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Abstract

We exhibit an action of Conway’s group – the automorphism group of the Leech lattice – on a

distinguished super vertex operator algebra, and we prove that the associated graded trace functions

are normalized principal moduli, all having vanishing constant terms in their Fourier expansion.

Thus we construct the natural analogue of the Frenkel–Lepowsky–Meurman moonshine module for

Conway’s group. The super vertex operator algebra we consider admits a natural characterization,

in direct analogy with that conjectured to hold for the moonshine module vertex operator algebra.

It also admits a unique canonically twisted module, and the action of the Conway group naturally

extends. We prove a special case of generalized moonshine for the Conway group, by showing that

the graded trace functions arising from its action on the canonically twisted module are constant in

the case of Leech lattice automorphisms with fixed points, and are principal moduli for genus-zero

groups otherwise.

2010 Mathematics Subject Classification: 11F11, 11F22, 17B69, 20C34

1. Introduction

Taking the upper half-plane H := {τ ∈ C | ℑ(τ ) > 0}, together with the Poincaré

metric ds2 = y−2(dx2 + dy2), we obtain the Poincaré half-plane model of the

hyperbolic plane. The group of orientation-preserving isometries is the quotient

of SL2(R) by {±I }, where the action is by Möbius transformations,

(
a b

c d

)
· τ := aτ + b

cτ + d
. (1.1)

To any τ ∈ H we may associate a complex elliptic curve Eτ := C/(Zτ +Z), and

from this point of view the modular group SL2(Z) is distinguished as the subgroup
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of SL2(R) whose orbits encode the isomorphism types of the curves Eτ . That is,

Eτ and Eτ ′ are isomorphic if and only if τ ′ = γ · τ for some γ ∈ SL2(Z).

Subgroups of SL2(R) that are commensurable with the modular group admit

similar interpretations. For example, the orbits of the Hecke congruence group of

level N ,

Γ0(N ) :=
{(

a b

c d

)
∈ SL2(Z) | c = 0 (mod N )

}
, (1.2)

correspond to isomorphism types of pairs (Eτ , C), where C is a cyclic subgroup

of Eτ of order N (see, for example, [73]).

1.1. Monstrous moonshine. It is a remarkable fact, aspects of which

remain mysterious, that certain discrete subgroups of SL2(R) in the same

commensurability class as the modular group – which is to say, fairly

uncomplicated groups – encode detailed knowledge of the representation theory

of the largest sporadic simple group, the monster, M. Given that the monster has

808017424794512875886459904961710757005754368000000000 (1.3)

elements, no nontrivial permutation representations with degree less than

97239461142009186000 (1.4)

and no nontrivial linear representations with dimension less than 196883

(see [61, 63] or [21]), this is surprising. (Here, representation means ordinary

representation, but even over a field of positive characteristic, the minimal

dimension of a nontrivial representation is 196882 (see [67, 82]).)

The explanation of this fact relies upon the existence of a graded, infinite-

dimensional representation V ♮ =
⊕

n>0 V ♮
n of M, such that, if we define the

McKay–Thompson series

Tm(τ ) := q−1
∑

n>0

tr
V

♮
n
m qn (1.5)

for m ∈ M, where q := e2π iτ for τ ∈ H, then the functions Tm are characterized

in the following way.

For each m ∈ M there is a discrete group Γm < SL2(R),

commensurable with the modular group and having width one at

the infinite cusp, such that Tm is the unique Γm-invariant holomorphic

function on H satisfying Tm(τ ) = q−1 + O(q) as ℑ(τ ) → ∞, and

remaining bounded as τ approaches any noninfinite cusp of Γm .
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(We say that a discrete group Γ < SL2(R) has width one at the infinite cusp if the

subgroup of upper-triangular matrices in Γ is generated by ±
(

1 1
0 1

)
. If Γ < SL2(R)

is commensurable with SL2(Z) then it acts naturally on Q̂ = Q∪ {∞}. We define

the cusps of Γ to be the orbits of Γ on Q̂. We say that a cusp α ∈ Γ \Q̂ is

noninfinite if it does not contain ∞.)

The group Γm is SL2(Z) in the case that m = e is the identity element. The

corresponding McKay–Thompson series Te, which is the graded dimension of V ♮

by definition, must therefore be the normalized elliptic modular invariant,

J (τ ) :=
(
1 + 240

∑
n>0

∑
d|n d3qn

)3

q
∏

n>0(1 − qn)24
− 744, (1.6)

since this is the unique SL2(Z)-invariant holomorphic function on H satisfying

J (τ ) = q−1 + O(q) as ℑ(τ ) → ∞.

Te(τ ) = q−1
∑

n>0

dim V ♮
n qn = J (τ ) = q−1+196884q +21493760q2+· · · . (1.7)

Various groups Γ0(N ) occur as Γm for elements m ∈ M. For example, there are

two conjugacy classes of involutions in M. If m belongs to the larger of these

conjugacy classes, denoted 2B in [21], then Γ2B := Γm = Γ0(2), and

T2B(τ ) = q−1
∏

n>0

(1 − q2n−1)24 + 24 = q−1 + 276q − 2048q2 + · · · . (1.8)

The existence of the representation V ♮ was conjectured by Thompson [99]

following McKay’s observation that 196884 = 1+196883, where the significance

of 196884 is clear from (1.7), and the significance of 1 and 196883 is that they are

dimensions of irreducible representations of the monster. It is worth noting that,

at the time of McKay’s observation, the monster group had not yet been proven to

exist. So the monster, and therefore also its representation theory, was conjectural.

The existence of an irreducible representation with dimension 196883 was

conjectured independently by Griess [61] and Conway and Norton [19], and the

existence of the monster was ultimately proven by Griess [63], via an explicit tour

de force construction of a monster-invariant (commutative but nonassociative)

algebra structure on the unique nontrivial 196884-dimensional representation.

Thompson’s conjecture was first confirmed, in an indirect fashion, by Atkin,

Fong, and Smith [97], but was subsequently established in a strong sense

by Frenkel, Lepowsky, and Meurman [49–51], who furnished a concrete

construction of the moonshine module V ♮ (see (1.5)), together with rich monster-

invariant algebraic structure, constituting an infinite-dimensional extension of

(a slight modification of) Griess’ 196884-dimensional algebra. More particularly,
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Frenkel, Lepowsky, and Meurman equipped V ♮ with vertex operators, which

had appeared originally in the dual-resonance theory of mathematical physics

(see [83, 95] for reviews), and had subsequently found application (see [47, 79])

in the representation theory of affine Lie algebras.

Borcherds generalized the known constructions of vertex operators, and

also derived rules for composing them in [2]. Using these rules he was able

to demonstrate that V ♮, together with examples arising from certain infinite-

dimensional Lie algebras, admits a kind of commutative associative algebra

structure – namely, vertex algebra structure – which we review in Section 2

(see [52, 71, 78] for more thorough introductions). Frenkel, Lepowsky, and

Meurman used the fact that V ♮ supports a representation of the Virasoro algebra

to formulate the notion of vertex operator algebra in [51], and showed that M is

precisely the group of automorphisms of the vertex algebra structure on V ♮ that

commute with the Virasoro action. Vertex operator algebras were subsequently

recognized to be ‘chiral halves’ of two-dimensional conformal field theories

(see [53, 54]), and the construction of V ♮ by Frenkel, Lepowsky, and Meurman

counts as one of the earliest examples of an orbifold conformal field theory

(see [23–25]).

The characterization of the McKay–Thompson series Tm quoted above is the

main content of the monstrous moonshine conjectures, formulated by Conway and

Norton in [19] (see also [98]), and solved by Borcherds in [3]. It is often referred

to as the genus-zero property of monstrous moonshine, because the existence of

a function Tm satisfying the given conditions implies that Γm has genus zero, in

the sense that the orbit space Γm\Ĥ is isomorphic as a Riemann surface to the

Riemann sphere Ĉ = C∪{∞}, where Ĥ := H∪Q∪{∞} (see, for example, [96] for

the Riemann surface structure on Γ \Ĥ). Indeed, the function Tm witnesses this, as

it induces an embedding Γm\H → C which extends uniquely to an isomorphism

Γm\Ĥ → Ĉ.

Conversely, if Γ < SL2(R) has genus zero in the above sense, then there is an

isomorphism of Riemann surfaces Γ \Ĥ → Ĉ, and the composition H → Ĥ →
Γ \Ĥ → Ĉ maps H to C, thereby defining a Γ -invariant holomorphic function

TΓ on H. We call a Γ -invariant holomorphic function TΓ : H → C a principal

modulus for Γ if it arises in this way from an isomorphism Γ \Ĥ → Ĉ. If Γ

has width one at the infinite cusp, then, after applying an automorphism of Ĉ if

necessary, we have

TΓ (τ ) = q−1 + O(q) (1.9)

as ℑ(τ ) → ∞, and no poles at any noninfinite cusps of Γ . Such a function TΓ –

we call it a normalized principal modulus for Γ – is unique because the difference

between any two defines a holomorphic function on the compact Riemann surface

Γ \Ĥ which vanishes at the infinite cusp by force of (1.9). The only holomorphic
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functions on a compact Riemann surface are constants (see, for example, [64]),

and hence this difference vanishes identically.

So knowledge of the McKay–Thompson series Tm is equivalent to knowledge

of the discrete groups Γm < SL2(R), according to the characterization furnished

by monstrous moonshine. This explains the claim we made above, that subgroups

of SL2(R) ‘know’ about the representation theory of the monster. For, according

to definition (1.5) of Tm , we can compute the graded trace of a monster element

m ∈ M on the moonshine module V ♮ as soon as we know the group Γm .

In particular, we can compute the traces of monster elements on its infinite-

dimensional representation V ♮ without doing any computations in the monster

itself.

As has been mentioned above, a concrete realization of the McKay–Thompson

series Tm is furnished by the Frenkel–Lepowsky–Meurman construction of the

moonshine module V ♮. Their method was inspired in part by the original

construction of the monster due to Griess [62, 63], and takes Leech’s lattice

[76, 77] as a starting point. Conway has proven [17] that the Leech lattice Λ is

the unique up to isomorphism even positive-definite lattice such that

• the rank of Λ is 24;

• Λ is self-dual; and

• 〈λ, λ〉 6= 2 for any λ ∈ Λ.

Conway also studied the automorphism group of Λ and discovered three new

sporadic simple groups in the process [16, 18]. We set Co0 := Aut(Λ) and call it

Conway’s group. The largest of Conway’s sporadic simple groups is the quotient

Co1 := Aut(Λ)/{± Id} (1.10)

of Co0 by its centre.

1.2. Conway moonshine. In their paper [19], Conway and Norton also

described an assignment of genus-zero groups Γg < SL2(R) to elements g of

the Conway group, Co0. Their prescription is very concrete and may be described

as follows. If g ∈ Co0 = Aut(Λ) acts on Λ ⊗Z C with eigenvalues {εi}24
i=1, then

Γg is the invariance group of the holomorphic function

tg(τ ) := q−1
∏

n>0

24∏

i=1

(1 − εi q
2n−1) (1.11)

on H. Observe that for g = e the identity element of Co0, the function te almost

coincides with the monstrous McKay–Thompson series T2B of (1.8): the latter has
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vanishing constant term, whereas te(τ ) = q−1 − 24 + O(q). That the invariance

groups of the tg actually are genus-zero subgroups of SL2(R), and that the tg

are principal moduli, was verified in part in [19], and in full in [91]. (One may

see [74] or Table A.1 in Appendix A of this paper for an explicit description of all

the groups Γg for g ∈ Co0.)

So discrete subgroups of isometries of the hyperbolic plane also know a lot

about the representation theory of Conway’s group Co0, but to fully justify this

statement we should construct the appropriate analogue of V ♮, that is, a graded

infinite-dimensional Co0-module whose graded trace functions recover the tg.

Note at this point that the functions tg are not distinguished to quite the extent

that the monstrous McKay–Thompson series Tm are, for m ∈ M, because for

g ∈ Co0 we have

tg(τ ) = q−1 − χg + O(q), (1.12)

where χg =
∑24

i=1 εi is the trace of g attached to its action on Λ⊗ZC. In particular,

tg generally has a nonvanishing constant term, and does not satisfy criterion (1.9)

defining normalized principal moduli. So for g ∈ Co0 let us define

T s
g (τ ) := tg(τ/2) + χg = q−1/2

∏

n>0

24∏

i=1

(1 − εi q
n−1/2) + χg, (1.13)

so that T s
g (2τ) is the unique normalized principal modulus attached to the genus-

zero group Γg.

In this article, building upon previous work [4, 36, 50], we construct a
1

2
Z-graded infinite-dimensional Co0-module, V s♮ =

⊕
n>0 V

s♮

n/2, such that the

normalized principal moduli T s
g , for g ∈ Co0, are obtained via an analogue of

(1.5). That is, we construct the natural analogue of the moonshine module V ♮ for

the Conway group Co0.

In fact we will do better than this, by establishing a characterization of the

algebraic structure underlying V s♮. In [51] it is conjectured that V ♮ is the unique

vertex operator algebra such that

• the central charge of V ♮ is 24;

• V ♮ is self-dual; and

• deg(v) 6= 1 for any nonzero v ∈ V ♮.

Just as vertex operator algebra structure is a crucial feature of the moonshine

module V ♮, super vertex operator algebra furnishes the correct framework for

understanding V s♮ (and also motivates the rescaling of τ in (1.13)). In Section 4.2

we prove the following result.
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THEOREM 4.5. There is a unique up to isomorphism C2-cofinite rational super

vertex operator algebra of CFT type V s♮ such that

• the central charge of V s♮ is 12;

• V s♮ is self-dual; and

• deg(v) 6= 1

2
for any nonzero v ∈ V s♮.

(We refer to Section 2.1 for explanations of the technical terms appearing in the

statement of Theorem 4.5. We say that a super vertex operator algebra is self-dual

if it is rational, irreducible as a module for itself, and if it is its only irreducible

module up to isomorphism. We write deg(v) = n in the case when L(0)v = nv.)

As explained in detail in [51], the conjectural characterization of V ♮ above puts

the monster, and V ♮, at the top tier of a three-tier tower

M y V ♮ — vertex operator algebras

Co0 y Λ — even positive-definite lattices

M24 y G — doubly even linear binary codes

(1.14)

involving three sporadic groups and three distinguished structures, arising in

vertex algebra, lattice theory, and coding theory, respectively.

