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Abstract— We provide a simple proof of the monotonicity of
information in the Central Limit Theorem for i.i.d. summands.
Extensions to the more general case of independent, not identi-
cally distributed summands are also presented. New families of
Fisher information and entropy power inequalities are discussed.

I. INTRODUCTION

Let X1, X2, . . . , Xn be independent random variables with
densities and finite variances, and let H denote the (dif-
ferential) entropy. The classical entropy power inequality of
Shannon [1] and Stam [2] states

e2H(X1+...+Xn) ≥
n∑

j=1

e2H(Xj). (1)

Recently, Artstein, Ball, Barthe and Naor [3] proved a new
entropy power inequality

e2H(X1+...+Xn) ≥ 1
n− 1

n∑
i=1

e2H
( P

j 6=i Xj

)
, (2)

where each term involves the entropy of the sum of n − 1
of the variables excluding the i-th, which is an improvement
over (1). Indeed, repeated application of (2) for a succession
of values of n yields not only (1) but also a whole family of
intermediate inequalities

e2H(X1+...+Xn) ≥ 1(
n−1
m−1

) ∑
s∈Ωm

e2H
( P

j∈s Xj

)
, (3)

where we write Ωm for the collection of all subsets of
{1, 2, . . . , n} of size m. Below, we give a simplified and direct
proof of (3) (and, in particular, of (2)), and also show that
equality holds if and only if the Xi are normally distributed
(in which case it becomes an identity for sums of variances).

In fact, all these inequalities are particular cases of a
generalized entropy power inequality, which we develop in
[4]. Let S be an arbitrary collection of subsets of {1, . . . , n}
and let r = r(S, n) be the maximum number of subsets in S
in which any one index i can appear, for i = 1, . . . , n. Then

e2H(X1+...+Xn) ≥ 1
r

∑
s∈S

e2H
( P

j∈s Xj

)
. (4)

For example, if S consists of subsets s whose elements are
m consecutive indices in {1, . . . , n}, then r = m, whereas
if S = Ωm, then r =

(
n−1
m−1

)
. So (4) extends (3). Likewise

for general collections we have a corresponding inequality
for inverse Fisher information. Details of these results can be
found in [4].

These inequalities are relevant for the examination of mono-
tonicity in central limit theorems. Indeed, if X1 and X2

are independent and identically distributed (i.i.d.), then (1) is
equivalent to

H

(
X1 +X2√

2

)
≥ H(X1). (5)

This fact implies that the entropy of the standardized sums
Yn =

Pn
i=1 Xi√

n
increases along the powers-of-2 subsequence,

i.e., H(Y2k) is non-decreasing in k. Characterization of the
increase in entropy in (5) was used in proofs of central
limit theorems by Shimizu [5], Barron [6] and Johnson and
Barron [7]. In particular, Barron [6] showed that the sequence
{H(Yn)} of entropies of the normalized sums converges to the
entropy of the normal; this, incidentally, is equivalent to the
convergence to 0 of the relative entropy (Kullback divergence)
from a normal distribution when the Xi have zero mean.

In 2004, Artstein, Ball, Barthe and Naor [3] (hereafter
denoted by ABBN [3]) showed that H(Yn) is in fact a non-
decreasing sequence for every n, solving a long-standing
conjecture. In fact, (2) is equivalent in the i.i.d. case to the
monotonicity property

H

(
X1 + . . .+Xn√

n

)
≥ H

(
X1 + . . .+Xn−1√

n− 1

)
. (6)

Note that the presence of the factor n − 1 (rather than n) in
the denominator of (2) is crucial for this monotonicity.

Likewise, for sums of independent random variables, our
inequality (3) is equivalent to “monotonicity on average”
properties for certain standardizations; for instance,

exp
{

2H
(
X1 + . . .+Xn√

n

)}
≥ 1(

n
m

) ∑
s∈Ωm

exp
{

2H
(∑

i∈sXi√
m

)}
.

A similar monotonicity also holds, as we shall show, when
the sums are standardized by their variances. Here again the(

n−1
m−1

)
rather than

(
n
m

)
in the denominator of (3) for the

unstandardized version is crucial.
We find that all the above inequalities (including (2)) as

well as corresponding inequalities for Fisher information can
be proved by simple tools. Two of these tools, a convolution
identity for score functions and the relationship between Fisher



information and entropy (discussed in Section II), are familiar
in past work on entropy power inequalities. An additional trick
is needed to obtain the denominators of n−1 and

(
n−1
m−1

)
in (2)

and (3) respectively. This is a simple variance drop inequality
for statistics expressible via sums of functions of m out of
n variables, which is familiar in other statistical contexts (as
we shall discuss). It was first used for information inequality
development in ABBN [3]. The variational characterization of
Fisher information that is an essential ingredient of ABBN [3]
is not needed in our proofs.

