
The Mondrian Kernel

Matej Balog∗

Department of Engineering

University of Cambridge

Balaji Lakshminarayanan

Gatsby Unit

University College London

Zoubin Ghahramani

Department of Engineering

University of Cambridge

Daniel M. Roy

Department of Statistical Sciences

University of Toronto

Yee Whye Teh

Department of Statistics

University of Oxford

Abstract

We introduce the Mondrian kernel, a fast random

feature approximation to the Laplace kernel. It is

suitable for both batch and online learning, and

admits a fast kernel-width-selection procedure as

the random features can be re-used efficiently for

all kernel widths. The features are constructed

by sampling trees via a Mondrian process [Roy

and Teh, 2009], and we highlight the connection

to Mondrian forests [Lakshminarayanan et al.,

2014], where trees are also sampled via a Mon-

drian process, but fit independently. This link

provides a new insight into the relationship be-

tween kernel methods and random forests.

1 INTRODUCTION

Kernel methods such as support vector machines and Gaus-

sian processes are very popular in machine learning. While

early work relied on dual optimization, recent large-scale

kernel methods focus on the primal optimization problem

where the input data are mapped to a finite-dimensional

feature space and the weights are learned using fast linear

optimization techniques, e.g., stochastic gradient descent.

Rahimi and Recht [2007] proposed to approximate shift-

invariant kernels by mapping the inputs to so-called ran-

dom features, constructed so that the inner product of two

mapped data points approximates the kernel evaluated at

those two points (which is the inner product in the fea-

ture space corresponding to the kernel). Rahimi and Recht

[2007] proposed two random feature construction schemes:

random Fourier features, where data points are projected

onto random vectors drawn from the Fourier transform of

the kernel and then passed through suitable non-linearities;

and random binning, where the input space is partitioned

by a random regular grid into bins and data points are

mapped to indicator vectors identifying which bins they

∗Also affiliated with Max-Planck Institute for Intelligent Sys-
tems, Tübingen, Germany.

end up in. Both of these approaches require specifying

the kernel hyperparameters in advance, so that the appro-

priate distribution is used for sampling the random vectors

or random grids, respectively. However, a suitable kernel

width (length-scale) is often not known a priori and is found

by cross-validation, or, where available, marginal likeli-

hood optimization. In practice, this entails constructing a

new feature space and training a linear learner from scratch

for each kernel width, which is computationally expensive.

Using a suitable kernel width is often more important than

the choice of kernel type [Schölkopf and Smola, 2001], so

a fast kernel width selection method is desirable.

We describe a connection between the Laplace kernel and

the Mondrian process [Roy and Teh, 2009], and leverage it

to develop a random feature approximation to the Laplace

kernel that addresses the kernel width selection problem.

This approximation, which we call the Mondrian kernel,

involves random partitioning of data points using a Mon-

drian process, which can be efficiently reused for all kernel

widths. The method preserves the nonparametric nature of

kernel learning and is also suitable for online learning.

The Mondrian kernel reveals an interesting link between

kernel methods and decision forests [Breiman, 2001, Cri-

minisi et al., 2012], another popular class of nonparamet-

ric methods for black-box prediction tasks. The Mondrian

kernel resembles Mondrian forests, a decision-forest vari-

ant introduced by Lakshminarayanan et al. [2014], where

a Mondrian process is used as the randomization mecha-

nism. The efficiently trainable Mondrian forests excel in

the online setting, where their distribution is identical to the

corresponding batch Mondrian forest, and have been suc-

cessfully applied to both classification and regression [Lak-

shminarayanan et al., 2014, 2016]. Mondrian forests and

the Mondrian kernel both lead to randomized, non-linear

learning algorithms whose randomness stems from a Mon-

drian process. The former fits parameters corresponding

to different Mondrian trees independently, while the latter

fits them jointly. We compare these methods theoretically

and thus establish a novel connection between the Laplace

kernel and Mondrian forests via the Mondrian kernel.

The contributions of this paper are:

• a review of the Mondrian process using the simple no-

tion of competing exponential clocks (Section 2);

• a novel connection between the Mondrian process and

the Laplace kernel (Section 3), yielding a fast approx-

imation to learning with the Laplace kernel;

• an efficient procedure for learning the kernel width

from data (Section 4); and

• a comparison between Mondrian kernel and Mondrian

forest that provides another connection between ker-

nel learning and random forests (Section 6).

2 MONDRIAN PROCESS

For completeness, we review the Mondrian process [Roy

and Teh, 2009, Roy, 2011, Chapter 5]. Although simple

and perhaps well known to experts, our exposition through

competing exponential clocks has not explicitly appeared

in this form in the literature. Readers familiar with the

Mondrian process may skip this section on first reading.

2.1 TERMINOLOGY

An axis-aligned box X = X1×· · ·×XD ⊆ R
D is a Carte-

sian product of D bounded intervals Xd ⊆ R. Their total

length |X1| + · · · + |XD| is the linear dimension of X . A

guillotine partition of X is a hierarchical partitioning of X
using axis-aligned cuts. Such a partition can be naturally

represented using a strictly binary tree.

An exponential clock with rate r takes a random time

T ∼ Exp(r) to ring after being started, where Exp(r) is

the exponential distribution with rate (inverse mean) r. The

notion of competing exponential clocks refers to D inde-

pendent exponential clocks with rates r1, . . . , rD, started

at the same time. It can be shown that (1) the time until

some clock rings has Exp(
∑

rd) distribution, (2) it is the

d-th clock with probability proportional to rd, and (3) once

a clock rings, the remaining D − 1 clocks continue to run

independently with their original distributions.

