
Mon. Not. R. Astron. Soc. 362, 1363–1370 (2005) doi:10.1111/j.1365-2966.2005.09407.x

The monopole moment of the three-point correlation function of the
two-degree Field Galaxy Redshift Survey

Jun Pan1,2� and István Szapudi2
1School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD
2Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822, USA

Accepted 2005 July 5. Received 2005 July 4; in original form 2005 May 19

ABSTRACT
We measure the monopole moment of the three-point correlation function on scales 1–
70 h−1 Mpc in the two-degree Field Galaxy Redshift Survey (2dFGRS). Volume-limited sam-
ples are constructed using a series of integral magnitude bins between M = −18 to −22. Our
measurements with a novel edge-corrected estimator represent most, if not all, three-point level
monopole or angular averaged information in the catalogue. We fit a perturbative non-linear
bias model to a joint data vector formed from the estimated two- and three-point correlation
functions. Two different models are used: an analytic model based on Eulerian perturba-
tion theory including bias and redshift distortions and a phenomenological bias model based
on the direct redshift space measurements in the large Virgo simulations. To interpret the
clustering results, we perform a three-parameter Gaussian maximum-likelihood analysis. In
the canonical −21 to −20 volume-limited sample, we find σ 8 = 0.93+0.06

−0.2 , b = 1.04+0.23
−0.09 and

b2 = −0.06+0.003
−0.001. Our estimate of σ 8 is robust across the different volume-limited samples

constructed. These results, based solely on the large-scale clustering of galaxies, are in ex-
cellent agreement with previous analyses using the Wilkinson Anisotropy Probe; this is a
spectacular success of the concordance model. We also present two-parameter fits for the bias
parameters, which are in excellent agreement with the previous findings of the bias evolution
in the 2dFGRS.

Key words: methods: statistical – cosmology: theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

Statistical analyses of the two-degree Field Galaxy Redshift Survey
(2dFGRS) (Colless et al. 2001) have propelled significant progress
in high-precision cosmology. For instance, measurements of the
two-point correlation function and the power spectrum have pro-
vided tight constraints on the theories of structure formation (e.g.
Norberg et al. 2001; Percival et al. 2001; Hawkins et al. 2003; Cole
et al. 2005). The large volume and high quality of the 2dFGRS
encourage further studies of higher-order statistics. Such investi-
gations provide information on the Gaussianity of the small initial
dark matter fluctuations, the emergence of non-Gaussianity through
non-linear gravitational effects and even the murky physical pro-
cesses of galaxy formation. The latter might manifest itself as ‘bias’
(Kaiser 1984), where the clustering of galaxies might be statistically
different from that of the dark matter. Higher than second-order
statistics provide the only tool with which to separate these effects
from the gravitational amplification and initial conditions. The re-
sulting constraints on the bias are interesting in their own right, and
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they provide the new avenues to ultimately constrain cosmological
parameters.

Third-order statistics represent the first non-trivial step in the
perturbative understanding of non-Gaussianity. Indeed, to date nu-
merous works have been devoted mainly to the measurement and
understanding of the third-order statistics of 2dFGRS. Verde et al.
(2002) estimated bias parameters from their bispectrum measure-
ment at wavelengths 0.1 < k < 0.5 h Mpc−1. Three-point correlation
function ζ of an early released 2dF sample (2dF100k) is measured
by Jing & Börner (2004), focusing on empirical formula fit for ζ .
Wang et al. (2004) measured three-point correlation function for the
2dFGRS on small scales to test their conditional luminosity func-
tion model jointly with the halo model. As an alternative to the
three-point correlation function or bispectrum, Croton et al. (2004)
calculated moments of counts in cells, or averaged N-point corre-
lation functions, on 1–9 h−1 Mpc scales, and estimated relative bias
parameters.