An important structural feature of this tower is the evident parallel between

the conjectural characterization of V ♮ and Conway’s characterization of the

Leech lattice quoted earlier. In (1.14) we write G for the extended binary Golay

code, introduced (essentially) by Golay in [60], which is the unique (see, for

example, [20, 93]) doubly even linear binary code such that

• the length of G is 24;

• G is self-dual; and

• wt (C) 6= 4 for any word C ∈ G.

The automorphism group of G is the largest sporadic simple group discovered by

Mathieu [85, 86], denoted here by M24.

Theorem 4.5 now suggests that V s♮ may serve as a replacement for Λ in the

tower (1.14). With the recent development of Mathieu moonshine (see [40] for

an account of the original observation, and [12] for a review), one may speculate

about the existence of a vertex algebraic replacement for G, and an alternative

tower to (1.14), with tiers corresponding to moonshine in three forms.

M y V ♮ — monstrous moonshine

Co0 y V s♮ — Conway moonshine

M24 y ?? — Mathieu moonshine.

(1.15)
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Note that a natural analogue of the genus-zero property of monstrous moonshine,

and the moonshine for Conway’s group considered here, has been obtained for

Mathieu moonshine in [13].

We give an explicit construction for V s♮ in Section 4.1. The proof of the

characterization result, Theorem 4.5, demonstrates that the even part of V s♮

is isomorphic to the lattice vertex algebra of type D12, which, according

to the boson–fermion correspondence (see [32, 45]), is the even part of the

Clifford module super vertex operator algebra A(a) attached to a 24-dimensional

orthogonal space a. From this point of view the connection to the Conway group

is reasonably transparent, for we may identify a with the space Λ⊗ZC enveloping

the Leech lattice. We realize V s♮ by performing a Z/2-orbifold of the Clifford

module super vertex operator algebra A(a). Our method also produces an explicit

construction of the unique (up to isomorphism) canonically twisted V s♮-module,

which we denote V
s♮

tw , and which is also naturally a Co0-module. (Canonically

twisted modules for super vertex algebras are reviewed in Section 2.1, and

the Clifford module super vertex operator algebra construction is reviewed in

Section 2.3.)

Our main results appear in Section 4.3, where we consider the graded super

trace functions

T s
g (τ ) := q−1/2

∑

n>0

str
V

s♮
n/2

g qn/2, (1.16)

T s
g,tw(τ ) := q−1/2

∑

n>0

str
V

s♮
tw,n+1/2

g qn+1/2, (1.17)

arising naturally from the actions of Co0 on V s♮ and V
s♮

tw . (Necessary facts about

the Conway group are reviewed in Section 3.2.)

THEOREM 4.9. Let g ∈ Co0. Then T s
g is the normalized principal modulus for a

genus-zero subgroup of SL2(R).

The statement that the T s
g are normalized principal moduli is a direct analogue,

for the Conway group, of the monstrous moonshine conjectures, formulated by

Conway and Norton in [19]. The moonshine conjectures were broadly expanded

by Norton in [84, 88], to an association of functions T(m,m′)(τ ) to pairs (m, m ′) of

commuting elements in the monster. Norton’s generalized moonshine conjectures

state, among other things (see [89] for a revised formulation), that T(m,m′) should

be a principal modulus for a genus-zero group Γ(m,m′), or a constant function, for

every commuting pair m, m ′ ∈ M. In terms of vertex operator algebra theory,

the functions T(m,m′) should be defined by traces on twisted modules for V ♮

(see [30]).
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The argument used to prove Theorem 4.9 also establishes the following result,

which we may regard as confirming a special case of generalized moonshine for

the Conway group.

THEOREM 4.10. Let g ∈ Co0. Then T s
g,tw is constant, with constant value −χg,

when g has a fixed point in its action on the Leech lattice. If g has no fixed points

then T s
g,tw is a principal modulus for a genus-zero subgroup of SL2(R).

The problem of precisely formulating, and proving, generalized moonshine for

the Conway group is an important direction for future work.

Generalized moonshine for the monster remains unproven in general, although

a number of special cases have been established, by Dong, Li, and Mason

in [28, 30], Ivanov and Tuite in [69, 70], and Höhn in [65]. The most general

results on generalized moonshine are due to Carnahan [6–9].

As indicated above, the present paper is closely related to earlier work [36],

in which a vertex algebraic construction of Conway’s sporadic simple group

Co1 (see (1.10)) was obtained. In [36], an N = 1 super vertex operator algebra

V f ♮ =
⊕

n>0 V
f ♮

n/2 is defined (over the real numbers; we work here over C), and

it is proven that the automorphism group of V f ♮ – meaning the group of vertex

algebra automorphisms which commute with the N = 1 structure; see Section 2.1

– is precisely Co1. In fact, V s♮ is isomorphic to the super vertex operator algebra

underlying V f ♮ (when defined over C). The essential difference between V s♮ and

V f ♮ (and between this paper and [36]) is that V s♮ admits a faithful action of Co0,

whereby the central element acts as − Id on any candidate N = 1 element.

Both this work and [36] rest upon the important antecedents [4, 50]. In

Section 15 of [50], the construction of the super vertex operator algebra

underlying V f ♮ is described for the first time, and it is conjectured that the

simple Conway group Co1 should act as automorphisms. Later, in Section 5

of [4], a lattice super vertex operator algebra is identified, which turns out to

be isomorphic to both V s♮ and the super vertex operator algebra underlying

V f ♮, and it is explained that both Co0 and Co1 can act faithfully on this object.

The construction of V s♮ given in Section 4.1 differs significantly from that

of V f ♮ described in [50], but is closely connected, via the boson–fermion

correspondence, to the description given in [4].

Although the graded trace functions attached to the action of Co1 on V f ♮ are

computed explicitly in [36], their modular properties are not considered in detail.

From the point of view of moonshine, the trace functions arising from V s♮ are

better: the functions

T f
g (τ ) := q−1/2

∑

n>0

str
V

f ♮

n/2
g qn/2, (1.18)
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defined for g ∈ Co1, are generally not principal moduli, even though they satisfy

the normalization condition (1.9). Nonetheless, the Co1-module structure on V f ♮

plays an important role in the present paper. A crucial step in our proof of

Theorems 4.9 and 4.10 is the verification of a Co0-family of eta-product identities

(4.31), which we establish in Lemma 4.8. We are able to prove these in a

uniform manner by utilizing the unique (see Proposition 4.4) Co1-invariant N = 1

structure on V f ♮.

Another work of particular relevance to the moonshine for Conway’s group we

consider here is [37], in which the McKay–Thompson series (1.5) of monstrous

moonshine are characterized, following earlier work [22], in terms of certain

regularized Poincaré series, called Rademacher sums. The theorems in Section 6

of [37] imply that a discrete group Γ < SL2(R), commensurable with SL2(Z) and

having width one at the infinite cusp, has genus zero if and only if the associated

Rademacher sum

RΓ (τ ) := q−1 + lim
K→∞

∑

γ∈Γ∞\Γ ×
<K

(e−2π iγ τ − e−2π iγ∞) (1.19)

is a principal modulus for Γ . (In (1.19) we write Γ∞ for the subgroup of upper-

triangular matrices in Γ , and Γ∞\Γ ×
<K denotes the set of nontrivial cosets for

Γ∞ in Γ such that, if a representative γ is rescaled to a matrix
(

a b
c d

)
with integer

entries and c > 0, then c < K and −K 2 < d < K 2. In the case when Γ = SL2(Z),

the right-hand side of (1.19) is exactly the expression given for J (τ ) + 12 by

Rademacher in [92].)

So, in particular, the results of [37] imply that all the McKay–Thompson series

T s
g of Conway moonshine, attached to the Conway group via its action on V s♮, can

be realized as Rademacher sums. (Strictly speaking, the Rademacher sum RΓg
(τ )

generally differs from T s
g (2τ) by an additive constant, and a similar statement

is true for the functions of monstrous moonshine. The normalized Rademacher

sums, defined in Section 4 of [37], have vanishing constant terms, and thus recover

the Tm and T s
g precisely.) Thus we obtain a uniform construction of the T s

g as the

(normalized) Rademacher sums attached to their invariance groups Γg.

The formulation of a characterization of the T s
g , in analogy with that given for

the Tm in Theorem 6.5.1 of [37], is another important problem for future work.

1.3. Mathieu moonshine. The significance of the super vertex operator

algebra V s♮ is further demonstrated by recent developments in Mathieu

moonshine – mentioned above, in connection with the tower (1.15) – which

features an assignment of weak Jacobi forms of weight zero and index one,

to conjugacy classes in the sporadic simple Mathieu group, M24 (the standard

reference for the theory of Jacobi forms is [42]).
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In forthcoming work [38] we demonstrate how the canonically twisted V s♮-

module V
s♮

tw may be used to attach weak Jacobi forms of weight zero and index

one to conjugacy classes in Co0 that fix a four-space in Λ ⊗Z C. The group

M24 is a subgroup of Co0, and our assignment recovers many (but not all) of the

weak Jacobi forms attached to M24 by Mathieu moonshine. Mathieu moonshine

is identified as a special case of 23 similar moonshine phenomena, collectively

known as umbral moonshine, in [14, 15], and our construction generalizes

naturally, so as to attach weak Jacobi forms of index greater than one to suitable

elements of Co0. Several of the higher-index Jacobi forms of umbral moonshine

arise in this way, from the faithful action of Co0 on V
s♮

tw .

The weak Jacobi forms of Mathieu moonshine may be replaced with mock

modular forms of weight 1/2, by utilizing the irreducible unitary are characters

of the small N = 4 superconformal algebra. (See [12] for a review of this,

including an introductory discussion of mock modular forms.) One of the main

conjectures of Mathieu moonshine is that these mock modular forms – namely,

those prescribed in [10, 39, 55, 56], and defined in a uniform way, via Rademacher

sums, in [13] – are the graded traces attached to the action of M24 on some graded

infinite-dimensional M24-module. Despite the work of Gannon [59], proving the

existence of a such an M24-module, an explicit construction of the Mathieu

moonshine module is still lacking. The result of [38] stated above, that many

of the weak Jacobi forms of Mathieu moonshine may be recovered from an

action of M24 on V
s♮

tw , demonstrates that V s♮ may serve as an important tool in

the construction of this moonshine module for M24.

Strong evidence in support of the idea that V s♮ can play a role in the

construction of modules for Mathieu moonshine, and umbral moonshine more

generally, is given in [11], where V
s♮

tw is used to attach weak Jacobi forms of weight

zero and index two to all of the elements of the sporadic simple Mathieu groups

M23 and M22 (characterized as point stabilizers in M24 and M23, respectively).

Further, it is shown that the representation theory of the N = 2 and small

N = 4 superconformal algebras (see [41]) naturally leads to assignments of

(vector-valued) mock modular forms to the elements of these groups. Thus the

first examples of explicitly realized modules underlying moonshine phenomena

relating mock modular forms to sporadic simple groups are obtained via V s♮

in [11].

Aside from the interesting connections to umbral moonshine, the main result

of the forthcoming work [38] is the assignment of a weak Jacobi form of weight

zero and index one to any symplectic derived autoequivalence of a projective

complex K3 surface that fixes a stability condition in the distinguished space

defined by Bridgeland in [5]. Conjecturally, the data of such a stability condition

is equivalent to the physical notion of a supersymmetric nonlinear sigma model
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on the corresponding K3 surface. (See [1] for a detailed discussion of the

moduli space of K3 sigma models, [57] for a concise treatment, and [68] for

the relationship with stability conditions.) As demonstrated by Witten in [75], a

supersymmetric nonlinear sigma model defines a weak Jacobi form, called the

elliptic genus of the sigma model in question, and it turns out that the Jacobi form

one obtains in the case of a (any) K3 sigma model is precisely that arising from

the identity element of Co0 in the construction of [38].

More generally, one expects, on physical grounds (see [57]), to obtain a weak

Jacobi form (with level) from any supersymmetry-preserving automorphism of a

nonlinear sigma model – we call it a twined elliptic genus – and it is shown in [57]

that the automorphism groups of K3 sigma models are the subgroups of Co0 that

fix four-spaces in Λ ⊗Z C.

This is a quantum analogue of the celebrated result of Mukai [87], that the

finite groups of symplectic automorphisms of a K3 surface are the subgroups

of the sporadic simple Mathieu group M23 that have at least five orbits in their

action on 24 points. In general it is hard to compute twined elliptic genera, for the

Hilbert spaces underlying nonlinear sigma models can, so far, only be constructed

for certain special examples. Nonetheless, we find that the construction of [38]

agrees precisely with the explicit computations of [57, 58, 100], which account

for about half the conjugacy classes of Co0 that fix a four-space in Λ ⊗Z C. Thus

the main result of [38] indicates that V s♮ may serve as a kind of universal object

for understanding the twined elliptic genera of K3 sigma models. It may develop

that V s♮ can shed light on more subtle structural aspects of K3 sigma models also.

The discussion here indicates that V s♮ plays an important role in Mathieu

moonshine, and umbral moonshine more generally. On the other hand, that

Conway moonshine and monstrous moonshine are closely related is evident from

the discussions in Sections 1.1 and 1.2. Thus the results of this paper furnish

further evidence – see also [90], and the introduction to [14] – that monstrous

moonshine and umbral moonshine are related in a deep way, possibly having a

common origin.

1.4. Organization. The organization of the paper is as follows. We review

facts from vertex algebra theory in Section 2. Basic notions are recalled in

Section 2.1, invariant bilinear forms on super vertex algebras are discussed in

Section 2.2, and the Clifford module super vertex operator algebra construction

is reviewed in Section 2.3. Spin groups act naturally on Clifford module super

vertex operator algebras, and we review this in detail in Section 3.1. All necessary

facts about the Conway group are explained in Section 3.2. The main results of

the paper appear in Section 4, which features an explicit construction of V s♮ in

Section 4.1, the characterization of V s♮ in Section 4.2, and the analysis of its trace
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functions in Section 4.3. The paper concludes with tables in Appendix A, one for

the T s
g , and one for the T s

g,tw, which can be used to facilitate explicit computations.

2. Vertex algebra

In this section we recall some preliminary facts from vertex algebra. In addition

to the specific references that follow, we refer to the texts [52, 71, 78] for more

background on vertex algebras, vertex operator algebras, and the various kinds of

modules over these objects.

