
The MOPED framework: Object Recognition and Pose Estimation for

Manipulation

Alvaro Collet ∗ Manuel Martinez † Siddhartha S. Srinivasa ‡

Abstract

We present MOPED, a framework for Multiple Object Pose Es-
timation and Detection that seamlessly integrates single-image
and multi-image object recognition and pose estimation in one
optimized, robust, and scalable framework. We address two
main challenges in computer vision for robotics: robust perfor-
mance in complex scenes, and low latency for real-time opera-
tion.
We achieve robust performance with Iterative Clustering-

Estimation (ICE), a novel algorithm that iteratively combines
feature clustering with robust pose estimation. Feature cluster-
ing quickly partitions the scene and produces object hypotheses.
The hypotheses are used to further refine the feature clusters,
and the two steps iterate until convergence. ICE is easy to
parallelize, and easily integrates single- and multi-camera ob-
ject recognition and pose estimation. We also introduce a novel
object hypothesis scoring function based on M-estimator the-
ory, and a novel pose clustering algorithm that robustly handles
recognition outliers.
We achieve scalability and low latency with an improved fea-

ture matching algorithm for large databases, a GPU/CPU hy-
brid architecture that exploits parallelism at all levels, and an
optimized resource scheduler. We provide extensive experimen-
tal results demonstrating state-of-the-art performance in terms
of recognition, scalability, and latency in real-world robotic ap-
plications.

1 Introduction

The task of estimating the pose of a rigid object model from a
single image is a well studied problem in the literature. In the
case of point-based features, this is known as the Perspective-
n-Point (PnP) problem (Fischler and Bolles, 1981), for which
many solutions are available, both closed-form (Lepetit et al.,
2008) and iterative (Dementhon and Davis, 1995). Assuming
that enough perfect correspondences between 2D image fea-
tures and 3D model features are known, one only needs to
use the PnP solver of choice to obtain an estimation of an

∗A. Collet is with The Robotics Institute, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA - 15213, USA. {acollet}@cs.cmu.edu

†M. Martinez is with The Robotics Institute, Carnegie Mel-
lon University, 5000 Forbes Ave., Pittsburgh, PA - 15213, USA.
{manelm}@cs.cmu.edu

‡Siddhartha S. Srinivasa Intel Labs Pittsburgh 4720
Forbes Avenue, Suite 410, Pittsburgh, PA - 15213, USA.
{siddhartha.srinivasa}@intel.com

Figure 1: Recognition of real-world scenes. (Top) High-
complexity scene. MOPED finds 27 objects, including partially-
occluded, repeated and non-planar objects. Using a database
of 91 models and an image resolution of 1600× 1200, MOPED
processes this image in 2.1 seconds. (Bottom) Medium com-
plexity scene. MOPED processes this 640×360 image in 87 ms
and finds all known objects (The undetected green soup can is
not in the database).

object’s pose. When noisy measurements are considered, non-
linear least-squares minimization techniques (e.g. Levenberg-
Marquardt (Marquardt, 1963)) often provide better pose esti-
mates. Given that such techniques require good initialization, a
closed-form PnP solver is often used to initialize the non-linear
minimizer.

The very related task of recognizing a single object and de-

1

The International Journal of Robotics Research, April, 2011

termining its pose from a single image requires solving two
sub-problems: finding enough correct correspondences between
image features and model features, and estimating the model
pose that best agrees with that set of correspondences. Even
with highly discriminative locally invariant features, such as
SIFT (Lowe, 2004) or SURF (Bay et al., 2008), mismatched
correspondences are inevitable, forcing us to utilize robust esti-
mation techniques such as M-estimators or RANSAC (Fischler
and Bolles, 1981) in most modern object recognition systems.
A comprehensive overview of model-based 3D object recogni-
tion/tracking techniques is available at Lepetit and Fua (2005).

The problem of model-based 3D object recognition is mature,
with a vast literature behind, but it is far from solved in its most
general form. Two problems greatly influence the performance
of any recognition algorithm.

The first problem is scene complexity. This can arise due to
feature count, with both extremes (too many features, or too
few) significantly decreasing recognition rate. Related is the is-
sue of repeated objects: the matching ambiguity introduced by
repeated instances of an object presents an enormous challenge
for robust estimators, as the matched features might belong to
different object instances despite being correct. Solutions such
as grouping (Lowe, 1987), interpretation trees (Grimson, 1991)
or image space clustering (Collet et al., 2009) are often used,
but false positives often arise from algorithms not being able to
handle unexpected scene complexity. Fig. 1 shows an example
of an image of high complexity and multiple repeated objects
correctly processed by MOPED.