A common thread in previous measurements was that they fo-
cused on either relatively small scales and/or a set of hand-picked
subset of triangular configurations, which characterize three-point
statistics. With the most natural parametrizations predominantly
used in the past, such as the three sides of a triangle, ζ (r 1, r 2, r 3)
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1364 J. Pan and I. Szapudi

or ζ (r 1, r 2, θ ) with θ , the angle between r1 and r2, it is both com-
putationally burdensome and conceptually difficult to measure and
interpret three-point statistics in a large dynamic range. Recently,
Szapudi (2004) has shown that a multipole expansion motivated by
rotational invariance helps substantially with this ‘combinatorial ex-
pansion’ of parameters. It was demonstrated that it is most efficient
to expand spherically symmetric functions of two unit vectors into
L = 0 bipolar spherical harmonics. In turn, the recipe boils down
to expand ζ into Legendre polynomials P �(cos θ ):

ζ (r1, r2, θ ) =
∞∑

�=0

2� + 1

4π
ζ�(r1, r2)P�(cos θ ). (1)

Szapudi (2004) has demonstrated that the first few multipoles, of-
ten up to � = 2, concentrate most of the useful three-point level
information. While one still needs to consider the scale dependence
over r1 and r2, the configuration space effectively becomes two-
dimensional.

In addition to the conceptual simplification, the above
parametrization suggests new algorithms to calculate three-point
functions (Szapudi 2005a). In particular, Pan & Szapudi (2005)
adapted the fully edge-corrected estimator of Szapudi & Szalay
(1998) for the � = 0 monopole moment, and have demonstrated a
simple and fast N2 algorithm for its calculation. Edge correction is a
major advantage over other three-point statistics, which can be cal-
culated reasonably fast, most notably the bispectrum and moments
of counts in cells. This means that the resulting estimates of the
monopole of the three-point function are expected to be more ro-
bust against complicated geometry of the window, cut-out holes etc.,
than other previously used measures. Since real surveys, such as the
2dFGRS, have complicated spatial structure, edge effect correction
is a must when approaching large scales.

The monopole moment captures all information about the am-
plitude of the three-point correlation function; all other multipoles
provide information on the shape. Besides the fact that the monopole
moment is of the lowest order, thus the simplest to measure and inter-
pret in the multipole series; it also has a simple transformation under
bias, and we have a relatively accurate understanding of its redshift
distortions (Pan & Szapudi 2005). These properties single-out the
monopole moment as a principal candidate among the three-point
statistics for practical applications.

In this paper, we set out to harvest the fruits of recent theoreti-
cal developments, and measure and interpret the monopole moment
of the three-point function in the 2dFGRS. The interpretation of
three-point statistics in terms of bias parameters was put forward by
Fry (1994). His method was later perfected to include maximum-
likelihood fits and more sophisticated theoretical–numerical mod-
elling of ratio statistics (Matarrese, Verde & Heavens 1997; Verde
et al. 1998; Scoccimarro 2000; Feldman et al. 2001; Verde et al.
2002; Gaztañaga & Scoccimarro 2005). We develop a novel joint
maximum-likelihood technique using both two- and three-point
statistics (as opposed to ratio statistics) for simultaneous estimation

Table 1. Volume-limited subsamples of 2dFGRS. Comoving distance d is calculated from redshifts z assuming
�CDM universe with �� = 0.7, �m = 0.3.

M bJ −5 log10 h zmin zmax dmin dmax N SGP
g /N NGP

g n̄(10−3 h3 Mpc−3)

−18 to −17 0.0131 0.0575 39.0 170.0 4046/3192 12.97
−19 to −18 0.0205 0.087 61.2 255.7 11935/9625 11.35
−20 to −19 0.0320 0.129 95.2 374.9 23595/17729 6.922
−21 to −20 0.0495 0.186 146.6 532.9 18081/12499 1.798
−22 to −21 0.0754 0.261 222.2 735.7 4095/2113 0.140

of bias coefficients and cosmological parameters, such as σ 8. We
estimate covariances in the data using mock surveys, and constrain
the parameters of our theory in a Gaussian maximum-likelihood
context with scales up to 140 h−1 Mpc entering into the analysis.
Even though ζ 0 is only the first in the series of multipoles, we will
see that it contains invaluable, hitherto untouched information on
cosmology and bias.

The next section outlines our method of estimating ζ 0 in volume-
limited subsamples of 2dFGRS; Section 3 details the theoretical
framework for the interpretation of the data in terms of bias and
cosmological parameters; the resulting constraints are presented in
Section 4; discussion and summary follow in Section 5.

