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Our basic objective is to figure out the value of any stream of uncertain cash flows.

- from Asset Pricing by John Cochrane (2001, p. 6)

1 Introduction

A common view is that by far the most valuable asset that most people own is their human capital.

Our goal is to figure out the value of an individual’s human capital and the associated return on

human capital. The value and return concepts that we analyze are uncontroversial. The value of

human capital equals the expected discounted value of future dividends, where discounting is done

using the individual’s stochastic discount factor. The return to human capital is the future value and

dividend divided by the current value.

To the best of our knowledge, there is little work which adopts these concepts and then undertakes

a detailed empirical analysis of the value and return to an individual’s human capital. This seems

remarkable given that the basic objective of asset pricing is to figure out the value of any stream of

uncertain cash flows. Looking forward, we believe that these value and return concepts will become

central in connecting literatures that many economists currently view as being disconnected.

We highlight four literatures where an empirical understanding of human capital values and returns

at the level of the individual is relevant. First, consider the literature on portfolio allocation over the

lifetime. This literature tries to understand portfolio choices and to give practical advice on portfolio

allocation. If human capital is by far the most valuable asset that most individuals own, then a good

starting point for giving portfolio advice would be to understand the relative magnitude of the stock

and bond positions implicit in the value of an individual’s human capital. Thus, it is key to decompose

human capital values into useful components.

Second, there is a literature on the international diversification puzzle. Baxter and Jermann (1997)

argue that (i) human capital is more valuable than physical capital, (ii) the return to domestic phys-

ical and human capital are very highly correlated and (iii) a very large negative position in domestic

assets is a very good hedge on the return to domestic human capital. They conclude that a diversified

international portfolio involves a negative position in domestic marketable assets for all the developed

countries that they analyze. This reasoning, in their estimation, deepens the puzzling lack of inter-

national financial diversification. Although this line of argument is based on the value and return to

a claim to economy-wide earnings, an individual directly holds only a claim to his or her own future

labor earnings. Thus, a first step towards reevaluating this line of argument is to analyze the degree

to which individual human capital returns are like domestic stock returns.
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Third, Alvarez and Jermann (2004) argue that theory implies that the marginal benefit of moving

towards a smoother consumption plan (e.g. by implementing social welfare policies that effectively

complete markets) is an upper bound to the total benefit. We note that marginal benefit calculations

are closely tied to the value of an individual’s human capital. Specifically, the marginal benefit for an

individual is given by the ratio of the value of the smooth consumption plan to the value of human

capital plus initial financial assets. By this logic, low values of human capital are associated with high

values to perfect consumption smoothing. Thus, the value of an individual’s human capital connects

with long-standing debates about the magnitude of the potential gains to business-cycle smoothing or

to perfect consumption insurance.

Fourth, there is a literature that estimates parameters of Epstein-Zin preferences governing risk aver-

sion and intertemporal substitution based on Euler equations. Epstein and Zin (1991) argue that the

future utility terms that enter the Euler equation can be replaced by a function of the return on the

overall wealth portfolio. In practice, they proxy this return with stock returns but acknowledge that

this return should also reflect the return to human capital. Vissing-Jorgensen and Attanasio (2003)

apply these ideas to estimate these preference parameters using household-level data. They assume

that the unobserved expected return on human capital is a weighted average of stock and bond returns,

where the weights are age and state invariant. In our view, an analysis of human capital values and

returns would provide a useful perspective on such an empirical strategy.

We provide a detailed characterization of the value and return to human capital using male earnings

data and financial asset return data. We use a two-step procedure. First, estimate a statistical model

for male earnings and stock returns to describe how earnings move with age, education and a rich

structure of aggregate and idiosyncratic shocks. Second, embed this statistical model into a decision

problem of the type analyzed in the literature on the income-fluctuation problem. The properties of

the implied human capital values and returns are then calculated by using the stochastic discount

factor produced by a solution to this decision problem to discount future earnings.

We find that the value of human capital is far below the value that would be implied by discounting

future earnings at the risk-free interest rate. One reason for this is the large amount of idiosyncratic

earnings risk that we estimate from U.S. data. We find that the persistent component of idiosyncratic

risk is particularly important early in life for lowering the value of the future earnings stream. An

agent’s stochastic discount factor covaries negatively with this component of risk. We decompose the

value at each age into three components: a bond, a stock and an orthogonal component. This is done

by projecting future human capital pay outs (i.e. the sum of next period’s earnings and human capital
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value) onto next period’s bond and stock returns. The bond and stock components, stated as a ratio

to the value of human capital, are both positive on average but the stock component is substantially

smaller than the bond component at each age. This holds when the earnings data is for males with a

high school or with a college education. The stock component as a ratio to the value of human capital

is on average larger for the high school than for the college education group.

Three data features are behind the positive stock component of human capital values. First, the

conditional correlation between male earnings growth and stock returns is positive in all our estimated

statistical models. Second, the social security retirement benefit for an individual in the U.S. is an

increasing function of mean earnings in the economy when the individual is age 60, other things equal.

As we value earnings net of taxes plus transfers, this feature of social security together with the first

feature impart a positive stock component to the value of human capital just before retirement in the

model. Third, we find evidence that the magnitude of persistent idiosyncratic earnings risk is higher

in recession years than in expansion years. Counter-cyclical risk helps to increase the magnitude of

the stock component of human capital values.

The value of the orthogonal component of human capital payouts is strongly negative early in life but

tends to zero as retirement approaches. The negative value early in life is mostly due to the presence

of a highly persistent idiosyncratic component of earnings variation which is orthogonal to stock and

bond returns. This component covaries negatively with the stochastic discount factor as a positive

earnings shock leads to an increase in consumption and a fall in the stochastic discount factor.

The mean return to human capital falls with age over the working lifetime. Moreover, the mean

return greatly exceeds the return to stock early in the lifetime. Both of these results are related

to our findings on the value of the orthogonal component. We show that the mean human capital

return always equals a weighted sum of the mean stock and bond returns. The weights are determined

by the projection coefficients from the value decomposition. These weights sum to more than one

exactly when the value of the orthogonal component is negative. Thus, human capital returns exceed

a convex combination of stock and bonds returns. Human capital returns and stock returns have only

a small positive correlation over the working lifetime. This correlation is higher for high school than

for college-educated males.

The remainder of the paper is organized as follows. Section 2 outlines the literature most closely

related to our work. Section 3 presents the theoretical framework. Section 4 and 5 presents our

main findings for human capital values and returns in the benchmark model. Section 6 explores the

robustness of these findings and highlights the key drivers of these findings. Section 7 concludes.
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2 Related Literature

A long line of research calculates the “money value of a man” by discounting an individual’s fu-

ture dividends dk, usually measured as earnings, at a deterministic interest rate r as follows:1 vj =

Ej [
∑

k>j
dk

(1+r)k−j
]. Our definition of the value of human capital differs because we allow for covaria-

tion between an individual’s stochastic discount factor and dividends, whereas the literature referenced

above does not. The definition of value vj = Ej [
∑

k>j
dk

(1+r)k−j
] is problematic for analyzing human

capital returns. Specifically, the mean return to human capital implied by this value always equals

the deterministic interest rate used to discount dividends: Ej [Rj+1] ≡ Ej [vj+1+dj+1

vj
] = 1 + r.

The finance literature has analyzed the return to human capital. We mention two lines of work. First,

Campbell (1996), Baxter and Jermann (1997), Lustig and van Nieuwerburgh (2008) and many others

characterize the return to human capital using aggregate data. Our work differs as we value a claim

to an individual’s earnings rather than a claim to aggregate, economy-wide earnings. Second, Huggett

and Kaplan (2011) characterize human capital values and returns using individual-level earnings data.

They put bounds on values and returns based on (i) non-parametric restrictions of stochastic dis-

count factors, (ii) knowledge of the process governing individual earnings and asset returns and (iii)

the assumption that Euler equations hold. The bounds turn out to be quite loose. They conclude

that a structural approach, like that carried out in the present paper, is critical to gain a sharper

understanding of individual-level human capital values and returns.

There is a vast literature on the Mincerian return, which is measured as the coefficient on additional

years of schooling in a Mincerian earnings regression. The Mincerian return has sometimes been

viewed as a rough measure of a marginal return to schooling.2 Instead of analyzing marginal returns

on specific marginal decisions, we analyze the return on a claim to all the dividends received by an

individual. Thus our work is complementary to, yet very distinct from, the literature that measures

returns to specific investments in education. For certain questions, such as those described in Section

1, our notion of human capital values and returns is most relevant.

Our work also connects to the literature on portfolio allocation decisions over the lifetime (e.g. Camp-

bell, Cocco, Gomes and Maenhout (2001), Benzoni, Collin-Dufresne and Goldstein (2007), Lynch and

Tan (2011) among many others). Whereas this literature analyzes portfolio choice, our focus is on

characterizing properties of the value and return to human capital when individual earnings are es-

1This procedure goes at least as far back as the work of Farr (1853, Table VII). It is also used by Dublin and Lotka
(1930), Weisbrod (1961), Becker (1975), Lillard (1977), Graham and Webb (1979), Jorgenson and Fraumeni (1989) and
Haveman, Bershadker and Schwabish (2003) among others. One objective of this line of research is to determine the
aggregate value of human capital and compare it to the aggregate value of physical capital.

2Heckman, Lochner and Todd (2006) review this literature.
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timated so as to display the rich sources of variation due to age, education as well as aggregate and

idiosyncratic shocks.

3 Theoretical Framework

This section defines the value of human capital within a general framework and then provides a simple

example economy to illustrate the value and return concepts.

3.1 Decision Problem

An agent solves Problem P1. The objective is to maximize lifetime utility. Lifetime utility U(c, n) is

determined by lifetime consumption and leisure plans (c, n), where c = (c1, ..., cJ) and n = (n1, ..., nJ).

Consumption and leisure at age j are given by functions cj : Zj → R1
+ and nj : Zj → [0, 1] that map

shock histories zj = (z1, ..., zj) ∈ Zj into the corresponding values of these variables. All the variables

that we analyze are functions of these shocks.

Problem P1: maxU(c, n) subject to

(1) cj +
∑

i∈I a
i
j+1 =

∑
i∈I a

i
jR

i
j + ej and cj ≥ 0

(2) ej = Gj(y
j , nj , zj) and 0 ≤ nj ≤ 1

(3) aiJ+1 = 0,∀i ∈ I

The budget constraint says that period resources are divided between consumption cj and savings∑
i∈I a

i
j+1. Period resources are determined by earnings ej and by the value of financial assets brought

into the period
∑

i∈I a
i
jR

i
j . The value of financial assets is determined by the amount aij of savings

allocated to each financial asset i ∈ I = {1, ..., I} in the previous period and by the gross return

Rij > 0 to each asset i.

Problem P1 puts loose restrictions on the way in which earnings are determined. Earnings ej are a

kitchen-sink function Gj of age j, shocks zj , leisure decisions nj = (n1, ..., nj) and other decisions

yj = (y1, ..., yj). This formulation captures models where earnings (i) are exogenous, (ii) equal the

product of work time and an exogenous wage and (iii) are determined by many different human capital

theories. For example, within human capital theory a standard formulation (see Ben-Porath (1967)

or Heckman (1976)) is that earnings ej = wjhjlj equal the product of an exogenous rental rate wj ,

human capital or skill hj = Hj(y
j−1, nj−1) and work time lj = L(yj , nj). Problem P1 captures this

standard formulation (i.e. Gj(y
j , nj , zj) = wjHj(y

j−1, nj−1)L(yj , nj)) among other possibilities.3

3In human capital theory, earnings are determined by decisions beyond a leisure decision. For example, the “other
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3.2 Value and Return Concepts

The value of human capital vj is defined to equal expected discounted dividends at a solution

(c∗, n∗, e∗, y∗, a∗) to Problem P1. Discounting is done using the agent’s stochastic discount factor

from the solution to Problem P1. The stochastic discount factor mj,k reflects the agent’s marginal

valuation of an extra period k consumption good in terms of the period j consumption good. The

stochastic discount factor has a conditional probability term P (zk|zj) as, following the literature, we

find it convenient to express human capital values in terms of the mathematical expectations opera-

tor. Dividends dj are the sum of earnings and the value of leisure. The leisure price pj is the agent’s

intratemporal marginal rate of substitution in a solution to Problem P1. Appendix A1 gives a formal

justification for this notion of value.

vj(z
j) ≡ E[

J∑
k=j+1

mj,kdk|zj ] and mj,k(z
k) ≡ dU(c∗, n∗)/dck(z

k)

dU(c∗, n∗)/dcj(zj)

1

P (zk|zj)

dj(z
j) ≡ e∗j (zj) + pj(z

j)n∗j (z
j) and pj(z

j) ≡ dU(c∗, n∗)/dnj(z
j)

dU(c∗, n∗)/dcj(zj)

Given the value concept, we define the gross return Rhj+1 to human capital to be next period’s value

and dividend divided by this periods value: Rhj+1 =
vj+1 + dj+1

vj
. The return to human capital is then

well integrated into standard asset pricing theory. Off corners, all returns satisfy the same type of

restriction: E[mj,j+1Rj+1|zj ] = 1. This holds for all financial assets in Problem P1 by standard Euler

equation arguments and for the return to human capital by construction.4

3.3 A Simple Example

We analyze a simple example to illustrate the value and return concepts. The example is a parametric

decision problem which is a special case of Problem P1. An agent’s preferences are given by a constant

relative risk aversion utility function, earnings are exogenous and there is a single, risk-free asset. As

leisure does not enter the utility function, the value of human capital is determined solely by earnings.5

Utility: U(c) = E[
∑J

j=1 β
j−1u(cj)|z1], where u(cj) =

{
c1−ρj

(1−ρ) : ρ > 0, ρ 6= 1

log(cj) : ρ = 1

decisions” variable yj = (y1j , y2j , y3j) can capture time allocated to skill production y1j , time devoted to work y2j and
market goods input into skill production y3j . If there are market goods inputs, then the concept of earnings in Gj is
earnings net of the value of market goods input. One can view the fact that leisure time enters Gj simply as a way to
determine which of the remaining uses of one’s time are feasible.

4vj = E[
∑J
k=j+1 mj,kdk|zj ] implies E[mj,j+1(

vj+1+dj+1

vj
)|zj ] = 1.

5The model is a finite-lifetime version of the permanent-shock model analyzed by Constantinides and Duffie (1996).
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Earnings: ej =
∏j
k=1 zk, where ln zk ∼ N(µ, σ2) is i.i.d.

Risk-free return: Rf = (1 + r) > 0

Decision Problem: maxU(c) subject to

(1) cj + aj+1 ≤ aj(1 + r) + ej , (2) cj ≥ 0, aJ+1 ≥ 0

The example leads to a transparent analysis of values and returns. Specifically, when 1 + r =

1
β exp(ρµ − ρ2σ2

2 ) and initial financial assets are zero, then setting consumption equal to earnings

each period is optimal. Thus, the stochastic discount factor equals mj,k(z
k) = βk−ju′(ek(z

k))
u′(ej(zj))

. This

leads to straightforward formulas for values and returns, stated in terms of model parameters, where

the value vj is proportional to earnings ej and the return Rj is a time-invariant function of the period

shock zj .