2.2 GENERATIVE PROCESS

The Mondrian process on an axis-aligned box X ⊆ R
D is a

time-indexed stochastic process taking values in guillotine-

partitions of X . It starts at time 0 with the trivial partition

of X (no cuts) and as time progresses, new axis-aligned

cuts randomly appear, hierarchically splitting X into more

and more refined partitions. The process can be stopped at

a lifetime λ ∈ [0,∞), which amounts to ignoring any cuts

that would appear after time λ.

To describe the distribution of times and locations of new

cuts as time progresses, we associate an independent ex-

ponential clock with rate |Xd| to each dimension d of X .

Let T be the first time when a clock rings and let d be the

X1

X2

0.23

0.70

0.46

0
0 1

1

x1

x2

0.66

0.82

0.25

(a)

time t

λ = 1

0.70

0.46

0.23

0
1.00
1.00

0.66
1.00

x1 < 0.66

0.66
0.82

0.66
0.18

x2 < 0.82

0.34
1.00

0.34
0.25

0.34
0.75

x2 < 0.25

(b)

Figure 1: (a) Sample of a Mondrian process on the axis-

aligned box X = [0, 1]× [0, 1] ⊆ R
2 with lifetime λ = 1.0.

Numbers on the cuts (shown in green) indicate the times

when they appeared. The first cut appeared at time T =
0.23, in dimension d = 1, at location a = 0.66 ∈ X1. (b)

Representing the Mondrian sample as a strictly binary tree,

with new nodes (shown as circles) appearing as time (y-

axis) progresses. The two numbers below each node show

the rates of the two exponential clocks competing to split

that node, with the winning clock’s rate shown in green.

dimension of that clock. If T > λ then this process termi-

nates. Otherwise, a point a is chosen uniformly at random

from Xd and X is split into X< = {x ∈ X | xd < a}
and X> = {x ∈ X | xd > a} by a hyperplane in dimen-

sion d that is perpendicular to Xd at point a. After mak-

ing this first cut, the remaining D − 1 clocks are discarded

and the generative process restarts recursively and indepen-

dently on X< and X>. However, those processes start at

time T rather than 0 and thus have less time left until the

lifetime λ is reached.

The specification of the generative process on X is now

complete. Due to the properties of competing exponential

clocks, the time until the first cut appears in X has expo-

nential distribution with rate equal to the linear dimension

of X and the dimension d in which the cut is made is chosen

proportional to |Xd|. This confirms equivalence of our gen-

erative process to the one proposed by Roy and Teh [2009].

Finally, we note that a.s. the Mondrian process does not ex-

plode, i.e., for every lifetime λ ∈ [0,∞), the process gen-

erates finitely many cuts with probability 1 [Roy, 2011].

2.3 PROJECTIVITY

If a Mondrian process runs on X , what distribution of ran-

dom partitions does it induce on an axis-aligned subbox

A ⊆ X ? (See Figure 2a for an illustration in D = 2 dimen-

sions.) The Mondrian process was constructed so that the

answer is the Mondrian process itself [Roy, 2011]. Here

we explain this projectivity property using the notion of

competing exponential clocks. To argue that the resulting

process on A is indeed a Mondrian process, we show that

the process running on X generates cuts in A in the same

way as a Mondrian process running directly on A would.

Recall that each dimension d of X is associated with an

exponential clock with rate |Xd| and if it rings first, the

cut location is chosen uniformly at random from Xd. This

procedure can be equivalently represented using two com-

peting clocks for each dimension (rather than just one):

• Clock Cd
A with rate |Ad|. If this clock rings first, the

cut location is chosen uniformly at random from Ad.

• Clock Cd
¬A with rate |Xd| − |Ad|. If it rings first, the

cut location is sampled uniformly from Xd \ Ad.

(See Figure 2b.) Note that the clocks C1
A, . . . , CD

A represent

the same cut distribution as a Mondrian process running on

A would. If a clock Cd
¬A rings first, a cut is made outside of

A and all of A remains on one side of this cut. None of the

clocks Cd
A have rung in that case and would usually be dis-

carded and replaced with fresh clocks of identical rates, but

by property (3) of competing exponential clocks, we can

equivalently reuse these clocks (let them run) on the side of

the cut containing A. (Figure 2c shows a cut in dimension

d = 1 that misses A and the reused clocks Cd
A). Hence,

cuts outside A do not affect the distribution of the first cut

crossing A, and this distribution is the same as if a Mon-

drian process were running just on A. When a cut is made

within A (see Figure 2d), the process continues on both

sides recursively and our argument proceeds inductively,

confirming that the Mondrian process on X generates cuts

in A in the same way as a Mondrian process on A would.

2.4 MONDRIAN PROCESS ON R
D

The Mondrian process on R
D is defined implicitly as a

time-indexed stochastic process such that its restriction to

any axis-aligned box X ⊆ R
D is a Mondrian process as de-

fined in section 2.2. Fortunately, this infinite-dimensional

object can be compactly represented by instantiating the

Mondrian process only in regions where we have observed

data. As we observe new data points, the Mondrian sample

can be extended using the conditional Mondrian algorithm

[Roy and Teh, 2009], a simple and fast sampling procedure

for extending a Mondrian sample in an axis-aligned box A
to a larger axis-aligned box X ⊇ A. The conditional Mon-

drian is useful for online learning and prediction, as it can

be used to extend Mondrian samples to (yet) unobserved

parts of the input space [Lakshminarayanan et al., 2014].

3 MONDRIAN KERNEL

For concreteness, our running example will be regression:

the problem of learning a function f : RD → R from a set

of N training examples (x1, y1), . . . , (xN , yN). However,

the Mondrian kernel applies equally well to classification,

or any other learning task.