For clarity of presentation, we find it convenient to first
outline the proof of (6) for i.i.d. random variables. Thus,
in Section III, we establish the monotonicity result (6) in a
simple and revealing manner that boils down to the geome-
try of projections (conditional expectations). Whereas ABBN
[3] requires that X1 has a C2 density for monotonicity of
Fisher divergence, absolute continuity of the density suffices
in our approach. Furthermore, whereas the recent preprint of
Shlyakhtenko [8] proves the analogue of the monotonicity
fact for non-commutative or “free” probability theory, his
method implies a proof for the classical case only assuming
finiteness of all moments, while our direct proof requires only
finite variance assumptions. Our proof also reveals in a simple
manner the cases of equality in (6) (c.f., Schultz [9]). Although
we do not write it out for brevity, the monotonicity of entropy
for standardized sums of d-dimensional random vectors has
an identical proof.

We recall that for a random variable X with density f ,
the entropy is H(X) = −E[log f(X)]. For a differentiable
density, the score function is ρX(x) = ∂

∂x log f(x), and the
Fisher information is I(X) = E[ρ2

X(X)]. They are linked by
an integral form of the de Bruijn identity due to Barron [6],
which permits certain convolution inequalities for I to translate
into corresponding inequalities for H .

Underlying our inequalities is the demonstration for inde-
pendent, not necessarily identically distributed (i.n.i.d.) ran-
dom variables with absolutely continuous densities that

I(X1 + . . .+Xn) ≤
(
n− 1
m− 1

) ∑
s∈Ωm

w2
sI

( ∑
i∈s

Xi

)
(7)

for any non-negative weights ws that add to 1 over all subsets
s ⊂ {1, . . . , n} of size m. Optimizing over w yields an
inequality for inverse Fisher information that extends the
original inequality of Stam:

1
I(X1 + . . .+Xn)

≥ 1(
n−1
m−1

) ∑
s∈Ωm

1
I(

∑
i∈sXi)

. (8)

Alternatively, using a scaling property of Fisher information
to re-express our core inequality (7), we see that the Fisher
information of the sum is bounded by a convex combination
of Fisher informations of scaled partial sums:

I(X1 + . . .+Xn) ≤
∑

s∈Ωm

wsI

( ∑
i∈sXi√
ws

(
n−1
m−1

))
. (9)

This integrates to give an inequality for entropy that is an
extension of the “linear form of the entropy power inequality”
developed by Dembo et al [10]. Specifically we obtain

H(X1 + . . .+Xn) ≤
∑

s∈Ωm

wsH

( ∑
i∈sXi√
ws

(
n−1
m−1

))
. (10)

Likewise using the scaling property of entropy on (10) and
optimizing over w yields our extension of the entropy power
inequality

exp{2H(X1 + . . .+Xn)} ≥ 1(
n−1
m−1

) ∑
s∈Ωm

exp
{

2H
( ∑

j∈s

Xj

)}
.

Thus both inverse Fisher information and entropy power
satisfy an inequality of the form(

n− 1
m− 1

)
ψ

(
X1 + . . .+Xn

)
≥

∑
s∈Ωm

ψ

( ∑
i∈s

Xi

)
. (11)

We motivate the form (11) using the following almost trivial
fact, which is proved in the Appendix for the reader’s conve-
nience. Let [n] = {1, 2, . . . , n}.

Fact I: For arbitrary non-negative numbers {a2
i : i ∈ [n]},∑

s∈Ωm

∑
i∈s

a2
i =

(
n− 1
m− 1

) ∑
i∈[n]

a2
i , (12)

where the first sum on the left is taken over the collection
Ωm = {s ⊂ [n] : |s| = m} of sets containing m indices.

If Fact I is thought of as (m,n)-additivity, then (8) and
(3) represent the (m,n)-superadditivity of inverse Fisher in-
formation and entropy power respectively. In the case of
normal random variables, the inverse Fisher information and
the entropy power equal the variance. Thus in that case (8)
and (3) become Fact I with a2

i equal to the variance of Xi.

II. SCORE FUNCTIONS AND PROJECTIONS

The first tool we need is a projection property of score
functions of sums of independent random variables, which is
well-known for smooth densities (c.f., Blachman [11]). For
completeness, we give the proof. As shown by Johnson and
Barron [7], it is sufficient that the densities are absolutely
continuous; see [7][Appendix 1] for an explanation of why
this is so.

