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ABSTRACT 

-We consider the problem of summarizing a scatterplot with a smooth, monotone 

curve. A solution that combines local averaging and isotonic regression is proposed. We 

give some theoreticai justification for the procedure-and demonstrate its use with two 

examples. In the second example, the procedure is applied, in a regression sethng, to 

some data from Box and Cox (1984) and it is shown how this new procedure generalizes 

Box and Cox’s well known family of transformations. In the same example, the bootstrap 

is applied to get a measure of the variability of the procedure. 
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1. INTRODUCTION 

We consider the following problem. Given a set of n data points--{(zl, yl), . ..(zn. y,)}, 

how can we summarize the association of the response g on the predictor z by a smooth, 

moaotone function s(z)? Put another way, how can we pass a smooth, monotone curve 

through a scatterplot of f/ vs z to capture the trend of y as a function of Z? This 

problem is related to both isotonic regression (see e.g. Barlow et al 1972) and scatterplot 

smoothing (see e.g. Cleveland 1979). < - - 

- .In this paper we propose a solution to the problem that uses ideas from both isotonic 

regression and scatterplot smoothing (Section 3). This procedure proves to be useful not 

only as a descriptive tool but also as a method for determining optimal transformations 

of the response in linear regression (Section 4, example 2), a method closely related to 

those of Box and Cox( 1964) and Kruskal(l965). We begin with a brief review of isotonic 

regression and scatterplot smoothing in the next section. 

2. A REVIEW OF ISOTONIC REGRESSION AND SCATTERPLOT SMOOTHING 

2.1 Isotonic Regression 

The problem of isotonic regression on an ordered set is as follows. Given real 

numbers (~1, ~2, . ..y.}, the problem is to find {&~;11,&2, . . 61~) to minimize CT (y; - hi,;)2 

subject to the restriction r%l _< ti2 5 . ..+a.,. A unique solution to this problem exists 
. 

and can be obtained from the ‘pool adjacent violators’ algorithm (see Barlow et al, pg. 

13). This algorithm is too complex to fully describe here, but the basic idea is the 

following. Imagine a scatterplot of y; vs i. Starting with yl, we move to the right and 

stop at the first place that yi > yi+l. Since yi+l violates the monotone assumption, we 

pool vi and vi+1 replacing them both by their average. Call this average vr = vi++1 = 

(vi + yi+I)/2. We then move to the left to make sure that vi-1 5 VT- if not, we 

pool vi-1 with gz and $+l, replacing all three with their average. We continue to the 

left until the monotone requirement is satisfied, then proceed again to the right. This 

process of pooling the first ‘violator’ and back-averaging is continued until we reach the 

rig’6t hand edge. The solutions at each i, hi , are then given by the last average assigned 
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to the point at i. 

To find the solution for the dual problem (Gal 2 +i~2 . . . > rit,) the pool adjacent 

violators algorithm is applied, starting at yn and moving to the left. And to find Ai’s 

to minimize Cy (vi - hi)2 subject to hi’s non-decreasing OR non-increasing, we can 

choose the best set from the two solutions. We will refer to this two step algorithm as 

the pool adjacent violators algorithm. 

It’s not obvious that the pool adjacent violators algorithm-solves the isotonic re- 

gression problem- a proof appears in Barlow et al (pg. 12). There are, however, two 

facts we can notice about the solution: 

l if the data { yl, f12, . ..v.,} , are monotone, then tii = vi for all i; that is, the 

algorithm reproduces the data. 

l each tii will be an average of gj’s near i. The average will span over the local 

non-monotonicity of the yi’s. 

The solution to the isotonic regression problem is not the solution to the problem of 

monotone smoothing because the solution sequence tiI , . . . ti, is not necessarily smooth. 

For example, as we noted, if the data are monotone, the pool adjacent violators simply 

reproduces the data; any jaggedness in the data will be passed on to the solution. 