Learning with kernels involves choosing a kernel function

k : RD × R
D → R to act as a similarity measure between

input data points. Evaluating k(·, ·) on all pairs of N data

X1

X2

A1

A2

(a)

X1

X2

A1

A2

C1

¬A
C1

A
C1

¬A

C2

¬A

C2

A

C2

¬A

(b)

X1

X2

A1

A2

C1

A

C2

A

(c)

A<

1

A>

1
A>

2

A<

2

X<

1

X<

2

X>

1

X>

2

(d)

Figure 2: (a) A Mondrian process running on X = X1×X2

generates cuts (dashed lines), some of which intersect A =
A1 × A2 (green lines) and thus induces a random parti-

tion of A. (b) Representing the first cut distribution using

2D = 4 competing exponential clocks: in each dimen-

sion d, clock Cd
A corresponds to the region where making

a cut splits A (shown in green) and clock Cd
¬A to the (dis-

connected) region where making a cut misses A (shown in

red). (c) Cut outside A: reusing the clocks C1
A, C2

A on the

side of the cut containing A. (d) Cut inside A (shown in

black): the argument proceeds by induction on both sides.

points takes Ω(N2) operations, with some models also re-

quiring a Θ(N3) operation on an N × N kernel matrix.

This generally makes exact kernel methods unsuitable for

large-scale learning. Rahimi and Recht [2007] proposed a

fast approximation through a randomized construction of a

low-dimensional feature map φ : RD → R
C such that

∀x,x′ ∈ R
D k(x,x′) ≈ φ(x)Tφ(x′)

and then using a linear learning method in the feature space

R
C implied by φ. For example, linear regression y ≈ Φw,

where Φ ∈ R
N×C is the feature matrix with n-th row

φ(xn)
T , is solvable exactly in time linear in N . In general,

the primal problem also lends itself naturally to stochastic

gradient descent approaches for learning w.

We use the Mondrian process to construct a randomized

feature map for the (isotropic) Laplace kernel:

k(x,x′) = exp(−λ‖x− x′‖1) = exp(−λ

D
∑

d=1

|xd − x′
d|).

Here λ ≥ 0 is the inverse kernel width (inverse length-

scale), which we call the lifetime parameter of the kernel.

We use a non-standard parametrization as this lifetime pa-

rameter will be linked to the Mondrian process lifetime.

3.1 MONDRIAN KERNEL

Consider the following randomized construction of a fea-

ture map φ : RD → R
C :

1. Sample a partition of RD via a Mondrian process on

R
D with lifetime λ. Label the cells of the generated

partition by 1, 2, . . . in arbitrary order.

2. To encode a data point x ∈ R
D, look up the label c

of the partion cell x falls into and set φ(x) to be the

(column) indicator vector that has a single non-zero

entry at position c, equal to 1.

The Mondrian process on R
D generates infinitely many

partition cells and cannot be stored in memory, but pro-

jectivity comes to the rescue. As we only ever need to

evaluate φ on finitely many data points, it suffices to run

the Mondrian on the smallest axis-aligned box containing

all these points. Also, we only label partition cells contain-

ing at least one data point, in effect removing features that

would be 0 for all our data points. Then, the dimensionality

C of φ equals the number of non-empty partiton cells and

each data point has a single non-zero feature, equal to 1.

x1

x2

x3

x4 cell 1

cell 2

cell 3

x φ(x)T

x1 [0 1 0]

x2 [0 1 0]

x3 [0 0 1]

x4 [1 0 0]

Figure 3: Feature expansions of 4 data points in R
2.

However, note that the set of points on which the feature

map φ is evaluated need not be known in advance and can

even grow in an online fashion. Indeed, the conditional

Mondrian algorithm discussed in section 2.4 allows us to

extend Mondrian samples to larger boxes as necessary, and

we can increase the dimensionality of φ whenever a data

point is added to a previously empty partition cell.

This feature map φ induces a kernel

k1(x,x
′) := φ(x)Tφ(x′)

=

{

1 if x,x′ in same partition cell

0 otherwise
(1)

which we call a Mondrian kernel of order 1.

Instead of using a single Mondrian sample (partition), we

can use M independent samples and construct a feature

map φ by concatenating and normalizing the feature maps

φ(1), . . . , φ(M) obtained from each individual sample as

above:

φ(x) :=
1√
M

[

φ(1)(x)T · · · φ(M)(x)T
]T

. (2)

This feature expansion is sparse: every data point has

exactly M non-zero features. The corresponding kernel,

which we call a Mondrian kernel of order M , is

kM (x,x′) := φ(x)Tφ(x′)

=
1

M

M
∑

m=1

φ(m)(x)Tφ(m)(x′).

This is the empirical frequency with which points x and x′

end up in the same partition cell of a Mondrian sample.

Algorithm 1 Mondrian kernel

1: for m = 1 to M do

2: construct feature map φ(m) ⊲ section 3.1

3: join and rescale φ(1), . . . , φ(M) into φ ⊲ equation (2)

4: map data X to feature representations Φ using φ

5: use linear learning method on Φ

3.2 MONDRIAN–LAPLACE LINK

By independence of the M Mondrian samples, a.s.

lim
M→∞

kM (x,x′) = E

[

φ(1)(x)Tφ(1)(x′)
]

= E [k1(x,x
′)]

with convergence at the standard rate Op(M
−1/2). We thus

define the Mondrian kernel of order ∞ as

k∞(x,x′) := E[k1(x,x
′)].

Proposition 1 (Mondrian-Laplace link). The Mondrian

kernel of order ∞ coincides with the Laplace kernel.

