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Abstract We study the Dirichlet problem for the Monge–Ampère equation on almost com-
plex manifolds. We obtain the existence of the unique smooth solution in strictly pseudocon-
vex domains.
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Let (M, J ) be an almost complex manifold of a real dimension 2n (the definitions are given in
Sect. 1). Pali proved (in [7]) that, as it is in the case of complex geometry, for plurisubharmonic
functions the (1, 1) current i∂∂̄u is positive.1 So for a smooth plurisubharmonic function u
we have well defined Monge–Ampère operator (i∂∂̄u)n ≥ 0 and we can study the complex
Monge–Ampère equation

(i∂∂̄u)n = f dV, (1)

where f ≥ 0 and dV is a (smooth) volume form.
Let � � M be a strictly pseudoconvex domain of class C∞. In this article we study the

following Dirichlet problem for the Monge–Ampère equation:
⎧
⎨

⎩

u ∈ PSH(�) ∩ C∞(�̄)
(i∂∂̄u)n = dV in �

u = ϕ on ∂�,

(2)

where ϕ ∈ C∞(�̄). The main theorem is the following:

1 But it can be not closed!.
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970 S. Pliś

Theorem 1 There is a unique smooth plurisubharmonic solution u of the problem (2).

In [3] the theorem above was proved for� ⊂ C
n with Jst. Note that even in the integrable

case it is not enough to assume that ∂� is strictly pseudoconvex.2 Indeed, if� is the blow-up
of a strictly pseudoconvex domain in C

n in one point, then ∂� is strictly pseudoconvex. But
if u ∈ PSH(�) ∩ C∞(�̄), then the form (i∂∂̄u)n is not a volume form.

In case of J not integrable McDuff constructed a domain� with a non connected strictly
pseudoconvex boundary (see [6]).3 One can prove the theorem above (in almost the same way)
for� not necessary strictly pseudoconvex but ∂� strictly pseudoconvex and dV ≤ (i∂∂̄ϕ)n .
It is however not clear for the author, whether there is an example of such ϕ in McDuff’s
example (or in any other not strictly pseudoconvex domain with a strictly pseudoconvex
boundary).

In the last section we explain how Theorem 1 gives the theorem of Harvey and Lawson
about existing a continuous solution of the Dirichlet Problem for maximal functions. We
even improve their result by proving that the solution is Lipschitz (if the boundary condition
is regular enough).

1 Notion

We say that (M, J ) is an almost complex manifold if M is a manifold and J is an (C∞
smooth) endomorphism of the tangent bundle T M , such that J 2 = −id. The real dimension
of M is even in that case.

We have then a direct sum decomposition TCM = T 1,0 M ⊕ T 0,1 M , where TC M is a
complexification of T M ,

T 1,0 M = {X − i J X : X ∈ T M}
and

T 0,1 M = {X + i J X : X ∈ T M} (= {
ζ ∈ TC M : ζ̄ ∈ T 1,0 M

})
.

Let Ak be the set of k-forms, i.e. the set of sections of
∧k
(TC M)� and let Ap,q be the set

of (p, q)-forms, i.e. the set of sections of
∧p

(T 1,0 M)� ⊗(C)

∧q
(T 0,1 M)�. Then we have a

direct sum decomposition Ak = ⊕
p+q=k Ap,q . We denote the projections Ak → Ap,q by

�p,q .
If d : Ak → Ak+1 is (the C-linear extension of) the exterior differential, then we define

∂ : Ap,q → Ap+1,q as �p+1,q ◦ d and ∂̄ : Ap,q → Ap,q+1 as �p,q+1 ◦ d .
We say that an almost complex structure J is integrable, if any of the following (equivalent)

conditions is satisfied:

(i) d = ∂ + ∂̄;
(ii) ∂̄2 = 0;

(iii) [ζ, ξ ] ∈ T 0,1 M for vector fields ζ, ξ ∈ T 0,1 M .

By the Newlander–Nirenberg Theorem J is integrable if and only if it is induced by a complex
structure.

2 We say that ∂� is strictly pseudoconvex if it is locally equal to {ρ = 0}, for some smooth function ρ such
that i∂∂̄ρ > 0, {ρ < 0} ⊂ � and �ρ �= 0.
3 If � is strictly pseudoconvex, then ∂� is connected (see [2]).
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The Monge–Ampère equation on almost complex manifolds 971

In the paper ζ1, . . . , ζn is always a (local) frame of T 1,0. Let us put for a smooth function u

u p = ζpu, u pq̄ = ζp ζ̄qu = uq̄ p + [
ζp, ζ̄q

]
u, etc.

and

Apq̄ = Apq̄(u) = u pq̄ − [
ζp, ζ̄q

]0,1
u,

where for any X ∈ TC M a vector X0,1 ∈ T 0,1 M is such that X1,0 := X − X0,1 ∈ T 1,0 M .
Then for a smooth function u we have (see [7]):

i∂∂̄u = i
∑

Apq̄ζ
�
p ∧ ζ̄ �q ,

where ζ �1 , . . . , ζ
�
n , ζ̄

�
1 , . . . , ζ̄

�
n is a base of (TC M)� dual to the base ζ1, . . . , ζn, ζ̄1, . . . , ζ̄n of

TC M .
Let D = {z ∈ C : |z| < 1}. We say that a (smooth) function λ : D → M is J -holomorphic

or simpler holomorphic if λ′( ∂
∂ z̄ ) ∈ T 0,1 M . The following proposition from [5], where it is

stated for Ck′,α class of J , shows that there exists plenty of such disks:

