 \tag{17}\\
v & A & 0 \\
r & \frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right) & 1
\end{array}\right) .
$$

The map ρ is an injective homomorphism. Here we have $\frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right)=$ $-\frac{1}{2}\left(v^{T} J A\right)$, since for every $z \in \mathbb{R}^{2 n}$

$$
\begin{aligned}
\frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right) z & =\frac{1}{2} \omega\left(A^{-1} v, z\right)=\frac{1}{2} \omega(v, A z), \text { because } A \in \operatorname{Sp}\left(\mathbb{R}^{2 n}, \frac{1}{2} \omega\right) \\
& =-\frac{1}{2} \omega(A z, v)=-\frac{1}{2}\left(v^{T} J A\right) z .
\end{aligned}
$$

The following calculation shows that ρ is a homomorphism.

$$
\begin{array}{r}
\rho((A, v, r) \cdot(B, w, s))=\rho\left(A B, A w+v, r+s+\frac{1}{2} \omega\left(A^{-1} v, w\right)\right) \\
=\left(\begin{array}{ccc}
1 & 0 & 0 \\
v+A w & A B & 0 \\
r+s+\frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right) w & \frac{1}{2} \omega^{\sharp}\left((A B)^{-1}(v+A w)\right) & 1
\end{array}\right) . \tag{18}
\end{array}
$$

Now

$$
\begin{align*}
& \frac{1}{2} \omega^{\sharp}\left((A B)^{-1}(v+A w)\right)=\frac{1}{2} \omega^{\sharp}\left(B^{-1}\left(A^{-1} v\right)\right)+\frac{1}{2} \omega^{\sharp}\left(B^{-1} w\right) \\
& \quad=B^{T} \frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right)+\frac{1}{2} \omega^{\sharp}\left(B^{-1} w\right), \text { since } B \in \operatorname{Sp}\left(\mathbb{R}^{2 n}, \frac{1}{2} \omega\right) \\
& \quad=\frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right) B+\frac{1}{2} \omega^{\sharp}\left(B^{-1} w\right) . \tag{19}
\end{align*}
$$

But

$$
\begin{array}{r}
\rho(A, v, r) \rho(B, w, s)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
v & A & 0 \\
r & \frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right) & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
w & B & 0 \\
s & \frac{1}{2} \omega^{\sharp}\left(B^{-1} w\right) & 1
\end{array}\right) \\
=\left(\begin{array}{ccc}
1 & 0 & 0 \\
v+A w & A B & 0 \\
r+s+\frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right) w & \frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right) B+\frac{1}{2} \omega^{\sharp}\left(B^{-1} w\right) & 1
\end{array}\right) . \tag{20}
\end{array}
$$

Using (19) we see that the right hand sides of equations (18) and (20) are equal, that is,

$$
\rho((A, v, r) \cdot(B, w, s))=\rho(A, v, r) \rho(B, w, s)
$$

Thus the map ρ (17) is a group homomorphism. The map ρ is injective, for if $\rho(A, v, r)=\left(I_{2 n}, 0,0\right)$, then $v=0$ and $r=0$. So $(A, v, r)=\left(I_{2 n}, 0,0\right)$, the identity element of \widehat{G}.

Since \widehat{G} is a subgroup of $\operatorname{AfSp}\left(\mathbb{R}^{2 n}, \frac{1}{2} \omega\right) \times \mathbb{R}$, it follows that if $(A, v, r) \in$ \widehat{G}, then $A \in \operatorname{Sp}\left(\mathbb{R}^{2 n}, \frac{1}{2} \omega\right)$. Thus the image of the map ρ is contained in $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)$. Here the matrix of the symplectic form Ω with respect to the basis $\left\{e_{0}, e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}, f_{n+1}\right\}$ of $\mathbb{R}^{2 n+2}$ is $\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & \frac{1}{2} J & 0 \\ -1 & 0 & 0\end{array}\right)$, and $J=$ $\left(\begin{array}{cc}0 & I_{n} \\ -I_{n} & 0\end{array}\right)$ is the matrix of the symplectic form ω with respect to the basis
$\left\{e_{1}, \ldots, e_{n}, f_{1}, \ldots, f_{n}\right\}$ of $\mathbb{R}^{2 n}$. The image of the map ρ (17) is the odd real symplectic group $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}=\left\{\mathcal{A} \in \operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right) \mid \mathcal{A} f_{n+1}=f_{n+1}\right\}$. Consequently, \widehat{G} is isomorphic to $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$.