Lemma I:[CONVOLUTION IDENTITY FOR SCORE FUNC-
TIONS] If V1 and V2 are independent random variables, and
V1 has an absolutely continuous density with score ρV1 , then
V1 + V2 has the score

ρV1+V2(v) = E[ρV1(V1)|V1 + V2 = v] (13)

Proof: Let fV1 and fV be the densities of V1 and
V = V1 +V2 respectively. Then, either bringing the derivative



inside the integral for the smooth case, or via the more general
formalism in [7],

f ′V (v) =
∂

∂v
E[fV1(v − V2)]

= E[f ′V1
(v − V2)]

= E[fV1(v − V2)ρV1(v − V2)]

(14)

so that

ρV (v) =
f ′V (v)
fV (v)

= E

[
fV1(v − V2)
fV (v)

ρV1(v − V2)
]

= E[ρV1(V1)|V1 + V2 = v].
(15)

The second tool we need is a “variance drop lemma”, which
goes back at least to Hoeffding’s seminal work [12] on U -
statistics (see his Theorem 5.2). An equivalent statement of
the variance drop lemma was formulated in ABBN [3]. In [4],
we prove and use a more general result to study the i.n.i.d.
case.

First we need to recall a decomposition of functions in
L2(Rn), which is nothing but the Analysis of Variance
(ANOVA) decomposition of a statistic. The following con-
ventions are useful. [n] is the index set {1, 2, . . . , n}. For any
s ⊂ [n], Xs stands for the collection of random variables
{Xi : i ∈ s}. For any j ∈ [n], Ejψ denotes the conditional
expectation of ψ, given all random variables other than Xj ,
i.e.,

Ejψ(x1, . . . , xn) = E[ψ(X1, . . . , Xn)|Xi = xi ∀i 6= j] (16)

averages out the dependence on the j-th coordinate.

Fact II:[ANOVA DECOMPOSITION] Suppose ψ : Rn → R
satisfies Eψ2(X1, . . . , Xn) < ∞, i.e., ψ ∈ L2, for indepen-
dent random variables X1, X2, . . . , Xn. For s ⊂ [n], define
the orthogonal linear subspaces

Hs = {ψ ∈ L2 : Ejψ = ψ1{j /∈s} ∀j ∈ [n]} (17)

of functions depending only on the variables indexed by
s. Then L2 is the orthogonal direct sum of this family of
subspaces, i.e., any ψ ∈ L2 can be written in the form

ψ =
∑

s⊂[n]

ψs, (18)

where ψs ∈ Hs.

Remark: In the language of ANOVA familiar to statisticians,
when φ is the empty set, ψφ is the mean; ψ{1}, ψ{2}, . . . , ψ{n}
are the main effects; {ψs : |s| = 2} are the pairwise
interactions, and so on. Fact II implies that for any subset
s ⊂ [n], the function

∑
{R:R⊂s} ψR is the best approximation

(in mean square) to ψ that depends only on the collection Xs

of random variables.

Remark: The historical roots of this decomposition lie in
the work of von Mises [13] and Hoeffding [12]. For various
refinements and interpretations, see Kurkjian and Zelen [14],

Jacobsen [15], Rubin and Vitale [16], Efron and Stein [17],
and Takemura [18]; these works include applications of such
decompositions to experimental design, linear models, U -
statistics, and jackknife theory. The Appendix contains a brief
proof of Fact II for the convenience of the reader.

We say that a function f : Rd → R is an additive function
if there exist functions fi : R → R such that f(x1, . . . , xd) =∑

i∈[d] fi(xi).

Lemma II:[VARIANCE DROP]Let ψ : Rn−1 → R. Suppose,
for each j ∈ [n], ψj = ψ(X1, . . . , Xj−1, Xj+1, . . . , Xn) has
mean 0. Then

E

[ n∑
j=1

ψj

]2

≤ (n− 1)
∑
j∈[n]

E[ψj ]2. (19)

Equality can hold only if ψ is an additive function.

Proof: By the Cauchy-Schwartz inequality, for any Vj ,[
1
n

∑
j∈[n]

Vj

]2

≤ 1
n

∑
j∈[n]

[Vj ]2, (20)

so that

E

[ ∑
j∈[n]

Vj

]2

≤ n
∑
j∈[n]

E[Vj ]2. (21)

Let Ēs be the operation that produces the component Ēsψ =
ψs (see the appendix for a further characterization of it); then

E

[ ∑
j∈[n]

ψj

]2

= E

[ ∑
s⊂[n]

∑
j∈[n]

Ēsψj

]2

(a)
=

∑
s⊂[n]

E

[∑
j /∈s

Ēsψj

]2

(b)

≤
∑

s⊂[n]

(n− 1)
∑
j /∈s

E
[
Ēsψj

]2
(c)
= (n− 1)

∑
j∈[n]

E[ψj ]2.