Figure 1 illustrates some quantitative properties of the simple example. In Figure 1 the parameter σ,

governing the standard deviation of earnings shocks, varies over the interval [0, 0.3] and µ = −σ2/2.

Thus, as all agents start with earnings equal to 1 the expected earnings profile over the lifetime is

flat and equals 1 in all periods. The lifetime is J = 46 periods which can be viewed as covering

real-life ages 20− 65. The interest rate for all the economies in Figure 1 is fixed at r = .01. Thus, the

discount factor β is adjusted to be consistent with this interest rate given the remaining parameters:

1 + r = 1
β exp(ρµ− ρ2σ2

2 ). Properties are analyzed at a number of values of the preference parameter

ρ governing the coefficient of relative risk aversion.

Figure 1 shows that the value of an age 1 agent’s human capital v1 falls and that the mean return on

an agent’s human capital in any period rises as the shock standard deviation increases. Thus, in the

economies analyzed a high mean return on human capital is the flip side of a low value attached to

human capital. Figure 1 also shows that these patterns are amplified as the preference parameter ρ

increases.

Figure 1(a) also plots a notion of value that we label the “naive value”. The naive value is calculated

by discounting earnings at a constant interest rate r set equal to the risk-free interest rate in the model

(i.e. vnaive1 = E[
∑J

j=2
ej

(1+r)j−1 |z1]). This follows a traditional procedure employed in the empirical

literature as discussed in section 2. The naive value of a young agent’s human capital is exactly the

same in each economy in Figure 1 simply because the risk-free interest rate and the mean earnings

profile are unchanged across economies. Our notion of the value v1 of human capital differs from the

naive value vnaive1 because the agent’s stochastic discount factor covaries negatively with earnings.

7



More specifically, v1 = vnaive1 +
∑J

j+2E[m1,j(ej − ēj)], where ēj is the conditional mean. Figure 1

shows that this negative covariation can be substantial.

Figure 1(c) plots the total benefit and the marginal benefit of moving from the model consumption

plan c to a perfectly smooth consumption plan where csmoothj = E1[cj ] = E1[ej ] = 1. To plot these

we define the benefit function Ω(x) using the first equation below. The total benefit is then Ω(1)

and the marginal benefit is Ω′(0). It is straightforward to see (following Alvarez and Jermann (2004))

that the leftmost equality in the second equation below follows from differentiating the first equation.

The rightmost equality holds because the individual solves Problem P1.6 In the simple example the

numerator is simply
∑J

j=1(
1

1+r )j−1 for any value of the standard deviation of earnings shocks. The

denominator is not pinned down by observed asset prices but it is determined by the value of human

capital as we have defined it. Figure 1(c) indicates that the marginal benefit increases as the standard

deviation of the period earnings shocks increases. Thus, in the simple example a high marginal benefit

of moving towards perfect consumption smoothing coincides with a low value of human capital.

U((1 + Ω(x))c) = U((1− x)c+ xcsmooth)

Ω′(0) =

∑J
j=1

∑
zj

dU(c,n)
dcj(zj)

(csmoothj (zj)− cj(zj))∑J
j=1

∑
zj

dU(c,n)
dcj(zj)

cj(zj)
=

E[
∑J

j=1m1,jc
smooth
j |z1]

v1(z1) + e1(z1) + a1(z1)(1 + r)
− 1

4 The Benchmark Model

We now use the theoretical framework to quantify the value and return to human capital. Our

benchmark model has two financial assets I = {1, 2} (one riskless a1 and one risky a2). The agent

cannot go short on either financial asset. We relax this restriction later in the paper.

Benchmark Model: maxU(c) subject to c ∈ Γ1(x, z1)

Γ1(x, z1) = {c = (c1, ..., cJ) : ∃(a1, a2) s.t. 1− 2 holds ∀j}

1. cj +
∑

i∈I a
i
j+1 ≤ x for j = 1 and cj +

∑
i∈I a

i
j+1 ≤

∑
i∈I a

i
jR

i
j + ej for j > 1

2. ej = Gj(zj) and cj ≥ 0 and a1j+1, a
2
j+1 ≥ 0

6More specifically, this follows from converting the period budget constraints in Problem P1 into an age-1 budget
constraint, using the fact that the Euler equation holds at a solution to Problem P1.
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The utility function U(c) = U1(c1, ..., cJ) is of the type employed by Epstein and Zin (1991). This util-

ity function is defined recursively by repeatedly applying an aggregator W and a certainty equivalent

F . The certainty equivalent encodes attitudes towards risk with α governing risk-aversion. The aggre-

gator encodes attitudes towards intertemporal substitution where ρ is the inverse of the intertemporal

elasticity of substitution. We allow for mortality risk via the one-period-ahead survival probability

ψj+1.

U j(cj , ...cJ) = W (cj , F (U j+1(cj+1, ..., cJ)), j)

W (a, b, j) = [(1− β)a1−ρ + βψj+1b
1−ρ]1/(1−ρ) and F (x) = (E[x1−α])1/(1−α)

Our choice of the benchmark model reflects several considerations. First, the choice of two assets is in

part motivated by the computational burden of solving the model. However, household portfolios have

often been characterized in terms of the holdings of risky versus low risk assets. In addition, much of

the discussion of portfolio choice in the existing literature is framed in terms of the holdings of a risky

and a low risk asset. Second, the benchmark model is analyzed in partial equilibrium. This is natural

as the main goal of the paper is to figure out the value and return to human capital in light of the

properties of earnings and asset returns data.7 Third, earnings are exogenous. This is helpful at this

early stage of analysis as the statistical properties of earnings and asset returns in the model will then

closely mimic data properties. It is not straightforward to extend existing human capital models of

earnings (e.g. Huggett, Ventura and Yaron (2011)) so that these models endogenously produce data

properties governing how earnings vary with age, education, aggregate variables and asset returns.

4.1 Empirics: Earnings and Asset Returns

We now describe the structure of earnings and asset returns in the benchmark model. We start by

outlining an empirical framework for the dynamic relationship between the idiosyncratic and aggregate

components of earnings and the return on the risky asset. The framework incorporates a number of

features that have been hypothesized to be important in the existing literature, including counter-

cyclical idiosyncratic risk, return predictability, and cointegration. We are not aware of any previous

studies that have used micro data to estimate an earnings process with this set of features.

7A general equilibrium approach could address the underlying sources of the movements in earnings and asset returns.
See, for example, Storesletten, Telmer and Yaron (2007).
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4.1.1 Empirical Framework

Let ei,j,t denote real annual earnings for individual i of age j in year t. We assume that the natural

logarithm of earnings consists of an aggregate component
(
u1
)

and an idiosyncratic component
(
u2
)
:

log ei,j,t = u1t + u2i,j,t (1)

The idiosyncratic component is the sum of four orthogonal components: (i) a common age effect

κ, (ii) an individual-specific fixed effect ξ, (iii) an idiosyncratic persistent component ζ and (iv) an

idiosyncratic transitory component υ. The common age effect is modeled as a quartic polynomial.

u2i,j,t = κj + ξi + ζi,j,t + υi,j,t (2)

ζi,j,t = ρζi,j−1,t−1 + ηi,j,t

ζi,0,t = 0.

The individual fixed effects are assumed to be normally distributed with a constant variance. The two

shocks are assumed to be normally distributed with time-dependent variances that are functions of a

set of time-varying aggregate variables, Xt:

ξi ∼ N
(
0, σ2ξ

)
, ηi,j,t ∼ N

(
0, σ2η,t (Xt)

)
, υi,j,t ∼ N

(
0, σ2υ,j,t (Xt)

)
(3)

This structure implies that aggregate conditions affect both the mean and variance of earnings. In

our empirical implementation we set Xt = ∆u1t ≡ u1t − u1t−1. In order to capture life-cycle properties

of the variance of earnings we allow the variance of the transitory component to be age-dependent.

This dependence is modeled as a quartic polynomial.

The joint dynamics of equity returns and the aggregate component of earnings are modeled as follows.

Let yt =
(
u1t Pt

)′
, where Pt is an underlying process that generates risky returns. Gross returns

on stock Rst satisfy logRst = ∆Pt. We assume a vector autoregression (VAR) model for yt:

yt = v(t) +

p∑
i=1

Aiyt−i + εt (4)

where εt is a vector of zero mean IID random variables with covariance matrix Σ. v(t) is a quadratic

time trend. We do not impose that this process is stationary. Rather, we assume that yt is a first order

integrated, I (1), process. One reason for assuming that yt ∼ I (1) is that it allows us to connect with

the literature on cointegration. In the Appendix, we show that (4) implies the following stationary
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VAR process8 for ∆yt and a cointegrating vector wt defined by wt ≡ β′yt + µ+ ρ(t+ 1):(
∆yt
wt

)
=

(
γ

β′γ + ρ

)
+

p−1∑
i=1

(
Γi
β′Γi

)
∆yt−i +

(
α

1 + β′α

)
wt−1 +

(
εt
β′εt

)
(5)

When p = 2, this process takes the simple form(
∆yt
wt

)
=

(
γ

β′γ + ρ

)
+

(
Γ α
β′Γ 1 + β′α

)(
∆yt−1
wt−1

)
+

(
εt
β′εt

)
(6)

When there is no cointegration (i.e. α = 0) the process collapses to a standard VAR for ∆yt:

∆yt = γ +

p−1∑
i=1

Γi∆yt−i + εt (7)

4.1.2 Data Sources

For estimating individual earnings dynamics we use data on male annual labor earnings from the

Panel Study of Income Dynamics (PSID) from 1967 to 1996. We restrict attention to male heads

of households between ages 22 and 60 with real annual earnings of at least $1, 000. Our measure of

annual gross labor earnings includes pre-tax wages and salaries from all jobs, plus commission, tips,

bonuses and overtime, as well as the labor part of income from self-employment. Labor earnings are

inflated to 2008 dollars using the CPI All Urban series. Full details can be found in the Appendix.

We also consider two sub-samples based on education. We divide the sample into High School and

College sub-samples, based on their maximum observed completed years of education. Individuals

with 12 or fewer years of education are included in the High School sub-sample, while those with

at least 16 years or a Bachelor’s degree are included in the College sub-sample. We hence make no

distinction between high-school dropouts and high-school graduates; and our College group does not

include college dropouts.

The model for idiosyncratic earnings risk is estimated in two stages. In the first stage we use OLS

to estimate the age profile κ̂j and the aggregate component û1t . Residuals from the first stage are

then used to obtain GMM estimates of the remaining parameters in (2) and (3), where the moments

included are the elements of the auto-covariance function for each age/year combination. Full details

of the estimation procedure can be found in the Appendix.

Although the PSID is an ideal data set for studying the auto-correlation structure of individual

earnings, its relatively small sample size and the fact that after 1996 it was converted into a biannual

8We have used symbols in the specification of the VAR process that are consistent with notation that is common in
the literature on cointegration. The parameters α, β, γ and ρ should not be confused with the preference parameters
that use the same symbols.
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survey means that it is less suited to studying dynamics in the aggregate component of earnings. Our

approach is to retain the PSID as our data source for the idiosyncratic component of earnings but

to also analyze an alternative measure of the aggregate component of labor earnings u1t estimated

using Current Population Survey (CPS) data from 1967 to 2008. We estimate this component from

CPS data in the same way as we do in the PSID: we run a first-stage regression of individual log

earnings on a polynomial in age and on time dummy variables. In order to minimize the effect on our

estimates of changes in top-coding in the CPS over time, we use a median regression (Least Absolute

Deviations) to extract these time and age effects. The Appendix documents that our measure of the

aggregate component of earnings produces contraction years that are closely related to those based

on three alternative measures from the National Income and Product Accounts.

Data on equity and bond returns are annual returns. Equity returns are based on a value-weighted

portfolio of all NYSE, AMEX and NASDAQ stocks including dividends, whereas bond returns are

based on Treasury bill returns.9 Real returns are calculated by adjusting for realized inflation using

the same CPI All Urban series that was applied to the earnings data.

4.1.3 Estimation Results: Idiosyncratic Process

Our benchmark model for idiosyncratic earnings dynamics allows for time variation in the variance

of the persistent component. This variation takes the form of a linear trend to capture low frequency

trends over the sample period, as well as a two-state process that captures cyclical variation.10 Mod-

eling cyclical variation as a two-state process has the advantages of being comparable to estimation

results in the literature (Storesletten et al. (2004)), and of being easily implemented in our com-

putational model. The two states are chosen to reflect periods of expansions and contractions. To

determine expansions and contractions, we compared the periods of positive and negative earnings

growth in our aggregate variables. Thus Xt is an indicator variable that is defined by whether or not

∆u1t > 0.11

Parameter estimates are shown in Table 1. These results are broadly consistent with estimates from

similar specifications that have been estimated elsewhere in the literature summarized in Meghir

and Pistaferri (2010).12 We note that our estimate of the variance of the transitory component is

9All returns come from Kenneth French’s data archive. Returns data are available from 1927-2010. We restrict
attention to the period 1967-2008 since this is the period that the CPS earnings data covers.

10Allowing for a trend in the shock variances is important for accurately estimating cyclical variation in the variance.
This is because of the well-documented increase in the variance of idiosyncratic earnings shocks over this period. See for
example Heathcote et al. (2010)

11The Appendix lists contraction years implied by CPS data and other data sources.
12Our model is estimated using data on log earnings levels. Estimation using data on log earnings growth rates would
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approximately 0.1 larger than what has been estimated by others (see for example, Guvenen (2009)).

The source of this difference is due entirely to our broader sample selection, in particular the fact

that we do not impose restrictions on hours worked. Since it is likely that a substantial fraction of

this variance is due to measurement error, we make an adjustment when using these estimates as

parameters in the structural model below.13

We highlight four findings from Table 1. First, we find evidence of counter-cyclical risk. The variance

of persistent shocks increases by about 0.02 in contractions relative to expansions. This is broadly

consistent with the findings in Storesletten et al. (2004) who find an increase of around 0.03 when

they jointly estimate these variances as well as the autoregression parameter ρ. Second, we find some

differences across education groups. The High School subsample has less persistent shocks but larger

fixed effects and stronger counter-cyclical risk compared to the College subsample. Third, when ρ

is set to one, as is sometimes imposed in the literature, the average shock variance is substantially

reduced. Fourth, we also examine the estimation of the same process but based on wage (i.e. earnings

per work hour) data. We find even greater persistence in wages than for earnings data and essentially

no counter-cyclical risk in wages.

4.1.4 Estimation Results: Aggregate Process

In the Appendix we present results from standard lag-order selection tests for the order p of the

underlying VAR in (4). We find that for our baseline sample, as well as for college and high-school sub-

samples, and for alternative measures of aggregate earnings and alternative sample periods, virtually

all specifications indicate the presence of two lags in (4). We thus focus our attention on a model with

one lag in the VAR in first differences, as in (6). The Appendix also contains tests of the cointegrating

rank of (5) based on the methods in Johansen (1995). For all three samples, tests based on the trace

statistic, the maximum eigenvalue or the Schwarz-Bayes information criterion, suggest a cointegrating

rank of zero, while the Hannan-Quin information criterion suggest the presence of one cointegrating

vector. We interpret these findings as providing only very weak evidence for cointegration and hence

we adopt the model without cointegration as our benchmark specification. However, since these tests

yield larger estimates of the persistent or permanent shocks. See Heathcote et al. (2010) for a discussion of this issue.
We favor the estimation in levels since it allows us to accurately capture the age profile of the cross-sectional variance of
earnings.