The Lie algebra $\operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ of the Lie group $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ is

$$
\left\{\left.\widehat{X}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
x & X & 0 \\
\xi & \frac{1}{2} \omega^{\sharp}(x) & 0
\end{array}\right) \in \operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right) \right\rvert\, x \in \mathbb{R}^{2 n}, X \in \operatorname{sp}\left(\mathbb{R}^{2 n}, \frac{1}{2} \omega\right), \text { and } \xi \in \mathbb{R}\right\}
$$

with Lie bracket

$$
\left.[\widehat{X}, \widehat{Y}]=\left[\begin{array}{ccc}
0 & 0 & 0 \tag{21}\\
x & X & 0 \\
\xi & \frac{1}{2} \omega^{\sharp}(x) & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
y & Y & 0 \\
\eta & \frac{1}{2} \omega^{\sharp}(y) & 0
\end{array}\right)\right]=\left(\begin{array}{ccc}
X_{y}-Y x & 0 & 0 \\
\omega(x, y) & \frac{1}{2} \omega^{\sharp}(X, Y] & 0 \\
0
\end{array}\right) .
$$

Here $\frac{1}{2} \omega^{\sharp}(x)=-\frac{1}{2} x^{T} J$, since for each $z \in \mathbb{R}^{2 n}$

$$
\frac{1}{2} \omega^{\sharp}(x) z=\frac{1}{2} \omega(x, z)=-\frac{1}{2} \omega(z, x)=\left(-\frac{1}{2} x^{T} J\right) z .
$$

The map

$$
\mu: \widehat{\mathfrak{g}} \rightarrow \operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}:(X, x, \xi) \mapsto \widehat{X}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
x & X & 0 \\
\xi & \frac{1}{2} \omega^{\sharp}(x) & 0
\end{array}\right)
$$

is a Lie algebra isomorphism, because it is a bijective linear map and

$$
\begin{aligned}
& \mu([(X, x, \xi),(Y, y, \eta)])=\mu([X, Y], X y-Y x, \omega(x, y)) \\
& \quad=\left(\begin{array}{ccc}
x y-Y x & 0 & 0 \\
\omega(x, y) & \left.\frac{1}{2} \omega^{\sharp}(X, Y]-Y x\right) & 0 \\
0
\end{array}\right)=[\widehat{X}, \widehat{Y}]=[\mu(X, x, \xi), \mu(Y, y, \eta)] .
\end{aligned}
$$

This verifies that the Lie algebra of the Lie group \widehat{G} has Lie bracket given by (14), because the group \widehat{G} is isomorphic to $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$.
Claim 3.2. The action

$$
\begin{gather*}
\widehat{\Phi}: \operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}} \times\left(\mathbb{R}^{2 n}, \omega\right) \rightarrow\left(\mathbb{R}^{2 n}, \omega\right): \\
\quad\left(\left(\begin{array}{ccc}
1 & 0 & 0 \\
v & A & 0 \\
r & \frac{1}{2} \omega^{\sharp}\left(A^{-1} v\right) & 1
\end{array}\right), w\right) \mapsto A w+v \tag{22}
\end{gather*}
$$

is Hamiltonian.
Proof. The infinitesimal generator $X^{\widehat{X}}$ of the action $\widehat{\Phi}$ in the direction $\widehat{X} \in \operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ is the vector field $X^{\widehat{X}}(w)=X(w)+x$ on $\mathbb{R}^{2 n}$. For every $\widehat{Y}=\left(\begin{array}{ccc}0 & 0 & 0 \\ y & \frac{Y}{2} & 0 \\ \eta & \frac{1}{2} \omega^{\sharp}(y) & 0\end{array}\right) \in \operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ let

$$
\begin{equation*}
J^{\widehat{Y}}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}: w \mapsto \frac{1}{2} \omega(Y w, w)+\omega(y, w)+\eta . \tag{23}
\end{equation*}
$$