(22)

Here, (a) and (c) employ the orthogonal decomposition of
Fact II and Parseval’s theorem. The inequality (b) is based
on two facts: firstly, Ejψj = ψj since ψj is independent of
Xj , and hence Ēsψj = 0 if j ∈ s; secondly, we can ignore the
null set φ in the outer sum since the mean of a score function
is 0, and therefore {j : j /∈ s} in the inner sum has at most
n− 1 elements. For equality to hold, Ēsψj can only be non-
zero when s has exactly 1 element, i.e., each ψj must consist
only of main effects and no interactions, so that it must be
additive.

III. MONOTONICITY IN THE IID CASE

For i.i.d. random variables, inequalities (2) and (3) reduce
to the monotonicity H(Yn) ≥ H(Ym) for n > m, where

Yn =
1√
n

n∑
i=1

Xi. (23)



For clarity of presentation of ideas, we focus first on the i.i.d.
case, beginning with Fisher information.

Proposition I:[MONOTONICITY OF FISHER INFORMA-
TION]For i.i.d. random variables with absolutely continuous
densities,

I(Yn) ≤ I(Yn−1), (24)

with equality iff X1 is normal or I(Yn) = ∞.

Proof: We use the following notational conventions: The
(unnormalized) sum is Vn =

∑
i∈[n]Xi, the leave-one-out sum

leaving out Xj is V (j) =
∑

i 6=j Xi, and the normalized leave-
one-out sum is Y (j) = 1√

n−1

∑
i 6=j Xi.

If X ′ = aX , then ρX′(X ′) = 1
aρX(X); hence

ρYn(Yn) =
√
nρVn(Vn)

(a)
=
√
nE[ρV (j)(V (j))|Vn]

=
√

n

n− 1
E[ρY (j)(Y (j))|Vn]

(b)
=

1√
n(n− 1)

n∑
j=1

E[ρY (j)(Y (j))|Yn].

(25)

Here, (a) follows from application of Lemma I to Vn = V (j)+
Xj , keeping in mind that Yn−1 (hence V (j)) has an absolutely
continuous density, while (b) follows from symmetry. Set ρj =
ρY (j)(Y (j)); then we have

ρYn
(Yn) =

1√
n(n− 1)

E

[ n∑
j=1

ρj

∣∣∣∣Yn

]
. (26)

Since the length of a vector is not less than the length of its
projection (i.e., by Cauchy-Schwartz inequality),

I(Yn) = E[ρYn
(Yn)]2 ≤ 1

n(n− 1)
E

[ n∑
j=1

ρj

]2

. (27)

Lemma II yields

E

[ n∑
j=1

ρj

]2

≤ (n− 1)
∑
j∈[n]

E[ρj ]2 = (n− 1)nI(Yn−1), (28)

which gives the inequality of Proposition I on substitution into
(27). The inequality implied by Lemma II can be tight only
if each ρj is an additive function, but we already know that
ρj is a function of the sum. The only functions that are both
additive and functions of the sum are linear functions of the
sum; hence the two sides of (24) can be finite and equal only
if the score ρj is linear, i.e., if all the Xi are normal. It is
trivial to check that X1 normal or I(Yn) = ∞ imply equality.

We can now prove the monotonicity result for entropy in
the i.i.d. case.

Theorem I: Suppose Xi are i.i.d. random variables with
densities. Suppose X1 has mean 0 and finite variance, and

Yn =
1√
n

n∑
i=1

Xi (29)

Then

H(Yn) ≥ H(Yn−1). (30)

The two sides are finite and equal iff X1 is normal.

Proof: Recall the integral form of the de Bruijn identity,
which is now a standard method to “lift” results from Fisher
divergence to relative entropy. This identity was first stated
in its differential form by Stam [2] (and attributed by him to
de Bruijn), and proved in its integral form by Barron [6]: if
Xt is equal in distribution to X +

√
tZ, where Z is normally

distributed independent of X , then

H(X) = 1
2 log(2πev)− 1

2

∫ ∞

0

[
I(Xt)−

1
v + t

]
dt (31)

is valid in the case that the variances of Z and X are both v.
This has the advantage of positivity of the integrand but the
disadvantage that is seems to depend on v. One can use

log v =
∫ ∞

0

[
1

1 + t
− 1
v + t

]
(32)

to re-express it in the form

H(X) = 1
2 log(2πe)− 1

2

∫ ∞

0

[
I(Xt)−

1
1 + t

]
dt. (33)

Combining this with Proposition I, the proof is finished.