13Using indirect inference on a structural model of consumption and savings behavior, Guvenen and Smith (2010)
estimate that the variance of measurement error in male log annual earnings is around 0.02-0.025. Using a validation
study of the PSID, French (2004) concludes that the variance of measurement error in the PSID is around 0.01. However,
both of their samples are substantially more selected than ours, with a cross-sectional variance about 0.1 lower. Assuming
that half of this additional variance is due to measurement error, would suggest that around 0.05-0.06 of the estimated
transitory variance is measurement error. We adjust our estimates down by one third at all ages accordingly.
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may all have relatively little power given the short annual sample period, we also present estimates

for the model with cointegration.

Table 2 reports results of estimation of (6) and (7). The parameter estimates for the benchmark model,

with and without cointegration, reveal a moderate degree of persistence in aggregate earnings growth.

There is a positive correlation between innovations to earnings growth and innovations to returns in

all models. This implies that the conditional correlation between earnings growth and stock returns is

positive. Later on this will imply a positive conditional correlation between stock and human capital

returns.

The implied steady-state dynamics are reported in Table 3. The estimated model matches the observed

correlation structure well. When we input the estimated process into our economic model, we adjust

the parameters (γ1, γ2) estimated in Table 2 so that all models produce in steady state E[logRs] = .041

and E[∆u1] = 0. This facilitates comparisons of human capital value and return properties across

models.

4.2 Parameter Values in the Benchmark Model

Table 4 summarizes the parameters in the benchmark model. Agents live for a maximum of J = 69

model periods and retire in period Ret = 40. This corresponds to starting economic life at age 22,

retiring at age 61 and living at most up to age 90.

We set the preference parameters governing intertemporal substitution and risk aversion to values

estimated from Euler equation restrictions based on household-level data. Vissing-Jorgensen and

Attanasio (2003) conclude that the substitution elasticity (1/ρ) is likely to be above 1 and estimate

1/ρ = 1.17 for a prefered specification. They conclude that the risk aversion parameter (α) in the

interval [5, 10] can be obtained under realistic assumptions. Thus, the special case of constant-relative-

risk-aversion preferences, where ρ = α, is not the parameter configuration that best fits the Euler

equation restrictions. We examine model implications for 1/ρ = 1.17 and α ∈ {4, 6, 8, 10}. Agents

face a conditional probability ψj+1 of surviving from period j to period j + 1. Survival probabilities

are set to estimates for males from the 1989-91 US Decennial Life Tables in NCHS (1992). We set the

discount factor β so that given all other model parameters the model produces a steady-state wealth

to income ratio of 3.5.

Earnings and asset returns in the benchmark model are based on the estimates from the previous sec-

tion for the case of no cointegration. Later in the paper we examine the model implications for the case

of cointegration. We group the variables from the statistical model into a state variable z = (z1, z2),
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where z1 = exp(u1) captures the aggregate component of earnings and z2 = (ξ, ζ, υ,∆u1, logRs) cap-

tures the idiosyncratic components of earnings, the growth in the aggregate component of earnings

and the stock return. For the case of cointegration, we add an extra component to this state variable:

z2 = (ξ, ζ, υ,∆u1, logRs, w). The law of motion for z1 is z′1 = z1fj+1(z
′
2), where fj(z2) = exp(∆u1)

for j ≤ Ret and fj(z2) = 1 for j > Ret. We will see shortly that the law of motion after retirement

helps to capture social security payments. The Appendix describes our methods to compute solutions

to the decision problem and the implied human capital values and returns.

Earnings in the model are ej(z) = z1gj(z2)(1 − τ) before retirement and ej(z) = z1b(ξ)(1 − τ) after

retirement. The first component of the state z1 = exp(u1) captures the aggregate component of

earnings. The second component z2 helps capture variation due to idiosyncratic shocks and age via

gj(z2) = exp(κj + ξ + ζ + υ). The benchmark parameter values are those estimated in Table 1 and

Table 2 for the case of no cointegration.14 Earnings are taxed at a proportional rate τ .

Model earnings are viewed as earnings after taxes and transfers. The literature has argued that

the tax-transfer system can substantially impact the degree to which pretax-earnings shocks can be

smoothed. This has implications for the degree to which idiosyncratic earnings risk acts to lower

human capital values. Additionally, the social security system has potentially major implications

for how the bond and stock components of the value of human capital change as agents approach

retirement. This in turn has implications for how the financial asset portfolio changes with age. Work

that imputes the magnitude of social security wealth from data concludes that social security wealth

is a major component of total wealth. For example, Poterba, Venti and Wise (2011) calculate that the

capitalized wealth implicit in social security retirement annuities is approximately 33 percent of all

wealth for households aged 65-69 and is a larger percentage of wealth for households with low wealth.

Model earnings in retirement are given by a social security transfer. Transfers in the model are an

annuity payment which is determined by the aggregate earnings level z1 when the agent retires and

by a concave benefit function b. We adopt the benefit function employed by Huggett and Parra

(2010) which captures the bend-point structure of old-age benefits in the U.S. social security system.

We employ the computationally-useful assumption that the benefit function applies only to an agent’s

idiosyncratic fixed effect ξ rather than to an average of the agent’s past earnings as in the U.S. system.

Old-age benefit payments in the U.S. system are indexed to average economy-wide earnings when an

individual hits age 60.15 This is captured within the model by the fact that transfers are proportional

14We lower the estimate of the transitory shock variance to account for measurement error as described in section
4.2.3.

15See the Social Security Handbook (2012, Ch. 7).
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to z1. The model implies that after entering the labor market, an agent’s social security transfers are

risky only because the aggregate component of earnings at the time of retirement is risky. This feature

of the model social security system together with the estimated correlation structure of stock returns

and the aggregate component of earnings will produce a positive correlation between human capital

returns and stock returns just prior to retirement.

The benchmark model has two assets: stock and bonds. The stock return follows the process estimated

in Table 2. In all experiments, we adjust the constant γ estimated in Table 2 so that the mean stock

return (E[logRst ]) is 4.1% and the mean growth rate of aggregate earnings (E[∆u1t ]) is zero, while

retaining the estimated properties for all second moments of the stochastic process. The bond return

is risk-free. The bond return in the model is set to 1.2%, which is the average real return over the

period 1967-2008 based on the data set from French and the CPI-U price index.

Life-cycle properties of the benchmark model are displayed in Figure 2. The figure is constructed by

simulating many shock histories, calculating allocations along these histories and then taking averages.

Initial wealth is set at 30 percent of mean earnings at age 22 in all the figures in this and the next

section. Figure 2 shows that the profile for mean consumption and for mean earnings net of taxes and

transfers are hump shaped over the lifetime. The earnings profile for college males is much steeper

over the working lifetime than the corresponding profile for males with only a high school education.

One consequence of this is that a larger fraction of young college agents will hold exactly zero financial

assets early in life compared to high school agents. This has implications for how strongly college

agents discount future earnings early in life.

5 Human Capital Values and Returns: Benchmark Model

We report the value and return properties of the benchmark model. In this section we highlight only

the results based on the high school and the college earnings data as the results for the full sample

are typically between the results implied by the two education groups.

5.1 Human Capital Values

Figure 3 plots the value of human capital in the benchmark model and a decomposition of this value.

Figure 3 shows that the mean value of human capital over the lifetime is hump shaped and that the

mean value is lower for higher values of the risk aversion coefficient.16 For comparison purposes, we

16Figure 3(a) and 3(b) are constructed by first computing human capital values at each age as a function of the state.
We then simulate many realizations of the state variable over the lifetime and calculate the sample average of the value
at each age, conditional on survival. Computational methods are described in the Appendix.
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also plot the value of human capital that would be implied by discounting future earnings at the

risk-free rate. We label this the naive value in Figure 3. The naive value is quite far from our notion

of value. The substantial differences in Figure 3 between the naive value and our notion of value is due

to negative covariation between the agent’s stochastic discount factor and earnings and because agents

are sometimes on the corner of the risk-free asset choice. Corner solutions occur more frequently early

in life for college agents than for high school agents due to differences in the mean earnings profile. We

explore in the next section how important permanent and persistent idiosyncratic risk is for producing

negative covariation. Borrowing constraints and initial wealth will also be explored.

We now decompose human capital values into useful components. To do so, we project next period’s

human capital pay out vj+1 + ej+1 onto the space of conditional asset returns. The decomposi-

tion is carried out in the two equations below. The human capital payout contains a component

(
∑

i∈I α
i
jR

i
j+1) spanned by asset returns and a component (εj+1) orthogonal to asset returns, where

αij are the projection coefficients. When the agent is off corners in the holding of asset i then the Euler

equation E[mj,j+1R
i
j+1|zj ] = 1 holds.17 The decomposition implies that the value of human capital

vj is decomposed into a bond, stock and a residual value component.

vj = E[mj,j+1(vj+1 + dj+1)|zj ] = E[mj,j+1(
∑
i∈I

αijR
i
j+1 + εj+1)|zj ]

vj =
∑
i∈I

αijE[mj,j+1R
i
j+1|zj ] + E[mj,j+1εj+1|zj ]

Figure 3 shows the results of carrying out this decomposition. This figure plots the value of the

bond, stock and orthogonal components as a fraction of the value of human capital at each age when

averaged across the states that occur at each age. We find that the bond component is on average

more than 80 percent of the value of human capital at each age over the lifetime. This holds for all

values of the risk aversion coefficient that we examine and for both education groups. We also find

that the stock share of the value of human capital is slightly larger early in life for the high school

than for the college agents. This leads high school agents to hold a lower average share of stock in

the financial asset portfolio early in life compared to college agents, at any fixed level of relative risk

aversion.

While it may seem plausible that the value of human capital is largely bond-like during retirement, it is

useful to understand why the value of human capital in retirement is not always 100 percent bonds. If

17We allow for corners in which case E[mj,j+1R
i
j+1|zj ] ≤ 1.

17



a retired agent will in all future date-events end up holding positive bonds, then the decomposition will

indeed calculate that this agent’s human capital in retirement is 100 percent bonds as social security

transfer payments in retirement are certain in the model. However, if an agent hits the corner of the

bond decision in the future under some sequence of risky stock returns, then this is not true as the

mean of the agent’s stochastic discount factor will be less than the inverse of the gross risk-free rate in

such an event. This then implies that the value of future social security transfers to the agent is low

at this date. Thus, the value of these transfers at earlier dates takes on a positive stock component

provided that a corner solution is induced by low stock return realizations. In summary, while the

value of human capital is mostly bond-like in retirement, it is not 100 percent bonds because agents

run down financial assets, hit a corner solution on the holdings of the risk-free asset and live off social

security transfers.

Figure 3 shows that the stock component of the value of human capital in the benchmark model

is positive on average and accounts for less than 20 percent of the value of human capital over the

lifetime. The stock component is positive, at a given age and state, provided that the sum of next

period’s earnings and human capital value covaries positively with the return to stock, conditional on

this period’s state.18 Our empirical work, as summarized in Table 2, directly relates to the conditional

comovement of earnings and stock returns. Specifically, Table 2 shows that the innovations to the

growth rate of the aggregate component of male earnings and stock returns are positively correlated

for all education groups and either of the two statistical models analyzed. The conditional correlation

of log earnings growth and log stock returns is slightly above 0.3 in all the models estimated in Table

2.

Figure 3 shows that the value of the orthogonal component is strongly negative early in the lifetime.

Given that the orthogonal component has a zero mean, this large negative value is due to strong

negative covariation between the orthogonal component and the stochastic discount factor. This

occurs, for example, when the agent’s consumption and future utility is increasing in the realization

of the persistent idiosyncratic earnings shock, other things equal. The persistent shock component is

particularly important early in life as the effect of such a shock has many periods over which it impacts

future earnings. Later on we will see that eliminating persistent shocks from the model raises mean

human capital values early in life and reduces (in absolute value) the mean value of the orthogonal

component. The value of the orthogonal component of human capital payouts will play an important

role in our analysis of whether human capital returns look very much like the return to stock, like the

return to bonds or like neither of these assets.

18The Appendix describes our methods for computing the projection coefficients in the value decomposition.
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5.2 Human Capital Returns

Figure 4 plots properties of human capital returns. Expected human capital returns are very large

early in the working lifetime and decline with age over most of the working lifetime. The large return

to human capital early in the lifetime may at first seem surprising in light of the results of the human

capital value decomposition. The decomposition showed a heavy average weight on bonds over the

lifetime. This fact may lead some to conjecture that early in life the mean return should be near the

bond return or between the mean return to stock and bonds. Neither conjecture is correct.

To understand what drives the mean human capital returns profile over the lifetime, it is useful to

return to the main ideas used in the value decomposition. The first equation below decomposes gross

returns by decomposing the future payout into a bond, a stock and an orthogonal component. The

second equation shows that the conditional mean human capital return always equals the weighted

sum of the conditional mean of the bond and stock return.19

Rhj+1 ≡
vj+1 + ej+1

vj
=
αbjR

b
j+1 + αsjR

s
j+1 + ε

vj

E[Rhj+1|zj ] =
αbj
vj
E[Rbj+1|zj ] +

αsj
vj
E[Rsj+1|zj ]

The weights on the bond and stock return do not always sum to one. When the agent’s Euler equation

for both stock and bonds hold with equality, then these weights will sum to more than one exactly

when the value of the orthogonal component is negative.20 Figure 3 documented that the value of

the orthogonal component of human capital payouts is strongly negative early in the working lifetime.

This occurs because persistent idiosyncratic shocks are especially important early in life as they signal

higher earnings many periods into the future. When the decomposition weights on expected returns

sum to more than one then human capital returns can vastly exceed a convex combination of stock

and bond returns.

At this point, it is useful to return to an issue raised in the introduction. We mentioned that Vissing-

Jorgensen and Attanasio (2003) estimate preference parameters of Epstein-Zin utility functions from

micro data. Their methods involve proxying the unobserved expected return to a household’s human

capital by an age and state invariant weighted average of bond and stock returns. Our analysis shines

19The orthogonal component drops out as, with a risk-free asset, the mean of the orthogonal component is zero.
20In this case, vj = E[mj+1(vj+1 + ej+1)] = αbj +αsj +E[mj+1εj+1] and E[mj+1εj+1] < 0 imply αbj/vj +αsj/vj > 1. Of

course, the weights for decomposing returns can and do sum to more than one even when Euler equations do not hold
with equality.
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light on how this approximation may be problematic. While expected human capital returns do in

theory equal a weighted average of financial asset returns in the benchmark model, the theoretical

weights vary by age and state and are determined by the projection coefficients as discussed previously.

Figure 4 highlights the point that the mean sum of the weights falls with age. We also note that the

weights in the above decomposition early in life are sensitive to the level of initial financial wealth:

lower financial wealth increases mean human capital returns, other things equal, and thus increases

the sum of the weights. Thus, our results suggest that proxying mean human capital returns with an

age and state-invariant average of stock and bond returns may be more problematic when the data

includes relatively young households or households with low financial wealth.