Proof. As k1(x,x
′) (defined in (1)) is a binary random

variable, k∞(x,x′) equals the probability that x and x′ fall

into the same partition cell of a Mondrian sample, which

is equivalent to the sample having no cut in the minimal

axis-aligned box spanned by x and x′.

|x1 − x′
1
|

|x2 − x′
2
|

x′

x
minimal axis-aligned box
spanned by x and x′

By projectivity, this probability is the same as the proba-

bility of not observing any cuts in a Mondrian process with

lifetime λ running on just this minimal box. Noting that the

linear dimension of this box is ‖x− x′‖1, we obtain

k∞(x,x′) = P(no cut between x,x′ until time λ)

= P (T > λ) where T ∼ Exp (‖x− x′‖1)
= e−λ‖x−x

′‖1 .

Note that the lifetime (inverse width) λ of the Laplace ker-

nel corresponds to the lifetime of the Mondrian process

used in the construction of the Mondrian kernel.

This link allows us to approximate the Laplace kernel with

a Mondrian kernel kM , which, unlike the Laplace kernel,

admits a finite-dimensional feature expansion. The finite

order M trades off kernel approximation error and compu-

tational costs (indirectly through the complexity of φ).

The following result confirms that the convergence of the

Mondrian kernel approximation is exponentially fast in M

uniformly on any fixed bounded input domain X .

Proposition 2. For any bounded input domain X ⊆ R
D

and δ > 0, as M → ∞,

P

[

sup
x,x′∈X

|kM (x,x′)− k∞(x,x′)| > δ

]

= O
(

M2/3e−Mδ2/(12D+2)
)

.

Proof. Given in Supplement A.

4 FAST KERNEL WIDTH LEARNING

This section discusses the main advantage of our Mondrian

approximation to the Laplace kernel: the efficient learning

of kernel width from data. In particular, the approximation

allows for efficient evaluation of all kernel lifetimes (in-

verse widths) λ ∈ [0,Λ], where the terminal lifetime Λ > 0
need not be fixed a priori.

4.1 FEATURE SPACE REUSAL

We make the following recollections from earlier sections:

• the Mondrian process runs through time, starting at

time 0 and only refining the generated partition as time

progresses (cuts are never removed)

• the Mondrian process with lifetime λ is obtained by

ignoring any cuts that would occur after time λ

• the lifetime λ of the Mondrian process used in con-

structing an explicit feature map φ for a Mondrian ker-

nel corresponds to the lifetime (inverse width) of the

Laplace kernel that it approximates

Running the Mondrian process from time 0 to some termi-

nal lifetime Λ thus sweeps through feature spaces approxi-

mating all Laplace kernels with lifetimes λ ∈ [0,Λ]. More

concretely, we start with λ = 0 and φ the feature map cor-

responding to M trivial partitions, i.e., for any data point x,

the vector φ(x) has length M and all entries set to the nor-

malizer M−1/2. As we increase λ, at discrete time points

new cuts appear in the M Mondrian samples used in con-

structing φ. Suppose that at some time λ, the partition cell

corresponding to the c-th feature in φ is split into two by

a new cut that first appeared at this time λ. We update the

feature map φ by removing the c-th feature and appending

two new features, one for each partition cell created by the

split. See Figure 4 for an example with M = 1.

x1

x2

x3

x4 cell 1

cell 4 cell 5

cell 3

x φ(x)T

x1 [0 1 0 1 0]
x2 [0 1 0 0 1]
x3 [0 0 1 0 0]
x4 [1 0 0 0 0]

Figure 4: A new cut (shown in thick blue) appeared, split-

ting cell c = 2 (cf. Figure 3) into two new cells c = 4 and

c = 5. The table shows the update to φ, with the removed

feature in gray italics and the two new features in bold blue.

This procedure allows us to approximate all Laplace ker-

nels with lifetimes λ ∈ [0,Λ] without having to resample

new feature spaces for each lifetime. The total computa-

tional cost is the same (up to a multiplicative constant) as

of constructing a single feature space just for the terminal

lifetime Λ. This is because a strictly binary tree with C(m)

leaves (partition cells in the m-th Mondrian sample at time

Λ) contains at most C(m) − 1 internal nodes (features that

had to be removed at some time point λ < Λ).

4.2 LINEAR LEARNER RETRAINING

Evaluating suitability of a lifetime (inverse kernel width) λ

requires training and evaluating a linear model in the fea-

ture space implied by φ. This can also be done more effi-

ciently than retraining a new model from scratch every time

a new cut is added and φ updated. We discuss the example

of ridge regression with exact solutions, and a general case

of models trainable using gradient descent methods.

4.2.1 Ridge regression

The MAP weights of the primal ridge regression problem

are ŵ = A−1ΦTy, where A := (ΦTΦ + δ2IC) is the

regularized feature covariance matrix and δ2 is the regular-

ization hyperparameter. Instead of inverting A, it is numer-

ically more stable to work with its Cholesky factor chol(A)
[Seeger, 2003]. Phrasing the problem as Bayesian linear re-

gression with, say, observation noise variance σ2
y = δ2 and

prior weights variance σ2
w = 1, we can also obtain the log

marginal likelihood L(λ) of the form

L(λ) = −‖y −Φŵ‖22
2δ2

− ‖ŵ‖22
2

− 1

2
ln detA+ const,

where the dependence on λ is implicit through φ.