2.1. Fundamental notions. A super vertex algebra is a super vector space

V = V0̄⊕V1̄ equipped with a vacuum vector 1 ∈ V0̄, a linear operator T : V → V ,

and a linear map

V → End(V )[[z±1]]
a 7→ Y (a, z) =

∑

n∈Z
a(n)z

−n−1 (2.1)

associating to each a ∈ V a vertex operator Y (a, z), which satisfy the following

axioms for any a, b, c ∈ V :

(1) Y (a, z)b ∈ V ((z)) and, if a ∈ V0̄ (respectively, a ∈ V1̄), then a(n) is an even

(respectively, odd) operator for all n;

(2) Y (1, z) = IdV and Y (a, z)1 ∈ a + zV [[z]];

(3) [T, Y (a, z)] = ∂zY (a, z), T 1 = 0, and T is an even operator; and,

(4) if a ∈ Vp(a) and b ∈ Vp(b) are Z/2 homogeneous, there exists an element

f ∈ V [[z, w]][z−1, w−1, (z − w)−1]

depending on a, b, and c, such that

Y (a, z)Y (b, w)c, (−1)p(a)p(b)Y (b, w)Y (a, z)c, and

Y (Y (a, z − w)b, w)c

are the expansions of f in V ((z))((w)), V ((w))((z)), and V ((w))((z −w)),

respectively.

In items (1) and (4) above we write V ((z)) for the vector space V ((z)) =
V [[z]][z−1] whose elements are formal Laurent series in z with coefficients in

V . Note that C((z)) is naturally a field, and if V is a vector space over C then

V ((z)) is naturally a vector space over C((z)).
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A module over a super vertex algebra V is a super vector space M = M0̄ ⊕ M1̄

equipped with a linear map

V → End(M)[[z±1]]
a 7→ YM(a, z) =

∑

n∈Z
a(n),M z−n−1 (2.2)

which satisfies the following axioms for any a, b ∈ V , u ∈ M :

(1) YM(a, z)u ∈ M((z)) and, if a ∈ V0̄ (respectively, a ∈ V1̄), then a(n),M is an

even (respectively, odd) operator for all n;

(2) YM(1, z) = IdM ; and,

(3) if a ∈ Vp(a) and b ∈ Vp(b), there exists an element

f ∈ M[[z, w]][z−1, w−1, (z − w)−1]

depending on a, b, and u, such that

YM(a, z)YM(b, w)u, (−1)p(a)p(b)YM(b, w)YM(a, z)u,

and YM(Y (a, z − w)b, w)u

are the expansions of f in the corresponding spaces, M((z))((w)),

M((w))((z)), and M((w))((z − w)), respectively.

One can also define modules which are twisted by a symmetry of the vertex

algebra; we shall use the following special case. Let θ := IdV0̄
⊕(− IdV1̄

) be the

parity involution on a super vertex operator algebra V = V0̄ ⊕ V1̄. A canonically

twisted module over V is a super vector space M = M0̄ ⊕ M1̄ equipped with a

linear map

V → End(M)[[z±1/2]]
a 7→ Ytw(a, z1/2) =

∑

n∈ 1
2
Z

a(n),twz−n−1, (2.3)

associating to each a ∈ V a twisted vertex operator Ytw(a, z1/2), which satisfies

the following axioms for any a, b ∈ V, u ∈ M :

(1) Ytw(a, z1/2)u ∈ M((z1/2)) and, if a ∈ V0̄ (respectively, a ∈ V1̄), then a(n),tw

is an even (respectively, odd) operator for all n;

(2) Ytw(1, z1/2) = IdM ;
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(3) if a ∈ Vp(a) and b ∈ Vp(b), there exists an element

f ∈ M[[z1/2, w1/2]][z−1/2, w−1/2, (z − w)−1]

depending on a, b, and u, such that

Ytw(a, z1/2)Ytw(b, w1/2)u, (−1)p(a)p(b)Ytw(b, w1/2)Ytw(a, z1/2)u,

and Ytw(Y (a, z − w)b, w1/2)u

are the expansions of f in the three spaces M((z1/2))((w1/2)), in

M((w1/2))((z1/2)), and in M((w1/2))((z − w)), respectively; and,

(4) if θ(a) = (−1)ma, then a(n),tw = 0 for n /∈ Z + (m/2).

More details can be found in [81].

The notion of super vertex algebra may be refined by introducing

representations of certain Lie algebras. The Virasoro algebra is the Lie algebra

spanned by L(m), m ∈ Z and a central element c, with Lie bracket

[L(m), L(n)] = (m − n)L(m + n) + m3 − m

12
δm+n,0c. (2.4)

A super vertex operator algebra is a super vertex algebra containing a Virasoro

element (or conformal element) ω ∈ V0̄ such that, if L(n) := ω(n+1) for n ∈ Z,

then

(5) L(−1) = T ;

(6) [L(m), L(n)] = (m − n)Lm+n + ((m3 − m)/12)δm+n,0c IdV for some c ∈ C,

called the central charge of V ;

(7) L(0) is a diagonalizable operator on V , with eigenvalues contained in 1

2
Z

and bounded from below, and with finite-dimensional eigenspaces; and

(8) the super space structure on V is recovered from the L(0)-eigendata

according to the rule that p(a) = 2n (mod 2) when L(0)v = nv.

According to item (6), the components of Y (ω, z) generate a representation of the

Virasoro algebra on V with central charge c.

For V a super vertex operator algebra, we write

V =
⊕

n∈ 1
2
Z

Vn, Vn = {v ∈ V | L(0)v = nv}, (2.5)

for the decomposition of V into eigenspaces for L(0), and we call Vn the

homogeneous subspace of degree n.
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Following [29, 35], a V -module M = (M, YM) for a super vertex operator

algebra V is called admissible if there exists a grading M =
⊕

n∈ 1
2
Z

M(n),

with M(n) = {0} for n < 0, such that a(n)M(k) ⊂ M(k + m − n − 1) when

a ∈ Vm . An admissible V -module is irreducible if it has no nontrivial proper

graded submodules. A super vertex operator algebra V is called rational if any

admissible module is a direct sum of irreducible admissible modules, and we say

that V is self-dual if V is rational, irreducible as a V -module, and if V is the only

irreducible admissible V -module, up to isomorphism.

There are two particularly important extensions of the Virasoro algebra to a

super Lie algebra. The Neveu–Schwarz algebra is a super Lie algebra spanned by

L(m), m ∈ Z, G(n + 1/2), n ∈ Z, and a central element c; the L(m) and c span

the even subalgebra, isomorphic to the Virasoro algebra, and the G(n +1/2) span

the odd subspace. The Lie bracket is defined by Equation (2.4) and

[L(m), G(n + 1/2)] = m − 2(n + 1/2)

2
G(m + n + 1/2), (2.6)

[G(m + 1/2), G(n − 1/2)] = 2L(m + n) + 4(m + 1/2)2 − 1

12
δm+n,0c. (2.7)

An N = 1 super vertex operator algebra is a super vertex algebra containing

an N = 1 element τ ∈ V1̄ such that, if G(n + 1/2) := τ(n+1) for n ∈ Z, then

ω := 1

2
G(−1/2)τ is a Virasoro element (with components L(n) := ω(n+1)) as

above, and the L(m), G(n+1/2) generate a representation of the Neveu–Schwarz

algebra; in particular, the L(m), G(n+1/2) satisfy Equation (2.4), Equation (2.6),

and Equation (2.7), where the role of c is played by c IdV for some c ∈ C. For

further discussion we refer to [72].

Another extension of the Virasoro algebra to a super Lie algebra is the Ramond

algebra, spanned by L(m), m ∈ Z, G(n), n ∈ Z, and a central element c; as in

the case of the Neveu–Schwarz algebra the L(m) and c span the even subalgebra,

isomorphic to the Virasoro algebra, and the G(n) span the odd subspace. The Lie

bracket is defined by Equation (2.4) and

[L(m), G(n)] = m − 2n

2
G(m + n), (2.8)

[G(m), G(n)] = 2L(m + n) + 4m2 − 1

12
δm+n,0c. (2.9)

If V is an N = 1 super vertex operator algebra (with N = 1 element τ and

Virasoro element ω = 1

2
G(−1/2)τ ), and M is a canonically twisted module

for V , then the operators L(m) := ω(n+1),tw and G(n) := τ(n+1/2),tw generate a

representation of the Ramond algebra on M .
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2.2. Invariant bilinear forms. The notion of an invariant bilinear form on a

vertex operator algebra module was introduced in [48]. We say that a bilinear form

〈· , ·〉 : M ⊗ M → C on a module (M, YM) for a super vertex operator algebra V

is invariant if

〈YM(a, z)b, c〉 = 〈b, Y
†
M(a, z)c〉 (2.10)

for a ∈ V and b, c ∈ M , where Y
†
M(a, z) denotes the opposite vertex operator,

defined by setting

Y
†
M(a, z) := (−1)nYM(ezL(1)z−2L(0)a, z−1) (2.11)

for a in Vn−1/2 or Vn . In the right-hand side of (2.11) we have extended the

definition of YM from V to V ((z)) by requiring C((z))-linearity. That is, we define

YM( f (z)a, z) = f (z)YM(a, z) for f (z) ∈ C((z)) and a ∈ V .

Suppose that M =
⊕

n∈ 1
2
Z

M(n) is an admissible V -module. Then the restricted

dual of M is the graded vector space M ′ =
⊕

n∈ 1
2
Z

M ′(n) obtained by setting

M ′(n) = M(n)∗ := homC(M(n),C). According to Proposition 2.5 of [36] (see

also Lemma 2.7 of [35], and Theorem 5.2.1 of [48]), M ′ is naturally an admissible

V -module, called the contragredient of M . To define the V -module structure on

M ′, write (· , ·)M for the natural pairing M ′ ⊗ M → C, and define Y ′
M : V →

End(M ′)[[z±1]]] – the vertex operator correspondence adjoint to YM – by requiring

that

(Y ′
M(a, z)b′, c)M = (b′, Y †(a, z)c)M (2.12)

for a ∈ V , b′ ∈ M ′ and c ∈ M .

Following the discussion in Section 5.3 of [48] we observe that the datum of

a nondegenerate invariant bilinear form on an admissible V -module M is the

same as the datum of a V -module isomorphism M → M ′. For if φ : M →
M ′ is a V -module isomorphism then we obtain a bilinear form 〈· , ·〉 on M

by setting 〈b, c〉 = (φ(b), c)M for b, c ∈ M . It is easily seen to be invariant

and nondegenerate. Conversely, if 〈· , ·〉 is a nondegenerate invariant bilinear

form on M then invariance implies that 〈M(m), M(n)〉 ⊂ {0} unless m = n

(see Proposition 2.12 of [94]), and so we obtain a linear grading-preserving

isomorphism φ : M → M ′ by requiring (φ(b), c)M = 〈b, c〉 for b, c ∈ M(n),

n ∈ 1

2
Z. The invariance of 〈· , ·〉 then implies that φ(YM(a, z)b) = Y ′

M(a, z)φ(b)

for a ∈ V and b ∈ M , so φ is an isomorphism of V -modules.

The following theorem of Scheithauer is the super vertex operator algebra

version of a result first proved for vertex operator algebras by Li in [80].

THEOREM 2.1 [94]. The space of invariant bilinear forms on a super vertex

operator algebra V is naturally isomorphic to the dual of V0/L(1)V1.
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Note that there is some flexibility available in the definitions of invariant

bilinear form and opposite vertex operator in the super case. For in [94], a bilinear

form 〈· , ·〉∗ is said to be invariant if

〈Y (a, z)b, c〉∗ = (−1)|a||b|〈b, Y ∗(a, z)c〉∗ (2.13)

for Y ∗(a, z) := Y (e−λ−2zL(1)(−λ−1z)−2L(0)a, −λ2z−1). Taking λ = ±i, we recover

the usual notion of opposite vertex operator for a vertex algebra (see (5.2.4)

of [48]), upon restriction to the even sub vertex algebra of V . Observe that

this notion of invariant bilinear form is equivalent to (2.10). For if we take

λ = −i in the definition of Y ∗, for example, then, given a bilinear form 〈· , ·〉∗

satisfying (2.13), we obtain a bilinear form 〈· , ·〉 that satisfies (2.10), upon setting

〈a, b〉 = 〈a, b〉∗ for p(a) = 0, and 〈a, b〉 = −i〈a, b〉∗ for p(a) = 1. The case that

λ = i is directly similar.

2.3. Clifford module construction. We now review the standard construction

of vertex operator algebras via Clifford algebra modules.

Let a be a finite-dimensional complex vector space equipped with a

nondegenerate symmetric bilinear form 〈· , ·〉. For each n ∈ Z let a(n + 1/2) be

a vector space isomorphic to a, with a chosen isomorphism a → a(n + 1/2),

denoted u 7→ u(n + 1/2), and define

â =
⊕

n∈Z
a(n + 1/2). (2.14)

We can extend 〈· , ·〉 to a nondegenerate symmetric bilinear form on â by 〈u(r),

v(s)〉 = 〈u, v〉δr+s,0. We obtain a polarization of â with respect to this bilinear

form – that is, a decomposition â = â
−⊕â

+ into a direct sum of maximal isotropic

subspaces – by setting

â
− =

⊕

n<0

a(n + 1/2) and â
+ =

⊕

n>0

a(n + 1/2). (2.15)

Define the Clifford algebra of â by Cliff(â) = T (â)/I (â), where T (â) is the

tensor algebra of â, with unity denoted 1, and I (â) is the (two-sided) ideal of

T (â) generated by elements of the form u ⊗ u + 〈u, u〉1 for u ∈ â. Denote by

B− and B+ the subalgebras of Cliff(â) generated by â
− and â

+, respectively. The

linear map − Id on â induces an involution θ on Cliff(â) according to the universal

property of Clifford algebras. We call θ the parity involution and write Cliff(â) =
Cliff(â)0⊕Cliff(â)1 for the corresponding decomposition into eigenspaces, where

Cliff(â) j denotes the θ -eigenspace with eigenvalue (−1) j .
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Let Cv be a one-dimensional vector space equipped with the trivial action from

B+, that is, 1v = v and uv = 0 for any u ∈ â
+. Define A(a) to be the induced

Cliff(â)-module, A(a) = Cliff(â) ⊗B+ Cv. We have a natural isomorphism of

B−-modules

A(a) ≃
∧

(â−)v. (2.16)

For a ∈ a, define a vertex operator for a(−1/2)v by

Y (a(−1/2)v, z) =
∑

n∈Z
a(n + 1/2)z−n−1. (2.17)

There is a reconstruction theorem (Theorem 4.4.1 of [52]) which ensures that

these vertex operators extend uniquely to a super vertex algebra structure on

A(a). The super space structure A(a) = A(a)0 ⊕ A(a)1 is given by the parity

decomposition on
∧

(â−)v. That is, restricting the isomorphism of (2.16), we have

A(a)0 ≃
even∧

(â−)v, A(a)1 ≃
odd∧

(â−)v. (2.18)

Choose an orthonormal basis {ei : 1 6 i 6 dim a} for a. The Virasoro element

ω = −1

4

dima∑

i=1

ei(−3/2)ei(−1/2)v (2.19)

gives A(a) the structure of a super vertex operator algebra with central charge

c = 1

2
dim a.