The mean return to human capital during retirement is near the risk-free rate except at the very end

of the lifetime. The high return at the very end of the lifetime might at first seem odd since agents in

the benchmark model receive a real annuity after retirement. This should not be surprising, however,

as in the penultimate period vJ−1 = E[meJ ] and 1 = E[meJ/vJ−1]. As the return conditional on

surviving to the last period is certain, the return is RhJ = eJ/vJ−1 = 1/E[m]. Thus, the return on

human capital equals the risk-free bond rate when the agent is off the corner on the risk-free asset

choice (i.e. RhJ = 1/E[m] = Rb) but can exceed the risk-free rate when the agent is on the corner (i.e.

RhJ = 1/E[m] ≥ Rb). Towards the end of the lifetime an increasing fraction of agents in the model for

both education groups are on corners. They run their financial assets down to zero and live off their

social security annuity. This accounts for the high mean returns towards the end of the lifetime.

The correlation between human capital returns and stock returns over the lifetime in the benchmark

model is summarized in Figure 4(c)-4(d). The correlation is positive but low early in life. The

correlation is slightly larger for High School males than for College males. However, for neither case

do we find that individual-level human capital returns are very much like U.S. stock returns in terms

of the correlation over the working lifetime. Some studies of human capital returns that are based on

valuing a claim to aggregate, economy-wide earnings (see Baxter and Jermann (1997)) conclude that

human capital returns are more highly correlated with stock returns than our findings indicate.

The positive correlation that we do find for individual-level returns before retirement is based on

several data properties. First, we find in Table 3 that the aggregate component of earnings growth for

males in CPS data is positively correlated with stock returns. This fact helps to shape the coefficients

in our VAR model including the larger positive conditional correlation of earnings growth and stock

returns. Second, the old-age transfer benefit formula in the benchmark model is proportional to the

aggregate component of earnings at the retirement age. The U.S. social security system has a similar
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feature as old-age benefits are proportional to a measure of average earnings in the economy when the

worker turns age 60, other things equal. This model feature implies that the value of human capital

for an agent will be approximately proportional to aggregate earnings at retirement.21 These two

properties are behind the high mean return to human capital and the positive correlation of human

capital and stock returns in the last period of the working lifetime that is documented in Figure 4 for

both education groups.

5.3 Portfolio Allocation

Figure 5 provides three views for how measures of wealth are divided into useful parts over the lifetime.

Figure 5(a)-(b) shows the average stock share of financial wealth over the lifetime for each value of

the relative risk-aversion coefficient. Higher values of the risk-aversion coefficient are associated with

lower average stock shares over the working lifetime. In all cases the average stock share of financial

wealth starts to increase just before retirement and into retirement. This is connected to the sharply

falling stock share of the value of human capital just before retirement previously highlighted in Figure

3. The reader will recall that the value of future earnings net of taxes plus transfers is very bond-like

in retirement.

Next we examine two views for how an individual’s overall wealth can be divided into useful compo-

nents. An individual’s overall wealth is defined as the value of the individual’s human capital plus

the value of financial assets. Figure 5(c)-5(d) divide overall wealth into three types of assets: human

wealth and the wealth directly held in stock and bonds, for the economy with risk aversion set equal

to α = 6. Early in life, from age 22 to past age 30, the value of human capital is more than 90 percent

of overall wealth for both education groups. This is the mean of the shares produced across simula-

tions of a population of individuals, each drawing a sequence of shocks from the stochastic process

for aggregate and idiosyncratic shock variables. Even at the retirement age, the human capital share

of an individual’s overall wealth exceeds on average the share either in bonds or in stock. This even

holds for college agents. They hold a greater average fraction of overall wealth in financial assets,

compared to high school agents, as the social security benefit function is concave. During retirement

the human capital share of wealth increases as agents run down financial wealth more rapidly than

the wealth based on claims to future social security benefits.

Figure 5 also provides a view of the composition of the overall wealth portfolio in which the value of

human capital is decomposed into bond and stock components as well as the value of the orthogonal

21Lemma 2 in Appendix A.2 establishes that the value of human capital is precisely proportional to the aggregate
earnings component, after an adjustment for financial wealth, because preferences are homothetic.
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component. This allows us to characterize the average overall wealth share held in stock and bonds.

Thus, to account for overall stock holdings, we add together stock directly held in the financial wealth

portfolio and the stock position embodied in the value of human capital.

Figure 5(e)-5(f) show that the mean overall bond share greatly exceeds the overall stock share through-

out the working lifetime. This holds despite the fact that agents hold on average more stock than

bonds in the financial asset portfolio. The overall stock share early in life in Figure 5 is largely deter-

mined by the decomposition analysis presented in Figure 3. This is because financial assets are small

in value compared to the value of human capital and agents are not allowed to hold negative positions

in either financial asset in the benchmark model.

The average overall stock share in Figure 5(e)-5(f) is around 20 percent over the working lifetime

and displays little variation with age. It is important to develop some intuition for this. In the

standard two-period portfolio problem with constant-relative-risk-aversion (CRRA) preferences, the

optimal stock share equals 1
α

E[Rx]
V ar(Rx)

.
= 1

6
.048
.04 = .2, where Rx is the excess return on the risky asset

over the risk-free asset and α is the coefficient of relative risk aversion. Applying this formula to the

unconditional mean and the variance of excess returns within our model results in a 20 percent stock

share when α = 6.22 While background risk, correlated returns, multiple-period horizons and corner

solutions are present in the benchmark model and invalidate this formula (see Gollier (2001)), it is

interesting to see that this formula is not wildly at odds with average overall portfolio shares in the

benchmark model. It is valuable to keep this point in mind in the next section where we analyze a

number of earnings perturbations. Perturbations that substantially increase the stock share of the

value of human capital above 20 percent coincide with dramatically lower stock shares in the financial

asset portfolio, fixing the risk aversion coefficient at α = 6.

6 Discussion: Robustness and Drivers

The previous section documented properties of human capital values and returns in the benchmark

model. Using the estimated process, based on male earnings and stock return data, we find that

(1) the value of human capital is far below the value implied by discounting future earnings at the

risk-free rate, (2) the mean human capital return is larger than the mean stock return early in life and

declines with age, (3) the stock component of the value of human capital averages below 20 percent

each period over the working lifetime and (4) human capital returns have a small positive correlation

with stock returns. These findings hold for a range of risk-aversion parameters. They also hold based

22The mean and variance in the formula were calculated based on a lognormal distribution, using the mean and
variances of the log returns from US data in Table 3.
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on estimates from three separate male earnings data samples - a high school, a college and a full

sample.

We now examine the robustness and drivers of these findings. We divide this discussion into three

issues: (i) what drives the value of human capital to be substantially below the naive value?, (ii) what

drives the stock share of the value of human capital? and (iii) how sensitive is the value of human

capital and its decomposition to analyzing a different theory of earnings?

6.1 Issue 1: Value of Human Capital

What drives the value of human capital to be substantially below the naive value? To answer this

question, we consider a number of perturbations of the benchmark model. For each perturbation, we

recalculate human capital values and human capital returns and then plot the results in Figure 6.

Figure 6 compares the model perturbation to the benchmark model for the case when risk aversion is

set to α = 6 and earnings are estimated using all males rather than only males with at most a high

school education or only males with at least a college education.

We first consider three perturbations that help agents to better smooth consumption. One perturba-

tion starts agents off with an initial wealth of 1 times mean earnings at age 22 rather than the value

of 0.30 times mean earnings in the benchmark model. The other perturbations allow agents to hold

negative balances in the risk-free asset up to 1.0 times mean earnings or up to the natural borrowing

constraint. Intuitively, under all three perturbations the negative covariation between the stochastic

discount factor and net earnings will be less severe as consumption when young will be less sensitive to

earnings shocks. Figure 6(a)-(b) shows how this plays out. The greater initial wealth level raises the

human capital value early in life and lowers the mean return to human capital early in life compared

to the benchmark model. However, these effects wear off quickly so that mean human capital values

and returns are nearly those in the benchmark model by age 30. Allowing for borrowing has more

bite. Mean human capital values increase over the entire lifetime and mean human capital returns are

lower over the lifetime. However, neither perturbation alters the previous finding that human capital

values are substantially below the naive value and that mean human capital returns are above stock

returns early in life and tend to decrease with age over the working lifetime.

Next we examine the extent to which transitory or persistent idiosynratic risk is a key driver of

human capital values and returns. We do so by eliminating transitory risk or by eliminating persistent

risk. These are other things equal exercises with the exception that the discount factor is adjusted

to match the same wealth-income ratio as in the benchmark model. Figure 6(c)-(d) shows that
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eliminating transitory risk increases human capital values and lowers human capital returns. However,

the quantitative effects are fairly small compared to the massive impact of eliminating persistent

idiosyncratic risk. Eliminating persistent risk produces more than a doubling of the value of human

capital early in life and more than halves the mean return to human capital during the middle years

of the working lifetime. In Figure 6(c)-(d) we explore two ways of eliminating persistent idiosyncratic

risk. We eliminate it from the model without re-estimating the shock process and with reestimating

the shock process. Both treatments produce similarly massive effects. We note that the effects of

eliminating persistent shocks come about also through the effective elimination of counter-cyclical

idiosyncratic risk. Shortly, we will discuss the role of such counter-cyclical risk for determining the

stock share of the value of human capital.

We examine the role that altering the preference parameter ρ has on values and returns, while keeping

relative risk aversion fixed. The value of 1/ρ controls the intertemporal elasticity of substitution (IES).

The benchmark model sets 1/ρ = 1.17 which is the value estimated in the work of Vissing-Jorgensen

and Attanasio (2003). Figure 6(e)-(f) show the results of roughly doubling or halving the IES by

setting it to 1/ρ = 2.0 or to 1/ρ = 0.5. Increasing the IES to 2 increases the human capital value

slightly, whereas decreasing the IES to 0.5 reduces the value of human capital. We note that neither

change in the preference parameter alters the finding from the benchmark model: human capital values

are substantially below naive values and the mean return to human capital early in life exceeds the

return to stock and declines with age.

6.2 Issue 2: Stock Share of Human Capital Values

In the benchmark model the average stock share implicit in the value of human capital was always

below 20 percent over the working lifetime. This held for all three of the education groups that we

analyzed. The average stock share was also fairly insensitive to the value of the coefficient of relative

risk aversion over the range [4, 10]. We now examine the robustness of this result to (1) varying the IES,

(2) allowing borrowing, (3) varying the degree of counter-cyclical risk and (4) allowing cointegration.

Figure 7 shows the results of these four perturbations. The benchmark model is the same model

considered in section 6.1. Approximately doubling the IES to 2.0 decreases the stock share slightly.

Setting the IES to equal 0.5 has a larger impact and ends up increasing the stock share to slightly

over 20 percent early in life. Allowing for borrowing up to 1.0 times mean earnings, which allows

for leveraged holdings of stock, decreases the stock share by about 2 percentage points. Allowing for

borrowing up to the same limit, but not allowing for any leverage, does not produce much of a change
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in the stock component over the working lifetime.

There is evidence that idiosyncratic risk is larger in contractions than expansions. Specifically,

Storesletten et. al. (2004) estimate an earnings process that allows the innovation variance of the

persistent, idiosyncratic earnings shock to take one value in expansions and another in contractions.

They find that the variance is higher in contractions than expansions. They hypothesize that this

data feature is important for portfolio choice, the cost of business cycles and a number of other

issues. Our estimates of the autocorrelation parameter ρ and the standard deviation in aggregate

good times σ(H) and bad times σ(L), are close to their estimates. We estimate (see Table 1) that

(ρ, σ(H), σ(L)) = (.957, .160, .212) for the full sample, whereas Storesletten et. al. (2004, Table 2, row

C) estimate (ρ, σ(H), σ(L)) = (.952, .125, .211).23

How important is counter-cyclical risk (CCR) for the stock share of the value of human capital? We

consider two experiments. We first shut down counter-cyclical risk by imposing that the innovation

variance is the same in good and bad times and re-estimates all model parameters related to earnings.

We then increase the ratio of counter-cyclical risk from σ(L)/σ(H) = .212/.160 to σ(L)/σ(H) =

.257/.076, while fixing all other parameters of the earnings process. This corresponds to the same

average variance of the persistent shock but a difference of the variance from bad to good times of .06

(assuming equal weight on good and bad times).

Figure 7(c) displays the results. Eliminating counter-cyclical risk implies that the average stock share

of the value of human capital falls by a few percentage points compared to the benchmark model

with counter-cyclical risk. Increasing the magnitude of counter-cyclical risk beyond that estimated

in the benchmark model increases the stock share of the value of human capital by a handful of

percentage points. The stock share is now between 20 to 25 percent over parts of the working lifetime.

The experiments show that the stock share of the value of human capital increases as the degree of

counter-cyclical risk increases.24

The benchmark model rules out cointegration between the sum of log stock returns and the log

of the aggregate component of male earnings. This possibility may be important for the value of

human capital because it allows for the possibility that histories with a sequence of large positive

stock returns are associated with a sequence of large positive shocks to the common component of

earnings. Mechanically, this can hold under cointegration since a linear combination of these two

23Our estimates are based on male earnings data from the PSID, whereas their estimates are based on household
earnings data from the PSID adjusted for household size and adjusted for taxes and transfers.

24These results broadly agree with the work of Lynch and Tan (2011). They show that the stock share in the financial
asset portfolio decreases as the magnitude of counter-cyclical risk increases, other things equal. In our model we find
qualitatively similar results.
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random variables is then a stationary process. Such a relationship may strengthen the negative

covariation between stochastic discount factors and future earnings when agents are young and have

many future earnings periods, leading the value of human capital to move more in sync with current

stock returns.

Figure 7(d) plots the stock share in the benchmark model estimated without allowing cointegration

and in three alternative, estimated models. First, we plot the stock share for the benchmark model

and the estimated model with cointegration using CPS 1967-2008 data. Second, we plot the stock

share for estimated models with and without cointegration using NIPA data over the period 1929-2009.

The measure of the growth rate in the common component of earnings impacting all individuals is

now the change in the log of aggregate wages and salaries paid to all workers from NIPA per member

of the labor force.25 We find that (1) allowing cointegration does not increase the stock share of the

value of human capital for a fixed data set used in estimation and (2) the stock share is higher, fixing

the statistical model being estimated, for NIPA 1929-2009 data.

In summary, the results in Figure 7 show that a few changes to the benchmark model can produce

a larger stock share of the value of human capital compared to the benchmark model. These are to

(i) increase the magnitude of counter-cyclical risk beyond that found in PSID data, (ii) decrease the

IES to values below 1 and (iii) use NIPA data over a longer time period to proxy the growth rate in

the common component of earnings growth. Individually, none of these changes increase the stock

share to be more than 25 percent of the value of human capital. While one may conjecture that

allowing for cointegration between measures of stock returns and the labor market may help increase

the stock component of the value of human capital, we do not find support for this in estimated models.

Specifically, the stock component is smaller within our model with cointegration than without when

the aggregate process is estimated using the same data set.

This last finding may seem surprising in light of the work of Benzoni et. al. (2007). The main focus of

their work is to examine how cointegration affects portfolio choice as a single parameter (the parameter

κ in their model) that controls the strength of adjustment in the cointegrating relationship increases.