In the next subsection, we briefly review scatterplot smoothing. 
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2.2 Scatterplot Smoothing 

Given n pairs of data points ((~1, yI), . ..(z.,, vn)}, zl < 22 < ..Iz~, assumed to inde- 

pendent realizations of random variables (X,Y), [*I th e goal of a scatterplot smoother 

is find a smooth function a(~) that summarizes the dependence of Y on X. We assume 

that 2’ is some smooth function of X plus a random component: 

Y=.f(X)+c r - -, (1) 

where E(i) = 0 and Var(c) = o2 < 00. One way to formulate the problem mathemati- 

cally is to require that S(Z) minimize the predictive squared error 

PSE = E(Y - 8(X))2 (2) 

where the expectation is over the joint distribution of (X,Y). If this joint distribution 

were known, the solution would be i(x) = E(YIX = z) for all z. Of course this 

distribution is rarely known, so the conditional expectation is estimated through local 

averaging. Many techniques have been suggested for this- the simplest and the one we 

will make use of, is the running mean: 

i9k (Xi) = AWe(Si-k, sa.Zi, . ..Zi+k) (3) 

The windows are shrunken near the left and right endpoints- that is, the set of indices 

in a window is actually {maz(l, i - k), . ..i. . ..min(n. i + k)}. 

The width of the window over which the average is taken, 2k+ 1, is called the ‘span’. 

Typically, the span is 10 to 50 percent of the observations. In order to choose the span, 

a criterion based on the notion of cross-validation can be used. Denote by iki(zi) the 

. running average at Zi leaving out Zi, i.e. . 

IFi (2;) = Aue( 2i-k f s**Zi-*, Zi+*, as* %+k) (4 

(k 2 l), with the same endpoint convention as before. Let 2; be a new observation at 

xi, i.e. 2; = f(zi) + ct where pi * is independent of the ci’s. Then it can be shown that 

(5) 

[*IIf the z values are not random but fixed by design, we would assume that the Yi’s are 

xdependent. The derivations are still valid, with expectations over the distribution 

of X replaced by an appropriate sum. . 
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by using the fact that gki(zi) is independent of vi. Since the right hand side of (5) is an 

etytimate of PSE, a sensible procedure is to choose k to minimize-ACT (vi - ~L’(z;))~. 

We will denote this value of k by k. 

Note also that A E Cy (2; - i, (Zi))2 = AEC; (f(Zi) - &k (Si))2 + nu2, SO that L 

also minimizes an estimate of the expected squared error 

ESE’ = iEe(/(zi)-ik(zi)p - - 
1 

(6) 

For a discussion of running mean smoothers and more sophisticated smoothers, see 

Friedman and Stuetzle (1982). 

The running mean smoother produces a smooth function that summarizes the de- 

pendence of Y on X, but this function is not necessarily monotone. On the other hand, 

isotonic regression produces a monotone function that summarizes the dependence of 

Y on X, but this function is not necessarily smooth. If we want a smooth, monotone 

function, why not smooth the data first, then apply isotonic regression to the smooth? 

This is exactly the solution that is proposed in the next section. 



3. MONOTONE SMOOTHING 

3.1 The Problem and a Proposed Solution 

Suppose we have a set of n data points ((21, yl), . ..(zn. vn)}, where ~1 < x2... < zn 

and our goal is to model, with a monotone function, the dependence of y on z. If we 

break this problem down into 2-steps T - - 

- l Find a smooth function g(m) that summarizes the dependence of Y on X 

l Find the monotone function t?~ (a) closest to i(a) 

then using the tools of isotonic regression and scatterplot smoothing discussed in Section 

2, the solution is obvious: 

l smooth the (X,Y) pairs 

l apply the pool adjacent violators algorithm to the smooth 

In the next subsection, this heuristic procedure is given some theoretical justification. 

3.2 Theoretical Justification for the Procedure 

Assume the setup described in Section 2.2. A reasonable property to require of the 

function h(e) is that it should satisfy 

-. _ h(X) = min-l ExEzw(Zx - GJ(X))~ = min-1 PSEM (7) 

. subject to h(X) non-decreasing in X, where 2X has the distribution of 2 given X. 

PSEM is the integrated prediction squared error in predicting the response for a new 

observation, using the monotone function t’ia (e). If we knew the true joint distribution of 

X and Y, or we had a infinite test sample of Zi’s, we could minimize PSEM over h(e). 

Of course, we don’t know the joint distribution and we have only a training sample, so 

we will instead derive a approximate criterion that we can calculate from the training 

sample alone. 

As in Section 2.2, we can equivalently minimize the expected squared error 

ESEM =kEt(f(~i)-ti(~i))~ 
1 

(8) 



since PSEM = ESEM + nu 2. It turns out to be more convenient to work with ESEM. 