The second problem is that of scalability and system latency.
In systems that operate online, a trade-off between recognition
performance and latency must be reached, depending on the
requirements for each specific task. In robotics, the reaction
time of robots operating in dynamic environments is often lim-
ited by the latency of their perception (e.g. (Srinivasa et al.,
2010, WillowGarage, 2008)). Increasing the volume of input
data to process (e.g. increasing the image resolution, using
multiple cameras) usually results in a severe penalty in terms
of processing time. Yet, with cameras getting better, cheaper,
and smaller, multiple high resolution views of a scene are often
easily available. For example, our robot HERB has, at various
times, been outfitted with cameras on its shoulder, in the palm,
on its ankle-high laser, as well as with a stereo pair. Multiple
views of a scene are often desirable, because they provide depth
estimation, robustness against line-of-sight occlusions, and an
increased effective field of view. Fig. 2 shows MOPED applied
on a set of three images for grasping. Also, the higher reso-
lution can potentially improve the recognition of complicated
objects and the accuracy of pose estimation algorithms, but of-
ten at a steep penalty cost, as the extra resolution often causes
an increase in the number of false positives as well as severe
degradation in terms of latency and throughput.

In this paper, we address these two problems in model-based
3D object recognition through multiple novel contributions,
both algorithmic and architectural. We provide a scalable
framework for object recognition specifically designed to ad-
dress increased scene complexity, limit false positives, and uti-

Figure 2: Object grasping in a cluttered scene using MOPED.
(Top) Scene observed by a set of three cameras. (Bottom) Our
robotic platform HERB (Srinivasa et al., 2010) in the process
of grasping an object, using only the pose information from
MOPED.

lize all computing resources to provide low latency processing
for one or multiple simultaneous high-resolution images. The
Iterative Clustering-Estimation (ICE) algorithm is our most im-
portant contribution to handle scenes with high complexity and
keep latency low. In essence, ICE jointly solves the correspon-
dence and pose estimation problems through an iterative proce-
dure. ICE estimates groups of features that are likely to belong
to the same object through clustering, and then searches for
object hypotheses within each of the groups. Each hypothe-
sis found is used to refine the feature groups that are likely to
belong to the same object, which in turn helps finding more
accurate hypotheses. The iteration of this procedure focuses
the object search only in the regions with potential objects,
avoiding the waste of processing power in unlikely regions. In
addition, ICE allows for an easy parallelization and the inte-
gration of multiple cameras in the same joint optimization.

Another important contribution of this paper is a robust met-
ric to rank object hypotheses based on M-estimator theory. A
common metric used in model-based 3D object recognition is
the sum of reprojection errors. However, this metric prioritizes
objects that have been detected with the least amount of infor-
mation, since each additional recognized object feature is bound
to increase the overall error. Instead, we propose a quality met-
ric that encourages objects to have as most correspondences as
possible, thus achieving more stable estimated poses. This met-
ric is relied upon in the clustering iterations within ICE, and is
specially useful when coupled with our novel pose clustering al-
gorithm. The key insight behind our pose clustering algorithm

2

The International Journal of Robotics Research, April, 2011

—called Projection Clustering— is that our object hypotheses
have been detected from camera data, which might be noisy,
ambiguous and/or contain matching outliers. Therefore, in-
stead of using a regular clustering technique in pose space (us-
ing e.g. Mean Shift (Cheng, 1995) or Hough Transforms (Olson,
1997)), we evaluate each type of outlier and propose a solution
that handles incorrect object hypotheses and effectively merges
their information with those that are most likely to be correct.
This work also tackles the issues of scalability, throughput

and latency, which are vital for real-time robotics applications.
ICE enables easy parallelism in the object recognition process.
We also introduce an improved feature matching algorithm for
large databases that balances matching accuracy and logarith-
mic complexity. Our GPU/CPU hybrid architecture exploits
parallelism at all levels. MOPED is optimized for bandwidth
and cache management and SIMD instructions. Components
like feature extraction and matching have been implemented
on a GPU. Furthermore, a novel scheduling scheme enables the
efficient use of symmetric multiprocessing(SMP) architectures,
utilizing all available cores on modern multi-core CPUs.
Our contributions are validated through extensive experi-

mental results demonstrating state-of-the-art performance in
terms of recognition, pose estimation accuracy, scalability,
throughput and latency. Five benchmarks and a total of
over 6000 images are used to stress-test every component of
MOPED. The different benchmarks are executed in a database
of 91 objects, and contain images with up to 400 simultane-
ous objects, high-definition video footage, and a multi-camera
setup.
Preliminary versions of this work have been published at Col-

let et al. (2009), Collet and Srinivasa (2010), Martinez et al.
(2010). Additional information, videos, and the full source code
of MOPED are available online at http://personalrobotics.
intel-research.net/projects/moped.

2 Problem formulation

The goal of MOPED is the recognition of objects from images
given a database of object models, and the estimation of the
pose of each recognized object. In this section, we formalize
these inputs and outputs and introduce the terminology we use
throughout the paper.

2.1 Input: images

The input to MOPED is a set I of M images

I = {I1, . . . , Im, . . . , IM} Im = {Km, Tm,gm}. (1)

In the general case, each image is captured with a different
calibrated camera. Therefore, each image Im is defined by a
3× 3 matrix of intrinsic camera parameters Km, a 4× 4 matrix
of extrinsic camera parameters Tm with respect to a known
world reference frame, and a matrix of pixel values gm.