They find that stock holding in the financial asset portfolio is sensitive to κ. Stock holding is zero

early in life for their preferred value of κ when relative risk aversion is sufficiently large. They view

that this occurs because a cointegrating relationship makes the value of human capital look more like

stock as the adjustment parameter κ increases.

25Table A.4 in the Appendix documents that the NIPA measure of earnings growth has similar properties to the
measure that we estimate from individual-level male earnings data in the CPS data over the same time period. Over
the 1929-2009 period the NIPA measure of the standard deviation of earnings growth is larger than over the 1967-2008
period.
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Figure 8 explores how incorporating the aggregate earnings and stock return process used by Benzoni

et. al. (2007) into our model affects the stock component of the value of human capital. Figure

8 shows that plugging their process into our model nearly doubles the stock component over the

working lifetime from slightly over 15 percent in the benchmark model to nearly 30 percent.26 What

is driving these substantial differences? This is not due to differences across the two processes in

the mean log return to stock or the mean log earnings growth rate as we adjust constants in each

process to produce the same means to facilitate these comparisons. One important difference is that the

unconditional standard deviation of log earnings growth is SD(∆u1) = .069 under the Benzoni process

but is SD(∆u1) = .025 in the benchmark model. Thus, the amount of aggregate earnings risk differs

dramatically across the two models. Table A.4 in the Appendix shows that SD(∆u1) = .025 using

CPS data over 1967-2008. The NIPA measure is SD(∆u1) = .024 over 1967-2008 and SD(∆u1) = .029

over 1929-2009.

Are the differences in Figure 8 primarily due to the nature of cointegration or due to differences in

the standard deviation of aggregate earnings growth, absent any role played by cointegration? To

address this issue, we construct in Appendix A.3 a process with no cointegration but which generates

an unconditional contemporaneous covariance structure and first-order auto-covariance structure that

is identical to those produced by the discrete-time version of the Benzoni process. This process is

labeled Benzoni- no cointegration in Figure 8. Figure 8 shows that a large part, but not all, of the

difference between the benchmark model and the Benzoni-cointegration process is driven by the greater

magnitude of short-run aggregate labor market risk, not by the presence of cointegration. Moreover,

it is important to keep in mind that a measure of the labor market risk implied by either Benzoni

process is more than twice the value that we find in U.S. data.

6.3 Issue 3: Endogenous Labor Supply

The benchmark model treats male earnings as an exogenous process and then both estimates it

and values it. While we think that this is the natural first step in valuing human capital, other

theories of earnings should be explored. We now take a second step by adopting a traditional view

in labor economics that an individual’s labor productivity process is exogenous and that earnings are

endogenous and equal the product of labor productivity and a labor hours choice.

This view is attractive for many reasons. First, extensions of the methods used to estimate an earnings

26Appendix A.3 contains the details for how we (i) approximate their continuous time process, under their prefered
parameter values, with a discrete-time process and (ii) adjust the constant terms in their process to match the same
steady state mean values (E[logR], E[∆u]) used in the benchmark model. It also contains (see Table A.5) the steady-state
statistics implied by the Benzoni process and the benchmark process without cointegration estimated using CPS data.
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process can be applied to labor productivity (i.e. earnings divided by labor hours) so that there is

empirical discipline. Second, new features arise in the analysis of this model as both earnings and

leisure streams can be valued. In addition, labor hours can respond to shocks and, perhaps, play a

role in consumption smoothing. Third, the robustness of the four properties of values and returns

outlined at the start of section 6 can be explored.

An agent solves the following version of Problem P1 from section 3. An agent’s labor productivity is

exogenous and follows a process with exactly the same functional form assumptions as the empirical

earnings process analyzed in section 4. Thus, labor productivity has an age component, a common

time component and an idiosyncratic component with three sources of variation (i.e. a fixed effect, a

persistent shock and a transitory shock). Earnings are modeled after taxes and transfers as in section

4.27 There are two financial assets and the agent cannot hold negative quantities of either asset.

Max U(c, n) subject to

1. cj +
∑2

i=1 a
i
j+1 =

∑2
i=1 a

i
jR

i
j + ej

2. ej = z1jgj(z2j(1− nj)(1− τ) for j < Ret and ej = z1jb(ξ)(1− τ) otherwise

3. cj , a
1
j+1, a

2
j+1 ≥ 0,∀j and 0 ≤ nj ≤ 1

Our methods for computing solutions to this decision problem make use of a homogeneity property of

U .28 This assumption allows us some flexibility in choosing U . We use the following recursive utility

function, which is close in some respects to the utility function employed in the benchmark model.

U1(c1, ..., cJ , n1, ..., nJ) = W (c1, n1, F (U2(c2, ..., cJ , n2, ..., nJ)), 1)

W (a, b, c, j) = [(1− β)(aνb1−ν)1−ρ + βψj+1c
1−ρ]1/(1−ρ) and F (x) = (E[x1−α])1/(1−α)

Risk and intertemporal substitution attitudes over the consumption good can be determined at con-

stant values of the leisure variable. At a mechanical level, leisure then factors out and one is left

with Epstein-Zin utility. On this basis, whereas IES = 1/ρ and relative risk aversion (RA) equaled

27We again describe the exogenous state zj = (z1j , z2j) with two components. The first component now captures the
common component of wages rather than earnings. The second component captures all sources of idiosyncratic variation
as before.

28We assume U(c, n) ≥ U(c′, n′) ⇒ U(λc, n) ≥ U(λc′, n′),∀λ > 0 and that the budget set Γ has the property that
(c, n) ∈ Γ(x, z1, z2)⇒ (λc, n) ∈ Γ(λx, λz1, z2), ∀λ > 0. These assumptions allow a version of Lemma 1 in Appendix A.2
to hold for the labor supply model. Thus, a generalization of the methods previously used to compute solutions to the
decision problem and the value of human capital hold. This is important for conserving on the dimension of the state
variables used in computation.
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RA = α for the preferences in the benchmark model, now one can restate these in terms of (α, ρ, ν) as

IES = 1/[νρ− ν + 1] and RA = ν(α− 1) + 1. We set (ρ, α) so that given a value for ν the new model

produces the IES value and the same range of RA values used in the benchmark model as summarized

in Table 4. In each version of our model, we calibrate ν so that forty percent of available time before

retirement is spent in work. This is a traditional value from labor economics.

Our methods for relating this economic model to U.S. data are parallel to those employed in section

4. First, we estimate the idiosyncratic shock process using labor productivity (i.e. earnings/work

hour) from the same PSID and CPS data sets used earlier. Second, we use the estimated time dummy

variables from CPS data as raw data and estimate a bivariate VAR in wage growth and log stock

returns with one lag. This follows equation (7) from section 4.1. The results are summarized in Table

1-2 and Table A.4 in Appendix A.3. For the idiosyncratic shock process we find a larger autoregressive

parameter for wages compared to earnings data and essentially no counter-cyclical idiosyncratic risk

for wage rates. For the aggregate shock process, we find that the conditional correlation between the

growth rate of wages and log stock returns is positive but the conditional correlation is smaller than

for earnings. Counter-cyclical risk and positive conditional correlation were important model elements

contributing to the positive stock component of human capital values in the benchmark model from

section 5.

We repeat the analysis of values and returns from section 5 but using the new model. Mechanically,

this involves solving the decision problem, calculating stochastic discount factors from best decisions,

and then computing values and returns using the principles from section 3. Figure 9 shows implications

for human capital values. We compute now (i) the value of earnings net of tax and transfers, (ii) the

value of leisure and (iii) the sum of these two values. The result is that all values are well below

computations of naive values based on discounting at the risk-free rate. We find that leisure values

exceed on average values implied by earnings streams. We find that there is a positive stock component

from values based on earnings streams but that the stock component is smaller than those calculated

in the benchmark model. The stock component of leisure values is positive and typically exceeds

that calculated for earnings streams. One notable difference with respect to the benchmark model

is that the overall stock component of human capital values in Figure 9(f) does not sharply decline

after retirement. Thus, the new model does not imply the same sharp increase in stock holding in the

financial asset portfolio around the retirement age.

Figure 10 highlights properties of human capital returns. The new model produces mean human capital

returns that exceed stock returns early in life and that decline with age over the working lifetime. This

29



holds for returns based on valuing earnings streams, leisure streams or the sum of earnings and leisure

streams. This is the same pattern as for the benchmark model. In the benchmark model this pattern

was strongly influenced by persistent idiosyncratic risk. Figure 10 also summarizes the correlation

properties of human capital returns. Human capital returns based on earnings or leisure streams are

positively correlated with stock returns on average but this correlation is lower than in the benchmark

model.

Figure 11 provides three views of portfolio shares for the model with risk aversion set to RA = 6.

First, the average fraction of stock in the financial asset portfolio is fairly constant across age. Second,

the relative importance of four assets are highlighted: stock, bonds, the value of the earnings stream

and the value of the leisure stream. We find that the leisure stream is the most important component

of wealth followed by the value of the earnings stream. Third, we decompose the two human capital

values into stock, bond and orthogonal components and then add up all the stock and bond holdings.

We find that over the entire lifetime the bond component of wealth far exceeds the stock component.

Moreover, the total stock holding component inherits the basic shape of the stock component implicit

in the value of the leisure stream. This is not surprising given that shorting either stock or bonds in

the financial asset portfolio is not allowed and that massive positions would be needed given that the

two human wealth components constitute approximately all of wealth for agents below age 40.

7 Conclusion

The paper highlights four properties of human capital values and returns based on an analysis of

U.S. data on males earnings and financial asset returns. These four properties hold for (i) three

different educational groups, (ii) a wide range of parameters characterizing risk aversion, (iii) a range

of assumptions on borrowing constraints and (iv) two different statistical models for earnings estimated

using two different data sets (CPS and NIPA data). Persistent idiosyncratic risk is a key driver for why

human capital values early in life are substantially below the value implied by discounting earnings at

the risk-free rate. Early in life the persistent component of idiosyncratic earnings risk implies, within

the model framework, substantial negative covariation between earnings and an agent’s stochastic

discount factor. There are three key data features that are behind the positive stock component of

human capital values over the working lifetime in our models. These are that (i) the conditional

correlation between male earnings and stock returns is positive in all our estimated models, (ii) the

presence of counter-cyclical idiosyncratic risk based on an analysis of PSID data and (iii) the fact

that social security benefits for individuals in the U.S. are increasing in a measure of economy-wide
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earnings when an individual turns age 60. The precise magnitude of the stock component of human

capital depends on the estimated magnitudes of these data features.

31



References

Alvarez, F. and U. Jermann (2004), Using Asset Prices to Measure the Cost of Business Cycles,
Journal of Political Economy, 112, 1223-56.

Baxter, M. and U. Jermann (1997), The International Diversification Puzzle Is Worse Than You
Think, American Economic Review, 87, 170-80.

Becker, G. (1975), Human Capital, Second Edition, National Bureau of Economic Research.

Ben-Porath, Y. (1967), The Production of Human Capital and the Life Cycle of Earnings,
Journal of Political Economy, 75, 352-65.

Benzoni, L., Collin-Dufresne, P. and R. Goldstein (2007), Portfolio Choice over the Life-Cycle
when the Stock and Labor Markets are Cointegrated, Journal of Finance, 62, 2123-67.

Campbell, J. (1996), Understanding Risk and Return, Journal of Political Economy, 104, 298-
345.

Campbell, J., Cocco, J., Gomes, F. and P. Maenhout (2001), Investing Retirement Wealth:
A Life-Cycle Model, in Campbell and Feldstein, eds: Risk Aspects of Social Security Reform
(University of Chicago Press).

Cochrane, J. (2001), Asset Pricing, Princeton University Press.

Constantinides, G. and D. Duffie (1996), Asset Pricing with Heterogeneous Consumers, Journal
of Political Economy, 104, 219-40.

Dublin, L. and A. Lotka (1930), The Money Value of a Man, The Ronald Press Company.

Epstein, L. and S. Zin (1991), Substitution, Risk Aversion and the Temporal Behavior of Con-
sumption and Asset Returns: An Empirical Analysis, Journal of Political Economy, 99, 263-86.

Farr, W. (1853), The Income and Property Tax, Journal of the Statistical Society of London,
16, 1-44.

French, E. (2004), The Labor Supply Response to (Mismeasured but) Predictable Wage Changes,
Review of Economics and Statistics, 86(2), 602-613.

Gollier, C. (2001), The Economics of Risk and Time, The MIT Press.

Graham, J. and R. Webb (1979), Stocks and Depreciation of Human Capital: New Evidence
from a Present-Value Perspective, Review of Income and Wealth, 25, 209- 24.

Guvenen, F. (2009), An Empirical Investigation of Labor Income Processes, Review of Economic
Dynamics, 12(1), 58-79.

Guvenen, F. and A. Smith (2011), Inferring Labor Income Risk from Economic Choices: An
Indirect Inference Approach, manuscript.

Haveman, R., Bershadker, A. and J. Schwabish (2003), Human Capital in the United States
from 1975 to 2000: Patterns of Growth and Utilization, Upjohn Institute.

Heathcote, J., Perri, F. and G. Violante (2010), Unequal We Stand: An Empirical Analysis of
Economic Inequality in the United States, Review of Economic Dynamics, 13(1), 15-51.

Heckman, J. (1976), A Life-Cycle Model of Earning, Learning and Consumption, Journal of
Political Economy, 84, S11-S44.

32



Heckman, J., Lochner, L. and P. Todd (2006), Earnings Functions, Rates of Return and Treat-
ment Effects: The Mincer Equation and Beyond, Handbook of the Economics of Education,
Volume 1, eds. Hanushek and Welch.

Huggett, M. and G. Kaplan (2011), Human Capital Values and Returns: Bounds Implied By
Earnings and Asset Returns Data, Journal of Economic Theory, 146, 897-919.

Huggett, M. and J.C. Parra (2010), How Well Does the U.S. Social Insurance System Provide
Social Insurance?, Journal of Political Economy, 118, 76-112.

Huggett, M., Ventura, G. and A. Yaron (2011), Sources of Lifetime Inequality, American Eco-
nomic Review, 101, 2923- 54.

Johansen, S. (1995), Likelihood-Based Inference in Cointegrated Vector Autoregressive Models,
Oxford University Press.

Jorgenson, D. and B. Fraumeni (1989), The Accumulation of Human and Nonhuman Capital,
1948- 1984, in The Measurement of Saving, Investment and Wealth, R. Lipsey and H. Tice, eds.
NBER Studies in Income and Wealth.

Lillard, L. (1977), Inequality: Earnings vs. Human Wealth, American Economic Review, 67,
42-53.

Lucas, R. (1978), Asset Prices in an Exchange Economy, Econometrica, 46, 1429- 45.

Lustig, H. and S. Van Nieuwerburgh (2008), The Returns on Human Capital: Good News on
Wall Street is Bad News on Main Street, Review of Financial Studies, 21(5), 2097- 137.

Lynch, A. and S. Tan (2011), Labor Income Dynamics at Business-Cycle Frequencies: Implica-
tions for Portfolio Choice, Journal of Financial Economics, 101, 333-59.

Meghir, C. and L. Pistaferri (2010), Earnings, Consumption and Lifecycle Choices, NBER Work-
ing Paper.

NCHS (1992), US Decennial Life Tables 1989-1991, Washington, DC: Hyattsville, Md.