We can first replace the marginal distribution of X by the marginal empirical dis- 

tribution to obtain 

ESE; =iEe(f(~i)-h(~i))~ 
1 

(9) 

Clearly, Ex(ESEk) = ESE M, so we can simplify the problem to that of finding an 

estimate of ESEL. 
< - - 

- If weknew f(e), we could simply minimize an estimate of (9), AC; (f(zi) - +ia (zi))2, 

over ti, (a) by applying the pool adjacent violators algorithm to f(e). Since we don’t 

know f(s), the next best thing is to replace f(e) with our best estimate (in terms of mean 

squared error) of f(a). In the class of running mean estimates, the best estimate is ii(.) 

(from Section 2.2). Hence our approximate criterion is 

EkEh = t$ (ii (Xi) - fil (Xi))2 OQ) 

Ta minimize EiE* M over t?a(*), we simply apply the pool adjacent violators algorithm 

to ii(-). 

How far off (on the average) will the ti(.) obtained by minimizing E,!?Eb be from 

l the ti(*) that minimizes ESEM ? Unfortunately, it is difficult to get a handle on this. 

We can expand the expected value of E.$‘Eh as follows: 

-. _ kE-&i$(zi) 
1 

-~(~i))~=~E~(O~(~i)-/(Zi)+f(~i)-l(zi))~ 
1 

. =~E~(.,~(zi)-l(zi))~+~E~(nZi)-~(zi))l (11) 
1 1 

+ :E $ (ii (xi) - f(zi)Xf(zi) - h (zi)) 

Note that only the last two terms in (11) involve +?a (s). If gg (w) is exactly equal to f(e), 

then the expected value of EkEa is equal to ESE;M. Otherwise, we can just hope that 
c 

since Iii (m) - f( .)I should b e small, the cross product term will be small compared to the 

2nd term. 
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3.3 A Summary of the Algorithm 

We can summarize the monotone smoothing algorithm as foltows: 

0 SmootA Y on x: i (Xi) + Aue(zi-$, ss.Zi, . ..~i+k ) where E is chosen to minimize 

Cy (vi - iii ( Xi))2 

l Find the closest monotone function to in:(*): h(s) + result of pool adjacent 

violators algorithm applied to &i(s) 
< - - 

_ 

3.4 Remarks 

o As a slight refinement of the algorithm, the running mean smoother was replaced 

by a running linear smoother in the numerical examples that follow. Running 

(least squares) lines givve results very close to running means in the middle of the 

data, and eliminate some of the bias near the endpoints. 

l Notice that if the smooth g(s) is monotone, then h(s) = i(e). This makes good 

- sense- it just says that the best estimate of E(Y]X) in the class of monotone 

functions is the best estimate over all functions, if the latter is monotone. 

In the next section, we give two examples of the use of this procedure. 

4. EXAMPLES 

. 
I&ample 1. 

-. . 

_ 200 points were generated from 11 = e2 + error, where X was uniformly distributed 
L 

on [0,2] and the errors had a normal distribution with mean 0 and variance 1. The 

result of applying the monotone smoother is shown in figure 1. A span of 87 points 

was chosen by the procedure. For comparison, the isotonic regression sequence is also 

plotted. In this case, the monotone smooth differed only slightly from the smooth (not 

shown), since the smooth was almost monotone. 

Example 2. 

In this example, we use the monotone smoothing procedure to find an optimal 

. 
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transformation for the response in a regression. This procedure, similar to that proposed 

by Kruska1(1965), is a non-parametric version of the Box-Cox procedure(1964). It is also 

a special case of the Alternating Conditional Expectation (ACE) algorithm of Breiman 

and Friedman(1982). Given a set of responses and covariates {(yI,xl), . ..(yn.xn)}, the 

goal is to find a smooth, monotone function a(.) and estimate b to minimize 

(11) 

subject to Var(3 (y)) = 1 where Var denotes the sample variance. The procedure is an 

alternating one, finding b for fixed i(s) and vice-versa: 

Initialize: i (-) 4- *I 

Repeat: 

b 4- least squares estimate of i(e) on x 
A 

-i(e) + monotone smooth of x b on y 

- iq.)+& 
Until residual sum of squares(l1) fails to decrease 

Both the Kruskal and Box-Cox procedures are essentially variants of the above 
A 

algorithm. Kruskal uses isotonic regression to estimate 0 (e), while Box and Cox assume 

that i(s) belongs to the parametric family (vx - 1)/X. 