Then

$$
\mathrm{d} \widehat{J} \widehat{Y}(v) w=T_{v} \widehat{J}(\widehat{Y}) w=\omega(Y v, w)+\omega(y, w)=\omega\left(X^{\widehat{Y}}(v), w\right) .
$$

Thus $X^{\widehat{Y}}=X_{J_{\hat{Y}}}$. So the action $\widehat{\Phi}(22)$ is Hamiltonian. Since the mapping $\widehat{Y} \mapsto J^{\widehat{Y}}(w)$ is linear for every $w \in \mathbb{R}^{2 n}$, the action $\widehat{\Phi}(22)$ has a momentum mapping

$$
\begin{equation*}
\widehat{J}: \mathbb{R}^{2 n} \rightarrow \operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}^{*}, \tag{24}
\end{equation*}
$$

with $\widehat{J}(w) \widehat{Y}=\widehat{J}^{\widehat{Y}}(w)$.
Claim 3.3. The momentum mapping $\widehat{J}(24)$ of the $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ action $\widehat{\Phi}$ (22) is coadjoint equivariant, that is,

$$
\begin{equation*}
\widehat{J}\left(\widehat{\Phi}_{g}(w)\right)=\operatorname{Ad}_{g^{-1}}^{T} \widehat{J}(w) \tag{25}
\end{equation*}
$$

for every $g \in \operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ and every $w \in \mathbb{R}^{2 n}$.
Proof. It is enough to show that

$$
\begin{equation*}
\left\{\widehat{J}^{\widehat{Y}}, \widehat{J}^{\widehat{Z}}\right\}=\widehat{J}[\widehat{Y}, \widehat{Z}], \text { for every } \widehat{Y}, \widehat{Z} \in \widehat{\mathfrak{g}} \tag{26}
\end{equation*}
$$

because (26) is the infinitesimalization of the coadjoint equivariance condition (25) and $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ is generated by elements which lie in the image of the exponential mapping, since it is connected. We compute

$$
\begin{aligned}
\widehat{J}^{[\widehat{Y}, \widehat{Z}]}(w)= & \frac{1}{2} \omega([Y, Z] w, w)+\omega(Y z-Z y, w)+\omega(y, z), \\
& \quad \text { using equations (21) and (23) } \\
= & \omega(Y w, Z w)+\omega(Y w, z)+\omega(y, Z w)+\omega(y, z) \\
= & \omega(Y w, Z w+z)+\omega(y, Z w+z)=\mathrm{d} \widehat{J}^{\widehat{Y}}(w) X^{\widehat{Z}}(w) \\
= & \left(L_{X_{\widehat{J}} \widehat{Z}} \widehat{J}^{\widehat{Y}}\right)(w)=\left\{\widehat{J}^{\widehat{Y}}, \widehat{J}^{\widehat{Z}}\right\}(w) .
\end{aligned}
$$

4 Coadjoint orbit

In this section using results of [4] we algebraically classify the coadjoint orbit $\mathcal{O}\left(\widehat{J}\left(e_{1}\right)\right)$ of the odd real symplectic group $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ through $\widehat{J}\left(e_{1}\right) \in \operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}^{*}$. We show that this coadjoint orbit has a modulus.

First we note that the action $\widehat{\Phi}(22)$ of $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ on $\mathbb{R}^{2 n}$ is transitive. Thus to determine the $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ coadjoint orbit through $\widehat{J}(w)$
for a fixed $w \in \mathbb{R}^{2 n}$, it suffices to determine the coadjoint orbit $\mathcal{O}\left(\widehat{J}\left(e_{1}\right)\right)$ through $\widehat{J}\left(e_{1}\right) \in \operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}^{*}$. We have

$$
\widehat{Y}=\left(\begin{array}{c|c|c|c}
0 & 0 & 0 & 0 \\
\hline y^{1} & A & B & 0 \\
\hline y^{2} & C & -A^{T} & 0 \\
\hline \eta & \frac{1}{2}\left(y^{2}\right)^{T} & -\frac{1}{2}\left(y^{1}\right)^{T} & 0
\end{array}\right),
$$