Proposition 1.1 Let 0 ∈ M ⊂ R
2n, k, k′ ≥ 1. For v0, v1, . . . , vk ∈ R

2n close enough to

0, there is a holomorphic function λ : D → M, such that λ(0) = v0 and ∂lλ
∂xl = vl , for

l = 1, . . . , k. Moreover, we can choose λ with C1 dependence on parameters (v0, . . . , vk) ∈
(R2n)k+1, where for holomorphic functions we consider Ck′

norm.

We can locally normalize coordinates with respect to a given holomorphic disc λ, that is
we can assume that λ(z) = (z, 0) ∈ C

n and J = Jst on C × {0} ⊂ C
n , where Jst is the

standard almost complex structure in C
n (see section 1.2 in [1]) and moreover we can assume

that for every J -holomorphic μ such that μ(0) = 0 we have �μ(0) = 0 (see [8]).
An upper semi-continuous function u on an open subset of M is said to be

J -plurisubharmonic or simpler plurisubharmonic, if a function u ◦ λ is subharmonic for
every holomorphic function λ. We denote the set of plurisubharmonic functions on � ⊂ M
by PSH(�). For a smooth function u it means that a matrix (Apq̄) is nonnegative. Recently
Harvey and Lawson proved that an upper semicontinuous locally integrable function u is
plurisubharmonic iff a current i∂∂̄u is positive. We say that a function u ∈ C1,1(�) is strictly
plurisubharmonic if for every K � � there is m > 0 such that ω ≤ im∂∂̄u a.e. in K , where
ω is any hermitian metric4 on �. If u ∈ C2(�) then the following conditions are equivalent:

(i) u is strictly plurisubharmonic;
(ii) i∂∂̄u > 0;

(iii) u is plurisubharmonic and (i∂∂̄u)n > 0.

We say that a domain � � M is strictly pseudoconvex of class C∞ (respectively of class
C1,1) if there is a strictly plurisubharmonic function ρ of class C∞ (respectively of class C1,1)
in a neighbourhood of �̄, such that � = {ρ < 0} and �ρ �= 0 on ∂�. In that case we say
that ρ is a defining function for �.

Let z0 ∈ M . The basic example of a (strictly) plurisubharmonic function in a neighbour-
hood of z0 is u(z) = (dist(z, z0))

2 (where dist is a distance in some Rimannian metric).
Domains �ε = {u < ε} are strictly pseudoconvex of class C∞ for ε > 0 small enough and
they make a fundamental neighbourhood system for z0.

4 Hermitian metric is a smooth positive (1, 1) form.
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972 S. Pliś

2 Comparison principle

In this section� � M is a domain not necessary strictly pseudoconvex but such that there is
a bounded function ρ ∈ C2 ∩ PSH(�).

In the pluripotential theory in C
n , the comparison principle is a very effective tool. We

give here the basic version for J -plurisubharmonic functions.

Proposition 2.1 (comparison principle) If u, v ∈ C2(�̄) are such that u is a plurisubhar-
monic function, (i∂∂̄u)n ≥ (i∂∂̄v)n on the set {i∂∂̄v > 0} and u ≤ v on ∂�, then u ≤ v

in �̄.

Proof First, let us assume that (i∂∂̄u)n > (i∂∂̄v)n on the set {i∂∂̄v ≥ 0} and a function
u − v takes its maximum in z0 ∈ �. By Proposition 1.1 for small ζ ∈ T 1,0

z0 M there is a
holomorphic disk λ such that λ(0) = z0 and ∂λ

∂x (0)− i J ∂λ
∂x (0) = ζ . Hence at z0

∂∂̄(v − u)(ζ, ζ̄ ) = � ((v − u) ◦ λ) (0) ≥ 0

so we have i∂∂̄u ≤ i∂∂̄v and then we obtain (i∂∂̄u)n ≤ (i∂∂̄v)n which is the contradiction
with our first assumption.

In the general case we put u′ = u + ε(ρ− sup�̄ ρ) and the lemma follows from the above
case (with u′ instead of u). ��

In Sect. 4 we use a slight stronger version of the proposition above.

Proposition 2.2 Suppose that u, v ∈ C2(�̄) are such that u is a plurisubharmonic function
and (i∂∂̄u)n ≥ (i∂∂̄v)n on the set

{
i∂∂̄v > 0

}
.

Then for any H ∈ PSH, an inequality

lim
z→z0

(u + H − v) ≤ 0

for any z0 ∈ ∂� implies u + H ≤ v on �.

Proof Let z0 ∈ � be a point where a function f = u + H − v attains a maximum and λ is
a holomorphic disk such that λ(0) = z0. Because H ◦ λ is a subharmonic function one can
find a sequence tk of nonzero complex numbers such that

lim
k→∞ tk = 0

and

4H ◦ λ(0) ≤ H ◦ λ(tk)+ H ◦ λ(i tk)+ H ◦ λ(−tk)+ H ◦ λ(−i tk).