2 M E A S U R E M E N T O F ζ 0

2.1 The data set

In order to estimate the three-point correlation functions, we con-
structed volume-limited samples from the 2dFGRS final data re-
lease spectroscopic catalogue (the 2dF230k, Colless et al. 2003)
with 221 414 galaxies of good redshift quality Q � 3 (Colless et al.
2001). Excluding the ancillary random fields leaves us with two large
contiguous volumes: one near the South Galactic Pole (SGP) cover-
ing approximately −37.◦5 < δ < −22.◦5, 21h40m < α < 3h40m and
the other one around the North Galactic Pole (NGP) defined roughly
by −7.◦5 < δ < 2.◦5, 9h50m < α < 14h50m. The parent sample was
further restricted by completeness f > 0.7, and apparent magnitude
limits in photometric bJ band with bright cut of mbJ=15 and faint
cut of the median value of ∼19.3 with certain small variation as
specified by masks (Colless et al. 2001).

Volume-limited subsamples are built from the parent sample by
selecting galaxies in specified absolute magnitude ranges. These
were calculated with k + e correction as in Norberg et al. (2002). The
most important properties of the resulting SGP and NGP samples are
summarized in Table 1. For our measurements, the NGP and SGP
were combined together to achieve the highest possible volume.

2.2 Estimation of the correlation function

Two-point correlation functions are measured with the Landy &
Szalay (1993) estimator:

ξ̂ = DD − 2DR + R R

R R
. (2)

Here, D stands for data and R for points selected from random
catalogues. These were created according to the exact geometry
and completeness masks of the subsamples, with 20 times as many
random points as the number of galaxies N g.

The three-point correlation function also has similar minimum
variance estimator (Szapudi & Szalay 1998):

ζ̂ = DDD − 3DDR + 3DR R − R R R

R R R
. (3)
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Monopole of the three-point correlation function of 2dF 1365

This estimator has been shown by Kayo et al. (2004) to be more ac-
curate than other estimators currently in use. Because of the volume-
limited samples, no additional weighting was necessary.

For the present analyses, we measured the monopole moment
or angular average of the three-point correlation function (Szapudi
2004):

ζ0(r1, r2) = 2π

∫
d cos θζ (r1, r2, θ ) . (4)

Since this is an angular averaged quantity, the estimator of equa-
tion (3) can be realized with setting-up bins of shells around cen-
tre points. These are essentially neighbour counts in shells, and
can be realized with a simple N2 estimator put forward in Pan &
Szapudi (2005). Explicitly, if the number of galaxies around galaxy
i in bin (r lo

1 , r hi
1 ) is ni(r 1) and in bin (r lo

2 , r hi
2 ) is ni(r 2), the DDD in

equation (3) reads

DDD =




∑Ng

i=1
ni (r1)ni (r2)

Ng(Ng−1)(Ng−2) , i f r1 �= r2∑Ng

i=1
ni (r1)(ni (r2)−1)

Ng(Ng−1)(Ng−2) i f r1 = r2

. (5)

This estimator has no Poisson noise bias as there is no overlap
between the configurations. The lack of shot noise bias and the pre-
cise edge correction are major technical advantages over measuring
the bispectrum via direct Fourier transform (e.g. Scoccimarro 2000;
Verde et al. 2002), or moments of counts in cells (e.g. Szapudi &
Colombi 1996; Szapudi 1998; Bernardeau et al. 2002, and refer-
ences therein).

Redshift space measurements were performed in 29 logarithmic
bins between 0.7 and 70 h−1 Mpc for the two-point correlation func-
tion, and all corresponding pairs for ζ 0(r 1, r 2), altogether 29 × 30/

2 = 435 bins. All measurements were repeated in the available
22 mock 2dF surveys, as well as eight equal subcubes selected from
the Virgo Very Large Simulation (VLS) �CDM simulations (Mac-
farland et al. 1998).

3 I N T E R P R E TAT I O N

3.1 Theoretical framework

To interpret the clustering present in the 2dF, we use two models:
theoretical model for large scales and a phenomenological model
for intermediate scales.

The theoretical model uses Eulerian perturbation theory (e.g.
Bernardeau et al. 2002, and references therein) to calculate the real
space dark matter three-point correlation function; specifically, we
use the formulae in Szapudi (2005b).