Observe that A(a)0 is spanned by the vacuum v. We compute L(1)a = 0 for

all a ∈ A(a)1, and conclude from Theorem 2.1 that there is a unique nonzero

invariant bilinear form on A(a) up to scale. Scale it so that 〈v, v〉 = 1. Then, taking

a = u(−1/2)v for u ∈ a, we compute Y ′(a, z) = −Y (a, z−1)z−1 (see (2.11)), and

conclude from (2.10) that

〈u(−m − 1/2)a, b〉 + 〈a, u(m + 1/2)b〉 = 0 (2.20)

for u ∈ a, m ∈ Z, and a, b ∈ A(a). This identity is useful for computations. For

example, taking a = v and b = v(−m − 1/2)v for v ∈ a, we see that

〈u(−m − 1/2)v, v(−m − 1/2)v〉 = 〈u, v〉 (2.21)

for u, v ∈ a and m > 0.

A construction similar to A(a) produces a canonically twisted module for A(a),

which we call A(a)tw. For the sake of simplicity, let us assume that the dimension

of a is even.
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For each n ∈ Z let a(n) be a vector space isomorphic to a, with a chosen

isomorphism a → a(n) denoted u 7→ u(n), and define

âtw =
⊕

n∈Z
a(n). (2.22)

The bilinear form on a extends to a bilinear form on âtw in the same way as â;

namely, 〈u(m), v(n)〉 = 〈u, v〉δm+n,0. We again require a decomposition of âtw

into maximal isotropic subspaces â
+
tw ⊕ â

−
tw. For this, first choose a polarization

a = a
− ⊕ a

+, and then define â
±
tw by setting

â
−
tw = a(0)− ⊕

(⊕

n<0

a(n)

)
and â

+
tw = a(0)+ ⊕

(⊕

n>0

a(n)

)
, (2.23)

where a(0)± is the image of a± under the isomorphism u 7→ u(0).

Denote by B−
tw and B+

tw the subalgebras of Cliff(âtw) generated by â
−
tw and â

+
tw,

respectively. Define the trivial action of B+
tw on a one-dimensional space Cvtw, and

set A(a)tw = Cliff(âtw) ⊗B+
tw
Cvtw. There is a natural B−

tw-module isomorphism

A(a)tw ≃
∧

(â−
tw)vtw. (2.24)

For a ∈ a, define a twisted vertex operator for a(−1/2)v ∈ A(a) on A(a)tw by

Ytw(a(−1/2)v, z1/2) =
∑

n∈Z
a(n)z−n−1/2. (2.25)

An analogue of the reconstruction theorem for modules (see [46]) ensures that this

collection of twisted vertex operators extends uniquely to a canonically twisted

A(a)-module structure on A(a)tw. In particular, the twisted vertex operator

Ytw(ω, z1/2) =
∑

n∈Z
L(n)z−n−2 (2.26)

equips A(a)tw with a representation of the Virasoro algebra, and L(0) = ω(1),tw

acts diagonalizably. An explicit computation yields that the eigenvalues of L(0)

on A(a)tw are contained in Z + 1

16
dim a.

The finite-dimensional Clifford algebra Cliff(a) embeds in Cliff(âtw) as the

subalgebra generated by a(0). Through this identification, Cliff(a) acts on A(a)tw,

and the Cliff(a)-submodule of A(a)tw generated by vtw is the unique (up to

isomorphism) nontrivial irreducible representation of Cliff(a). We shall denote

this subspace of A(a)tw by CM. By restricting the isomorphism of (2.24), we

obtain

A(a)tw ≃
∧(⊕

n<0

a(n)

)
⊗ CM, CM ≃

∧
(a(0)−)vtw. (2.27)
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There is a unique (up to scale) bilinear form 〈· , ·〉tw on CM satisfying 〈ua,

b〉tw + 〈a, ub〉tw = 0 for u ∈ a and a, b ∈ CM. To choose a scaling, let {a−
i }c

i=1 be

a basis for a−, where c = 1

2
dim a, and set

〈a−
1 · · · a−

c vtw, vtw〉tw = 1. (2.28)

We may extend this form uniquely to a bilinear form 〈· , ·〉tw on A(a)tw by

requiring that

〈u(−m)a, b〉tw + 〈a, u(m)b〉tw = 0 (2.29)

for u ∈ a, m ∈ Z, and a, b ∈ A(a)tw (see (2.20)).

3. Groups

In Section 3.1 we discuss the spin group of a complex vector space of even

dimension, and in Section 3.2 we recall the definition and some features of the

automorphism group of the Leech lattice, also known as the Conway group.

3.1. The spin groups. Define the main antiautomorphism α on Cliff(a) by

setting α(u1 · · · uk) := uk · · · u1 for ui ∈ a. Recall that the spin group of a, denoted

Spin(a), is the set of even invertible elements x ∈ Cliff(a) with α(x)x = 1 (that

is, the unit element of Cliff(a)) such that xux−1 ∈ a whenever u ∈ a.

It is useful to be able to construct some elements of Spin(a) explicitly. The

expressions 1

2
(uv − vu) ∈ Cliff(a), for u, v ∈ a, span a

(
dima

2

)
-dimensional

subspace g < Cliff(a) which closes under the commutator [x, y] = xy − yx

on Cliff(a), and forms a simple Lie algebra of type Dc, for c = 1

2
dim a. (Recall

our assumption that dim a is even.) The exponentials exp( 1

2
(uv − vu)) ∈ Cliff(a)

generate Spin(a). For example, if a+, a− ∈ a are chosen so that

〈a±, a±〉 = 0, 〈a−, a+〉 = 1, (3.1)

then X = (i/2)(a−a+ − a+a−) satisfies X 2 = −1, so eαX = (cos α)1 + (sin α)X .

Set x(u) = xux−1 for x ∈ Spin(a) and u ∈ a. Then u 7→ x(u) is a linear

transformation on a belonging to SO(a), and the assignment x 7→ x(·) defines

a map Spin(a) → SO(a) with kernel {±1}. We say that ĝ ∈ Spin(a) is a lift of

g ∈ SO(a) if ĝ(·) = g. For

X = i

2
(a−a+ − a+a−) (3.2)

with a± as in (3.1) we have Xa± = ±ia± = −a± X in Cliff(a), so

eαX (a±) = eαX a±e−αX = e±2αia±, (3.3)
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which is to say, eαX is a lift of the orthogonal transformation on a which acts

as multiplication by e±2αi on a±, and as the identity on vectors orthogonal to a+

and a−. For future reference we note here also that Xvtw = ivtw, so the action of

eαX ∈ Spin(a) on vtw is given by

eαX vtw = eαivtw. (3.4)

The group Spin(a) acts naturally on A(a) and A(a)tw. Indeed, writing

A(a)1 for the L(0)-eigenspace of A(a) with eigenvalue equal to 1, the map

u(− 1

2
)v(− 1

2
)v 7→ 1

2
(uv − vu) defines an isomorphism of vector spaces

A(a)1 → g, which becomes an isomorphism of Lie algebras once we equip

A(a)1 with the bracket [X, Y ] := X(0)Y . (It follows from the vertex algebra

axioms that [a(0), b(n)] = (a(0)b)(n) in End A(a), for any a, b ∈ A(a) and n ∈ Z.)

Accordingly, the exponentials eX(0) and eX(0),tw for X ∈ A(a)1 generate an action

of Spin(a) on A(a) and A(a)tw, respectively. Explicitly, if a ∈ A(a) has the form

a = u1(−n1 + 1

2
) · · · uk(−nk + 1

2
)v for some ui ∈ a and ni ∈ Z+, then

xa = u ′
1(−n1 + 1

2
) · · · u ′

k(−nk + 1

2
)v, (3.5)

for x ∈ Spin(a), where u ′
i = x(ui). Evidently −1 is in the kernel of this

assignment Spin(a) → Aut(A(a)), so the action factors through SO(a).

For A(a)tw we use (2.27) to identify the elements of the form

u1(−n1) · · · uk(−nk) ⊗ y (3.6)

as a spanning set, where ui ∈ a and ni ∈ Z+ as above, and y ∈ CM. The image of

such an element under x ∈ Spin(a) is given by u ′
1(−n1) · · · u ′

k(−nk) ⊗ xy, where

u ′
i = x(ui) as before. Since CM is a faithful Spin(a)-module, so too is A(a)tw.

In terms of the vertex operator correspondences we have

Y (xa, z)xb = xY (a, z)b =
∑

n∈Z
x(a(n)b)z−n−1,

Ytw(xa, z1/2)xc = xYtw(a, z1/2)c =
∑

n∈ 1

2
Z

x(a(n),twc)z−n−1,
(3.7)

for x ∈ Spin(a), a, b ∈ A(a), and c ∈ Atw(a).

Recall that our construction of CM depends upon a choice of polarization

a = a
− ⊕ a

+. Observe that if x ∈ Spin(a) is a lift of − Ida ∈ SO(a) then the

vector vtw ∈ CM, characterized by the condition uvtw = 0 for all u ∈ a
+, satisfies

xvtw = ±icvtw, where c = 1

2
dim a. Indeed, if {a±

i } is a basis for a±, chosen so that

〈a−
i , a+

j 〉 = δi, j , then

z :=
c∏

i=1

e
π
2

X i (3.8)
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is a lift of − Ida, for X i = (i/2)(a−
i a+

i − a+
i a−

i ), according to (3.3). From (3.4) it

follows that zvtw = icvtw.

Thus we see that a choice of polarization a = a
− ⊕ a

+ distinguishes one of the

two lifts of − Ida to Spin(a), namely, the unique element z ∈ Spin(a) such that

z(·) = − Ida and

zvtw = icvtw, (3.9)

where c = 1

2
dim a. We call this z the lift of − Ida associated to the polarization

a = a
− ⊕a

+. The element z acts with order two on A(a)tw when dim a is divisible

by 4. In this case, we write

A(a)tw = A(a)0
tw ⊕ A(a)1

tw (3.10)

for the decomposition into eigenspaces for z, where z acts as (−1) j Id on A(a)
j
tw.

The element z is central, so the action of Spin(a) on A(a)tw preserves the

decomposition (3.10).

Note here the difference between writing −(xa) and (−x)a for x ∈ Spin(a)

and a ∈ A(a). The former is just the additive inverse of the vector xa in A(a),

whereas the latter is the image of a under the action of −x = (−1)x , an element

of Spin(a) < Cliff(a). So, for example, za = (−z)a = a for a ∈ A(a), and in

particular (−z)a 6= −a unless a = 0. On the other hand, z(u) = (−z)(u) = −u

for u ∈ a. So, from the description (3.5), we see that writing A(a) j for the (−1) j

eigenspace of either z or −z recovers the super space decomposition

A(a) = A(a)0 ⊕ A(a)1 (3.11)

of A(a). (See (2.18).)

Suppose that a = V ⊗R C for some real vector space V , and that 〈· , ·〉 restricts

to an R-valued bilinear form on V ⊂ a. Then we obtain another way to determine

a lift of − Ida to Spin(a) by choosing an orientation R+ω ⊂
∧dim V

(V ) of V . For

if {ei}dim V
i=1 is an ordered basis of V satisfying 〈ei , e j 〉 = ±δi, j then z = e1 · · · edim V

belongs to Spin(a) and satisfies z(·) = − Ida. (Recall that dim a = dimC a is

assumed to be even.) On the other hand, e1 ∧ · · ·∧ edim V belongs either to R+ω or

to R−ω, and so we can say that z is consistent with the chosen orientation of V in

the former case, and inconsistent in the latter. Since a polarization a = a
− ⊕a

+ of

a = V ⊗RC also determines a lift z of − Ida, characterized by the condition zvtw =
icvtw, we can say that it too is either consistent or not with a given orientation of

V , according as the associated lift z is or is not consistent.

3.2. The Conway group. The Leech lattice, denoted Λ, is the unique self-

dual positive-definite even lattice of rank 24 with no roots. That is, 〈λ, λ〉 < 4
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for λ ∈ Λ implies λ = 0. It was discovered in 1965 by Leech [76, 77], and the

uniqueness statement is a consequence of a (somewhat stronger) theorem due to

Conway [17].

Conway also calculated [16, 18] the automorphism group of Λ, which turns out

to be a nontrivial 2-fold cover of the sporadic simple group that we denote Co1.

We call Co0 := Aut(Λ) the Conway group. The centre of Co0 is Z(Co0) = {± Id},
and we have Co1 = Co0/Z(Co0).

Set Λn := {λ ∈ Λ | 〈λ, λ〉 = 2n}, the set of vectors of type n in Λ. Conway’s

uniqueness proof shows that any type 4 vector is equivalent modulo 2Λ to exactly

47 other vectors of type 4 in Λ, and if λ, µ ∈ Λ4 are equivalent modulo 2Λ then

λ = ±µ or 〈λ, µ〉 = 0. We call a set {λi}24
i=1 ⊂ Λ4 a coordinate frame for Λ when

the λi are mutually orthogonal, but equivalent modulo 2Λ.

Set Ω = {1, . . . , 24}, and write P(Ω) for the power set of Ω . Given a

coordinate frame S = {λi}i∈Ω for Λ, let E = ES be the subgroup of Co0 whose

elements act as sign changes on the λi .

E = ES := {g ∈ Co0 | g(λi) ∈ {±λi}, ∀i ∈ Ω}. (3.12)

Then E is an elementary abelian 2-group of order 212. If we attach a subset

C(g) ⊂ Ω to each g ∈ E by setting

C(g) := {i ∈ Ω | g(λi) = −λi}, (3.13)

then the symmetric difference operation equips G := {C(g) | g ∈ E} ⊂ P(Ω)

with a group structure naturally isomorphic to that of E , in the sense that g 7→
C(g) is an isomorphism, C(gh) = C(g)+C(h) for g, h ∈ E . The weight function

C 7→ #C equips G with the structure of a binary linear code, and it turns out that G

is a copy of the extended binary Golay code, being the unique (see [20, 93]) self-

dual doubly even binary linear code of length 24 with no codewords of weight 4.