Hence

� ((v − u) ◦ λ) (0)
≥ lim

k→∞
4 f ◦ λ(0)− f ◦ λ(tk)− f ◦ λ(i tk)− f ◦ λ(−tk)− f ◦ λ(−i tk)

|tk |2 ≥ 0.

Therefore we can obtain our result exactly as in the proof of the previous proposition. ��
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The Monge–Ampère equation on almost complex manifolds 973

3 A priori estimate

In this section we will prove a C1,1 estimate for the smooth solution u of the problem (2).
By the general theory of elliptic equations (see for example [3]) we obtain from this the
Ck,α estimate and then the existence of a smooth solution. The uniqueness follows from the
comparison principle.

Our proofs are close to these in [3] but more complicated because of the noncommutativity
of some vector fields.

3.1 Some technical preparation

In this section we assume that� � M is strictly pseudoconvex of class C∞ with the defining
function ρ. Let us fix a hermitian metric ω on M . From now all norms, gradient and hessian
are taken with respect to this metric or more precisely with respect to a Rimannian metric
which is given by g(X, Y ) = ω(X, JY ) for vector fields X, Y .

Let f ∈ C∞(�̄) be such that dV = f ωn . Then locally our Monge–Ampère equation
(i∂∂̄u)n = dV has a form:

det(Apq̄) = f̃ = g f,

where g = det(−iω(ζp, ζ̄q)). So if vectors ζ1, . . . , ζn are orthonormal (i.e. ω(ζp, ζ̄q) =
iδpq ), then g = 1.

The following elliptic operator is very useful

L = Lζ = Apq̄
(
ζp ζ̄q − [

ζp, ζ̄q
]0,1

)
.

Note that for X, Y vector fields we have

X (log f̃ ) = Apq̄ X Apq̄ ,

XY (log f̃ ) = Apq̄ XY Apq̄ − Ap j̄ Aiq̄(Y Ai j̄ )(X Apq̄),

where (Apq̄) is the inverse of the matrix (Apq̄).
In the lemmas we specify exactly how a priori estimates depend on ρ, f and ϕ. We should

emphasize that they also depend strongly on M, J, ω,M ′ and m(ρ), where M ′ is some fixed
domain such that� � M ′ � M and m(ρ) is defined as the smallest constant m > 0 such that
ω ≤ mi∂∂̄ρ on �. The notion C = C(A) really means that C depends on an upper bound
for A.

In the proofs below C is a constant under control, but it can change from a line to a next
line.

3.2 Uniform estimate

Lemma 3.1 We have ‖u‖L∞(�) ≤ C, where C = C(‖ρ‖L∞(�), ‖ f ‖L∞(�), ‖ϕ‖L∞(�)).

Proof From the comparison principle and the maximum principle we have

‖ f 1/n‖L∞(�)m(ρ)ρ + inf
∂�
ϕ ≤ u ≤ sup

∂�

ϕ.

��
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974 S. Pliś

3.3 Gradient estimate

In the next two lemmas we shall prove a priori estimate for the first derivative.

Lemma 3.2 We have

‖u‖C0,1(∂�) ≤ C,

where C = C(‖ρ‖C0,1(�), ‖ f ‖L∞(�), ‖ϕ‖C1,1(�)).

Proof We can choose A > 0 such that Ai∂∂̄ρ + i∂∂̄ϕ ≥ f 1/nω and Ai∂∂̄ρ ≥ i∂∂̄ϕ. Thus
by the comparison principle and the maximum principle we have

ϕ + Aρ ≤ u ≤ ϕ − Aρ

for A large enough. So on the boundary we have

|∇u| ≤ |∇ Aρ| + |∇ϕ|.
��

Lemma 3.3 We have

‖u‖C0,1(�) ≤ C,

where C = C(‖ρ‖C0,1(�), ‖ f 1/n‖C0,1 , ‖u‖C0,1(∂�)).

Proof Let us consider the function v = ψ |∇u|2, where a smooth plurisubharmonic function
ψ will be determined later. Let us assume that v takes its maximum in z0 ∈ �. We can choose
ζ1, . . . , ζn , such that they are orthonormal in a neighbourhood of z0, and the matrix Apq̄ is
diagonal at z0. From now on all formulas are assumed to hold at z0.

We have Xv = 0, hence X (|∇|2) = −|∇u|2 X logψ . We can calculate

L(v) = L(ψ)|∇u|2 + ψL(|∇u|2)+ Ap p̄ (
ψp(|∇u|2) p̄ + ψ p̄(|∇u|2)p

)

= |∇u|2 Ap p̄
(

ψp p̄ − [
ζp, ζ̄p

]0,1
ψ − 2

|ψp|2
ψ

)

+ ψL(|∇u|2),
L(|∇u|2) = Ap p̄ (

(|∇u|2)p p̄ − [ζp, ζ̄p]0,1|∇u|2)

= Ap p̄
∑

k

(
u p p̄kuk̄ + uku p p̄k̄ + |u pk |2 + |u p̄k |2

− [
ζp, ζ̄p

]0,1
ukuk̄ − uk

[
ζp, ζ̄p

]0,1
uk̄

)
,

Ap p̄(u p p̄k − [
ζp, ζ̄p

]0,1
uk)

= Ap p̄(ukp p̄ − ζk
[
ζp, ζ̄p

]0,1
u + ζp

[
ζ̄p, ζk

]
u + [

ζp, ζk
]
ζ̄pu)

= (log f )k + Ap p̄
(
ζp

[
ζ̄p, ζk

]
u + ζ̄p

[
ζp, ζk

]
u + [[

ζp, ζk
]
, ζ̄p

]
u

−
[[
ζp, ζ̄p

]0,1
, ζk

]
u
)
.