Our bias model is motivated by the usual perturbative expansion
δg = bδ + b2δ

2/2 + . . . (Fry & Gaztañaga 1993):

ξg = f2b2

(
σ8

0.9

)2

ξ

ζg,0 =
(

σ8

0.9

)4[
b3 f3ζ0 + b2b2 f 2

2 (ξ1ξ2 + ξ2ξ3 + ξ3ξ1)0

]
, (6)

where b and b2 are the linear and non-linear bias factors, (...)0 de-
notes angular averaging and f 2 and f 3 are the redshift distortion
enhancement factors (Kaiser 1987; Hamilton 1998):

f2 =
(

1 + 2

3
f + 1

5
f 2

)

f3 = 5(2520 + 3360 f + 1260 f 2 + 9 f 3 − 14 f 4)

98(15 + 10 f + 3 f 2)2
× 7

4
f 2
2 , (7)

where f = �0.6/b. The third-order f 3 is obtained by Pan & Szapudi
(2005) through angle averaging perturbation theory results of Scoc-
cimarro, Couchman & Frieman (1999). Pan & Szapudi (2005) have
shown that this is a good approximation to angle averaged three-
point quantities with deviation at 5-per cent level.

Our phenomenological model is obtained by using directly our
measured Virgo VLS redshift space two- and three-point correlation
functions in equation (6) (with f 2 = f 3 = 1 formally), with the
exception that we still use the theory for f 2

2(ξ 1ξ 2 + . . .)0 term.

3.2 Data vectors

We intend to analyse the data in the above theoretical framework us-
ing maximum-likelihood methods. When constructing a data vector
from the measurements, we opt for not using ratio statistics of the
sort Q3 � ζ/ξ 2, as it has been done in all previous studies, since
our measurements include such large scales where ξ becomes an
extremely small number, possibly crosses zero. Our choice has the
additional advantage that no ratio bias (e.g. Szapudi, Colombi &
Bernardeau 1999) appears, and our data have direct dependence on
σ 8, which we will exploit.

We construct the data vector (ξ , ζ 0) in an appropriate scale range,
where the theoretical model is expected to be a good approximation
(cf. Table 2). Note that we excise redundant entries from the ζ 0(r 1,
r 2) matrix, that is, each pair of scales appears only once.

3.3 Covariance matrix

In order to perform a χ2-based maximum-likelihood analysis, we
estimate a covariance matrix from the 22 mock catalogues avail-
able. These have been extracted from the Virgo consortium Hubble
Volume simulation (Colberg et al. 2000). For details of generating
catalogues and biasing see Cole et al. (1998). Volume-limited sub-
samples were then created from each mock in exactly the same way
as we do with the real data of 2dFGRS. Thus, for every volume-
limited subsample in Table 1, we have 22 measurements of the two-
and three-point correlation functions.

We use the usual (biased) estimator for the covariance matrix:

C̃i j = 1

Nsim

Nsim∑
I=1

�d I
i �d I

j , (8)

where �dI
i = dI

i − 〈di〉 is the ith element of our data vector (con-
taining ξ and ζ 0 and filtered according to the previous subsection)
from the Ith simulation; N sim = 22 (Fig. 2).

It can be shown that a covariance matrix estimated by the above
equation is necessarily singular if the number of simulations is less
than the length of the data vectors (Szapudi et al. 2005). More pre-
cisely, the rank of the matrix cannot be more than N sim. In practice,

Table 2. Our filtering choices for the data vectors used in the analysis; the
lower and upper cut-offs are displayed in units of h−1 Mpc. 3/P stands for
three-parameter maximum-likelihood analysis based on our phenomenolo-
gical model and 2/P and 2/T denote two-parameter fits to our phenomenolo-
gical and theoretical models, respectively.

M bJ − 5 log10 h 3/P 2/P 2/T

−18 to −17 – 11.88–34.97 18.87–34.97
−19 to −18 4.04–34.97 10.18–34.97 18.87–47.61
−20 to −19 4.04–34.97 4.04–34.97 18.87–64.8
−21 to −20 5.49–34.97 11.88–34.97 18.87–64.8
−22 to −21 – 8.73–34.97 18.87–64.81
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1366 J. Pan and I. Szapudi

Figure 1. We display our measurements of the two- and three-point cor-
relation functions ξ (red solid circles) and ζ 0 (blue solid squares) in the
canonical M = −21 to −20 volume-limited sample. Error bars have been
calculated from 22 2dF mocks. Solid line is our phenomenological model
with parameters in Table 3 and dashed lines are theoretical model with pa-
rameters in Table 5. Inset plotted on a linear-scale for ζ 0 on large scales.

Figure 2. This figure illustrates the structure of our covariance matrix,
which follows from the set-up of our data vectors, and the strong correlations
among different bins of the two- and three-point correlation functions.

we have always found this rank to be N sim − 1 in several numerical
experiments.