A choice of identification a = Λ ⊗Z C allows us to embed the Conway group

Co0 = Aut(Λ) in SO(a). Given such a choice let us write G for the corresponding

subgroup of SO(a), isomorphic to Co0. We write g 7→ χg for the character of the

corresponding representation of G.

χg := tra g (3.14)

Given a subgroup H < SO(a), we say that Ĥ < Spin(a) is a lift of H if the

natural map Spin(a) → SO(a) restricts to an isomorphism Ĥ
∼−→ H .

PROPOSITION 3.1. Let G < SO(a), and suppose that G is isomorphic to Co0.

Then there is a unique lift of G to Spin(a).
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Proof. Since the Schur multiplier of Co0 is trivial (see [21]), the preimage of G

under the natural map Spin(a) → SO(a) contains a copy of Co0. So there is at

least one lift. If there are two, Ĝ and Ĝ ′ say, then, given g ∈ G, we write ĝ for the

corresponding element of Ĝ, and interpret ĝ ′ similarly, so that ĝ(·) = ĝ ′(·) = g.

Now ĝ ′ = ±ĝ as elements of Spin(a), so Ĝ ∩ Ĝ ′ is a normal subgroup of Ĝ

(and of Ĝ ′) containing all of its elements of odd order. The only proper nontrivial

normal subgroup of Co0 its centre, which has order two, so Ĝ ∩ Ĝ ′ = Ĝ. That is,

Ĝ = Ĝ ′, as we required.

Given G < SO(a), isomorphic to Co0, we write Ĝ for the unique lift of G to

Spin(a) whose existence, and uniqueness, is guaranteed by Proposition 3.1. Then

Ĝ is a copy of the Conway group acting naturally on A(a) and A(a)tw. We write

G
∼−→ Ĝ

g 7→ ĝ
(3.15)

for the inverse of the isomorphism Ĝ
∼−→ G obtained by restricting the natural

map Spin(a) → SO(a).

Observe that the action of Ĝ ≃ Co0 on A(a)tw depends upon the choice of

polarization a = a
− ⊕ a

+ used to define A(a)tw, for the central element of Ĝ will

be z or −z, depending upon this choice, where z denotes the lift of − Ida ∈ SO(a)

to Spin(a) associated to the chosen polarization (see Section 3.1). We may assume

that z ∈ Ĝ, so long as we allow ourselves the ability to modify the polarization

slightly, replacing a±
j with a∓

j for some j , for example, given basis vectors a±
i ∈

a
± satisfying 〈a−

i , a+
j 〉 = δi, j . (See (3.8).)

In practice we will take a
± to be the span of isotropic eigenvectors a±

i for the

action of some g ∈ G on a, satisfying 〈a−
i , a+

j 〉 = δi, j . Since these conditions

still hold after swapping a−
j with a+

j for some j , we may apply the following

convention with no loss of generality: given a choice of identification a = Λ⊗ZC,

with G the corresponding copy of Co0 in SO(a), and Ĝ the unique lift of G

to Spin(a), we assume that any polarization a = a
− ⊕ a

+ is chosen so that the

associated lift z of − Ida belongs to Ĝ.

4. Moonshine

This section contains the main results of the paper. In Section 4.1 we describe

the construction of a distinguished super vertex operator algebra V s♮, and its

unique canonically twisted module V
s♮

tw . We equip both V s♮ and V
s♮

tw with actions

by the Conway group Co0. We establish a characterization of the super vertex

operator algebra structure on V s♮ in Section 4.2. In Section 4.3 we compute the
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graded traces attached to elements of Co0 via its actions on V s♮ and V
s♮

tw . We

identify these functions as normalized principal moduli in the case of V s♮, and as

constant or principal moduli in the case of V
s♮

tw , according as there are fixed points

or not in the corresponding action on the Leech lattice.

4.1. Construction. From now on we take a to be 24-dimensional. Given a

polarization a = a
−⊕a

+, we let z be the associated lift of − Ida, so that zvtw = vtw

(see (3.9)). We write A(a)tw = A(a)0
tw ⊕ A(a)1

tw for the decomposition of A(a)tw

into eigenspaces for z (see (3.10)).

Because it is the even part of a super vertex algebra, A(a)0 is itself a vertex

algebra, and A(a)tw is an (untwisted) A(a)0-module. The decomposition A(a)tw =
A(a)0

tw ⊕ A(a)1
tw is a decomposition into submodules for A(a)0.

Consider the A(a)0-modules V s♮ and V
s♮

tw defined by setting

V s♮ = A(a)0 ⊕ A(a)1
tw, V

s♮
tw = A(a)1 ⊕ A(a)0

tw. (4.1)

PROPOSITION 4.1. The A(a)0-module structure on V s♮ extends uniquely to a

super vertex operator algebra structure on V s♮, and the A(a)0-module structure

on V
s♮

tw extends uniquely to a canonically twisted V s♮-module structure.

Proof. We proceed along similar lines to the proof of Proposition 4.1 in [36].

Given a choice of polarization a = a
− ⊕ a

+, the boson–fermion correspondence

[45] defines an isomorphism of vertex operator algebras A(a)0 ∼−→ VL , according

to [32], where VL is the lattice vertex operator algebra attached to

L =
{
(ni) ∈ Z12

∣∣∣
∑

ni = 0 (mod 2)

}
, (4.2)

being a copy of the root lattice of type D12. It also extends to compatible

isomorphisms of vertex operator algebra modules

A(a)1 ∼−→ VL+λv
, A(a)0

tw

∼−→ VL+λs
, A(a)1

tw

∼−→ VL+λc
, (4.3)

where the λx are representatives for the nontrivial cosets of L in its dual,

L∗ = 1

2
Z12,

λv = (1, 0, . . . , 0), λs = 1

2
(1, 1, . . . , 1), λc = 1

2
(−1, 1, . . . , 1). (4.4)

The irreducible modules for a lattice vertex operator algebra are known [26]

to be in correspondence with the cosets of the lattice in its dual – that is, the

discriminant group of the lattice, L∗/L – and the associated fusion algebra is
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naturally isomorphic to the group algebra C[L∗/L]. (These facts are explained in

detail in [27].)

From this we deduce that V s♮ is isomorphic to VL+ as a VL-module, where

L+ = L ∪ (L + λc). Note that L+ is a self-dual integral lattice in the particular

case at hand. (In fact, L+ is the unique self-dual positive-definite integral lattice

of rank 12 with no vectors of length 1, sometimes denoted D+
12.) So the super

vertex operator algebra structure on VL+ , which uniquely extends the VL-module

structure according to the structure of the fusion algebra of VL , furnishes the

claimed super vertex operator algebra structure on V s♮, and V s♮ is self-dual.

By inspection we see that the canonical automorphism of VL+ – arising from

the super structure – coincides with that attached to the vector λv ∈ 1

2
VL+ , since

e2π i〈λv ,λ〉 is 1 or −1 according as λ ∈ L+ belongs to L or L+λc. This shows that the

coset module VL++λv
= VL+λv

⊕VL+λs
is the unique irreducible canonically twisted

module for VL+ , so V
s♮

tw is the unique irreducible canonically twisted module for

V s♮, according to (4.3). This completes the proof.

We now equip V s♮ and V
s♮

tw with module structures for the Conway group, Co0.

As detailed in Section 3.1, the spin group Spin(a) acts naturally on A(a) j and

A(a)
j
tw, so it acts naturally on V s♮ and V

s♮
tw . This action respects the super vertex

algebra and canonically twisted module structures defined in Proposition 4.1, in

the sense that (3.7) holds for x ∈ Spin(a), a, b ∈ V s♮, and c ∈ V
s♮

tw .

Recalling the setup of Section 3.2, we now assume to be chosen an

identification a = Λ ⊗Z C, and write G for the corresponding copy of Co0 =
Aut(Λ) in SO(a), isomorphic to Co0. We take Ĝ to be the lift of G to Spin(a)

(see Proposition 3.1), so that the restriction of the natural map Spin(a) → SO(a)

defines an isomorphism Ĝ
∼−→ G. We write g 7→ ĝ for the inverse isomorphism,

and in this way we obtain actions of the Conway group Ĝ ≃ Co0 on V s♮ and V
s♮

tw .

Note that the actions on V s♮ and V
s♮

tw depend upon the choice of polarization

a = a
− ⊕ a

+. We assume, according to the convention established in Section 3.2,

that the polarization is chosen so that the associated lift z ∈ Spin(a) of − Ida ∈
SO(a) is the nontrivial central element of Ĝ.

z ∈ Z(Ĝ). (4.5)

With this convention both V s♮ and V
s♮

tw are faithful modules for Ĝ.

If z /∈ Z(Ĝ) then we would have −z ∈ Z(Ĝ), and −z acts trivially on both

A(a)0 and A(a)1
tw (see Section 3.1). Thus for −z ∈ Z(Ĝ) the Ĝ-module structure

on V s♮ would factor through to Ĝ/Z(Ĝ), being a copy of the simple group Co1

(see Section 3.2).

Actually, such an action, not faithful for Ĝ, is useful for us, and it arises

naturally when we consider the spaces V f ♮ and V
f ♮

tw , closely related to V s♮
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and V
s♮

tw , defined by setting

V f ♮ = A(a)0 ⊕ A(a)0
tw, V

f ♮
tw = A(a)1 ⊕ A(a)1

tw. (4.6)

Making obvious changes to the proof of Proposition 4.1 (that is, swapping A(a)1
tw

with A(a)0
tw, and λc with λs , etc.,), we obtain the following direct analogue of that

result.

PROPOSITION 4.2. The A(a)0-module structure on V f ♮ extends uniquely to a

super vertex operator algebra structure on V f ♮, and the A(a)0-module structure

on V
f ♮

tw extends uniquely to a canonically twisted V f ♮-module structure.

Actually, V f ♮ is isomorphic to V s♮ as a super vertex operator algebra, since the

proof of Proposition 4.1 shows that both are isomorphic to the lattice super vertex

operator algebra attached to D+
12, being the unique self-dual positive-definite

integral lattice of rank 12 with no vectors of length 1.

The group Ĝ acts naturally on V f ♮ and V
f ♮

tw via the natural actions of Spin(a),

and it is as Ĝ-modules that the difference between V s♮ and V f ♮ manifests: the

centre of Ĝ acts trivially on the latter, according to our convention (4.5).

To aid the reader in comparing the results here with those of [36], we mention

that the N = 1 super vertex operator algebra C A f ♮ studied there is isomorphic to

V s♮ ≃ V f ♮ as a super vertex operator algebra. The main results of [36] include the

statement that the full automorphism group (fixing the N = 1 element) of C A f ♮

is a copy of the sporadic simple Conway group Co1. So as Co0-modules we have

C A f ♮ ≃ V f ♮, but C A f ♮ 6≃ V s♮. A faithful Co0-module structure on the super vertex

operator algebra underlying C A f ♮ is mentioned in Remark 4.12 of [36].

Following the method of [48] we may describe the super vertex operator algebra

structure on V s♮ ≃ V f ♮ quite explicitly. For the sake of later applications we now

present details for the realization V f ♮.

So, we seek to describe the vertex operator correspondence on V f ♮ explicitly

(see (2.1)). According to the vertex algebra axioms we may regard this

correspondence as a linear map V f ♮ ⊗ V f ♮ → V f ♮((z)), denoted a ⊗ b 7→ Y (a,

z)b, whose restriction to A(a)0 ⊗ V f ♮ is already defined by the A(a)0-module

structure on V f ♮ = A(a)0 ⊕ A(a)0
tw. According to the fusion rules described in

the proof of Proposition 4.1, we require to specify linear maps

A(a)0
tw ⊗ A(a)0 → A(a)0

tw((z)), (4.7)

A(a)0
tw ⊗ A(a)0

tw → A(a)0((z)). (4.8)

For (4.7) we apply the fact that a vertex operator correspondence should satisfy

skew symmetry (see [48]) to conclude that

Y (a, z)b = ezL(−1)Y (b, −z)a (4.9)
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for a ∈ A(a)0
tw and b ∈ A(a)0. The right-hand side of (4.9) is already defined, by

the A(a)0-module structure on V f ♮, so we may regard it as defining the left-hand

side.

For (4.8) we use the nondegenerate bilinear forms on A(a) and A(a)tw

(see (2.20) and (2.29)) to define Y (a, z)b for a, b ∈ A(a)0
tw by requiring that

〈Y (a, z)b, c〉 = (−1)n〈ez−1 L(1)b, Y (c, −z−1)ezL(1)a〉twz1−2n (4.10)

for all c ∈ A(a)0 when a ∈ (A(a)0
tw)n−1/2 (see (2.11)).

The identity (4.10) ensures that the bilinear form on V f ♮, obtained by restricting

those on A(a) and A(a)tw, is invariant (see (2.10)) for the given super vertex

operator algebra structure. According to Theorem 2.1, an invariant bilinear form

on V f ♮ is uniquely determined, up to scale. Thus we arrive at the following result.

PROPOSITION 4.3. The super vertex operator algebra V f ♮ admits a unique

invariant bilinear form such that 〈v, v〉 = 1. It coincides with the bilinear form

obtained by restriction from those defined above for A(a) and A(a)tw.

In [36] it is shown that the super vertex operator algebra V s♮ ≃ V f ♮ admits an

N = 1 structure, with automorphism group isomorphic to Co1. Our next result is a

kind of converse to that, showing how to recover a Co1-invariant N = 1 structure

from an action by automorphisms of Co1 on V f ♮.

PROPOSITION 4.4. Suppose to be given a nontrivial map Co1 → Aut(V f ♮).

Then the resulting action of the simple Conway group Co1 on V f ♮ fixes a unique

one-dimensional subspace of (V f ♮)3/2. A suitably scaled vector in this subspace

defines an N = 1 structure on V f ♮.

Proof. The content of Proposition 4.6 in [36] is that the full group of super vertex

operator algebra automorphisms of V f ♮ is Spin(a)/〈z〉. So a nontrivial action of

Co1 on V f ♮ by automorphisms realizes Co1 as a subgroup of Spin(a)/〈z〉. We

write Ĝ for the preimage of this copy of Co1 in Spin(a). Then either Ĝ ≃ 2×Co1,

or Ĝ is isomorphic to the Conway group Co0, since these are the only 2-fold

covers of Co1. In either case 〈z〉 is the only normal subgroup of order 2 in Ĝ, so Ĝ

has trivial intersection with the kernel of the natural map Spin(a) → SO(a). We

conclude that Ĝ ≃ 2×Co1 is impossible, for otherwise the map Spin(a) → SO(a)

would furnish a nontrivial representation of Co1 on a, and the minimal dimension

of a nontrivial representation for Co1 is 276 according to [21]. So Ĝ ≃ Co0.