Poterba, J., Venti, S. and D. Wise (2011), The Composition and Drawdown of Wealth in Re-
tirement?, Journal of Economic Perspectives, 25, 95-118.

Social Security Handbook (2012), available http://www.ssa.gov.

Storesletten, K., Telmer, C. and A. Yaron (2004), Cyclical Dynamics in Idiosyncratic Labor-
Market Risk, Journal of Political Economy, 112, 695-717.

Storesletten, K. Telmer, C. and A. Yaron (2007), Asset Pricing with Idiosyncratic Risk and
Overlapping Generations, Review of Economic Dynamics, 10, 519-48.

Vissing-Jorgensen, A. and O. Attanasio (2003), Stock-Market Participation, Intertemporal Sun-
stitution, and Risk-Aversion, American Economic Review Papers and Proceedings, 93, 383-91.

Weisbrod, B. (1961), The Valuation of Human Capital, Journal of Political Economy, 69, 425-
36.

33



0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

35

40

σ: st dev earnings shocks

 

 

Naive value

ρ = 1

ρ = 2

ρ = 4

(a) Value of human capital

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

35

40

45

σ: st dev earnings shocks

 

 

ρ = 1

ρ = 2

ρ = 4

(b) Mean return human capital (%)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

100

200

300

400

500

600

σ: st dev earnings shocks

 

 

Marginal benefit (ρ = 2)

Total benefit (ρ = 2)

(c) Benefit of moving to a smooth consumption plan
(%)

Figure 1: Human capital values and returns: simple example
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Figure 2: Life-cycle profiles in the benchmark model

Notes: The vertical scale is in units of 100,000 dollars in year 2008.
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(b) Human capital values (college)
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(c) Decomposition (high school)
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Figure 3: Human capital values and decomposition

Notes: The vertical scale in Figure 3 (a)-(b) is in units of 100,000 dollars in year 2008.
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(a) Human capital returns (%) (high school)
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(b) Human capital returns (%) (college)
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(c) Correlation: HC, stock returns (high school)
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(d) Correlation: HC, stock returns (college)

Figure 4: Properties of human capital returns
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(a) Stock share of financial wealth (high school)
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(b) Stock share of financial wealth (college)
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(c) Portfolio shares (high school)
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(d) Portfolio shares (college)
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(e) Overall portfolio shares (high school)
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Figure 5: Portfolio shares in the benchmark model

Notes: Financial portfolio shares in panels (a)-(b) are averages over the sub-population with positive asset holdings.
Panels (c)-(f) present results setting risk aversion equal to 6.
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(a) Human capital values (borrowing, initial wealth)
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(b) Human capital returns (borrowing, initial wealth)
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(c) Human capital values (idiosyncratic risk)
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(d) Human capital returns (idiosyncratic risk)
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(e) Human capital values (IES)
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(f) Human capital returns (IES)

Figure 6: What drives the value and return to human capital?

Notes: In panels (a)-(b) “With borrowing (1x)” refers to the model that allows borrowing up to 1 times average annual
earnings, and “With borrowing (NBL)” refers to model that allows borrowing up to the “Natural Borrowing Limits” i.e.
limits that impose only that the agent must be able to repay his debt in all states of the world.
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(a) Stock component of human capital (IES)
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(b) Stock component of human capital (borrowing)
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(c) Stock component of human capital (counter-cyclical
risk)
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(d) Stock component of human capital (cointegration)

Figure 7: What drives the stock component of human capital?
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(a) Stock share of financial wealth
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Figure 8: Alternative models of cointegration: Benzoni et al. (2007)
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(a) Human capital values (earnings component)
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(b) Human capital decomposition (earnings compo-
nent)
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(c) Human capital values (leisure component)
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(d) Human capital decomposition (leisure component)
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(e) Human capital values (total)
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Figure 9: Human capital values and decomposition with endogenous labor supply

Notes: Mean naive values in panels (a), (c) and (e) are for the model with with risk aversion equal to 6. Mean naive
values for other levels of risk aversion are similar.
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(a) Human capital returns (%) (earnings component)
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(b) Human capital returns (%) (leisure component)
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(c) Human capital returns (%) (total)
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(d) Correlation: HC (earnings component), stock
returns
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(e) Correlation: HC (leisure component), stock re-
turns
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Figure 10: Properties of human capital returns with endogenous labor supply
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(b) Portfolio shares
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Figure 11: Portfolio shares with endogenous labor supply
Notes: Financial portfolio share in panel (a) is average over the sub-population with positive asset holdings. All panels
set risk aversion equal to 6
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Table 1: Parameter Estimates for the Idiosyncratic Earnings Process

Parameters Full College High School Full Full
Sample Sub-sample Sub-sample Sample Sample

ρ = 1 (hourly wages)

ρ 0.957 0.959 0.902 1 0.978
(0.009) (0.014) (0.061) (0.007)

σ2ξ 0.110 0.092 0.121 0.150 0.069

(0.009) (0.023) (0.019) (0.010) (0.005)

av. σ2η 0.033 0.033 0.039 0.014 0.020

(0.004) (0.005) (0.015) (0.001) (0.002)

σ2η (L)− σ2η (H) 0.020 0.012 0.025 0.011 0.001

(0.005) (0.007) (0.008) (0.003) (0.004)

av. σ2ε 0.150 0.151 0.147 0.178 0.072
(0.008) (0.015) (0.016) (0.005) (0.004)

Linear time trend in σ2η 0.0011 0.0014 0.0013 0.0006 0.0005

(0.0002) (0.0004) (0.0009) (0.0001) (0.0001)

Notes: All models include a fourth-order polynomial in age in the variance of the transitory shock σ2
ε . Reported variance

are averages over age range. Standard errors computed by block bootstrap with 39 repetitions.
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Table 2: Parameter Estimates for the Aggregate Stochastic Process
No Cointegration With Cointegration

Full College High School Full Full College High School
Sample Sample Sample Sample Sample Sample Sample

(wages)

Equation 1: ∆u1t
∆u1t−1 Γ11 0.383 0.260 0.348 0.537 0.364 0.12 0.295

(0.14) (0.15) (0.14) (0.12) (0.19) (0.15) (0.18)
logRst−1 Γ12 0.044 0.04 0.057 0.036 0.045 0.016 0.058

(0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03)
Constant γ1 -0.004 -0.003 -0.009 -0.003 -0.004 -0.005 -0.008

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Equation 2: logRst
∆u1t−1 Γ21 -2.149 -2.203 -1.731 -3.813 0.473 -2.248 0.236

(1.15) (1.29) (0.97) (1.42) (1.42) (1.45) (1.18)
logRst−1 Γ22 0.106 0.153 0.101 0.024 0.054 0.145 0.072

(0.17) (0.18) (0.17) (0.16) (0.16) (0.21) (0.17)
Constant γ2 0.032 0.031 0.024 0.033 0.00 0.029 0.00

(0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

Var-Cov Matrix
var (ε1,t)× 10−4 4.42 4.24 6.49 2.02 4.42 3.37 6.44
var (ε2,t)× 10−2 3.2 3.24 3.23 2.95 2.57 3.24 2.92

cov (ε1,t, ε2,t)× 10−3 1.23 1.24 1.52 0.51 1.28 1.21 2.00

Cointegrating
Vector
logRst β2 0.309 -0.211 0.469

(0.10) (0.06) (0.15)
Trend ρ -0.019 0.016 -0.026

(0.01) (0.00) (0.01)
Constant µ -0.67 0.343 -0.976

Adjustment
Parameters

∆u1t α1 0.007 -0.196 0.017
(0.05) (0.07) (0.04)

logRst α2 -1.04 -0.063 -0.651
(0.36) (0.64) (0.23)

Notes: Standard errors in parentheses.
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Table 3: Implied Steady-State Statistics for the Aggregate Stochastic Process

Full Sample
Data No Cointegration With Cointegration

E
(
logRbt

)
0.012 0.012 0.012

E (logRst ) 0.041 0.045 0.070
E
(
∆u1t

)
-0.002 -0.004 -0.002

sd
(
∆u1t

)
0.025 0.025 0.025

sd (logRst ): 0.187 0.187 0.187
corr

(
∆u1t , logRst

)
0.184 0.177 0.156

corr
(
∆u1t ,∆u

1
t−1
)

0.425 0.441 0.435
corr

(
logRst , logRst−1

)
0.057 0.055 0.005

corr
(
∆u1t logRst−1

)
0.372 0.398 0.394

corr
(
logRst ,∆u

1
t−1
)

-0.292 -0.270 -0.289

College Sub-sample
Data No Cointegration With Cointegration

E
(
logRbt

)
0.012 0.012 0.012

E (logRst ) 0.041 0.040 0.045
E
(
∆u1t

)
0.000 -0.001 -0.001

sd
(
∆u1t

)
0.023 0.023 0.023

sd (logRst ): 0.187 0.187 0.186
corr

(
∆u1t , logRst

)
0.248 0.251 0.243

corr
(
∆u1t ,∆u

1
t−1
)

0.346 0.341 0.342
corr

(
logRst , logRst−1

)
0.057 0.084 0.050

corr
(
∆u1t logRst−1

)
0.377 0.387 0.367

corr
(
logRst ,∆u

1
t−1
)

-0.225 -0.235 -0.229

High School Sub-sample
Data No Cointegration With Cointegration

E
(
logRbt

)
0.012 0.012 0.012

E (logRst ) 0.041 0.045 0.074
E
(
∆u1t

)
-0.007 -0.010 -0.008

sd
(
∆u1t

)
0.030 0.030 0.030

sd (logRst ): 0.187 0.187 0.186
corr

(
∆u1t , logRst

)
0.207 0.194 0.175

corr
(
∆u1t ,∆u

1
t−1
)

0.386 0.416 0.411
corr

(
logRst , logRst−1

)
0.057 0.047 0.003

corr
(
∆u1t logRst−1

)
0.387 0.420 0.420

corr
(
logRst ,∆u

1
t−1
)

-0.289 -0.261 -0.276

Notes: Table shows average moments in the data, together with implied steady-state statistics from the corresponding
estimated model. Data cover the period 1967-2008. When implementing the estimated processes in the structural model,
we adjust the constants (γ1, γ2) estimated in Table 2 so that all models have E[logRst ] = 0.041 and E[∆u1

t ] = 0.
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Table 4: Parameter Values for the Benchmark Model

Category Symbol Parameter Value

Lifetime J,Ret (J,Ret) = (69, 40)

Preferences α Risk Aversion α ∈ {4, 6, 8, 10}
1/ρ Intertemporal Substitution 1/ρ = 1.17
ψj+1 Survival Probability U.S. Life Table
β Discount Factor see Notes

Earnings ej(z) =

{
z1gj(z2)(1− τ) if j < Ret
z1b(ξ)(1− τ) if j ≥ Ret Table 1 - 2

τ = .27
b(·) see text

Returns Rs, Rb Table 2 - 3

Notes: β is calibrated to generate a steady-state ratio of wealth to income equal to 3.5. All sensitivity analyses are
performed by re-calibrating β to generate the same ratio. Survival probabilities are smoothed versions of male values
from the 1989-91 US Decennial Life Tables in NCHS (1992). Smoothing is done using a nine point moving average.
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A Appendix

A.1 Justifying the Value of Human Capital

We now provide a theoretical justification for our notion of the value of human capital. To do so, we confront the agent
who faces Problem P1 with a different market structure given by Problem P2. In this market structure there is a firm
that is mandated to follow the human capital decisions that shape earnings in a solution to Problem P1 and to sell units
of leisure to the agent at a price pj . This firm produces a dividend dj in period j equal to the value of earnings and
leisure produced in the period. The agent has the option of buying or selling shares in this firm at a price of vj and
can buy leisure time at price pj . The prices (vj , pj) are personalized prices for the agent and not prices at which other
agents can trade. Owning shares in this firm (total shares are normalized to 1) at the end of a period gives the owner a
proportionate claim to future dividends. Human capital values, dividends and leisure prices (vj , dj , pj) are exactly those
specified in section 3.2.

Problem P2: maxU(c, n) subject to

(1) cj +
∑
i∈I a

i
j+1 + sj+1vj + pjnj =

∑
i∈I a

i
jR

i
j + sj(vj + dj) and cj ≥ 0

(2) 0 ≤ nj ≤ 1

(3) aiJ+1 = 0,∀i ∈ I

Theorem 1 asserts that when the agent is given the ability to trade away the value implicit in his future earnings and
leisure streams, then the agent optimally decides not to do so. Thus, the agent starts every period owning all of these
human capital shares and optimally decides to end the period owning all of these shares. The valuation of human capital
persuades the agent to do this and to optimally make exactly the consumption, leisure and asset allocation decisions
that were optimal in Problem P1.29

One important assumption in Theorem 1 is that preferences are concave over consumption-leisure plans. This is key
as then Problem P2 is a concave programming problem. This means that necessary conditions to Problem P1 are
straightforward sufficient conditions for the conjectured solution to be optimal in Problem P2. This holds even though
Problem P1 is not in general a concave program.

Assumption A1:

(i) The utility function U is increasing, concave and differentiable in (c, n) and is strictly increasing in its first
component.

(ii) For all j, the set Zj is finite and the probability P (zj) is strictly positive ∀zj ∈ Zj. The gross return Rij(z
j) is

strictly positive ∀i ∈ I, ∀j, ∀zj ∈ Zj.

Theorem 1: Assume A1. If (c∗, n∗, e∗, y∗, a∗) solves Problem P1 and c∗ is strictly positive, then (c∗, n∗, a∗, s∗) solves
Problem P2, where s∗j ≡ 1,∀j, when the agent takes the value of human capital vj, dividends dj and the price of leisure
pj as exogenous.

Proof:

We develop necessary conditions to P1 in two steps. First, consider a restricted version of Problem P1 where earnings
are exogenously given by e∗ and leisure n is restricted to be no more than n∗. Since (c∗, n∗, e∗, y∗, a∗) solves P1, it is
clear that (c∗, n∗, a∗) also solves the restricted version of P1. Second, the Lagrangian and necessary conditions P1 − 1
to P1 − 4 for an interior solution to the restricted version of P1 are stated below and apply for each age j and shock
history zj . The Lagrangian omits the non-negativity constraint for consumption as by hypothesis c∗ is strictly positive.
Age subscripts are dropped (e.g. cj(z

j) is denoted c(zj)) to simplify notation.

L = U(c, n) +
∑
j

∑
zj λ(zj)[

∑
i∈I a

i(zj−1)Ri(zj) + e∗(zj)− c(zj)−
∑
i∈I a

i(zj)]

+
∑
j

∑
zj γ(zj)[n(zj)− 0] +

∑
j

∑
zj ρ(zj)[n∗(zj)− n(zj)]

P1- 1: dU(c, n)/dc(zj)− λ(zj) = 0

29Broadly, the strategy for “pricing” human capital is the strategy used by Lucas (1978). One proposes a second
economy where trade in the non-traded asset is allowed and then finds prices that persuade the agent not to do so.
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P1- 2: dU(c, n)/dn(zj) + γ(zj)− ρ(zj) = 0

P1- 3: −λ(zj) +
∑
zj+1

λ(zj , zj+1)Ri(zj , zj+1) = 0,∀i ∈ I
P1- 4: all constraints and complementary slackness conditions

Kuhn-Tucker conditions P2-1 to P2-5 are sufficient for a maximum as Problem P2 is a concave program. The Lagrangian
function for Problem P2 is stated below.