To calculate χ 2 from a singular matrix, we use the singular
value decomposition (SVD) method to create pseudo-inverses (cf.
Gaztañaga & Scoccimarro 2005). We have decomposed the C ma-
trix (the tilde denoting estimators is omitted from now on) as the
multiple of three matrices:

C = UWVT, (9)

where W is a diagonal matrix, U and V are orthogonal matrices
and VT means transpose of V. The meaning of this decomposition
is the kernel and image of the linear-mapping C (cf. Press et al.
1992). Moreover, it is similar to an eigenvector expansion, unique
up to degenerate ‘eigenvalues’, the elements in W. To calculate χ 2,
we need C−1 of our singular matrix. Since the inverse is formally
VW−1UT, we can replace entries in W−1 corresponding to small

Figure 3. The distribution of modes corresponding to the large eigenvalues
is W in our 22 mock surveys. The mean has been subtracted, and each
mode has been normalized to unit variance. The distribution appears to be
consistent with Gaussian.

eigenvalues with 0; this procedure is usually called constructing a
pseudo-inverse.

We have found a marked drop in the eigenvalues beyond
N sim − 1. We have checked that the corresponding columns of U and
V are equal, that is, they really are ‘eigenvectors’ to all intents and
purposes. It is meaningful to calculate χ 2 with the above pseudo-
inverse, as long as the distribution of eigenvectors is Gaussian,
as shown in Fig. 3. In numerical simulations, we found that it is safe
to keep about half of the eigenvectors, and for all measurements in
this paper, we used the top 10 eigenvalues and their correspond-
ing entries in the V matrix as eigenvectors. Our results are robust
against this choice – have been checked using 8, 9, 10, 11 and 12
eigenvectors, and the results did not change significantly.

Figure 4. Three-parameter likelihood contours for the magnitude slice −21
to −20. The wider (blue) curves correspond to marginalized distributions,
while the narrower (green) curves are a cut through the likelihood. The cut
through the likelihood curve was normalized to the marginalized distribution
at the maximum. Note that the actual value of the distribution is somewhat
arbitrary, as it depends on the grid size. We also show two-dimensional
marginalized likelihood contours to illustrate the correlations between the
parameters.
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Monopole of the three-point correlation function of 2dF 1367

Figure 5. Two-parameter likelihood contours for the −21 to −20 slice. Both the phenomenological model (left) and the theoretical model (right) are displayed.

3.4 Maximum-likelihood analysis

Using the data vector and the pseudo-inverse of the covariance ma-
trix defined earlier, we can calculate χ2 = �TC−1� as well as
likelihoods p ∝ exp (−χ2/2), where � = d − d th(σ 8, b, b2) and
d th is the theoretical model with explicit dependencies of the pa-
rameters. Note that in principle, C should also depend on the pa-
rameters, but we neglect that dependency. This is justified by the
final results, which are not far from the mock surveys and simplify
the calculation of likelihood enormously. To generalize this method,
one would need to repeat the simulations and measurements for each
set of parameters, as well as taking into account the determinant in
the likelihood; this is clearly unfeasible at the moment.

4 R E S U LT S

When applying the above described theoretical framework for the
interpretation of our clustering measurements, special care needs to
be taken about establishing scale ranges to be included in the data
vectors for maximum-likelihood analyses. On the one hand, we want
to include as much data as possible to constrain parameters with the
highest precision, while on the other hand, if we include data points
where the simple theoretical model is not a good approximation (for
physical reasons and/or because of systematic errors), we might bias
our results. Our considerations are detailed below.

For the theoretical model, a lower cut of 18 h−1 Mpc was used,
where perturbation theory appears to be very accurate. In this case,
we use all scales up to 70 h−1 Mpc or the 1/4 of the characteristic
scales of the slice, whichever is smaller, to avoid severe edge effects.

For the phenomenological model, we use our measurements from
the VLS simulations as theory. Since, we neglect the errors on these
measurements, we use an upper cut of 35 h−1 Mpc, above which
the errors are non-negligible. The choice of the lower cut is more
delicate. There is a complex interplay between the accuracy of the
simple bias and the redshift distortion models, we use with the emer-
gence of discreteness effects. These finally determine the optimal
cut in a fairly subtle way. The apparent complexity motivates an em-
pirical approach: for the two-parameter fits, we perform maximum

Table 3. Three-parameter fits to our two- and three-point clustering measurements. For each parameter, we
present the maximum of the three-dimensional likelihood with error bars calculated form a 68 per cent of the
marginalized distribution. In parentheses, we display the maximum of the marginalized distribution.