Then we have

|Ap p̄(u p p̄k − [ζp, ζ̄p]0,1uk)|

≤ C

(
‖ f 1/n‖C0,1

f 1/n
+ Ap p̄

(
∑

s

(|u ps | + |u ps̄ |)+ |∇u|
))
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The Monge–Ampère equation on almost complex manifolds 975

and similarly

|Ap p̄(u p p̄k̄ − [ζp, ζ̄p]0,1uk̄)|

≤ C

(
‖ f 1/n‖C0,1

f 1/n
+ Ap p̄

(
∑

s

(|u ps | + |u ps̄ |)+ |∇u|
))

so for the proper choice of ψ (we can get ψ = eAρ + B for A, B large enough) we have
L(v)(0) > 0 and this is a contradiction with the maximality of v. ��

3.4 C1,1 estimate

Let us fix a point P ∈ ∂�. Now we give the C1,1 estimate in a point P (which does not
depend on P). The estimate of XY u(P), where X, Y are tangent to ∂�, follows from the
gradient estimate.

Lemma 3.4 Let N ∈ TP M be orthogonal to ∂� such that Nρ = −1 and let X be a vector
field on a neighbourhood of P tangent to ∂� on ∂�. We have

|N Xu(P)| ≤ C,

where C = C(‖ρ‖C0,1(�), ‖ f 1/n‖C0,1 , ‖ϕ‖C2,1(�), ‖X‖C0,1 , ‖u‖C0,1(�)).

Proof Let X1, X2, . . . , Xn be (real) vector fields on U a neighbourhood of P , tangent at P
to ∂�, such that X1, J X1, . . . , Xn, J Xn is a frame. Consider the function

v = X (u − ϕ)+ Bρ +
n∑

k=1

|Xk(u − ϕ)|2 − A(dist(P, ·))2.

Let V � U be a neighbourhood of P and S = V ∩�. For A large enough v ≤ 0 on ∂S.
Our goal is to show that for B large enough we have v ≤ 0 on S̄. Let z0 ∈ S be a

point where v attains a maximum and let ζ1, . . . , ζn be orthonormal and such that (Apq̄) is
diagonal. From now on all formulas are assumed to hold at z0. Let us calculate:

m(ρ)L(ρ) ≥
∑

Ap p̄

and

L(−Xϕ − A(dist(P, ·))2) ≥ −C
∑

Ap p̄,

hence for B large enough

L(Bρ − Xϕ − A(dist(P, ·))2) ≥ B

2m(ρ)

∑
Ap p̄.

To estimate L(Xu + ∑n
k=1 |Xk(u − ϕ)|2) let us first consider Y ∈ {X, X1, . . . Xn} and

calculate

L(Y u) = Apq̄
(
ζp ζ̄q Y u − [

ζp, ζ̄q
]0,1

Y u
)

= Y log f + Apq̄
(
ζp

[
ζ̄q , Y

]
u + [ζp, Y ]ζ̄q u −

[[
ζp, ζ̄q

]0,1
, Y

]
u
)
.
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976 S. Pliś

There are αq,k, βq,k ∈ C such that

[
ζ̄q , Y

] =
n∑

k=1

αq,k ζ̄k + βq,k Xk

and so

Apq̄ζp
[
ζ̄q , Y

]
u =

∑

q

αq,q +
n∑

k=1

Ap p̄βp,kζp Xku + Ap p̄ Z pu,

where Z p are vector fields under control. This gives us

|Apq̄ζp
[
ζ̄q , Y

]
u| ≤ C Ap p̄

(

1 +
∑

k

|βp,kζp Xku|
)

.

In a similar way we can estimate Apq̄ [ζp, Y ]ζ̄qu and we obtain

|L(Y u)| ≤ C Ap p̄

(

1 +
∑

k

|ζp Xku|
)

.

Therefore

L(Xu +
∑

k

|Xk(u − ϕ)|2)

≥ Ap p̄
n∑

k=1

(
ζp Xk(u − ϕ)

) (
ζ̄p Xk(u − ϕ)

) − C Ap p̄

(

1 +
∑

k

|ζp Xku|
)

≥ Ap p̄
∑

k

|ζp Xku|2 − C Ap p̄(1 +
∑

k

|ζp Xku|).

Now for B large enough, since L(v)(z0) > 0, we have contradiction with maximality of
v. Hence v ≤ 0 on S and so N Xu(P) ≤ C . ��
Lemma 3.5 Let X be a vector field orthogonal to ∂� at P. We have

‖X Xu(P)‖ ≤ C,

where

C = C(‖ρ‖C2,1(�), ‖ f 1/n‖C0,1 , ‖ f −1‖L∞(�), ‖ϕ‖C3,1(�), ‖X‖C0,1 , ‖u‖C0,1(�)).