Write G for the image of Ĝ in SO(a). Then G is a copy of Co0 in SO(a) and Ĝ

is a lift of G to Spin(a) such that z ∈ Z(Ĝ). The group G must preserve a copy

Λ of the Leech lattice in a, so we are in the setup of Section 3.2, and our notation

Ĝ, G, etc., is consistent with the conventions established there.
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Now let S = {λi}i∈Ω be a coordinate frame for Λ ⊂ a (see Section 3.2), and let

E = ES be the subgroup of G consisting of elements which act by sign changes

on the λi . Let G be the corresponding copy of the Golay code in P(Ω). We will

use E to construct the desired N = 1 element in (A(a)tw)0
3/2.

As explained in Section 2.3 we may use the isomorphism a
∼−→ a(0) to

identify Cliff(a) as a subalgebra of Cliff(âtw). In this way we may regard A(a)tw

as a Cliff(a)-module, and we may identify (A(a)tw)3/2 = CM as the Cliff(a)-

submodule of A(a)tw generated by vtw.

Define an idempotent element t ∈ Cliff(a) by setting

t = 1

4096

∑

g∈E

ĝ, (4.11)

where g 7→ ĝ denotes the inverse of the natural isomorphism Ĝ → G. Then t

is not in the subalgebra of Cliff(a) < Cliff(âtw) generated by a
+, since the only

idempotent in B+ (see Section 2.3) is 1. So tvtw 6= 0, and

(A(a)tw)3/2 = CM = Cliff(a)tvtw = {xtvtw | x ∈ Cliff(a)}, (4.12)

since CM is an irreducible Cliff(a)-module.

Now choose an ordering on the index set Ω , let ei = 1√
8
λi for i ∈ Ω , and, given

a subset C = {i1, . . . , ik} ⊂ Ω , with i1 < · · · < ik , define an element eC ∈ Cliff(a)

by setting eC = ei1
ei2

· · · eik
. Then, taking e∅ = 1, the set {eC | C ⊂ Ω} furnishes a

vector space basis for Cliff(â), so CM is spanned by the vectors eC tvtw for C ⊂ Ω .

Also, eC eD = ±eC+D (where the + in the subscript on the right-hand side denotes

the symmetric difference operation on P(Ω)).

Observe that eC t = ±eDt whenever C and D are equivalent modulo G, since in

that case one of eC+D or −eC+D belongs to Ê = {ĝ | g ∈ E}. So if T is a set of

representatives for the cosets of G in P(Ω) then CM is spanned by the eC tvtw for

C ∈ T . Since the Golay code is self-dual, T has cardinality 212, which is also the

dimension of CM, so the eC tvtw for C ∈ T must in fact furnish a basis for CM.

We claim that tvtw is Ĝ-invariant. Certainly it is Ê-invariant. Using the fact that

the eC tvtw for C ∈ T form a basis for CM, we see that tvtw is actually the only Ê-

invariant vector in CM, because the space spanned by eC tvtw is a one-dimensional

representation of Ê with character given by χ(ĝ) = (−1)#(C∩D) in the case when

g = g(D). Since the Golay code is self-dual, we only have #(C∩D) = 0 (mod 2)

for all D ∈ G when C + G = G.

Consider the action of Ĝ on CM0. The central element of Ĝ is z, which acts

trivially on CM0, so CM0 is a direct sum of irreducible modules for Ĝ/〈z〉 ≃
Co1. We have dim CM0 = 2048, so only irreducible representations of Co1 with

dimension not exceeding 2048 can arise. According to [21] there are exactly four
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irreducible representations, up to equivalence, that can appear, and they are each

determined by their dimension: 1, 276, 299, or 1771. The equation 2048 = 276a+
299b + 1771c has no nonnegative integer solutions, so there must be at least one

nonzero Ĝ-fixed vector in CM0. Such a vector must also be fixed by Ê , and we

have seen that tvtw is the only possibility, so tvtw is fixed by Ĝ, as was claimed.

It follows that the decomposition of CM0 into irreducible representations for

Co1 is given by 2048 = 1 + 276 + 1771, with the one-dimensional representation

spanned by tvtw. From this we may conclude that tvtw is not isotropic with

respect to the invariant bilinear form 〈· , ·〉 on V f ♮. (See Proposition 4.3.) For

the restriction of 〈· , ·〉 to CM0 = (A(a)tw)3/2 is Spin(a)-invariant, and hence

also Ĝ-invariant, and so the above decomposition implies that a Ĝ-invariant map

f : CM0 → C that vanishes on tvtw vanishes everywhere. Take f (v) = 〈v,

tvtw〉 for v ∈ CM0 to conclude that, if tvtw is isotropic, then 〈v, tvtw〉 = 0 for

all v ∈ CM0, but this contradicts the nondegeneracy of 〈· , ·〉tw on A(a)tw, which

can be easily checked from the defining identities, (2.28) and (2.29).

Now choose α ∈ C such that τ = αtvtw satisfies 〈τ, τ 〉 = 8. Observe that 〈eCτ,

τ 〉 = 0 whenever C ⊂ {1, . . . , 24} has cardinality two or four. We conclude from

Proposition 4.3 of [36] that τ is an N = 1 element for V f ♮. This completes the

proof.

4.2. Characterization. In this short section we establish a characterization of

the super vertex operator algebra structure on V s♮. This is a strengthening of the

main theorem of Section 5.1 in [36], for we arrive at the same conclusion without

the hypothesis of an N = 1 structure.

Recall that a super vertex operator algebra V is said to be C2-cofinite if the

subspace {a(−2)b | a, b ∈ V } < V has finite codimension in V . Following [31],

we say that a super vertex operator algebra V = (V, Y, v, ω) is of CFT type if the

L(0)-grading V =
⊕

n∈ 1
2
Z

Vn is bounded from below by 0, and if V0 is spanned

by the vacuum vector v. Note that a super vertex operator algebra (in the sense of

Section 2.1) that is C2-cofinite and of CFT type is nice in the sense of [66].

THEOREM 4.5. There is a unique up to isomorphism C2-cofinite rational super

vertex operator algebra of CFT type V s♮ such that

• the central charge of V s♮ is 12;

• V s♮ is self-dual; and

• deg(v) 6= 1

2
for any nonzero v ∈ V s♮.

Proof. We first show that V admits a unique invariant bilinear form. Since V

is self-dual, the contragredient module V ′ is isomorphic to V , so there exists
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a V -module isomorphism φ : V → V ′. As explained in Section 2.2, this

determines a nondegenerate invariant bilinear form 〈· , ·〉 on V . Now let a ∈ V1.

We claim that L(1)a = 0. In any case, L(1)a ∈ V0, so L(1)a = Cv for

some C ∈ C, since V is of CFT type. Thus we have Y †(a, z) = (−1)Y (a,

z−1)z−2 + (−C) IdV z−1. (See (2.11).) Applying axiom (2) from the super vertex

algebra definition in Section 2.1, we see that 〈Y (a, z)v, v〉 = 0, since a(−n−1)v ∈
Vn+1, and 〈Vm, Vn〉 = 0 unless m = n (see Section 2.2). On the other hand, 〈Y (a,

z)v, v〉 = 〈v, Y †(a, z)v〉 by invariance, so

0 = 〈v, Y †(a, z)v〉 = (−1)〈v, Y (a, z−1)v〉z−2 + (−C)〈v, v〉z−1. (4.13)

Now the coefficient of z−1 in Y (a, z−1)vz−2 is a(0)v, which vanishes by another

application of axiom (2). Since 〈· , ·〉 is nondegenerate, and V0 is spanned by v,

we must have 〈v, v〉 6= 0. So we must have C = 0. This verifies our claim that

L(1)V1 ⊂ {0}. Now we apply Theorem 2.1 to conclude that the invariant bilinear

form 〈· , ·〉 just constructed is in fact the unique invariant bilinear form on V .

Since V1 is in the kernel of L(1), we may conclude that the even sub vertex

operator algebra V0̄ is strongly rational in the sense of Section 3 of [33]. This

allows us to apply Theorem 1 of [33], which tells us that the Lie algebra structure

on V1, obtained by setting [a, b] := a(0)b for a, b ∈ V1, is reductive. The argument

used to prove Theorem 2 of [33] – see the proof of Theorem 5.12 in [36] for

details – then shows that the Lie rank of V1 is bounded above by the central charge

of V . Applying Proposition 5.14 in [36], we conclude that V1 is a semisimple Lie

algebra of dimension 276, with Lie rank bounded above by 12.

At this point our argument has converged with that used to establish

Theorem 5.15 in [36]. Picking up at the second paragraph of the proof of

Theorem 5.15 in [36], we see that an application of the main result of [34]

shows that V1 is the simple complex Lie algebra of type D12, and that the vertex

operators on V equip V with a module structure of level 1 for the affine Lie

algebra of type D
(1)

12 . So V0̄ is isomorphic to the lattice vertex operator algebra

attached to the D12 lattice. Proceeding as in the proof of Proposition 4.1, we see

that V itself is isomorphic to a lattice super vertex operator algebra, and the lattice

must be that obtained by adjoining some λx say, of (4.4), to V . Since V1/2 = {0},
either λx = λs or λx = λc, but both choices define isomorphic lattices, and hence

isomorphic super vertex operator algebras. This completes the proof.

4.3. Principal moduli. The spin group Spin(a) acts naturally on V s♮ and V
s♮

tw ,

respecting the super vertex algebra and canonically twisted module structures, in

the sense that (3.7) holds for x ∈ Spin(a), a, b ∈ V s♮, and c ∈ V
s♮

tw . In particular,

the Spin(a)-actions preserve the gradings defined by L(0). We may compute the

associated graded traces explicitly, and will do so shortly (see Lemma 4.6).
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Since V s♮ and V
s♮

tw are super spaces, it is natural to consider graded super traces.

Recall that the super trace of a parity-preserving operator X on a super vector

space V = V0̄ ⊕ V1̄ is defined by setting

strV X := trV0̄
X − trV1̄

X. (4.14)

(By parity preserving we just mean X (V j̄) ⊂ V j̄ .)

Observe that the super space gradings on A(a) and A(a)tw are given by the

eigenspace decompositions for z, so we have

strA(a) Xq L(0)−c/24 = trA(a) zXq L(0)−c/24, (4.15)

strA(a)tw
Xq L(0)−c/24 = trA(a)tw

zXq L(0)−c/24, (4.16)

for X an operator on A(a), A(a)tw, that commutes with L(0) and z.

Given g ∈ SO(a), define ηg(τ ) by setting

ηg(τ ) := q

24∏

i=1

∏

n>0

(1 − εi q
n), (4.17)

where q = e2π iτ and the εi are the eigenvalues for the action of g on a. Given

x ∈ Spin(a), write Cx for the super trace of x (that is, the ordinary trace of zx) as

an operator on CM.

Cx := strCM x = trCM zx . (4.18)

A simple calculation now reveals that the graded super traces of x ∈ Spin(a)

on A(a) and A(a)tw are given by

strA(a) xq L(0)−c/24 = ηx(τ/2)

ηx(τ )
, (4.19)

strA(a)tw
xq L(0)−c/24 = Cxηx(τ ), (4.20)

where x is a shorthand for x(·), being the image of x in SO(a). Note that c = 12

since dim a = 24. (See (2.19).)

This leads us quickly to expressions for the graded super traces of an arbitrary

x ∈ Spin(a) on V s♮ and V
s♮

tw , which we record in the following lemma.

LEMMA 4.6. For x ∈ Spin(a), the graded super traces for the actions of x on V s♮

and V
s♮

tw are given by

strV s♮ xq L(0)−c/24 = 1

2

(
ηx(τ/2)

ηx(τ )
+ η−x(τ/2)

η−x(τ )
+ Cxηx(τ ) − Czxη−x(τ )

)
, (4.21)

str
V

s♮
tw

xq L(0)−c/24 = 1

2

(
ηx(τ/2)

ηx(τ )
− η−x(τ/2)

η−x(τ )
+ Cxηx(τ ) + Czxη−x(τ )

)
. (4.22)
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The construction of Section 4.1 equips V s♮ and V
s♮

tw with actions by a group

Ĝ < Spin(a) isomorphic to the Conway group, Co0. We recall our convention

(see Section 3.2) that any polarization a = a
− ⊕ a

+ used to realize V s♮ and V
s♮

tw is

chosen so that the associated lift z of −1 (see Section 3.1) belongs to Ĝ.

Lemma 4.6 now attaches two holomorphic functions on the upper half-plane

to each conjugacy class [g] ⊂ Co0, namely, the super traces defined by (4.21)

and (4.22).

T s
g (τ ) := strV s♮ ĝq L(0)−c/24 (4.23)

T s
g,tw(τ ) := str

V
s♮
tw

ĝq L(0)−c/24. (4.24)

These functions T s
g and T s

g,tw are special. In order to demonstrate this we first

recall the following result due to Conway and Norton, and to Queen.

THEOREM 4.7 [19, 91]. For any g ∈ Co0, regarded as a subgroup of SO(a), the

function

tg(τ ) := ηg(τ )

ηg(2τ)
(4.25)

is a principal modulus for a genus-zero group Γg < SL2(R) containing some

Γ0(N ).

We recall that a subgroup Γ < SL2(R) commensurable with SL2(Z) is said to

have genus zero if the natural Riemann surface structure on the quotient Γ \H∪ Q̂

has genus zero, where Q̂ = Q ∪ {∞}. If Γ has genus zero then the field of Γ -

invariant meromorphic functions on H, with possible poles at the cusps Γ \Q̂, is

a simple transcendental extension of C. A generator is called a principal modulus

for Γ . (The term Hauptmodul is also commonly used for this.)

Note that a complete description of the invariance groups of the tg appears

in [74]. The reader may see also the tables in Appendix A.

Comparing with (4.19), we see that the principal moduli tg of Conway and

Norton and of Queen are recovered in a simple way from the action of Ĝ on

A(a). Namely,

tg(τ ) = strA(a) ĝq2L(0)−c/12 = trA(a) zĝq2L(0)−c/12 (4.26)

for g ∈ Ĝ ≃ Co0. So the trace functions obtained from the action of Co0 on A(a)

are principal moduli, according to Theorem 4.7.