L = U(c, n) +
∑
j

∑
zj λ(zj)[s(zj−1)(v(zj) + d(zj)) +

∑
i∈I a

i(zj−1)Ri(zj)− c(zj)−
∑
i∈I a

i(zj)

−s(zj)v(zj)− p(zj)n(zj)] +
∑
j

∑
zj γ(zj)[n(zj)− 0] +

∑
j

∑
zj δ(z

j)[1− n(zj)]

P2- 1: dU(c, n)/dc(zj)− λ(zj) = 0

P2- 2: dU(c, n)/dn(zj)− λ(zj)p(zj) + γ(zj)− δ(zj) = 0

P2- 3: −λ(zj) +
∑
zj+1

λ(zj , zj+1)Ri(zj , zj+1) = 0,∀i ∈ I

P2- 4: −v(zj) +
∑
zj+1

λ(zj ,zj+1)

λ(zj)
(v(zj , zj+1) + d(zj , zj+1)) = 0

P2- 5: all constraints and complementary slackness conditions

It remains to show that P1-1 to P1-4 evaluated at (c∗, n∗, a∗) imply that P2-1 to P2-5 hold at (c∗, n∗, a∗, s∗). Observe
that (1) P1-1 implies P2-1, (2) P2-1, the definition of p(zj) and setting γ(zj) = δ(zj) = 0 implies P2-2, (3) P1-3 implies
P2-3, (4) substituting P2-1 into P2-4, it is straightforward to verify, from the definition of v, that P2-4 holds. It remains
to show that (c∗, n∗, a∗, s∗) satisfies all constraints and complementary slackness conditions. The budget constraint in
P2 holds by the budget constraint in the restricted version of P1 holding at (c∗, n∗, a∗), by s∗j ≡ 1 and by the definition
of dividends d. The leisure restrictions clearly hold at n∗ and the complementary slackness conditions on leisure hold by
setting γ(zj) = δ(zj) = 0. �

A.2 Computation

This section describes our methods to compute solutions to the benchmark model and to compute values and returns.

A.2.1 Value Function and Decision Rules

We want to compute the optimal value function V ∗j and optimal decision rules. We employ the method of dynamic
programming. This involves computing functions Vj solving the Bellman equation (BE). Of course, the idea is that these
two value functions coincide Vj = V ∗j . In stating Γ̂j(x, z) in Bellman’s equation, we impose all the restrictions from the
original budget constraint Γj(x, z).

V ∗j (x, z) ≡ maxW (cj , F (U(cj+1, ..., cJ)), j) s.t. c ∈ Γj(x, z)

(BE) Vj(x, z) = maxW (cj , F (Vj+1(x′, z′)), j) s.t. (c, a1, a2) ∈ Γ̂j(x, z)

Γ̂j(x, z) = {(c, a1, a2) : c+
∑
i∈I a

i ≤ x, c ≥ 0, a1, a2 ≥ 0}

We compute solutions to Bellman’s equation only when the first component of the shock z = (z1, z2) takes the value z1 =
1. This is indicated below. To do so requires knowledge of Vj+1(x′, z′1, z

′
2) at all values of z′1. Lemma 1 below shows that

V ∗j (λx, λz1, z2) = λV ∗j (x, z1, z2),∀λ > 0 and therefore V ∗j (x, z1, z2) = z1V
∗
j ( x

z1
, 1, z2). In the Algorithm described below,

we make use of this key property. In Lemma 1, Γ(x, z) is homogeneous provided c ∈ Γ(x, z)⇒ λc ∈ Γ(λx, λz),∀λ > 0.

Vj(x, 1, z2) = max
(c,a1,a2)∈Γ̂j(x,1,z2)

W (cj , F (Vj+1(x′, z′1, z
′
2)), j)

Lemma 1:

(i) Assume U is homothetic and Γ(x, z) is homogeneous. c∗ ∈ argmax {U(c) : c ∈ Γ(x, z)} implies λc∗ ∈ argmax {U(c) :
c ∈ Γ(λx, λz)},∀λ > 0.

(ii) In the benchmark model V ∗j (λx, λz1, z2) = λV ∗j (x, z1, z2),∀λ > 0
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Proof:

(i) obvious

(ii) Follows from Lemma 1(i) after noting two things. First, EZ preferences are homothetic and, in fact, homogeneous
of degree 1. Second, Γj(x, z) is homogeneous in (x, z1) for any fixed z2. This is implied because the earnings function
from the benchmark model is ej = Gj(z) = z1Hj(z2) and z′1 = z1fj+1(z′2), where z2 is Markov and primes denote next
period values. These two properties hold both for the model with and without cointegration. �

The Lagrange function corresponding to (BE) is stated below along with first-order conditions.

L = W(cj,F(Vj+1(x′, z′1, z
′
2)), j) + λ1[a1 − 0] + λ2[a2 − 0]

(1) −W1 +W2dF/da
1 + λ1 = 0

(2) −W1 +W2dF/da
2 + λ2 = 0

(3) constraints+ complementary slackness

We rewrite equation (1)-(2) below after imposing the functional forms from section 4. The Algorithm is then based on
repeatedly solving these Euler equations.

(1′) − 1 + βψj+1E[(
cj+1

cj
)−ρ(

Vj+1

F (Vj+1)
)ρ−αR1(z′)|x, z] + λ′1 = 0

(2′) − 1 + βψj+1E[(
cj+1

cj
)−ρ(

Vj+1

F (Vj+1)
)ρ−αR2(z′)|x, z] + λ′2 = 0

Algorithm:

1. Set VJ(x, 1, z2) = W (x, 0) and cJ(x, 1, z2) = x at grid points (x, z2).

2. Given (Vj+1(x, 1, z2), cj+1(x, 1, z2)), compute (a1
j+1(x, 1, z2), a2

j+1(x, 1, z2)) at grid points (x, 1, z2) by solving (1′)−
(2′) and (3).

3. Set cj(x, 1, z2) = x−
∑
i a
i
j+1(x, 1, z2) and Vj(x, 1, z2) = W (cj(x, 1, z2), F (Vj+1), j) at grid points.

4. Repeat 2-3 for successive lower ages.

To carry out this Algorithm we mention two points. First, evaluating (1′) − (2′) involves an interpolation of the first
component of the functions (Vj+1, cj+1). Second, evaluating (1′)− (2′) also involves knowledge of (Vj+1, cj+1) when the
second component of these functions differs from z1 = 1. This is accomplished by using Lemma 1 as indicated below.

Vj+1(x′, z′1, z
′
2) = z′1Vj+1(

x′

z′1
, 1, z′2) and cj+1(x′, z′1, z

′
2) = z′1cj+1(

x′

z′1
, 1, z′2)

x′ =
∑
i

aij+1(x, 1, z2)Ri(z′) +Gj+1(z′)

A.2.2 Human Capital Values and Returns

We describe how to compute human capital values and returns in the benchmark model. Let (vj(x, z), Rj+1(x, z, z′))
denote the value and the return to human capital. These functions are recursive versions of the values and returns
defined in section 3. Human capital values vj(x, z) follow the recursion (∗∗), given vJ(x, z) = 0:

(∗∗) vj(x, z) = E[mj+1(x, z, z′)(vj+1(x′, z′) + ej+1(z′))|z]

Rj+1(x, z, z′) =
vj+1(x′, z′) + ej+1(z′)

vj(x, z)

mj+1(x, z, z′) = βψj+1(
cj+1(x′, z′)

cj(x, z)
)−ρ(

Vj+1(x′, z′)

F (Vj+1(x′, z′))
)ρ−α

x′ =
∑
i

aij+1(x, z)Ri(z′) + ej+1(z′)
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Although the recursive structure above is a step in the right direction, it is not practical to implement because the
aggregate component of earnings z1 “fans out” over time in the benchmark model. Instead, we compute the functions
(v̂j , m̂j+1) defined below and then use Lemma 2 to compute values and returns. v̂j is defined recursively, given v̂J = 0
. To compute (v̂j , m̂j+1), we require as inputs the functions (cj , a

1
j+1, a

2
j+1, Vj) from the previous sections computed on

the restricted domain. In what follows, we write earnings as ej = z1Hj(z2) and use the fact that z′1 = z1fj+1(z′2) which
is consistent with the formulation in Table 4.

v̂j(x̂, z2) = E[m̂j+1(x̂, z2, z
′
2)fj+1(z′2)(v̂j+1(x̂′, z′2) +Hj+1(z′2))|z2]

m̂j+1(x̂, z2, z
′
2) ≡ βψj+1(

fj+1(z′2)cj+1(x̂′, 1, z′2)

cj(x̂, 1, z2)
)−ρ(

fj+1(z′2)Vj+1(x̂′, 1, z′2)

F (fj+1(z′2)Vj+1(x̂′, 1, z′2))
)ρ−α

x̂′ ≡
∑
i a
i
j+1(x̂, 1, z2)Ri(z′2) + fj+1(z′2)Hj+1(z′2)

fj+1(z′2)

Lemma 2 says that the value of human capital is proportional to z1 other things equal and after correcting for financial
asset holdings. It also says that the stochastic discount factor and the return to human capital are independent of the
level of z1, after correcting for financial asset holdings. Lemma 2 and the associated formulas allow the computation of
statistics of (vj , Rj) over the lifetime by means of simulating lifetime draws of z2 shocks and using v̂j and the computed
decision rules.

Lemma 2: In the benchmark model the following hold when x̂ = x/z1 :

(i) mj+1(x, z, z′) = m̂j+1(x̂, z2, z
′
2)

(ii) vj(x, z) = z1vj(x̂, 1, z2) = z1v̂j(x̂, z2)

(iii) Rj+1(x, z, z′) =
fj+1(z′2)(v̂j+1(x̂′,z′2)+Hj+1(z′2))

v̂j(x̂,z2)
.

Proof: (i) The result follows from direct substitution of the consumption and the value function into the definition of

mj+1(x, z, z′). Here we use Lemma 1 so that cj(x, z) = z1cj(
x
z1
, 1, z2) and Vj+1(x′, z′) = z′1Vj+1( x

′

z′1
, 1, z′2). We also use

the fact that z′1 = z1fj+1(z′2) and that F is homogeneous of degree 1.

(ii) Lemma 2(ii) holds trivially for j = J . We show it holds for j given it holds for j + 1. The first line below uses the
definition and the induction hypothesis. The leftmost equality in the second line follows from the first line, Lemma 2(i)
and the induction hypothesis. The rightmost equality follows from the definition of v̂j .

vj(x, z) = E[mj+1(x, z, z′)(z′1vj+1(x̂′, 1, z′2) + z′1Hj+1(z′2))|z]

vj(x, z) = E[m̂j+1(x̂, z2, z
′
2)(z′1v̂j+1(x̂′, z′2) + z′1Hj+1(z′2))|z] = z1v̂j(x̂, z2)

(iii) The first line follows from the definition, Lemma 2(ii) and the structure of earnings. The second line follows from
the first and z′1 = z1fj+1(z′2).

Rj+1(x, z, z′) =
vj+1(x′, z′) + ej+1(z′)

vj(x, z)
=
z′1v̂j+1(x̂′, z′2) + z′1Hj+1(z′2)

z1v̂j(x̂, z2)

Rj+1(x, z, z′) =
fj+1(z′2)(v̂j+1(x̂′, z′2) +Hj+1(z′2))

v̂j(x̂, z2)

�

An algorithm to compute the naive value vnj (z) is provided. First, we list some useful points from theory, where
z = (z1, z2), ej(z) = z1Hj(z2) and z′1 = z1fj+1(z′2). The first two equations are Bellman equations. The third equation
is an implication of theory. It follows from the first equation by backwards induction and substituting in for earnings.

vnj (z) ≡ E[
1

1 + r
(vnj+1(z′) + ej+1(z′)|z]

v̂nj (z2) ≡ E[
fj+1(z′2)

1 + r
(v̂nj+1(z′2) +Hj+1(z′2)|z2]
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vnj (z) = z1v̂
n
j (z2)

The algorithm is as follows. Step 1: compute the functions v̂nj (z2) by iterating on Bellman’s equation. Step 2: simulate
histories of z2 shocks. Step 3: compute z1 histories using step 2 and z′1 = z1fj+1(z′2). Step 4: compute histories vnj (z)
using (i) vnj (z) = z1v̂

n
j (z2), (ii) v̂nj (z2) from step 1, (iii) shock histories from steps 2-3.

A.2.3 Decomposing Human Capital Values

We decompose the value of human capital into a bond, a stock and a residual component. We then calculate the bond
and stock shares of human capital at different ages and states. To do so, apply the Projection Theorem to the payout
y = vj+1(x′, z′) + ej+1(z′). By construction, the residual ε ≡ y − αbRb + αsRs is orthogonal to each asset return.

vj(x, z) = E[mj+1y] = E[mj+1(αbRb + αsRs + ε)]

vj(x, z) = αbE[mj+1R
b] + αsE[mj+1R

s] + E[mj+1ε]

shareij(x, z) ≡
αij(x, z)E[mj+1R

i]

vj(x, z)
for i = s, b

Calculate (αb, αs) by solving the system below, using the relevant conditional expectation. The system imposes that ε
is orthogonal to each return.

αbE[R2
b ] + αsE[RsRb] = E[yRb]

αbE[RbRs] + αsE[R2
s] = E[yRs]

Lemma 3 below is useful in theory and computation. It says that in the decomposition defined above, shareij(x, z) is
invariant to scaling up or down (x, z1). Thus, shares can be computed for a single value z1 = 1 to determine the share
decomposition for all z1 values.