We applied this procedure to data on strength of yarns taken from Box and Cox 

(1964). The data consists of a 3x3x3 experiment, the response Y being number of cycles 
. 

to failure, and the factors length of test specimen (Xl) (250,300 or 350 mm); amplitude 

of loading cycle (X2) (8, 9, or 10 mm), and load (X3) (40, 45 or 50 gm). As in Box and 

Cox, we treated the factors as quantitive and allowed only a linear term for each. Box 

and Cox found that a logarithmic transformation was appropriate, with their procedure 

producing a value of -.06 for i with an estimated 95 percent confidence interval of 

(-.18,.06). 

Figure 2 shows the transformation selected by the above algorithm. The procedure 

chose a span of 9 observations. For comparison, the log function is plotted (normalized) 

on the same figure. The similarity is truly remarkable! Figure 3 shows the result of 

K&&al’s procedure plotted along with the log function. The monotone smooth gives 
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very persuasive evidence for a log transformation, while Kruskal’s transformation is 

hampered by its lack of smoothness. 

The advantage, of course, of the monotone smoothing algorithm is that it doesn’t 

assume a parametric family for the transformations, and hence it selects a transforma- 

tion from a much larger class than the Box and Cox family. 

In order to assess the variability of the monotone smooth, we applied the bootstrap 

of Efron( 1979). S ince the X matrix in this problem is fixed by design, we resampled 

from the residuals instead of from the (X, Y) p airs. The bootstrap procedure was the 

following: 

Calculate residuals ri = 3 (vi) - xi b, i = 1,2, . ..n 

DO j=l, NBOOT 

Choose a sample ri, . ..ri with replacement from rl, . ..r. 

Calculate yf = i-’ (Xi6 + rt), i = 1,2, . ..n 

- Compute aj (a) = monotone smooth of vi, . ..yi on xl, . ..x., 

END 

NBOOT, the number of bootstrap replications, was 20. It is important to note that, 

in estimating a common residual distribution via the ri’s, this procedure assumes that 

the model 8 (v) = x b + r is correct (see Efron (1979)). The 20 monotone smooths, 

il (e), . . . &JO (e), along with the original monotone smooth, i(a), are shown in Figure 4. 

. . . _ The tight clustering of the smooths indicate that the original smooth has low variability. 

This agrees with the short confidence interval for X given by the Box and Cox procedure. 
. -. . 

5. FURTHER REMARKS 

The monotone smoothing procedure that is discussed here should prove to be useful 

both as a descriptive tool as well as a primitive for any procedure requiring estimation 

of a smooth, monotone function. It already being used in the ACE program of Breiman 

and Eriedman( 1982). 

Some further points: 

l The use of running mean or running linear fits in the algorithm is not essential. 

. 
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Any reasonable smooth (e.g. kernel smoother or cubic splines) should perform 

equally well. 

l If robustness to outlying y values is a concern, a resistant fit like that proposed 

in Friedman and Stuetzle (1982) might be used. 

l The procedure described here is not optimal in any broad sense. It may be pos- 

sible to develop a one step procedure that smooths the data using both local 

information and AND the global information provided by the-monotonicity as- 

sumption. Such a procedure might have slightly lower error of estimation then 

the monotone smoother described here. But if the procedure is to be used as 

either a data summary or as a method to suggest a response transformation, we 

don’t think the gain would be worthwhile. 

l Another way to estimate a monotone smooth would be to apply the pool adjacent 

violators algorithm first, then smooth the monotone sequence. This has a serious 

drawback: while it is true that a running mean smooth of a monotone sequence is 

monotone, the running linear smooth of a monotone sequence is NOT necessarily 

monotone. (It is easy to construct a counter-example). Therefore, one would 

have to apply the pool adjacent violators again to ensure that the final smooth 

was monotone. This “non-monotonicity preserving” property is probably true of 

other popular smoothers. We didn’t try this procedure, partly because of this 

fact but mostly because we didn’t see a sensible justification for it. 
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FIGURE 2 

Example 2. Monotone Smooth. 
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FIGURE 3 

Example 3. Kruskal’s Algorithm. 
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FIGURE 4 

Example 2. Bootstrapp’ed smooths. 
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