M bJ − 5 log10 h σ 8 b b2 χ2

−19 to −18 1.07+0.09
−0.61 (0.80) 0.81+0.53

−0.12 (0.89) −0.06+0.04
−0.03 (−0.06) 0.68

−20 to −19 0.90+0.06
−0.28 (0.79) 0.97+0.31

−0.14 (1.01) −0.04+0.06
−0.02 (−0.04) 3.11

−21 to −20 0.93+0.04
−0.20 (0.85) 1.04+0.23

−0.09 (1.08) −0.06+0.03
−0.01 (−0.06) 0.97

likelihood with a series of low cuts between 4 and 14 h−1 Mpc for
each magnitude limit, and finally choose the one with the lowest χ2.
Fortunately, we found that the two-parameter fits are robust against
this choice, which nevertheless gives the tightest error bars possible.

For the three-parameter fit, the empirical approach would be too
expensive and we also want to maximize the range as much as
possible to resolve the degeneracy between σ 8 and b. Therefore, we
use an absolute low cut of 4 h−1 Mpc, below which non-linearities
and complexity of the bias are expected to be strong, complemented
with the condition, n̄r 34π/3 � 1. This choice gives reasonable
control over discreteness errors, which could bias our fit giving a
lower cut of 5.1 h−1 Mpc for the −21 to −20 slice.

In our final choice, we took the closest available bin from our
logarithmic binning scheme to the above values. The scaleranges
used in the fits are summarized in Table 2.

4.1 Three-parameter fits

We calculated brute force three-parameter grids with resolution
0.005 and two-parameter grids with resolution 0.001. We checked
the effects of grid resolution by repeating calculations with resolu-
tion 0.00025, without any change in the results. While σ 8 and b are
quite degenerate along the line of b × σ 8 = constant, as expected,
the inclusion of triangles in a large range of scales appears to break
the degeneracy, at least for some of the samples. This is evidenced
by the fact that a reasonable maximum has developed for the three
volume-limited samples in the mid-range. For those, we present our
results in Table 3 and Fig. 4.

Error bars have been calculated from the marginalized curves
using 68-per cent thresholds. In the tables, the overall maximum is
quoted first with error bars, while the maximum of the marginalized
likelihood is presented in parentheses. The χ2 quoted is normalized
to the degrees of freedom, which in this case is 10 − 3 = 7.

The brightest and the faintest magnitude limits do not support a
three-parameter fit. Although they are statistically consistent with
the three others presented, the large error bars due to the degener-
acy of σ 8 and b make them meaningless. Similarly, the theoretical
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1368 J. Pan and I. Szapudi

Table 4. Two-parameter fit based on the phenomenological model. Notation
is the same as in Table 3.

M bJ − 5 log10 h b b2 χ2

−18 to −17 0.807+0.128
−0.071 (0.833) −0.172+0.036

−0.027 (−0.164) 0.582

−19 to −18 0.994+0.031
−0.036 (0.993) 0.003+0.023

−0.023 (0.003) 0.343

−20 to −19 0.969+0.027
−0.029 (0.968) −0.035+0.011

−0.012 (−0.035) 2.721

−21 to −20 1.054+0.019
−0.021 (1.053) −0.057+0.012

−0.013 (−0.057) 0.372

−22 to −21 1.273+0.095
−0.070 (1.274) 0.006+0.086

−0.068 (0.010) 0.206

Table 5. Two-parameter fit based on the theoretical model. Notation is the
same as in Table 3.

M bJ − 5 log10 h b b2 χ2

−18 to −17 0.484+0.063
−0.322 (0.358) −0.160+0.295

−0.334 (−0.151) 1.273

−19 to −18 0.955+0.087
−0.134 (0.939) −0.252+0.132

−0.142 (−0.256) 1.248

−20 to −19 0.945+0.071
−0.100 (0.935) 0.185+0.053

−0.051 (0.184) 2.341

−21 to −20 1.096+0.043
−0.049 (1.094) −0.222+0.044

−0.047 (−0.223) 0.747

−22 to −21 1.385+0.080
−0.105 (1.375) −0.420+0.110

−0.110 (−0.425) 0.977

model does not support a stable three-parameter fit with either of
the magnitude slices.