where $Y=\left(Y_{i j}\right)=\left(\begin{array}{cc}A & B \\ C & -A^{T}\end{array}\right) \in \operatorname{sp}\left(\mathbb{R}^{2 n}, \frac{1}{2} \omega\right)$ with A, B, and $C \in \operatorname{gl}\left(\mathbb{R}^{n}, \mathbb{R}\right)$, where $B=B^{T}$ and $C=C^{T} ; y^{T}=\left(\left(y^{1}\right)^{T} \mid\left(y^{2}\right)^{T}\right)=\left(y_{1}, \ldots, y_{n} \mid y_{n+1}, \ldots, y_{2 n}\right)$ $\in \mathbb{R}^{2 n}$; and $\eta \in \mathbb{R}$. Then using (23) we get

$$
\begin{aligned}
\widehat{J}\left(e_{1}\right) \widehat{Y} & =\frac{1}{2} e_{1}^{T}\left(\begin{array}{cc}
C & -A^{T} \\
-A & -B
\end{array}\right) e_{1}+e_{1}^{T}\binom{y^{2}}{-y^{1}}+\eta \\
& =\frac{1}{2} Y_{n+1,1}+y_{n+1}+\eta .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\widehat{J}\left(e_{1}\right)=\frac{1}{2} E_{n+1,1}^{*}+\frac{1}{2} E_{n+1,0}^{*}+E_{2 n+1,1}^{*}+E_{2 n+1,0}^{*} \tag{27}
\end{equation*}
$$

With respect to the basis $\left\{E_{i j}^{*}\right\}_{i, j=0}^{2 n+1}$, which is dual to the standard basis $\left\{E_{i j}\right\}_{i, j=0}^{2 n+1}$ of $\operatorname{gl}\left(\mathbb{R}^{2 n+2}, \mathbb{R}\right)$ where $E_{i j}=\left(\delta_{i k} \delta_{j \ell}\right)$, we have

$$
\widehat{J}\left(e_{1}\right)=\left(\begin{array}{c|c|c|c}
0 & 0 & 0 & 0 \tag{28}\\
\hline 0 & 0 & 0 & 0 \\
\hline r & D & 0 & 0 \\
\hline 1 & 2 r^{T} & 0 & 0
\end{array}\right) \in \operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}^{*} .
$$

Here $r^{T}=(1 / 2,0, \ldots, 0) \in \mathbb{R}^{n}$ and $D=\operatorname{diag}(1 / 2,0, \ldots, 0) \in \operatorname{gl}\left(\mathbb{R}^{n}, \mathbb{R}\right)$.
We now use results of [4] to algebraically characterize the coadjoint orbit $\mathcal{O}\left(\widehat{J}\left(e_{1}\right)\right)$. The affine cotype ∇ represented by the tuple $\left(\mathbb{R}^{2 n+2}, Z, f_{n+1} ; \Omega\right)$ corresponds to the coadjoint orbit $\mathcal{O}\left(\widehat{J}\left(e_{1}\right)\right)$, see proposition 4 of [4]. Here

$$
Z=\widehat{J}\left(e_{1}\right)^{T}=\left(\begin{array}{c|c|c|c}
0 & 0 & r^{T} & 1 \\
\hline 0 & 0 & D & 2 r \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right) \in \operatorname{sp}\left(\mathbb{R}^{2 n+2}, \Omega\right) .
$$

Since $Z^{2}=0$, the cotype ∇ is nilpotent and has height 1 . The parameter of ∇ is 1 . Thus by proposition 7 of [4] the affine cotype $\nabla=\nabla_{1}(0), 1+\Delta$. Here $\nabla_{1}(0), 1$ is the nilpotent indecomposable cotype of height 1 and modulus

1 , which is represented by the tuple $\left(\mathbb{R}^{2},\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right), f_{1} ;\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right)$, and Δ is a semisimple type, see [2]. Since Δ is a nilpotent of height 0 , it equals 0 .