We will show that the functions T s
g , defined in (4.21) by the action of Co0 on the

super vertex operator algebra V s♮, are also principal moduli for all g ∈ Ĝ ≃ Co0,

but are distinguished in that they also satisfy the normalization condition

T s
g (2τ) = q−1 + O(q). (4.27)
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Note that this condition does not hold in general for tg, for we have tg(τ ) =
q−1 − χg + O(q), where χg denotes the character of G ≃ Co0 defined by its

action on a = Λ ⊗Z C (see (3.14)). The discrete subgroups of SL2(R) attached to

Co0 via the T s
g are essentially the same as those arising from the tg of Conway and

Norton, and of Queen: it will develop that T s
g (2τ) = tg(τ ) + χg for all g ∈ Co0.

(See Theorem 4.9.)

For explicit computations with T s
g and T s

g,tw, the notion of Frame shape is

useful. Since G ≃ Co0 is the automorphism group of an integral lattice in a

(see Section 3.2), the traces χg for g ∈ G are all integers. So the characteristic

polynomial for the action of g ∈ G on a can be written in the form
∏

m>0(1−xm)km

for some nonnegative integers km (all but finitely many being zero). In this

situation then we find ηg(τ ) =
∏

m>0 η(mτ)km upon comparing with (4.17).

The formal product

πg :=
∏

m>0

mkm (4.28)

is called the Frame shape of g. We may define ηπ (τ ) for an arbitrary formal

product π =
∏

m>0 mkm (with all but finitely many km equal to zero) by setting

ηπ (τ ) :=
∏

m>0

η(mτ)km . (4.29)

Of course then ηg = ηπg
for g ∈ G.

Thus T s
g and T s

g,tw can be expressed explicitly in terms of the data π±g and C±̂g.

(Note that −̂g = zĝ.) This data is collected in the tables of Appendix A for all

g ∈ Co0. Note that the trace of g as an operator on a can also be read off from the

Frame shape of g, for if πg =
∏

m>0 mkm then χg = k1.

The values Cĝ are determined up to a sign by the eigenvalues of g. Indeed,

suppose that g ∈ G ≃ Co0 and assume, as in the discussion immediately following

Lemma 4.6, that a = a
− ⊕ a

+ is a polarization such that a
± is spanned by

(isotropic) eigenvectors a±
i for g, constituting a pair of dual bases in the sense that

〈a−
i , a+

j 〉 = δi, j . Assume also, as usual, that the associated lift z of − Ida belongs to

our chosen copy Ĝ of Co0 in Spin(a). Write λ±1
i for the eigenvalue of g attached

to a±
i . Then, after choosing αi ∈ 2πQ such that λ±1

i = e±2αi i, we see that the

product x =
∏12

i=1 eαi X i is a lift of g to Spin(a), where the X i ∈ g < Cliff(a) are

defined as in (3.8). Setting νi = eαi i, we obtain that the trace of x on CM is given

by
∏12

i=1(νi + ν−1
i ), or, equivalently, by ν

∏12

i=1(1 +λ−1
i ),where ν =

∏12

i=1 νi is one

of the two square roots of
∏12

i=1 λi .

We conclude from this that Cĝ is given by

Cĝ = ν

12∏

i=1

(1 − λ−1
i ) (4.30)
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(see (4.18)), where ν is one of the two square roots of
∏12

i=1 λi . In particular,

Cĝ = 0 if and only if g has a fixed point in a.

Our proof that the T s
g are normalized principal moduli depends upon the

following lemma.

LEMMA 4.8. For g ∈ G ≃ Co0 we have

2χg − η−g(τ/2)

η−g(τ )
+ ηg(τ/2)

ηg(τ )
+ C−̂gη−g(τ ) − Cĝηg(τ ) = 0. (4.31)

Proof. Rewrite the required identity (4.31) in the form

1

2

(
η−g(τ/2)

η−g(τ )
− ηg(τ/2)

ηg(τ )

)
= χg + 1

2
(C−̂gη−g(τ ) − Cĝηg(τ )). (4.32)

Then, noting the identities (4.19) and (4.20), we recognize the left-hand side of

(4.32) as trA(a)1 ĝq L(0)−c/24, and the right-hand side as χg + trA(a)1
tw

ĝq L(0)−c/24. We

now modify slightly the notational convention (2.5) to write

A(a)1 =
⊕

n∈Z
(A(a)1)n (4.33)

for the grading of A(a)1 arising from the action of L(0) − 1

2
Id, and similarly

for A(a)1
tw. Observe that both gradings are concentrated in nonnegative degrees,

positive in the case of A(a)1
tw. Also, (A(a)1)0 is isomorphic to a as a Ĝ-module,

by construction. So we require to show that (A(a)1)n ≃ (A(a)1
tw)n as Ĝ-modules,

for each positive integer n.

Recall (see Proposition 4.2) that V
f ♮

tw = A(a)1 ⊕ A(a)1
tw may be regarded as the

unique canonically twisted module for V f ♮ = A(a)0 ⊕ A(a)0
tw. Recall also (see

Proposition 4.4) that there is a uniquely determined Ĝ-invariant N = 1 element

τ ∈ V f ♮. Then the Fourier components of the twisted vertex operator Ytw(τ, z) :
V

f ♮
tw → V

f ♮
tw ((z)) define an action of the Ramond algebra (see Section 2.1) on

V
f ♮

tw . The defining relations show that G(0) := τ(1/2) commutes with L(0), and

therefore preserves the subspaces (A(a)1)n ⊕ (A(a)1
tw)n < V

f ♮
tw . According to the

fusion rules described in the proof of Proposition 4.1, the restriction of G(0) to

A(a)1 must map to A(a)1
tw (and vice versa). Now G(0)2 = L(0) − 1

2
Id, so G(0)

defines an injective map (A(a)1)n → (A(a)1
tw)n for all positive integers n. Since τ

is Ĝ-invariant, these maps (A(a)1)n → (A(a)1
tw)n are embeddings of Ĝ-modules.

The lemma follows then if we can verify that (A(a)1)n and (A(a)1
tw)n have the

same dimension, for all n > 0. That is, we should verify the g = e case of (4.32),

which is the identity

1

2

(
∆(τ)2

∆(2τ)∆(τ/2)
− ∆(τ/2)

∆(τ)

)
= 24 + 211 ∆(2τ)

∆(τ)
, (4.34)
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where ∆(τ) = η(τ)24 is the Ramanujan Delta function. This can be checked in a

number of ways. For example, f (τ ) = ∆(2τ)/∆(τ) is a Γ0(2)-invariant function,

so the same is true of

(T2 f )(τ ) := 1

2

(
f
(τ

2

)
+ f

(
τ + 1

2

))
. (4.35)

(See [73, Section IX.6].) Now f is actually a principal modulus for Γ0(2), with a

simple pole at the unique noninfinite cusp, so T2 f has a pole of order at most 2 at

the noninfinite cusp of Γ0(2), and no other poles. So T2 f is a polynomial in f , of

degree at most 2; that is,

T2 f = a f 2 + b f + c (4.36)

for some a, b, and c. Inspecting the first four coefficients of f , we see that a =
2048 = 211, b = 24, and c = 0. Observing that f ((τ + 1)/2) = − f (τ )/ f (τ/2),

we now obtain

1

2

(
f
(τ

2

)
− f (τ )

f ( τ

2
)

)
= 24 f (τ ) + 211 f (τ )2 (4.37)

from (4.36), and (4.34) follows upon division of (4.37) by f (τ ). The proof of the

lemma is complete.

We now come to the main results of this paper.

THEOREM 4.9. Let g ∈ Co0. Then T s
g is the normalized principal modulus for a

genus-zero subgroup of SL2(R).

THEOREM 4.10. Let g ∈ Co0. Then T s
g,tw is constant, with constant value −χg,

when g has a fixed point in its action on the Leech lattice. If g has no fixed points

then T s
g,tw is a principal modulus for a genus-zero subgroup of SL2(R).

It is convenient to prove Theorems 4.9 and 4.10 together.

Proof of Theorems 4.9 and 4.10. With Ĝ a lift of G ≃ Co0 to Spin(a) as before,

define

t̃g(τ ) := tg(τ/2) = strA(a) ĝq L(0)−c/24 (4.38)

for g ∈ G (see (4.25) and (4.26)), and define also the twisted analogues,

t̃g,tw(τ ) := strA(a)tw
ĝq L(0)−c/24. (4.39)

Then t̃g,tw(τ ) = Cĝηg(τ ) according to (4.20), and so t̃g,tw vanishes identically if

and only if g has a fixed point for its action on a = Λ ⊗Z C according to (4.30).
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Using (4.21) and (4.22), we may now write

T s
g = 1

2
(t̃g + t̃−g + t̃g,tw − t̃−g,tw), (4.40)

T s
g,tw = 1

2
(t̃g − t̃−g + t̃g,tw + t̃−g,tw), (4.41)

and the identity (4.31) may be rewritten as χg + 1

2
(t̃g − t̃−g − t̃g,tw + t̃−g,tw) = 0.

So, applying (4.31) to (4.40) and (4.41), we obtain

T s
g = t̃g + χg, (4.42)

T s
g,tw = t̃g,tw − χg. (4.43)

Since tg = q−1 − χg + O(q) by inspection, (4.42) verifies that T s
g (2τ) = q−1 +

O(q) for g ∈ G, and so T s
g (2τ) is a normalized principal modulus according to

Theorem 4.7. This proves Theorem 4.9.

Equation (4.43) verifies that T s
g,tw is constant, with constant value −χg, when g

has a fixed point for its action on the Leech lattice according to the first paragraph

of this proof, so it remains to understand T s
g,tw in the case that g has no fixed

points.

Observe that Cĝ/t̃g,tw = 1/ηg. If g has no fixed points then the Frame shape

πg =
∏

m>0 mkm satisfies
∑

m>0 km = 0, so 1/ηg is a modular function for some

congruence subgroup of SL2(Z). In fact, it has been verified in [19] that 1/ηg is, up

to an additive constant, the McKay–Thompson series of an element of the monster

group, for every such g in the Conway group. So T s
g,tw = −χg + Cĝηg is indeed a

principal modulus for a genus-zero subgroup of SL2(R), whenever g has no fixed

points in Λ. The monster elements corresponding to elements g ∈ Co0 without

fixed points may be read off from Table A.2 in Appendix A. This completes the

proof of Theorem 4.10.
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Appendix A. Data

In Tables A.1 and A.2, we give all the data necessary for explicit computation

of the McKay–Thompson series T s
g (see (4.23)) and T s

g,tw (see (4.24)), attached to

the Conway group Co0 in this paper.
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Table A.1. Data for the T s
g .

Co0 Co1 πg C−̂g Γg

1A 1A 124 4096 2−
2A 1A 224/124 0 4+
2B 2A 1828 0 4−
2C 2A 216/18 0 4−
4A 2B 412/212 64 8|2+
2D 2C 212 0 4|2−
3A 3A 312/112 1 6 + 6

6A 3A 112612/212312 729 (6 + 6)
△ 1

2

3B 3B 1636 64 6 + 3

6B 3B 2666/1636 0 12+
3C 3C 39/13 −8 6−
6C 3C 1369/2339 0 12 + 4

3D 3D 38 16 6|3
6D 3D 68/38 0 12|3+
4B 4A 1848/28 256 (8+)

△ 1

2

4C 4A 48/18 0 8+
4D 4B 48/24 0 8−
4E 4C 142244 0 8−
4F 4C 2644/14 0 8−
4G 4D 2444 0 8|2−
8A 4E 86/46 8 16|4+
4H 4F 46 0 8|4−
5A 5A 56/16 1 10 + 10

10A 5A 16106/2656 125 (10 + 10)
△ 1

2

5B 5B 1454 16 10 + 5

10B 5B 24104/1454 0 20+
5C 5C 55/11 −4 10−

10C 5C 11105/2155 0 20 + 4

6E 6A 3464/1424 9 12 + 12

6F 6A 1468/2834 81 (12 + 12)
△ 1

2

12A 6B 26126/4666 1 (12|2 + 6)
△ 1

4

6G 6C 253461/14 0 12 + 3 △ 1

2

6H 6C 142165/34 0 12 + 3 △ 1

2

6I 6D 153164/24 72 (12 + 12)
△ 1

2

6J 6D 2165/1531 0 12 + 12
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Table A.1. Continued.

Co0 Co1 πg C−̂g Γg

6K 6E 12223262 0 12 + 3

6L 6E 2464/1232 0 12 + 3

6M 6F 3363/1121 0 12−
6N 6F 1166/2233 0 12−
6O 6G 2363 0 12|2 + 3 △ 1

2

12B 6H 124/64 4 24|6+
6P 6I 64 0 12|6−
7A 7A 74/14 1 14 + 14

14A 7A 14144/2474 49 (14 + 14)
△ 1

2

7B 7B 1373 8 14 + 7

14B 7B 23143/1373 0 28+
8B 8A 84/24 16 16|2+
8C 8B 2484/44 0 (16|2+)

△ 1

4

8D 8C 1484/2242 32 (16+)
△ 1

2

8E 8C 2284/1442 0 16+
8F 8D 84/42 0 16−
8G 8E 12214182 0 16−
8H 8E 234182/12 0 16−
8I 8F 4282 0 16|4−
9A 9A 93/13 1 18 + 18

18A 9A 13183/2393 27 (18 + 18)
△ 1

2

9B 9B 93/31 −2 18−
18B 9B 31183/6193 0 36 + 4

9C 9C 1393/32 4 18 + 9

18C 9C 2332183/136293 0 36+
10D 10A 52102/1222 5 20 + 20

10E 10A 12104/2452 25 (20 + 20)
△ 1

2

20A 10B 23203/43103 −1 (20|2 + 10)
△ 1

4

20B 10C 42202/22102 4 40|2+
10F 10D 2352101/12 0 20 + 5 △ 1

2

10G 10D 1221103/52 0 20 + 5 △ 1

2

10H 10E 1351102/22 20 (20 + 20)
△ 1

2

10I 10E 21103/1351 0 20 + 20
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Table A.1. Continued.