4.2 Two-parameter fits

We also performed two-parameter fits using the bias parameters
only. These approximately correspond to fitting b → b(σ 8/0.9).
Fixing our reference σ 8 = 0.9 pins down the error bars, which
would otherwise explode due to the large degree of degeneracy. σ 8

= 0.9 is consistent with all our measurements, and these fits yield
extremely precise values for the bias parameters (Fig. 5, Tables 3
and 4). The effective degree of freedom is 10 − 2 = 8.

In the case of two-parameter fits, the theoretical model also sup-
ports stable likelihood surfaces and reasonable error bars, with the
possible exception of the faintest magnitude limit, which we present
for completeness only.

5 S U M M A RY A N D D I S C U S S I O N S

We presented a measurement of the monopole of the three-point cor-
relation function in the 2dFGRS. The new technology developed by
Szapudi (2004) and Pan & Szapudi (2005) enabled the estimation of
the latter statistics in a wide range of scales from 1 to 70 h−1 Mpc.
In the three-point function, up to 140 h−1 Mpc scales enter the mea-
surements and the subsequent analysis. In addition, we measured
the two-point correlation function.

To interpret these clustering statistics, we developed a novel
maximum-likelihood technique based on joint analysis of two- and
three-point statistics. We estimated the joint correlation matrix from
mock 2dF surveys. We seed the top 10 modes detected by an SVD
of the joint correlation matrix to calculate a generalized χ 2. The
distribution of the modes is consistent with Gaussian, therefore, we
maximized the Gaussian likelihood with respect to the parameters
of our theory. Our measurements are robust against keeping more
or less eigenmodes, as well as against the scalerange we use for
the analysis. In Fig. 6, we present the values for the bias parameter
b as a function of lower-scale cut for both the phenomenological
and theoretical models. Both models are fairly robust, as long as
the χ 2 � 1.

Figure 6. We illustrate the degree of robustness of our maximum-likelihood
fit by presenting the best-fitting bias parameters with error bars against the
lower limit used in the fit (the upper limit was fixed to the value of Table 2).
The (red) squares with error bars in the upper panel (scales 4–14 h−1 Mpc)
show the phenomenological model, while the blue squares in the lower panel
show the theoretical model (scales 9–25 h−1 Mpc). The solid lines show the
corresponding values of χ2 of the fits. In general, as long as χ2 � 1, the fit
is robust.

The significance of our three-parameter fit is that it yields a highly-
accurate measurement of σ 8 from large-scale clustering alone. In
particular, our estimate is independent of the cosmic microwave
background (CMB). Yet, our value is in excellent agreement with
those derived from Wilkinson Anisotropy probe (Spergel et al. 2003;
Fosalba & Szapudi 2004). σ 8 is still one of the most uncertain
cosmological parameters, and our technique has a great potential
to further improve the precision of its constraints. The virtually
perfect agreement of σ 8 from CMB and large-scale three-point
level clustering is yet another one of the spectacular successes
of the concordance model. In addition, our result is in excellent
agreement with measurements based on Sloan Digital Sky Sur-
vey (SDSS) two-point statistics and joint analysis with Wilkinson
Microwave Anisotropy Probe (WMAP) (Pope et al. 2004; Tegmark
et al. 2004).

Our two-parameter fits to the bias have extremely small error bars,
they are likely to be systematics (both in the data and in the theory)
limited. They can be considered as a measurement along the degen-
eracy line b σ 8/0.9 =constant, and can be directly compared with
previous relative bias measurements from the 2dF. Fig. 7 presents
a comparison with Norberg et al. (2002), and shows excellent
agreement.

We see no statistically significant evidence of scale dependency of
the bias. Over the full scale range, from 4 to 70 h−1 Mpc, a constant
bias model gave reasonable values of χ 2. There is no significant
trend between the measurements on intermediate and large scales
using the phenomenological and theoretical models, respectively;
the measured values of b are fully consistent with each other and
with Norberg et al. (2002). The only exception is the theoretical
model for the faintest subsample, which also has fairly degenerate
likelihood surfaces.

A possible check of systematics, although muddled by cosmic
variance, is to estimate the bias in the NGP and SGP separately. Our
phenomenological fits corroborate that of Verde et al. (2002), who
find the SGP slightly more biased; our estimate is b = 1.025+0.040

−0.048
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Figure 7. Comparison of our bias measurements with the relative bias
measurements of Norberg et al. (2002). The solid line is 0.85 + 0.15(L/L∗),
where we normalized L∗ to be M = −20.5 mag. Red symbols in the mid-
dle with large error bars are the results of the three-parameter fit. Blue and
black symbols show the phenomenological and theoretical fits, respectively,
and are shifted to left and right slightly for clarity. Squares and filled cir-
cles denote the maximum-likelihood values in two dimensions and in the
marginalized distribution, respectively. Red triangles are measured σ 8.