Lemma 3: In the benchmark model the following holds for i = s, b :

shareij(λx, λz1, z2) = shareij(x, z1, z2), ∀λ > 0

Proof: The first line is the definition of the share. The second line uses Lemma 1 and the fact that the solution (αb, αs)
to the linear system scales linearly in (x, z1). This latter fact holds as the payout scales linearly in (x, z1). To show this,
write the payoff: y = vj+1(x′, z1fj+1(z′2), z′2) + z1fj+1(z′2)Hj+1(z′2). The payoff scales in (x, z1) because vj+1 scales in its
first two components (Lemma 2(ii)) and x′ scales in (x, z1). Lemma 3 then follows if E[mj+1R

i|λx, λz1, z2] is constant
in λ. This holds because financial asset returns Ri depend only on z′2, z2 is Markov and mj+1 is homogeneous of degree
zero in (x, z1) by Lemma 2(i).

shareij(λx, λz1, z2) =
αij(λx, λz1, z2)E[mj+1R

i|λx, λz1, z2]

vj(λx, λz1, z2)

shareij(λx, λz1, z2) =
λαij(x, z1, z2)E[mj+1R

i|λx, λz1, z2]

λvj(x, z)

shareij(λx, λz1, z2) =
αij(x, z1, z2)E[mj+1R

i|λx, λz1, z2]

vj(x, z)

�
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A.3 Data Appendix

A.3.1 Full Description of Stochastic Model for Aggregate Variables

We assume the following general VAR model for yt =
(
u1
t Pt

)
:

yt = v(t) +

p∑
i=1

Aiyt−i + εt

where εt is a vector of mean zero IID random variables with covariance matrix Σ. v (t) is a quadratic time trend which
is parameterized below. We restrict attention to values of p ≤ 2 to keep the state space manageable. This model has a
general VECM form given by

∆yt = v + δt+ αβ′yt−1 +

p−1∑
i=1

Γi∆yt−i + εt

where the vector β is known as the cointegrating vector. We can split the constant and trend terms into components as
follows

v = αµ+ γ

δt = αρt+ τt

where γ′αµ = 0 and τ ′αρ = 0. In this case the VECM model can be written as

∆yt = γ + τt+ α
(
β′yt−1 + µ+ ρt

)
+

p−1∑
i=1

Γi∆yt−i + εt

It is useful to define the one-dimensional object wt = β′yt + µ+ ρ(t+ 1) which, in the case of cointegration (α 6= 0), is a
stationary random variable. By construction, wt evolves as

wt = wt−1 + β′∆yt + ρ

Since we would like a system where wt evolves based on variables at t− 1 or earlier, we can re-write this as

wt = wt−1 + β′γ + β′τt+ β’αwt−1 +

p−1∑
i=1

β′Γi∆yt−i + β′εt

=
(
β′γ + ρ

)
+ β′τt+

(
1 + β′α

)
wt−1 +

p−1∑
i=1

β′Γi∆yt−i + β′εt

In all of our analyses we assume that τ = 0.The general system can then be written as(
∆yt
wt

)
=

(
γ

β′γ + ρ

)
+

(
Γ α
β′Γ 1 + β′α

)(
∆yt−1

wt−1

)
+

(
εt
β′εt

)
We adopt the Johansen (1995) normalization for β, which implies for the two variable case that we can write

∆wt = ∆u1
t + β2 logRst

The model with p = 2 becomes ∆u1
t

logRst
wt

 =

 γ1

γ2

γ1 + β2γ2 + ρ

+

 Γ11 Γ12 α1

Γ21 Γ22 α2

Γ11 + β2Γ21 Γ12 + β2Γ22 1 + α1 + β2α2

 ∆u1
t−1

logRst−1

wt−1

 (8)

+

 ε1t

ε2t

ε1t + β2ε2t

 (9)

No cointegration implies the restriction that α1 = α2 = 0 in which case (8) becomes a two variable VAR. When the
underlying VAR in levels includes only one lag, so that p = 1, the restriction is that Γij = 0. To implement this in our

model we treat the aggregate component of the state vector as st =
(

∆u1
t logRst wt

)′
and we construct a discrete

Markov chain that approximates (8).
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Table A.1: Contraction Years by Data Source 1967-1996
Data Source Contraction Years

CPS: Labor earnings 70,74-75,79-82,87,89-91,93
PSID: Labor earnings 70,74-75,79-83,89-91,92-93
NIPA: GDP per capita 70,74-75,79-82,90-91,93,95
NIPA: GNP per capita 70,74-75,79-82,90-93,95
NIPA: Wage and salaries per capita 70-71,74-75,79-82,89-91,93

A.3.2 Data and Sample Selection

We use the core PSID sample from waves 1968 to 1997, which refers to earnings in years 1967 to 1996. After 1997
the PSID became a bi-annual survey, hence we exclude the more recent waves. We restrict attention to male heads
of household between the ages of 22 and 60 with annual labor income of at least $1000 in 2008 dollars. Our measure
of annual labor income includes pre-tax wages and salaries from all jobs, plus commission, tips, bonuses and overtime,
as well as the labor part of income from self-employment. Our final sample contains 63, 541 observations on 5, 622
individuals. The median number of annual observations per individual is 9. We construct three education samples: one
comprising all males (Full Sample), one comprising males with 12 or fewer years of education (High School Sub-sample)
and one comprising males with at least 16 years of education (College Sub-sample).

When estimating models using PSID data on hourly wages, we impose two additional restrictions on the sample: (i) we
exclude observations with less than 520 hours worked in a year; and (ii) we exclude observations with a nominal hourly
wage that is less than one half of the corresponding federal minimum wage in that year. The resulting wage sample
contains 61, 917 observations on 5, 569 individuals. The median number of annual wage observations per individual is 9.

Our CPS data comes from the IPUMS database of March Outgoing Rotation Groups. We use data on earnings from 1967
to 2008 and impose the same age and minimum earnings selection criteria as for the PSID. The aggregate components of
labor earnings for each subsample are measured as the coefficients on year dummies in a regression that is analogous to
the one described below. When estimating models using CPS data on hourly wages, we impose the same two additional
restrictions as described above for the PSID.

A.3.3 Estimation of Idiosyncratic Earnings Model

Estimation is done in two stages. In the first stage we estimate u1
t and κj by regressing log real annual earnings on

a quartic polynomial in age and a full set of year dummies. This is done separately for the three education samples.
Residuals from the first-stage regression are then used to estimate the remaining parameters of the individual earnings
equation,

(
ρ, σ2

ξ , σ
2
η,t(Xt), σ

2
ν,j,t(Xt)

)
. The auto-covariance function for residual log-earnings is calculated for up to 10 lags

for every age/year combination. For this purpose, individuals are grouped into 5-year age cells so that when calculating
covariances at age j, individuals aged j ∈ [j − 2, j + 2] are used. Only cells with at least 30 observations are retained.
A GMM estimator is then used to estimate the parameters, where the moments included are the elements of the auto-
covariance function. The moments are weighted by n0.5

j,t,l where nj,t,l is the number of observations used to calculate the
covariance at lag l in year t for age j. Individuals aged 22 to 60 are used to construct the empirical auto-covariance
functions. This means that variances and covariance from ages 24 to 58 are effectively used in the estimation. Standard
errors are calculated by bootstrap with 250 repetitions, thus accounting for estimation error induced by the first-stage
estimation.

When estimating models that allow for cyclical variation in σ2
η and σ2

ν , we base our choice of growth/contraction years
on the sign of ∆û1

t . Table A1 shows the contraction years between 1967 and 1996 as implied by the estimates from the
CPS sample, the PSID sample, and aggregate measures from the National Income and Product Accounts. Based on
these numbers, we set the contraction years to be 1970, 74-75, 79-82, 89-91 and 93.

A.3.4 Estimation of Aggregate Stochastic Process

We test for the lag order (p) of the underlying VAR in (4). Table A2 reports results from likelihood ratio tests and a
number of commonly used statistical information criteria. All criteria suggest a lag length of p = 2. The college and
high-school sub-samples, and alternative measures of aggregate earnings and alternative sample periods all indicate the
presence of two lags in (4). We thus focus our attention on a model with one lag in the VAR in first differences, as in
(6).

We also test for the presence of cointegration. Table A3 reports results from tests of the cointegrating rank based on
the methods in Johansen (1995). Our results suggest only very weak evidence for cointegration. Alternative variable
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Table A.2: Lag-Order Selection Tests for VAR
Lag P-Value FPE AIC HQIC SBIC

Full Sample

0 .001762 -0.666 -0.635 -0.579
1 0.000 .000020 -5.169 -5.077 -4.911
2 0.004* .000016* -5.370* -5.217* -4.939*
3 0.160 .000018 -5.333 -5.118 -4.729

College Sub-sample

0 .001882 -0.600 -0.569 -0.514
1 0.000 .000015 -5.422 -5.330* -5.163*
2 0.078* .000015* -5.432* -5.279 -5.001
3 0.374 .000018 -5.248 -4.973 -4.744

High School Sub-sample

0 .003469 0.012 0.042 0.098
1 0.000 .000028 -4.801 -4.709 -4.543
2 0.014* .000025* -4.919* -4.766* -4.488*
3 0.132 .000028 -4.837 -4.561 -4.257

Notes: Lag order selected by each criteria is denoted by *. P-values are from likelihood ratio tests of the null that true

lag length is p− 1 or less.

Table A.3: Cointegration Rank Selection Tests
Maximum Rank Trace Statistic 5% Critical Value Eigenvalue SBIC HQIC

Full Sample

0 9.95* 15.41 0.220* -5.05* -5.21
1 0.00 3.76 0.000 -5.02 -5.26*

College Sub-sample

0 9.49* 15.41 0.200* -5.08* -5.247
1 0.55 3.76 0.014 -5.03 -5.274*

High School Sub-sample

0 9.91* 15.41 0.218* -4.66* -4.824
1 0.07 3.76 0.002 -4.63 -4.875*

Notes: Rank of cointegration by each criteria is denoted by *. Trace statistic criteria is obtained by selecting the lowest

rank that cannot be rejected.

definitions, specifications and time periods lead to similar results.

Table A4 presents the average moments in the data together with the implied steady-state statistics from the model for
three different data samples: the full sample from the CPS 1967-2008, NIPA 1967-2008 and NIPA 1929-2009. The NIPA
measure of earnings growth is the change in the log of total wages and salaries per member of the labor force.

A.3.5 Benzoni et. al. (2007)

We describe the construction of the system of equations underlying the results in Figure 8 from section 6. The three
equations below are equation 2, 8 and 14 from Benzoni et al (2007), where yt is log dividends, Rt is the gross stock return
and ut is the log of the common component of earnings. The parameter κ is the key adjustment parameter controlling
the strength of cointegration that Benzoni et al (2007) highlight in their analysis.

dyt = (g − σ2/2)dt+ σdz3

Rt − 1 = µdt+ σdz3

d(ut − yt − ūy) = −κ(ut − yt − ūy)dt+ ν1dz1 − ν3dz3

The three equations below are a discrete-time approximation of this continuous-time process, where (z1,t, z3,t) are
independent standard normal random variables. We rewrite this system of equations as system (10) below, using
∆ut ≡ ut − ut−1 and wt ≡ (ut − yt − ūy).

yt+1 − yt = g − σ2/2 + σz3,t+1
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Table A.4: Implied Steady-State Statistics: Alternative Data Sources and Sample Periods

No Cointegration
CPS: 1967-2008 NIPA: 1967-2008 NIPA: 1929-2009 CPS: 1967-2008 (wages)

Data Model Data Model Data Model Data Model
E (logRst ) 0.041 0.045 0.041 0.044 0.068 0.069 0.041 0.051
E
(
∆u1

t

)
-0.002 -0.004 0.004 0.001 0.012 0.012 -0.002 -0.004

sd
(
∆u1

t

)
0.025 0.025 0.024 0.025 0.029 0.029 0.02 0.018

sd (logRst ): 0.187 0.187 0.187 0.187 0.178 0.178 0.187 0.186
corr

(
∆u1

t , logRst
)

0.184 0.177 0.234 0.216 0.070 0.071 -0.037 -0.039
corr

(
∆u1

t ,∆u
1
t−1

)
0.425 0.441 0.429 0.460 0.398 0.384 0.534 0.523

corr (logRst , logRst−1) 0.057 0.055 0.058 0.057 -0.054 -0.052 0.057 0.038
corr

(
∆u1

t logRst−1

)
0.372 0.398 0.640 0.685 0.680 0.675 0.307 0.339

corr
(
logRst ,∆u

1
t−1

)
-0.292 -0.270 -0.189 -0.194 -0.096 -0.096 -0.403 -0.379

With Cointegration
CPS: 1967-2008 NIPA: 1967-2008 NIPA: 1929-2009 CPS: 1967-2008 (wages)

Data Model Data Model Data Model Data Model
E (logRst ) 0.041 0.070 0.041 0.070 0.068 0.045 0.041 0.079
E
(
∆u1

t

)
-0.002 -0.002 0.004 0.005 0.012 0.004 -0.002 -0.006

sd
(
∆u1

t

)
0.025 0.025 0.024 0.024 0.029 0.026 0.02 0.019

sd (logRst ): 0.187 0.187 0.187 0.182 0.178 0.172 0.187 0.184
corr

(
∆u1

t , logRst
)

0.184 0.155 0.234 0.178 0.070 -0.020 -0.037 -0.039
corr

(
∆u1

t ,∆u
1
t−1

)
0.425 0.435 0.429 0.435 0.398 0.260 0.534 0.506

corr (logRst , logRst−1) 0.057 0.005 0.058 -0.007 -0.054 -0.096 0.057 -0.006
corr

(
∆u1

t logRst−1

)
0.372 0.394 0.640 0.664 0.680 0.660 0.307 0.379

corr
(
logRst ,∆u

1
t−1

)
-0.292 -0.283 -0.189 -0.213 -0.096 -0.176 -0.403 -0.366

Notes: Table shows average moments in the data, together with implied steady-state statistics from the corresponding

estimated model. NIPA data is total wage and salaries per member of the labor force. When implementing the estimated

processes in the structural model, we adjust the constants (γ1, γ2) so that all models have E[logRst ] = 0.041 and

E[∆u1
t ] = 0.
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Table A.5: Implied Steady-State Statistics: Various Models

Benchmark Model Benzoni-cointegration Benzoni-no cointegration

sd
(
∆u1

t

)
0.025 0.069 0.069

sd (logRst ): 0.187 0.160 0.160
corr

(
∆u1

t , logRst
)

0.177 0.000 0.000
corr

(
∆u1

t ,∆u
1
t−1

)
0.441 0.327 0.330

corr (logRst , logRst−1) 0.055 0.000 0.000
corr

(
∆u1

t logRst−1

)
0.398 0.347 0.350

corr
(
logRst ,∆u

1
t−1

)
-0.270 0.000 0.000

Notes: Table shows implied steady-state statistics. When implementing the estimated processes in the structural model,

we adjust the constant terms so that all models have E[logRst ] = 0.041 and E[∆u1
t ] = 0.

logRt+1 = µ+ σdz3,t+1

(ut+1 − yt+1 − ūy)− (ut − yt − ūy) = −κ(ut − yt − ūy) + ν1dz1,t+1 − ν3dz3,t+1

 ∆ut+1

logRt+1

wt+1

 =

 g − σ2/2
µ
0

+

 0 0 −κ
0 0 0
0 0 1− κ

 ∆ut
logRt
wt

+

 ν1z1,t+1 + (σ − ν3)z3,t+1

σz3,t+1

ν1z1,t+1 − ν3z3,t+1

 (10)

System (10) produces the steady-state statistics listed in Table A5. This occurs when we set (κ, g, ν1, ν3, σ, µ) =
(.15, .018, .05, .16, .16, .07), which are the benchmark parameter values used by Benzoni et al (2007), and when we alter
the constant terms in (10) to produce the same steady-state mean values (E[logR], E[∆u]) as in both of our benchmark
models. This leaves the variance-covariance properties of the model unchanged.

We now eliminate cointegration from system (10) by setting κ = 0, while at the same time preserving a number of
properties. System (11) has the same (i) steady-state means, (ii) steady-state contemporaneous variance and covariances
and (iii) steady-state first-lagged autocorrelations.(

∆ut+1

logRt+1

)
=

(
g − σ2/2

µ

)
+

(
Γ11 Γ12

Γ21 Γ22

)(
∆ut

logRt

)
+

(
ν1z1,t+1 + (σ − ν3)z3,t+1

σz3,t+1

)
(11)

When we set (Γ11,Γ12,Γ21,Γ22, ν1, ν3, σ) = (.33, .151, 0, 0, 0.061, 0.16, 0.16), system (11) generates the same steady-state
contemporaneous variance and covariances and first-lagged autocorrelations as system (10).
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