Proof By the previous Lemma it is enough to prove that

|ζ |2 ≤ C
(
ζ ζ̄ − [

ζ, ζ̄
]0,1

)
u(P)

for every vector field ζ ∈ T 1,0 M tangent (at P) to ∂�.
Because our argue are local we can assume that P = 0 ∈ C

n . Let ζ1, ζ2, . . . ζn ∈ T 1,0 be
an orthonormal frame in a neighbourhood of 0 such that ζkρ = −δkn . We can assume that
ζ1 = ζ . By the strictly pseudoconvexity we have (ζ ζ̄ − [ζ, ζ̄ ]0,1)ρ(P) �= 0, so we can also
assume that (ζ ζ̄ − [ζ, ζ̄ ]0,1)ϕ(P) = 0.

From the strictly pseudoconvexity and using the Proposition 1.1 (for k = 2) we can choose
J -holomorphic disk λ such that λ(0) = 0, ∂λ

∂z (0) = aζ and
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The Monge–Ampère equation on almost complex manifolds 977

ρ ◦ λ(z) = b|z|2 + O(|z|3) (3.1)

for some a, b > 0. In particular we have

|z|2 ≤ Cdist(λ(z), �̄). (3.2)

Indeed, for a > 0 small enough, by the proposition 1.1 (for k = 1) there is a J -holomorphic

disk λ̃ such that λ̃(0) = 0 and ∂λ̃
∂z (0) = aζ . Then (by changing coordinates) we can assume

(ζ J )(0) = 0, so for any J -holomorphic disk λ such that λ(0) = 0 and ∂λ
∂z (0) = aζ we have

∂2λ
∂x2 (0) = −J ∂2λ

∂x∂y (0) = − ∂2λ
∂y2 (0). Now if we put

∂2λ

∂x2 (0) = a2

(

0, 4
∂2ρ

∂x2
1

(0)− 2
(
ζ ζ̄ − [

ζ, ζ̄
]0,1

)
ρ(0),−4

∂2ρ

∂x1∂x2
(0)

)

we obtain (3.1) with b = a2(ζ ζ̄ − [ζ, ζ̄ ]0,1)ρ(0).
Once again changing coordinates we may assume λ(z1) = (z1, 0), ζk(0) = ∂

∂zk
for

k = 1, . . . , n and for every J -holomorphic disk μ such that μ(0) = 0 we have

∂2μ

∂z∂ z̄
(0) = 0. (3.3)

We can find a holomorphic cubic polynomial p1 and a complex number α such that

ϕ(z) = ϕ(0)+ ϕ′(0)(z)

+Re

⎛

⎝
n∑

p=1

∂2ϕ

∂z1∂ z̄ p
z1 z̄ p + p1(z)+ αz1|z1|2

⎞

⎠ + O(|z1|4 + |z2|2 + . . .+ |zn |2).

By (3.2) we can choose another cubic polynomial p2 and numbers β1, β2, . . . , βn ∈ C, β1 >

0 such that

Rezn = Re

⎛

⎝
n∑

p=1

βpz1 z̄ p + p2(z)

⎞

⎠ + O(|z1|3 + |z2|2 + . . .+ |zn |2) on ∂�.

Then we obtain

ϕ(z)+ ϕ(0) = ϕ′(0)(z)+ Re

⎛

⎝
n∑

p=2

apz1 z̄ p + p3(z)

⎞

⎠ + O(|z2|2 + . . .+ |zn |2)

for some numbers a2, . . . , an ∈ C and a new cubic polynomial p3. Hence

u(z)− u(0) = Re

⎛

⎝
n∑

p=2

apz1 z̄ p + p4(z)

⎞

⎠ + O(|z2|2 + . . .+ |zn |2) (3.4)

for z ∈ ∂� and same polynomial p4.
Let B > 15 and D = B−1 max{|a2|, . . . , |an |}. By the Proposition 1.1 (again for k = 2)

there is a family of J -holomorphic disks gw : D → C
n, w ∈ C

n−1, gw = (g1
w, . . . , gn

w)

such that

5 Constants C below do not depend on the constant B.
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gw(0) = (0, w),
∂gw
∂z

(0) = (1,−a2

B
, . . . ,−an

B
),

‖gw − λ‖C4 ≤ C(|w| + D)

and a function G : D × C
n−1 → C

n given by G(z, w) = gw(z) is of class C4. Then we have

|gw(z)− (w1 + z, w2 − a2z

B
, . . . , wn − anz

B
)| < C |z|2(|w| + D) (3.5)

for z ∈ D and by (3.2)

|z| < C(
√|w| + D) (3.6)

if gw(z) ∈ �.
We can choose domains U ⊂ D, V ⊂ C

n−1,W ⊂ C
n such that 0 ∈ W,G(∂U ×V )∩�̄ =

∅ and G|U×V is a diffeomorphism onto W .
Let

h(gw(z)) = Re pw(z)+ AB|w|2 + ερ,

where A, ε > 0 and pw is a holomorphic cubic polynomial in one variable such that

Re p4(gw(z)) = Re pw(z)+ aw|z|2 + Rebwz|z|2 + O(|z|4)
for some aw ∈ R, bw ∈ C. Note that |bw| < C(|w| + D) and by (3.3) |aw| < C |w|. Thus
enlarging A (if necessary) and using also (3.6) we obtain