When a new cut appears in one of the M Mondrian samples

and φ is updated by deleting the c-th feature and appending

two new ones, the corresponding update to the regularized

feature covariance matrix A is to delete its c-th row and c-th

column, and append two new rows and columns. Then both

A−1 and chol(A) can be appropriately updated in O(C2)
time, faster than O(C3) recomputation from scratch. Up-

dating the Cholesky factor when the c-th row and column

are removed is slightly involved but can be achieved by

first permuting the rows and columns so that the ones to

be removed are the last ones [Seeger, 2004], after which

the Cholesky factor is updated by deleting its last row and

column. If C is the number of features at the terminal life-

time Λ, this O(C2) update is performed O(C) times, for

a total computational cost O(C3). Note that performing

the inversion or Cholesky factorization at just the terminal

lifetime Λ would have the same time complexity.

After updating A−1 or chol(A), the optimal weights ŵ can

be updated in O(C2 + N) time and the determinant of A

required for the marginal likelihood L(λ) can be obtained

from chol(A) as the squared product of its diagonal ele-

ments in O(C) time. Exploiting sparsity of φ, evaluating

the model on Ntest data points takes O(NtestM) time.

Finally, we note that computing the marginal likelihood

L(λ) for all λ ∈ [0,Λ] and combining it with a prior p(λ)
supported on [0,Λ] allows Bayesian inference over the ker-

nel width λ−1. We refer to Supplement B for more details.

4.2.2 Models trainable using gradient descent

Consider a linear model trained using a gradient descent

method. If (an approximation to) the optimal weight vector

w is available and then φ is updated by removing the c-th

feature and appending two new features, a natural way of

reinitializing the weights for subsequent gradient descent

iterations is to remove the c-th entry of w and append two

new entries, both set to the removed value (as points in the

split cell are partitioned into the two new cells, this pre-

serves all model predictions). Note that we have the free-

dom of choosing the number of gradient descent iterations

after each cut is added, and we can opt to only evaluate the

model (on a validation set, say) at several λ values on the

first pass through [0,Λ]. One iteration of stochastic gradi-

ent descent takes O(M) time thanks to sparsity of φ.

This efficient kernel width selection procedure can be espe-

cially useful with models where hyperparameters cannot be

tweaked by marginal likelihood optimization (e.g., SVM).

5 ONLINE LEARNING

In this section, we describe how the Mondrian kernel can

be used for online learning. When a new data point

xN+1 ∈ R
D arrives, incorporating it into M existing Mon-

drian samples (using the conditional Mondrian algorithm

discussed in section 2.4) can create 0 ≤ k ≤ M new non-

empty partition cells, increasing the dimensionality of the

feature map φ. We set the new features to 0 for all previous

data points x1, . . . ,xN .

In our running example of ridge regression, exact primal

updates can again be carried out efficiently. The inverse

A−1 or Cholesky factor chol(A) of the regularized feature

covariance matrix A can be updated in two steps:

1. extend A−1 or chol(A) to incorporate the k new fea-

tures (set to 0 for all existing data points) in O(C2)
2. incorporate the new data point xN+1, which is now a

simple rank-1 update on A, so A−1 or chol(A) can

again be updated efficiently in O(C2) time

We refer to Supplement C for more details.

With gradient descent trainable models, we maintain (an

approximation to) the optimal weights w directly. When a

new data point arrives, we expand the dimensionality of φ

as described above. The previously optimal weights can be

padded with 0’s in any newly added dimensions, and then

passed to the gradient descent method as initialization.

6 LINK TO MONDRIAN FOREST

We contrast Mondrian kernel with Mondrian forest [Laksh-

minarayanan et al., 2014, 2016], another non-linear learn-

ing method based on the Mondrian process. They both start

by sampling M independent Mondrians on R
D to provide

M independent partitions of the data. However, these par-

titions are then used differently in the two models:

• In a Mondrian forest, parameters of predictive dis-

tributions in each tree are fitted independently of all

other trees. The prediction of the forest is the average

prediction among the M trees.

• With Mondrian kernel, the weights of all random fea-

tures are fitted jointly by a linear learning method.

Let C(m) count the leaves (non-empty partition cells) in the

m-th Mondrian sample and let C =
∑M

m=1 C
(m) be the to-

tal number of leaves. Let φ
(m)
n := φ(m)(xn) ∈ R

C(m)

be

the indicator of the partition cell in the m-th sample into

which the n-th data point falls (as in section 3.1). Also,

as in equation (2), let φn := φ(xn) ∈ R
C be the normal-

ized concatenated feature encoding of the n-th data point.

Recall that each vector φn ∈ R
C contains exactly M non-

zero entries, all of which equal the normalizer M−1/2.

For simplicity, we restrict our attention to ridge regression

in this section and compare the learning objective functions

of Mondrian kernel and Mondrian forest.

6.1 MONDRIAN KERNEL OBJECTIVE

The primal ridge regression problem in the feature space

implied by φ is

min
w∈RC

N
∑

n=1

(yn −wTφn)
2 + δ2‖w‖22.

Decomposing w = M−1/2[w(1)T · · ·w(M)T]T , so that

each (rescaled) subvector w(m) corresponds to features

from the m-th Mondrian, denoting by ŷ
(m)
n := w(m)Tφ

(m)
n

the “contribution” of the m-th Mondrian to the prediction

at the n-th data point, and writing loss(y, ŷ) := (y − ŷ)2,

the Mondrian kernel objective function can be restated as

min
w∈RC

N
∑

n=1

loss

(

yn,
1

M

M
∑

m=1

ŷ(m)
n

)

+ δ2‖w‖22. (3)

6.2 MONDRIAN FOREST OBJECTIVE

Assuming a factorizing Gaussian prior over the leaves in

each Mondrian tree (i.e., without the hierarchical smooth-

ing used by Lakshminarayanan et al. [2016]), the predictive

mean parameters w(m) in the leaves of the m-th Mondrian

tree are fitted by minimizing

min
w

(m)∈RC(m)