We give another argument which proves the above assertion. The tuples $\left(\mathbb{R}^{2 n+2}, Z, f_{n+1} ; \Omega\right)$ and $\left(\mathbb{R}^{2 n+2}, P Z P^{-1}, f_{n+1} ; \Omega\right)$ are equivalent, when $P \in$ $\operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$ and thus represent the same cotype ∇. Let $P=\left(\begin{array}{ccc}1 & 0 & 0 \\ d & I_{2 n} & 0 \\ f & -\frac{1}{2} d^{T} J & 1\end{array}\right)$ $\in \operatorname{Sp}\left(\mathbb{R}^{2 n+2}, \Omega\right)_{f_{n+1}}$. We compute.

$$
\begin{aligned}
& P Z P^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
d & I_{2 n} & 0 \\
f & -\frac{1}{2} d^{T} J & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & \widetilde{r}^{T} & 1 \\
0 & \widetilde{D} & \widetilde{s} \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-d & I_{2 n} & 0 \\
-f & \frac{1}{2} d^{T} J & 1
\end{array}\right) \\
& \text { where } \widetilde{r}^{T}=\left(0 \mid r^{T}\right), \widetilde{s}^{T}=(2 J \widetilde{r})^{T}=(2 r \mid 0), \text { and } \\
& \widetilde{D}=\left(\begin{array}{ll}
0 & D \\
0 & 0
\end{array}\right) \\
&=\left(\begin{array}{ccc}
1 & 0 & 0 \\
d & I_{2 n} & 0 \\
f & -\frac{1}{2} d^{T} J & 1
\end{array}\right)\left(\begin{array}{cccc}
-\widetilde{r^{T}} d-f & \widetilde{r}^{T}+\frac{1}{2} d^{T} J & 1 \\
-\widetilde{D} d-f \widetilde{s} & \widetilde{D}+\frac{1}{2} \widetilde{s} \otimes d^{T} J & \widetilde{s} \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Choose $d=-\widetilde{s}$ and set $f=0$. Then

$$
\begin{aligned}
& -r^{T} d-f=\widetilde{r}^{T} \widetilde{s}=\left(0 \mid r^{T}\right)\left(\frac{2 r}{0}\right)=0 \\
& \widetilde{r}^{T}+\frac{1}{2} d^{T} J=\left(0 \mid r^{T}\right)+\frac{1}{2}\left(-2 r^{T} \mid 0\right)\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)=\left(0 \mid r^{T}\right)+\left(0 \mid-r^{T}\right)=0 \\
& -\widetilde{D} d-f \widetilde{s}=-\widetilde{D} \widetilde{s}=\left(\begin{array}{c|c}
0 & D \\
\hline 0 & 0
\end{array}\right)\left(\frac{2 r}{0}\right)=0 \\
& \widetilde{D}+\frac{1}{2} \widetilde{s} \otimes d^{T} J=\widetilde{D}+\frac{1}{2} \widetilde{s} \otimes(0 \mid-2 r)=\widetilde{D}-\frac{1}{2} e_{1} \otimes f_{1}^{T}=0 .
\end{aligned}
$$

Therefore

$$
P Z P^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\widetilde{s} & I_{n} & 0 \\
0 & \frac{1}{2} \widetilde{s}^{T} J & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & \widetilde{s} \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

References

[1] Larry Bates and Richard Cushman, Removing the cocycle in a momentum map, JP journal of geometry and topology 5 (2005) 103-107.
[2] N. Burgoyne and R. Cushman, Conjugacy classes in linear groups, J. Alg. 44 (1977), 483-529.
[3] R.H. Cushman and L.M. Bates, "Global aspects of classical integrable systems", second edition, Birkhäuser, Basel, 2015.
[4] Richard Cushman, Coadjoint orbits of the odd real symplectic group, Arxiv:2212.0067v2.
[5] J.-M. Souriau, "Structure of dynamical systems: a symplectic point of view of physics", Birkhäuser, Boston, 1997.
[6] N. Wallach, "Symplectic geometry and Fourier analysis", Math Sci Press, Brookline, MA, 1977.

[^0]: ${ }^{1}$ printed: February 7, 2023