Re p4(gw(z)) ≤ h(gw(z))+ 1

2
D2|z|2 (3.7)

on ∂�.
By inequalities (3.5) and (3.6) we have

2
n∑

k=2

Reak g1
w(z)g

k
w(z)

=
n∑

k=2

B

(

| − ak g1
w(z)

B
− gk

w(z)|2 − |ak g1
w(z)

B
|2 − |gk

w(z)|2
)

≤ B(|w|2 − D2|z|2 + C |z|4(|w|2 + D2)) ≤ C B|w|2 − 1

2
D2|z|2

for B large enough. By an above estimate, (3.4), and (3.7) we obtain that if A is large enough
then h ≥ u −u(0) on ∂�∩ W . Again enlarging A we can assume h ≥ u −u(0) on ∂S where
S = � ∩ W . Since i∂∂̄h is under control for ε enough small we get an inequality

(
i∂∂̄h

)n
<

(
i∂∂̄u

)n

on the set S ∩ {i∂∂̄h > 0}. This by the comparison principle gives us h ≥ u − u(0) on S.
Note that hN ≥ uN , ϕ11̄ = 0 and ϕN = hN − ερN = hN + ε, so we can conclude that

u11̄ = u11̄ − ϕ11̄ = (ϕN − uN ) ρ11̄ ≥ ερ11̄.

��
Finally we will obtain the interior C1,1 estimate, which together with previous lemmas

gives us a full C1,1 estimate. By a standard argumentation this ends the proof of Theorem 1.
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Lemma 3.6 We have

‖Hu‖L∞(�) ≤ C, (3.8)

where Hu is a Hessian of u and

C = C
(
‖ρ‖C0,1(�), ‖ f

1
2n ‖C1,1 , ‖u‖C0,1(�), ‖Hu‖L∞(∂�)

)
.

Proof Let us define M as the biggest eigenvalue of the Hessian Hu. We will show that the
function

� = ψeK |∇u|2 M,

where a smooth plurisubharmonic function ψ > 1 and a small positive number K will be
determined later, does not attain maximum in �. Because a function u is plurisubharmonic
this will give (3.8).

Assume that a maximum of the function � is attained at a point z0 ∈ � (otherwise we
are done). There are ζ1, . . . , ζn ∈ T 1,0

z0 M orthonormal at z0 such that the matrix (Apq̄) is
diagonal at z0. Let X ∈ Tz0 M be such that ‖X‖ = 1 and M = H(X, X). We can normalize
coordinates near z0 such that z0 = 0 ∈ C

n, X = ∂
∂x1
(0) and J (z, 0) = Jst for small

z ∈ C. Let us extend X as ∂
∂x1

and then in a natural way we can extend ζ1, . . . , ζn to some

neighbourhood U of 0 such that [ζk, X ](0) = 0 and [ζk, ζ̄k](0) = 0 for k = 1, . . . , n. Indeed,
on U ∩ C × {0} we can put ζk as the same linear combination of vectors ∂

∂z1
. . . , ∂

∂zn
as in 0.

Then for some small a > 0 we can take (for ζk not tangent to C × {0}) J -holomorphic disks
dk : D → U such that dk(0) = 0 and ∂dk

∂z (0) = aζk(0), and on the image of dk we can put

ζk(w) = a−1 ∂dk
∂z (d

−1
k (w)). On the end we extend the vector fields on whole U .

Let

v = ψeK |∇u|2 Hu
(
∂
∂x1
, ∂
∂x1

)

| ∂
∂x1

|2 = �eK |∇u|2(ux1x1 + T u)onU,

where � = ψ

| ∂
∂x1

|2 and T is a vector field (which is under control), then also a function v has

a maximum at 0 (in particular L(v) ≤ 0). Let us put μ = ux1x1 + T u (then | ∂
∂x1
(0)|2μ(0) =

M(0)). Note that we have XY u ≤ Cμ for vector fields X, Y (which are under control).
Assume μ > 1 (otherwise we have � < C , so we are done).

From now all formulas are assumed to hold at 0. We estimate L(v) from below:

L(v) = L
(
�eK |∇u|2)μ+�eK |∇u|2 L(μ)− 2Ap p̄ (�eK |∇u|2)p(�eK |∇u|2) p̄μ

�eK |∇u|2

To estimate the first term let us calculate

L(�eK |∇u|2)
= eK |∇u|2 Ap p̄(�p p̄ + 2K Re(�p(|∇u|2) p̄)+ K�(|∇u|2)p p̄

+K 2�|(|∇u|2)p|2), Ap p̄(|∇u|2)p p̄

= Ap p̄
∑

k

((ζp ζ̄pηku)uk̄ + uk(ζp ζ̄pη̄ku)+ (ζ̄pηku)(ζpη̄ku)+ (ζpηku)(ζ̄pη̄ku))
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=
∑

k

((log f̃ )kuk̄ + (log f̃ )k̄uk)

+Ap p̄
∑

k

((ζp[ζ p̄, ηk]u)uk̄ + ([ζp, ηk]u p̄)uk̄ + (ζp[ζ̄p, η̄k]u)uk + ([ζp, η̄k]u p̄)uk)