N
∑

n=1

(yn −w(m)Tφ(m)
n)2 + γ2‖w(m)‖22

where γ2 is the ratio of noise and prior variance in the pre-

dictive model. The parameters w(m) are disjoint for differ-

ent trees, so these M independent optimization problems

are equivalent to minimizing the average of the M indi-

vidual objectives. Writing ŷ
(m)
n := w(m)Tφ

(m)
n for the

m-th tree’s prediction at the n-th data point and concate-

nating the parameters w := M−1/2[w(1)T · · ·w(M)T]T ,

the Mondrian forest objective can be stated as

min
w∈RC

N
∑

n=1

1

M

M
∑

m=1

loss(yn, ŷ
(m)
n) + γ2‖w‖22. (4)

6.3 DISCUSSION

Comparing (3) and (4), we see that subject to regularization

parameters (priors) chosen compatibly, the two objectives

only differ in the contribution of an individual data point n

to the total loss:

Mondrian kernel: loss

(

yn,
1

M

M
∑

m=1

ŷ(m)
n

)

Mondrian forest:
1

M

M
∑

m=1

loss(yn, ŷ
(m)
n)

Specifically, the difference is in the order in which the aver-

aging 1
M

∑M
m=1 over Mondrian samples/trees and the non-

linear loss function are applied. In both models predictions

are given by ŷ = 1
M

∑M
m=1 ŷ

(m), so the Mondrian kernel

objective is consistent with the aim of minimizing empiri-

cal loss on the training data, while the forest objective min-

imizes average loss across trees, not the loss of the actual

prediction (when M > 1) [Ren et al., 2015].

Ren et al. [2015] address this inconsistency between learn-

ing and prediction by proposing to extend random forests

with a global refinement step that optimizes all tree param-

eters jointly, minimizing the empirical training loss. Our

approximation of the Laplace kernel via the Mondrian ker-

nel can be interpreted as implementing this joint parameter

fitting step on top of Mondrian forest, revealing a new con-

nection between random forests and kernel methods.

Mondrian
forest

Mondrian
kernel

Laplace
kernel

joint
fitting

M → ∞

7 RELATED WORK

The idea of Rahimi and Recht [2007] to approximate shift-

invariant kernels by constructing random features has been

further developed by Le et al. [2013] and Yang et al. [2015],

providing a faster method of constructing the random fea-

tures when the input dimension D is high. The fast method

of Dai et al. [2014] can adapt the number of random fea-

tures, making it better-suited for streaming data. To the

best of our knowledge, these methods require random fea-

tures to be reconstructed from scratch for each new kernel

width value; however, our solution allows us to efficiently

learn this hyperparameter for the Laplace kernel.

Decision forests are popular for black-box classification

and regression thanks to their competitive accuracy and

computational efficiency. The most popular variants are

Breiman’s Random Forest [Breiman, 2001] and Extremely

Randomized Trees [Geurts et al., 2006]. Breiman [2000]

established a link between the Laplace kernel and random

forests with an infinite number of trees, but unlike our

work, made two additional strong assumptions, namely in-

finite data and a uniform distribution of features. From

a computational perspective, Shen et al. [2006] approxi-

mated evaluation of an isotropic kernel using kd-trees, re-

ducing computational complexity as well as memory re-

quirements. Davies and Ghahramani [2014] constructed

‘supervised’ kernels using random forests and demon-

strated that this can lead to linear-time inference. We refer

to [Scornet, 2015] for a recent discussion on the connection

between decision forests and kernel methods.

A key difference between decision forests and kernel meth-

ods is whether parameters are fit independently or jointly.

In decision forests, the leaf node parameters for each tree

are fit independently, whereas the weights of random fea-

tures are fit jointly. Scornet [2015] shows that random

forests can be interpreted as adaptive kernel estimates and

discusses the theoretical properties of fitting parameters

jointly. Ren et al. [2015] propose to extend random forests

with a global refinement step, optimizing all tree parame-

ters jointly to minimize empirical training loss.

The proposed Mondrian kernel establishes a link between

Mondrian trees and Laplace kernel for finite data, without

any assumptions on the distribution of the features. Unlike

prior work, we exploit this connection to construct an adap-

tive random feature approximation and efficiently learn the

kernel width.

8 EXPERIMENTS

We conducted three sets of experiments, with these goals:

1. verify that Mondrian kernel approximates the Laplace

kernel, and compare to other random feature genera-

tion schemes (Section 8.1);

2. demonstrate usefulness of our efficient kernel width

selection procedure, showing that it can quickly learn

a suitable kernel width from data (Section 8.2); and

3. empirically compare the Mondrian kernel and Mon-

drian forests, supporting the insight into their relation-

ship from Section 6 (Section 8.3).

With the exception of two experiments on synthetic data,

we carried out our evaluation on the CPU dataset from

[Rahimi and Recht, 2007], containing N = 6554 train-

ing and Ntest = 819 test points with D = 21 attributes.

Note that the CPU dataset is an adversarial choice here, as

Rahimi and Recht [2007] report that random Fourier fea-

tures perform better than binning schemes on this task. In

all experiments, the ridge regularization constant was set to

δ2 = 10−4, the value used by Rahimi and Recht [2007],

and the primal optimization problems were solved using

stochastic gradient descent.