IV. EXTENSIONS

For the case of independent, non-identically distributed
(i.n.i.d.) summands, we need a general version of the “variance
drop” lemma.

Lemma III:[VARIANCE DROP: GENERAL VERSION]Suppose
we are given a class of functions ψ(s) : R|s| → R for any
s ∈ Ωm, and Eψ(s)(X1, . . . , Xm) = 0 for each s. Let w be
any probability distribution on Ωm. Define

U(X1, . . . , Xn) =
∑

s∈Ωm

wsψ
(s)(Xs), (34)

where we write ψ(s)(Xs) for a function of Xs.Then

EU2 ≤
(
n− 1
m− 1

) ∑
s∈Ωm

w2
sE[ψ(s)(Xs)]2, (35)

and equality can hold only if each ψ(s) is an additive function
(in the sense defined earlier).

Remark: When ψ(s) = ψ (i.e., all the ψ(s) are the same), ψ is
symmetric in its arguments, and w is uniform, then U defined
above is a U -statistic of degree m with symmetric, mean zero
kernel ψ. Lemma III then becomes the well-known bound for



the variance of a U -statistic shown by Hoeffding [12], namely
EU2 ≤ m

n Eψ
2.

This gives our core inequality (7).

Proposition II:Let {Xi} be independent random variables
with densities and finite variances. Define

Tn =
∑
i∈[n]

Xi and T (s)
m = T (s) =

∑
i∈s

Xi, (36)

where s ∈ Ωm = {s ⊂ [n] : |s| = m}. Let w be any
probability distribution on Ωm. If each T

(s)
m has an absolute

continuous density, then

I(Tn) ≤
(
n− 1
m− 1

) ∑
s∈Ωm

w2
sI(T

(s)
m ), (37)

where ws = w({s}). Both sides can be finite and equal only
if each Xi is normal.

Proof: In the sequel, for convenience, we abuse notation
by using ρ to denote several different score functions; ρ(Y )
always means ρY (Y ). For each j, Lemma I and the fact that
T

(s)
m has an absolutely continuous density imply

ρ(Tn) = E

[
ρ

( ∑
i∈s

Xi

)∣∣∣∣Tn

]
. (38)

Taking a convex combinations of these identities gives, for any
{ws} such that

∑
s∈Ωm

ws = 1,

ρ(Tn) =
∑

s∈Ωm

wsE

[
ρ

( ∑
i∈s

Xi

)∣∣∣∣Tn

]
= E

[ ∑
s∈Ωm

wsρ(T (s))
∣∣∣∣Tn

]
.

(39)

By applying the Cauchy-Schwartz inequality and Lemma III
in succession, we get

I(Tn) ≤ E

[ ∑
s∈Ωm

wsρ(T (s))
]2

≤
(
n− 1
m− 1

) ∑
s∈Ωm

E[wsρ(T (s))]2

=
(
n− 1
m− 1

) ∑
s∈Ωm

w2
sI(T

(s)).

(40)

The application of Lemma III can yield equality only if
each ρ(T (s)) is additive; since the score ρ(T (s)) is already a
function of the sum T (s), it must in fact be a linear function,
so that each Xi must be normal.

APPENDIX

A. Proof of Fact I

∑
s∈Ωm

ā2
s =

∑
s∈Ωm

∑
i∈s

a2
i =

∑
i∈[n]

∑
S3i,|s|=m

a2
i

=
∑
i∈[n]

(
n− 1
m− 1

)
a2

i =
(
n− 1
m− 1

) ∑
i∈[n]

a2
i .

(41)

B. Proof of Fact II

Let Es denote the integrating out of the variables in s, so
that Ej = E{j}. Keeping in mind that the order of integrating
out independent variables does not matter (i.e., the Ej are
commuting projection operators in L2), we can write

φ =
n∏

j=1

[Ej + (I − Ej)]φ

=
∑

s⊂[n]

∏
j /∈s

Ej

∏
j∈s

(I − Ej)φ

=
∑

s⊂[n]

φs,

(42)

where

φs = Ēsφ ≡ Esc

∏
j /∈s

(I − Ej)φ. (43)

In order to show that the subspaces Hs are orthogonal, observe
that for any s1 and s2, there is at least one j such that s1 is
contained in the image of Ej and s2 is contained in the image
of (I − Ej); hence every vector in s1 is orthogonal to every
vector in s2.
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