+Ap p̄
∑

k

(
2K Re

(
ηk

[
ζp, ζ̄p

]0,1
uuk̄

)
+ (
ζ̄pηku

) (
ζpη̄ku

) + (
ζpηku

) (
ζ̄pη̄ku

))
,

where η1, . . . ηn is an orthonormal frame such that ηk(0) = ζk(0). Therefore we have

Ap p̄(|∇u|2)p p̄ ≥ − C + Ap p̄ 1

2

∑

k

((
ζ̄pζku

) (
ζp ζ̄ku

) + (
ζpζku

) (
ζ̄p ζ̄ku

) − C
)
,

hence

L(�eK |∇u|2) ≥ − CeK |∇u|2

+ eK |∇u|2 Ap p̄

(

�p p̄ − C K |�p|
∑

k

(
|u pk̄ | + |u pk | + 1

)
)

+ eK |∇u|2 Ap p̄�(
1

2
K − C K 2)

∑

k

(
|u pk̄ |2 + |u pk |2

)
.

Let us start the calculation for the second term

L(μ) = L
(
ux1x1

) + L(T u),

L(T u) ≤ T (log f̃ )− C(μ+ 1)
∑

Ap p̄,

L(ux1x1) =
(

log f̃
)

x1x1
+ Ap p̄ Aqq̄ |X (ζp ζ̄q − [

ζp, ζ̄q
]0,1

)u|2

+Ap p̄ (
ζp

[
ζ̄p, X

]
Xu + [

ζp, X
]
ζ̄p Xu + Xζp

[
ζ̄p, X

]
u + X

[
ζp, X

]
ζ̄pu

+X X
[
ζp, ζ̄p

]0,1
u
)

= (log f̃ )x1x1 + Ap p̄ Aqq̄ |X
(
ζp ζ̄q − [

ζp, ζ̄q
]0,1

)
u|2

+Ap p̄ ([
ζp,

[
ζ̄p, X

]]
Xu + X [ζp, [ζ̄p, X ]]u + [

X,
[
ζ̄p, X

]]
ζpu

+ [
X, [ζp, X ]] ζ̄pu

) + Ap p̄
(

X
[

X,
[
ζp, ζ̄p

]0,1
]

u + [X, [ζp, ζ̄p]0,1]Xu
)

≥ − C(μ+ 1)
∑

Ap p̄

and we obtain

L(μ) ≥ −Cμ
∑

Ap p̄.

Now we come to the last term

−2Ap p̄

(
�eK |∇u|2

)

p

(
�eK |∇u|2

)

p̄

�eK |∇u|2

= −2Ap p̄eK |∇u|2
( |�p|2

�
+ 2K Re(�p(|∇u|2) p̄)+ K 2�(|∇u|2) p̄(|∇u|2)p

)

≥ −2eK |∇u|2 Ap p̄

(
|�p|2
�

+ C K |�p|
∑

k

(|u pk̄ | + |u pk |)+ K 2
∑

k

(|u pk̄ |2 + |u pk |2)
)

.
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Therefore there is a constant C0 > 1 which is under control such that

L(v) ≥ μeK |∇u|2 Ap p̄

(

�p p̄ +�

(
1

2
K − C0 K 2

) ∑

k

(|u pk̄ |2 + |u pk |2)− 2
|�p|2
�

)

− C0μeK |∇u|2 Ap p̄(1 + K )(1 + |�p|)
(

1 +
∑

k

(
|u pk̄ | + |u pk |

)
)

.

For a proper choice of K and ψ(K = 1
2C0
, ψ = eAφ + 4eA where 1

2 < φ < 1 is strictly

plurisubharmonic in a neighborhood of �̄ and A is large enough) we can conclude that
L(v) > 0 and this is a contradiction with the maximality of v. ��

4 Maximal plurisubharmonic functions

We say that a function u ∈ PSH(�) is maximal if for every function v ∈ PSH(�) such
that v ≤ u outside a compact subset of � we have v ≤ u in �.

Now we want to find the solution to the following Dirichlet problem:
⎧
⎨

⎩

u ∈ PSH(�) ∩ C(�̄)
u is maximal
u = ϕ on ∂�,

(4.1)

where � is a strictly pseudoconvex domain of class C1,1 and ϕ is a continuous function on
∂�.

Proposition 4.1 If ϕ ∈ C1,1(�̄), then there is a unique solution u ∈ C0,1(�̄) of the problem
(4.1) and

‖u‖C0,1(�̄) ≤ C = C
(‖ρ‖C0,1(�),m(ρ), ‖ϕ‖∈C1,1

)
.

Proof The uniqueness is a consequence of the definition.
To prove the existence assume that ρ is smooth. There are an increasing sequence ϕk of

smooth functions such that ϕk tends to ϕ in C1,1 norm. By Theorem 1 there is a solution uk

of the following Dirichlet Problem
⎧
⎪⎪⎨

⎪⎪⎩

uk ∈ PSH(�) ∩ C∞(�̄)

(i∂∂̄uk)
n = 1

kn (i∂∂̄ρ)n in �

uk = ϕk on ∂�.