8.1 LAPLACE KERNEL APPROXIMATION

First we examined the absolute kernel approximation er-

ror |k∞(·, ·) − kM (·, ·)| directly. To this end, we sam-

pled N = 100 data points uniformly at random in the

unit square [0, 1]2 and computed the maximum absolute er-

ror over all N2 pairs of points. The Laplace kernel k∞
and Mondrian kernels kM had a common lifetime (inverse

width) λ = 10, so that several widths fit into the input do-

main [0, 1]2. We repeated the experiment 5 times for each

value of M , showing the results in Figure 5. We plot the

maximum error against the number M of non-zero features

per data point, which is relevant for solvers such as Pe-

gasos SVM [Shalev-Shwartz et al., 2007], whose running

time scales with the number of non-zero features per data

point. Under this metric, the Mondrian kernel and Ran-

dom binning converged to the Laplace kernel faster than

random Fourier features, showing that in some cases they

can be a useful option. (The error of Random Fourier fea-

tures would decrease faster when measured against the to-

tal number of features, as Mondrian kernel and Random

binning generate sparse feature expansions.)

Second, we examined the approximation error indirectly

via test set error on the CPU dataset. We repeated the ex-

periment 5 times for each value of M and show the results

in Figure 6. Even though Fourier features are better suited

to this task, for a fast approximation with few (M < 15)

non-zero features per data point, random binning and Mon-

drian kernel are still able to outperform the Fourier features.

0 10 20 30 40 50

M (non-zero features per data point)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m
a
x
im

u
m

a
b
s
o
lu

te
e
rr

o
r

Fourier features

random binning

Mondrian kernel

Figure 5: Maximum absolute kernel approximation error

on all pairs of N = 100 data points in [0, 1]2.

0 10 20 30 40 50

M (non-zero features per data point)

0

5

10

15

20

25

30

re
la

ti
v
e

te
s
t
s
e
t
e
rr

o
r

[%
]

Fourier features

random binning

Mondrian kernel

Figure 6: Test set error on the CPU dataset. The horizontal

line at 3.1% indicates the error achieved with an exact, but

expensive computation using the Laplace kernel.

8.2 FAST KERNEL WIDTH LEARNING

First, using a synthetic regression dataset generated from a

Laplace kernel with known ground truth lifetime λ0 = 10,

we verified that the lifetime could be recovered using our

kernel width selection procedure from Section 4. To this

end, we let the procedure run until a terminal lifetime Λ =
100 and plotted the error on a held-out validation set as a

function of the lifetime λ. The result in Figure 7 shows that

the ground truth kernel lifetime λ0 = 10 was recovered

within an order of magnitude by selecting the lifetime λ̂

minimizing validation set error. Moreover, this value of λ̂

led to excellent performance on an independent test set.

10
−2

10
−1

10
0 λ0 10

2
λ̂

lifetime λ

0.0

0.2

0.4

0.6

0.8

1.0

re
la

ti
v
e

e
rr

o
r

[%
]

M = 50, D = synthetic (D = 2, N = Nval = Ntest = 1000)

train

validation

test

Figure 7: Recovering the ground truth lifetime λ0 = 10 by

selecting the value λ̂ ≈ 19 minimizing validation set error.

10
0

10
1

10
2

10
3

computational time [s]

0

5

10

15

20

25
v
a
lid

a
ti
o
n

s
e
t
re

la
ti
v
e

e
rr

o
r

[%
]

random binning

Fourier features

Mondrian kernel

Figure 8: Validation set error as a function of computation

time. Even though Fourier features are better suited to the

CPU dataset [Rahimi and Recht, 2007] and eventually out-

perform the Mondrian kernel, the latter discovers suitable

kernel widths at least an order of magnitude faster.

Second, we evaluated our kernel width selection procedure

on the CPU dataset in order to demonstrate its practical use-

fulness. While the Mondrian kernel allows to efficiently

sweep through lifetimes λ, Fourier features and random

binning need to be reconstructed and retrained for each at-

tempted lifetime value. We started the Fourier features and

random binning at λ = 1, and in each step, we either dou-

bled the maximum lifetime or halved the minimum lifetime

considered so far, based on which direction seemed more

promising. Once a good performing lifetime was found,

we further optimized using a binary search procedure. All

schemes were set to generate M = 350 non-zero features

per datapoint. Figure 8 shows the performance of each

scheme on a held-out validation set as a function of com-

putation time. The result suggests that our kernel width

learning procedure can be used to discover suitable life-

times (inverse kernel widths) at least an order of magnitude

faster than random Fourier features or random binning.

8.3 MONDRIAN KERNEL VS FOREST

We compared the performance of Mondrian kernel and

“Mondrian forest” (quotes due to omission of hierarchical

smoothing) based on the same M = 50 Mondrian samples,

using the CPU dataset and varying the lifetime λ. Recall

that higher values of λ lead to more refined Mondrian par-

titions, allowing more structure in the data to be modeled,

but also increasing the risk of overfitting. Figure 9 shows

that Mondrian kernel exploits the joint fitting of parameters

corresponding to different trees and achieves a lower test

error at lower lifetime values, thus producing a more com-

pact solution based on simpler partitions. Figure 10 shows

the parameter values learned by Mondrian kernel and Mon-

drian forest at the lifetime λ = 2 × 10−6. The distribu-

tion of weights learned by Mondrian kernel is more peaked

around 0, as the joint fiting allows achieving more extreme

predictions by adding together several smaller weights.

10
−8

10
−7

10
−6

10
−5

lifetime λ

5

10

15

20

25

re
la

ti
ve

e
rr

o
r

[%
]

”M. forest” (test)

”M. forest” (train)

M. kernel (test)

M. kernel (train)

Figure 9: Comparison of Mondrian kernel and Mondrian

forest models based on the same set of Mondrian samples.