Co0 Co1 πg C−̂g Γg

10J 10F 22102 0 20|2 + 5

11A 11A 12112 4 22 + 11

22A 11A 22222/12112 0 44+
12C 12A 2434124/144464 1 24 + 24, 3 △ 1

2
12▽

12D 12A 14124/3444 9 24 + 8, 3 △ 1

2
12▽

12E 12B 22124/4462 −3 12−
12F 12C 62122/2242 9 24|2 + 12

12G 12D 2133123/114163 4 (24 + 8)
△ 1

2

12H 12D 11123/3341 0 24 + 8

12I 12E 123242122/2262 16 (24+)
△ 1

2

12J 12E 42122/1232 0 24+

24A 12F 43243/83123 −1 (24|4 + 6)
△ 1

8

12K 12G 42122/2161 0 24 + 3 △ 1

2

12L 12H 112231122/42 0 (24|2 + 12)
△ 1

4

12M 12H 2361122/113142 0 (24|2 + 12)
△ 1

4

12N 12I 223241121/12 0 24 + 3 △ 1

2

12O 12I 124162121/32 0 24 + 3 △ 1

2

12P 12J 214161121 0 24|2 + 3

12Q 12K 13123/21314161 12 (24 + 24)
△ 1

2

12R 12K 2231123/134162 0 24 + 24

24B 12L 242/122 2 48|12+
12S 12M 122 0 24|12−
13A 13A 132/12 1 26 + 26

26A 13A 12262/22132 13 (26 + 26)
△ 1

2

28A 14A 22282/42142 1 (28|2 + 14)
△ 1

4

14C 14B 112171141 0 28 + 7

14D 14B 22142/1171 0 28 + 7

15A 15A 13153/3353 1 30 + 6, 10, 15

30A 15A 233353303/1363103153 −1 (30 + 6, 10, 15)
△ 1

2

15B 15B 32152/1252 1 30 + 5, 6, 30

30B 15B 125262302/2232102152 9 (30 + 5, 6, 30)
△ 1

2

15C 15C 152/32 1 30|3 + 10
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Table A.1. Continued.

Co0 Co1 πg C−̂g Γg

30C 15C 32302/62152 5 (30|3 + 10)
△ 1

2

15D 15D 113151151 4 30 + 3, 5, 15

30D 15D 2161101301/113151151 0 60+
15E 15E 12152/3151 2 30 + 15

30E 15E 223151302/1261101152 0 (30 + 15)
△ 1

2

16A 16A 22162/4181 0 (32|2+)
△ 1

4

16B 16B 12162/2181 8 (32+)
△ 1

2

16C 16B 21162/1281 0 32+
18D 18A 91181/1121 3 36 + 36

18E 18A 11182/2291 9 (36 + 36)
△ 1

2

18F 18B 1291181/2131 6 (36 + 36)
△ 1

2

18G 18B 2131182/126191 0 36 + 36

18H 18C 2291181/1161 0 36 + 9 △ 1

2

18I 18C 1121182/6191 0 36 + 9 △ 1

2

20C 20A 2252202/1242102 1 40 + 8, 5 △ 1

2
20▽

20D 20A 12202/4252 5 40 + 40, 5 △ 1

2
20▽

20E 20B 41201 0 40|4 + 5 △ 1

2

20F 20C 2251201/1141 0 (40|2 + 20)
△ 1

4

20G 20C 1121101201/4151 0 (40|2 + 20)
△ 1

4

21A 21A 12212/3272 1 42 + 6, 14, 21

42A 21A 223272422/1262142212 1 (42 + 6, 14, 21)
△ 1

2

21B 21B 71211/1131 1 42 + 3, 14, 42

42B 21B 1131141421/216171211 7 (42 + 3, 14, 42)
△ 1

2

21C 21C 31211 2 42|3 + 7

42C 21C 61421/31211 0 (42|3 + 7)
△ 1

2

22BC 22A 21221 0 44|2 + 11 △ 1

2

23AB 23AB 11231 2 46 + 23

46AB 23AB 21461/11231 0 92+
24C 24A 22242/6282 1 96 + 32, 9624▽, △ 1

2
48▽

24D 24B 213241242/126182121 −1 48 + 48, 16
△ 1

2

24E 24B 124161242/213282121 3 48 + 16, 48
△ 1

2
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Table A.1. Continued.

Co0 Co1 πg C−̂g Γg

24F 24C 81241/2161 4 48|2+
24G 24D 121241/4181 3 48|4 + 12

24H 24E 216181241/41121 0 (48|2+)
△ 1

4

24I 24F 213141241/1181 0 (48|4 + 12)
△ 1

8

24J 24F 114161241/3181 0 (48|4 + 12)
△ 1

8

52A 26A 21521/41261 −1 (52|2 + 26)
△ 1

4

28B 28A 114171281/21141 4 (56+)
△ 1

2

28C 28A 41281/1171 0 56+

56AB 28B 41561/81281 1 (56|4 + 14)
△ 1

8

30F 30A 1121151301/315161101 −1 60 + 12, 15, 20

30G 30A 223151302/1162102151 1 (60 + 12, 15, 20)
△ 1

2

60A 30B 21101121601/4161201301 1 (60|2 + 5, 6, 30)
△ 1

4

60B 30C 61601/121301 −1 (60|6 + 10)
△ 1

12

30H 30D 1161101151/3151 0 60 + 3 △ 1

2
, 5 △ 1

2
, 15

30I 30D 213151301/11151 0 60 + 3 △ 1

2
, 5 △ 1

2
, 15

30J 30E 213151301/61101 2 60 + 12, 15, 20

30K 30E 21301/3151 0 60 + 12, 15, 20

33A 33A 31331/11111 1 66 + 6, 11, 66

66A 33A 1161111661/2131221331 3 (66 + 6, 11, 66)
△ 1

2

35A 35A 11351/5171 1 70 + 10, 14, 35

70A 35A 215171701/11101141351 −1 (70 + 10, 14, 35)
△ 1

2

36A 36A 2191361/1141181 1 72 + 8, 9 △ 1

2
36▽

36B 36A 11361/4191 3 72 + 72, 9 △ 1

2
36▽

39AB 39AB 11391/31131 1 78 + 6, 26, 39

78AB 39AB 2131131781/1161261391 1 (78 + 6, 26, 39)
△ 1

2

40AB 40A 21401/81101 1 160 + 32, 16040▽, △ 1

2
40▽

84A 42A 4161141841/21121281421 1 (84|2 + 6, 14, 21)
△ 1

4

60C 60A 114161101151601/213151121201301 1 120 + 15, 24, 3 △ 1

2
60▽

60D 60A 314151601/11121151201 −1 120 + 15, 120, 3 △ 1

2
60▽
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Table A.2. Data for the T s
g,tw.

Co0 Co1 πg Cĝ Γg,tw M

2A 1A 224/124 4096 2− 2B

4A 2B 412/212 64 4|2− 4D

3A 3A 312/112 729 3− 3B

6A 3A 112612/212312 1 6 + 6 6B

6B 3B 2666/1636 64 6 + 3 6C

6C 3C 1369/2339 −8 6− 6E

6D 3D 68/38 16 6|3− 6F

4C 4A 48/18 256 4− 4C

8A 4E 86/46 8 8|4− 8F

5A 5A 56/16 125 5− 5B

10A 5A 16106/2656 1 10 + 10 10D

10B 5B 24104/1454 16 10 + 5 10B

10C 5C 11105/2155 −4 10− 10E

6E 6A 3464/1424 81 6 + 2 6D

6F 6A 1468/2834 9 6− 6E

12A 6B 26126/4666 1 12|2 + 6 12F

6J 6D 2165/1531 72 6− 6E

12B 6H 124/64 4 12|6− 12J

7A 7A 74/14 49 7− 7B

14A 7A 14144/2474 1 14 + 14 14C

14B 7B 23143/1373 8 14 + 7 14B

8B 8A 84/24 16 8|2− 8D

8E 8C 2284/1442 32 8− 8E

9A 9A 93/13 27 9− 9B

18A 9A 13183/2393 1 18 + 18 18E

18B 9B 31183/6193 −2 18− 18D

18C 9C 2332183/136293 4 18 + 9 18C

10D 10A 52102/1222 25 10 + 2 10C

10E 10A 12104/2452 5 10− 10E

20A 10B 23203/43103 −1 20|2 + 10 20E

20B 10C 42202/22102 4 20|2 + 5 20D

10I 10E 21103/1351 20 10− 10E

22A 11A 22222/12112 4 22 + 11 22B

12C 12A 2434124/144464 9 12 + 4 12B

12D 12A 14124/3444 1 12 + 12 12H

12E 12B 22124/4462 −3 12− 12I
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Table A.2. Continued.

Co0 Co1 πg Cĝ Γg,tw M

12F 12C 62122/2242 9 12|2 + 2 12G

12H 12D 11123/3341 4 12− 12I

12J 12E 42122/1232 16 12 + 3 12E

24A 12F 43243/83123 −1 24|4 + 6 24F

12R 12K 2231123/134162 12 12− 12I

24B 12L 242/122 2 24|12− 24J

13A 13A 132/12 13 13− 13B

26A 13A 12262/22132 1 26 + 26 26B

28A 14A 22282/42142 1 28|2 + 14 28D

15A 15A 13153/3353 −1 15 + 15 15C

30A 15A 233353303/1363103153 1 30 + 6, 10, 15 30A

15B 15B 32152/1252 9 15 + 5 15B

30B 15B 125262302/2232102152 1 30 + 5, 6, 30 30D

15C 15C 152/32 5 15|3− 15D

30C 15C 32302/62152 1 30|3 + 10 30E

30D 15D 2161101301/113151151 4 30 + 3, 5, 15 30C

30E 15E 223151302/1261101152 2 30 + 15 30G

16C 16B 21162/1281 8 16− 16B

18D 18A 91181/1121 9 18 + 2 18A

18E 18A 11182/2291 3 18− 18D

18G 18B 2131182/126191 6 18− 18D

20C 20A 2252202/1242102 5 20 + 4 20C

20D 20A 12202/4252 1 20 + 20 20F

21A 21A 12212/3272 1 21 + 21 21D

42A 21A 223272422/1262142212 1 42 + 6, 14, 21 42B

21B 21B 71211/1131 7 21 + 3 21B

42B 21B 1131141421/216171211 1 42 + 3, 14, 42 42D

42C 21C 61421/31211 2 42|3 + 7 42C

46AB 23AB 21461/11231 2 46 + 23 46AB

24C 24A 22242/6282 1 24|2 + 12 24H

24D 24B 213241242/126182121 3 24 + 8 24C

24E 24B 124161242/213282121 −1 24 + 24 24I

24F 24C 81241/2161 4 24|2 + 3 24D

24G 24D 121241/4181 3 24|4 + 2 24G

52A 26A 21521/41261 −1 52|2 + 26 52B

28C 28A 41281/1171 4 28 + 7 28C

https://doi.org/10.1017/fms.2015.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.7


J. F. R. Duncan and S. Mack-Crane 46

Table A.2. Continued.

Co0 Co1 πg Cĝ Γg,tw M

56AB 28B 41561/81281 1 56|4 + 14 56BC

30F 30A 1121151301/315161101 1 30 + 2, 15, 30 30F

30G 30A 223151302/1162102151 −1 30 + 15 30G

60A 30B 21101121601/4161201301 1 60|2 + 5, 6, 30 60E

60B 30C 61601/121301 −1 60|6 + 10 60F

30K 30E 21301/3151 2 30 + 15 30G

33A 33A 31331/11111 3 33 + 11 33A

66A 33A 1161111661/2131221331 1 66 + 6, 11, 66 66B

35A 35A 11351/5171 −1 35 + 35 35B

70A 35A 215171701/11101141351 1 70 + 10, 14, 35 70B

36A 36A 2191361/1141181 3 36 + 4 36B

36B 36A 11361/4191 1 36 + 36 36D

39AB 39AB 11391/31131 1 39 + 39 39CD

78AB 39AB 2131131781/1161261391 1 78 + 6, 26, 39 78BC

40AB 40A 21401/81101 1 40|2 + 20 40CD

84A 42A 4161141841/21121281421 1 84|2 + 6, 14, 21 84B

60C 60A 114161101151601/213151121201301 −1 60 + 4, 15, 60 60C

60D 60A 314151601/11121151201 1 60 + 12, 15, 20 60D

In both tables, the first column lists the conjugacy class of the element g ∈ Co0

under consideration, and the next two columns list this element’s associated Co1

class (see Section 3.2) and Frame shape πg (see Equation (4.28)). These are

followed by the super trace C−̂g of −̂g on CM (in Table A.1) or the super trace Cĝ

of ĝ on CM (in Table A.2; see Equation (4.18)). In the fifth column we describe

explicitly the invariance groups of the McKay–Thompson series, writing Γg for

the invariance group of T s
g (Table A.1), and Γg,tw for the invariance group of T s

g,tw

(Table A.2). The invariance groups in Table A.2 are each associated to an element

of the monster group by monstrous moonshine, and this is listed in the last column

labelled M.

Note that a complete description of the groups Γg first appeared in [74], but our

notation, in Table A.1, is different in certain cases, adhering more closely to the

traditions initiated in [19]. More specifically, we follow the conventions of [44],

so that n|h−, for example, when h is the largest divisor of 24 such that h2 divides

nh, denotes the subgroup of index h in Γ0(n/h) defined in [19]. (See also [43]

for a detailed analysis of the groups n|h−, and their extensions by Atkin–Lehner

involutions.) So, for example, 12 + 3 denotes the group obtained by adjoining an

Atkin–Lehner involution W3 = (1/
√

3)
(

3a b
12c 3d

)
to Γ0(12), where 9ad −12bc = 3.
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Not all the groups Γg appear in [44], so we need some additional notation.

We use △(1/h) and n▽ to denote upper-triangular and lower-triangular matrices,

respectively:

△1

h
:=
(

1 1/h

0 1

)
, n▽ :=

(
1 0

n 1

)
. (A.1)

We then write 12 + 3 △ 1

2
, for example, for the group generated by Γ0(12) and

the product of W3 with △ 1

2
, where W3 is an Atkin–Lehner involution for Γ0(12),

as in the previous paragraph. Note that this group is also denoted 12 + 3′ in [44].

Now the group denoted 4|2− in [19, 44] can be described as 8 + △ 1

2
4▽, for it

is generated by Γ0(8) together with the product of △ 1

2
and 4▽. For 8|2+, we

may write 16 + 16, △ 1

2
8▽, meaning the group generated by Γ0(16), the Fricke

involution 1

4

(
0 −1

16 0

)
, and the product of △ 1

2
with 8▽.

Note that Γg and Γ−g are related by conjugation by △ 1

2
: for every g ∈ Co0,

Γ−g = Γ
△ 1

2
g =

(
1 − 1

2

0 1

)
Γg

(
1 1

2

0 1

)
, (A.2)

since the Fourier expansions of the functions T s
g (2τ) and T s

−g(2τ) differ exactly

by signs on even powers of q .

As mentioned in Section 4.3, the invariance groups Γg,tw, of the canonically

twisted McKay–Thompson series T s
g,tw, are all genus-zero groups that arise in

monstrous moonshine. We include the corresponding monstrous class names in

Table A.2, where the Γg,tw are described explicitly.
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