By Lemma 3.3 ‖uk‖C0,1(�̄) ≤ C(‖ρ‖C0,1(�),m(ρ), ‖ϕ‖∈C1,1). Now we can put

u := lim
k→∞ uk .

It is enough to show that u is a maximal function. Let a function v ∈ PSH(�) be smaller
than u outside a compact subset of �. From the comparison principle (Proposition 2.2) we
obtain

v + ρ

k
− sup

∂�

(ϕ − ϕk) ≤ u p

for p ≥ k. Taking the limit we conclude that v ≤ u in �.
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In the general case we can assume that ϕ is a plurisubharmonic function on� (by adding
Aρ for A enough large). We can approximate� by an increasing sequence of smooth strictly
pseudoconvex domains �k such that

⋃
k �k = � and ‖ρ‖C0,1(�),m(ρ) are under control,

where ρk are strictly plurisubharmonic smooth defining functions for�k . Let uk be a solution
of the following Dirichlet Problem

⎧
⎨

⎩

uk ∈ PSH(�k) ∩ C(�̄k)

uk is maximal
uk = ϕ on ∂�k .

Then uk ≥ ϕ, hence it is an increasing sequence and again we can put

u := lim
k→∞ uk .

If v is as above, for every ε > 0 we have v−ε ≤ uk outside a compact set for k large enough.
So we obtain v ≤ u and conclude that u is a maximal function as in the statement. ��

Note that in the above proposition it is not enough to assume that ϕ is C1,α regular
for some α < 1. Indeed, one can show that if � is strictly pseudoconvex, P ∈ ∂� and
ϕ(z) ≤ ϕ(P) − (dist(z, p))1+α , then a solution of (4.1) is not Hölder continuous with the
exponent greater than 1+α

2 .

Theorem 4.2 (Harvey, Lawson [4]) There is a unique solution u of the problem (4.1).

Proof Let ϕk be an increasing sequence of smooth functions on �̄ such that limk→∞ ϕk = ϕ.
By Proposition 4.1 there is a sequence uk of solutions of (4.1) with boundary conditions ϕk

(instead of ϕ). Because

uk ≤ u p ≤ uk + sup
∂�

(ϕ − ϕk)

for p ≥ k, the sequence uk is a Cauchy sequence in C(�̄). Similar as in the previous proof
we can conclude that its limit u is a solution of the problem (4.1). ��

Note that we can also prove the above theorem directly from Theorem 1.
The following proposition shows that being a continuous maximal plurisubharmonic func-

tion is a local property.

Proposition 4.3 Let � ⊂ M and u ∈ PSH(�). Then

(i) If u is maximal then u|U is maximal for every U ⊂ �;
(ii) If � is such that there is a bounded strictly plurisubharmonic function ρ ∈ C2(�), u is

continuous and every point in� has a neighbourhood U such that u|U is maximal, then
u is maximal.

Proof (i) Suppose that v ∈ PSH(U ) is such that v ≤ u outside a compact subset of U .
Then max{u, v} ∈ PSH(�) and we obtain v ≤ max{u, v} ≤ u on U .

(ii) We can assume that ρ < 0. Let ε > 0, v ∈ PSH(�) and let z0 ∈ � be a point where a
function v+ ερ− u attains its maximum. By (i) there is a strictly pseudoconvex domain
�̃ ⊂ � with a smooth plurisubharmonic defining function ρ̃ such that z0 ∈ �̃ and u|�̃
is maximal. Note that there is ε̃ > 0 such that a function ρ − ε̃ρ̃ is plurisubharmonic
in some neighbourhood of cl(�̃). Hence a function ṽ = max{v + ερ, v + ε(ρ − ρ̃ε̃)}
is also plurisubharmonic and ṽ − u attains a maximum only in some compact subset
of �̃, which is impossible because u|�̃ is maximal. As ε and v were arbitrary we can
conclude that the function u is maximal. ��
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In [4] the authors consider problem (4.1) for F(J )-harmonic functions which they define
in a different way than we define maximal functions but we will see that these concepts agree.

Let � ⊂ M and u ∈ C ∩ PSH(�). We say that u is F(J )-harmonic if for every U ⊂ �

and for every smooth strictly plurisubharmonic function φ ≤ u on U we have φ < u on U .
One can show (using the comparison principle) that C2 F(J )-harmonic functions are exactly
C2 solutions of (1) with f = 0.

Proposition 4.4 Let � and u be as above. Then

(i) If u is maximal then u is F(J )-harmonic;
(ii) If � is such that there is a bounded strictly plurisubharmonic function ρ ∈ C2(�) and

u is F(J )-harmonic, then u is maximal.

Proof The first assertion follows from definitions. To proof (ii) we can assume, by Propo-
sition 4.3, that � is a smooth strictly pseudoconvex domain with defining function ρ such
that u ∈ C(�̄). Let ε > 0. By Theorem 4.2 there is a continuous maximal plurisubharmonic
function u0 equal to u on ∂�. By Theorem 1 there is a smooth strictly plurisubharmonic
function u1 such that u − ε < u1 < u on a boundary and

(i∂∂̄u1)
n = 1

2
εn(i∂∂̄ρ)n .

Then using the comparison principle (Proposition 2.2) we obtain

u0 + ερ − ε ≤ u1 ≤ u ≤ u0

and thus we get u = u0. ��
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