−100 −80 −60 −40 −20 0 20

weights learned by ”Mondrian forest”

−60

−40

−20

0

20

40

60

w
e
ig

h
ts

le
a
rn

e
d

b
y

M
o
n
d
ri

a
n

k
e
rn

e
l

−100 −80 −60 −40 −20 0 20

values

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

v
a
lu

e
fr

e
q
u
e
n
c
y

M. forest weights w

M. kernel weights w

training targets y

Figure 10: Weights learned by Mondrian forest and Mon-

drian kernel at the lifetime λ = 2× 10−6 in Figure 9.

9 CONCLUSION

We presented the Mondrian kernel, a fast approximation

to the Laplace kernel that admits efficient kernel width se-

lection. When a different kernel or a different approxima-

tion is used, our procedure can provide a fast and simple

way of initializing the kernel width for further optimiza-

tion. While a Gaussian kernel is often considered a default

choice, in many situations it imposes an inappropriately

strong smoothness assumption on the modelled function

and the Laplace kernel may in fact be a preferable option.

Our approach revealed a novel link between the Mondrian

process and the Laplace kernel. We leave the discovery of

similar links involving other kernels for future work.

Acknowledgements

We would like to thank Nilesh Tripuraneni for useful dis-

cussions. Part of this research was carried out while MB

was at the University of Oxford. BL gratefully acknowl-

edges generous funding from the Gatsby Charitable Foun-

dation. ZG acknowledges funding from the Alan Turing

Institute, Google, Microsoft Research and EPSRC Grant

EP/N014162/1. DMR is supported by an NSERC Discov-

ery Grant. YWT’s research leading to these results has re-

ceived funding from the European Research Council un-

der the European Union’s Seventh Framework Programme

(FP7/2007-2013) ERC grant agreement no. 617071.

References

L. Breiman. Some infinity theory for predictor ensembles.

Technical report, University of California at Berkeley,

2000.

L. Breiman. Random forests. Mach. Learn., 45:5–32, 2001.

A. Criminisi, J. Shotton, and E. Konukoglu. Decision

forests: A unified framework for classification, regres-

sion, density estimation, manifold learning and semi-

supervised learning. Found. Trends Comput. Graphics

and Vision, 2012.

B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Bal-

can, and L. Song. Scalable kernel methods via doubly

stochastic gradients. In Adv. Neural Information Proc.

Systems (NIPS), 2014.

A. Davies and Z. Ghahramani. The random forest kernel

and other kernels for big data from random partitions.

arXiv preprint arXiv:1402.4293v1, 2014.

P. Geurts, D. Ernst, and L. Wehenkel. Extremely random-

ized trees. Mach. Learn., 63(1):3–42, 2006.

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Mon-

drian forests: Efficient online random forests. In Adv.

Neural Information Proc. Systems (NIPS), 2014.

B. Lakshminarayanan, D. M. Roy, and Y. W. Teh. Mon-

drian forests for large scale regression when uncertainty

matters. In Int. Conf. Artificial Intelligence Stat. (AIS-

TATS), 2016.

Q. Le, T. Sarlós, and A. Smola. Fastfood-approximating

kernel expansions in loglinear time. In Proc. Int. Conf.

Mach. Learn. (ICML), 2013.

A. Rahimi and B. Recht. Random features for large-scale

kernel machines. In Adv. Neural Information Proc. Sys-

tems (NIPS), 2007.

S. Ren, X. Cao, Y. Wei, and J. Sun. Global refinement of

random forest. In Proc. IEEE Conference on Computer

Vision and Pattern Recognition, pages 723–730, 2015.

D. M. Roy. Computability, inference and modeling in prob-

abilistic programming. PhD thesis, Massachusetts Insti-

tute of Technology, 2011.

D. M. Roy and Y. W. Teh. The Mondrian process. In Adv.

Neural Information Proc. Systems (NIPS), 2009.

B. Schölkopf and A. J. Smola. Learning with Kernels: Sup-

port Vector Machines, Regularization, Optimization, and

Beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN

978-0-262-19475-4.

E. Scornet. Random forests and kernel methods. arXiv

preprint arXiv:1502.03836v2, 2015.

M. Seeger. Bayesian Gaussian Process Models: PAC-

Bayesian Generalisation Error Bounds and Sparse Ap-

proximations. PhD thesis, University of Edinburgh,

2003.

M. Seeger. Low rank updates for the Cholesky decomposi-

tion. Technical report, University of California at Berke-

ley, 2004.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Pri-

mal Estimated sub-GrAdient SOlver for SVM. In Proc.

Int. Conf. Mach. Learn. (ICML), 2007.

Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process

regression using KD-trees. In Adv. Neural Information

Proc. Systems (NIPS), 2006.

Z. Yang, A. J. Smola, L. Song, and A. G. Wilson. A la

Carte - Learning Fast Kernels. In Int. Conf. Artificial

Intelligence Stat. (AISTATS), 2015.

	INTRODUCTION
	MONDRIAN PROCESS
	TERMINOLOGY
	GENERATIVE PROCESS
	PROJECTIVITY
	MONDRIAN PROCESS ON RD

	MONDRIAN KERNEL
	MONDRIAN KERNEL
	MONDRIAN–LAPLACE LINK

	FAST KERNEL WIDTH LEARNING
	FEATURE SPACE REUSAL
	LINEAR LEARNER RETRAINING
	Ridge regression
	Models trainable using gradient descent

	ONLINE LEARNING
	LINK TO MONDRIAN FOREST
	MONDRIAN KERNEL OBJECTIVE
	MONDRIAN FOREST OBJECTIVE
	DISCUSSION

	RELATED WORK
	EXPERIMENTS
	LAPLACE KERNEL APPROXIMATION
	FAST KERNEL WIDTH LEARNING
	MONDRIAN KERNEL VS FOREST

	CONCLUSION