(1.022) and b = 1.097+0.020
−0.022 (1.096) for the NGP and SGP, respec-

tively. Nevertheless, the two samples are consistent at the 1–1.5σ

level, supporting the notion that the difference between them could
be explained with cosmic variance alone.

The interpretation of our measurements in terms of equations (6)
and (7) amounts to be some of the most comprehensive tests of our
picture of gravitational amplification with three-point level large
scale structure statistics. In particular, numerical experiments and
theoretical calculations in the past tended to focus on a handful of
triangular configurations, with preference for isosceles and 1:2 ra-
tios. We have used all possible configurations (although monopole
only) within our dynamic range and logarithmic binning system,
and found a good fit to the data. The simplest explanation for this is
that our basic picture of gravitational amplification is fundamentally
correct. In particular, the results lend strong support to Gaussian ini-
tial conditions, and thus to inflation, even though we did not quantify
this statement, since it was a priori in our model. Fig. 1 shows the
remarkable success of the theoretical and phenomenological mod-
els down to 1 h−1 Mpc. The most natural interpretation of this is
that bias is relatively simple, and that small-scale redshift distor-
tions largely cancel non-linear evolution in redshift space. There
is a mild 1.5–2σ disagreement between the theoretical model and
the data around 30–50 h−1 Mpc (cf. inset of Fig. 1). While this is
not significant according to our measured overall χ2, it would be
interesting to study this region with more accurate simulations, and
higher-order theoretical calculations.

On intermediate scales, we do not detect significant non-linear
bias. On the other hand, the theoretical model on large scales de-
tected non-linear bias at the�2–4σ level. This could mean that either
the theory is not accurate enough on the largest scales in accordance
to the hint provided by the inset of Fig. 1, and/or the largest scales
might have some yet uncovered systematics, and/or there is signif-
icant non-linear bias. The latter possibility is somewhat unlikely
since the intermediate scales do not display significant non-linear
bias, and it would challenge the well-established notion that bias
should become simpler on larger scales. Nevertheless, Kayo et al.

(2004) detected a surprising complexity of non-linear bias with the
three-point correlation function of the SDSS. To decide between
the possible explanations, one would need highly-accurate measure-
ments of the three-point function reliable beyond 35 h−1 Mpc. While
this can and will be done in the future using the Hubble Volume
(Colberg et al. 2000) or similar simulations, the present results do
not allow distinguishing among the above possibilities without the
risk of overinterpreting the data.

The technique, we presented for constraining cosmological and
bias parameters from joint-likelihood analysis of two- and three-
point statistics, has enormous potential for further high-precision
cosmological applications. The constraining power of the present
measurements is limited mainly by the theory. For one, only 22 sim-
ulations have been used to determine the covariance matrix. More
accurate covariance matrix from a much larger number and realistic
mocks could improve the statistical power of maximum-likelihood
estimation based on the same data. In addition, a more realistic
model of bias and redshift distortions of the three-point statistics,
perhaps based on halo models (Takada & Jain 2003; Fosalba, Pan
& Szapudi 2005), could enable the inclusion of all scales measured
in the data vector for even tighter constraints.

The success of the three-parameter fits is remarkable, and it is a
precursor of potentially even more accurate constraints, and perhaps
fits to models with larger number of parameters. Perturbation theory
can be thought of as a generalized bias with an anisotropic kernel
(cf. Matsubara 1995). Since the standard bias model is isotropic,
most information on separating bias from gravitational amplifica-
tion should reside in higher-order multipoles, such as dipole and
quadrupole. Measurements of these in the 2dF will be presented
elsewhere. In particular, the higher-order multipoles contain infor-
mation on baryonic oscillations (Szapudi 2004), which in turn might
make it possible to constrain further cosmological parameters, such
as baryon fraction and dark energy.

Because of the small number of parameters we used so far, a
brute force grid technique was feasible. If more parameters are fit,
our technique lends itself naturally to Monte Carlo Markov Chain
methods (e.g. Lewis & Bridle 2002). Along the same lines, a useful
and straightforward follow-up to our investigation is joint-likelihood
analysis with CMB data. This and other generalizations will be
presented elsewhere.
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