MOPED is agnostic to the number of images M . In other
words, it is equally valid in both an extrinsically calibrated
multi-camera setup, and in the simplified case of a single image

(M = 1) and a camera-centric world (T1 = I4, where I4 is a
4× 4 identity matrix).

2.2 Input: object models

Each object to be recognized by MOPED first goes through an
offline learning stage, in which a sparse 3D model of the ob-
ject is created. First, a set of images is taken with the object in
various poses. Reliable local descriptors are extracted from nat-
ural features using SIFT(Lowe, 2004), which have proven to be
one of the most distinctive and robust local descriptors across
a wide range of transformations (Mikolajczyk and Schmid,
2005). Alternative descriptors (e.g. SURF(Bay et al., 2008),
ferns(Ozuysal et al., 2010)) can also be used. Using structure
from motion (Szeliski and Kang, 1994) on the matched SIFT
keypoints, we merge the information from each training image
into a sparse 3D model. Each 3D point is linked to a descriptor
that is produced from clustering individual matched descriptors
in different views. Finally, proper alignment and scale for each
model are computed to match the real object dimensions and
define an appropriate coordinate frame, which for simplicity is
defined at the object’s center.

Let O be a set of object models. Each object model is defined
by its object identity o and a set of features Fo

O = {o,Fo} Fo = {F1;o, . . . , Fi;o, . . . , FN ;o}. (2)

Each feature is represented by a 3D point location P =
[X, Y, Z]T in the object’s coordinate frame and a feature de-
scriptor D, whose dimensionality depends on the type of de-
scriptor used, e.g. k = 128 if using SIFT or k = 64 if using
SURF. That is,

Fi;o = {Pi;o, Di;o} Pi;o ∈ R
3, Di;o ∈ R

k. (3)

The union of all features from all objects in O is defined as
F =

⋃

o∈O
Fo.

2.3 Output: recognized objects

The output of MOPED is a set of object hypotheses H. Each
object hypothesis Hh = {o, Th} is represented by an object
identity o and a 4 × 4 matrix Th that corresponds to the pose
of the object with respect to the world reference frame.

3 Iterative Clustering-Estimation

The task of recognizing objects from local features in images
requires solving two sub-problems: the correspondence problem
and the pose estimation problem. The correspondence problem
refers to the accurate matching of image features to features
that belong to a particular object. The pose estimation problem
refers to the generation of object poses that are geometrically
consistent with the found correspondences.

The inevitable presence of mismatched correspondences
forces us to utilize robust estimation techniques, such as M-
estimators or RANSAC (Fischler and Bolles, 1981). In the

3

The International Journal of Robotics Research, April, 2011

Figure 3: Illustration of two ICE iterations. Colored outlines represent estimated poses. (a) Feature extraction and matching.
(b) Feature clustering. (c) Hypothesis generation. (d-e) Cluster clustering. (f) Pose refinement. (g) Final result.

presence of repeated objects in a scene, the correspondence
problem cannot be solved in isolation, as even perfect image-to-
model correspondences need to be linked to a particular object
instance. Robust estimation techniques often fail as well in
the presence of this increased complexity. Solutions such as
grouping (Lowe, 1987), interpretation trees (Grimson, 1991) or
image space clustering (Collet et al., 2009) alleviate the prob-
lem of repeated objects by reducing the search space for object
hypotheses.

The Iterative Clustering-Estimation (ICE) algorithm at the
heart of MOPED aims to jointly solve the correspondence and
pose estimation problems in a principled way. Given initial
image-to-model correspondences, ICE iteratively executes clus-
tering and pose estimation to progressively refine which features
belong to each object instance, and to compute the object poses
that best fit each object instance. The algorithm is illustrated
in Fig. 3.

Given a scene with a set of matched features, (Fig. 3.a),
the Clustering step generates groups of image features that are
likely to belong to a single object instance (Fig. 3.b). If prior ob-
ject pose hypotheses are available, features consistent with each
object hypothesis are used to initialize distinct clusters. Numer-
ous object hypotheses are generated for each cluster (Fig. 3.c).
Then, object hypotheses are merged together if their poses are
similar (Fig. 3.d), thus uniting their feature clusters into larger
clusters that potentially contain all information about a single
object instance (Fig. 3.e). With multiple images, the use of a
common reference frame allows us to link object hypotheses rec-
ognized in different images, and thus create multi-image feature
clusters. If prior object pose hypotheses are not available (i.e.
at the first iteration of ICE), we use the density of local features
matched to an object model as a prior, with the intuition that
groups of features spatially close together are more likely to
belong to the same object instance than features spread across
all images. Thus, we initialize ICE with clusters of features in
image space (x, y), as seen in Fig. 3.b.

The Estimation step computes object hypotheses given clus-
ters of features (as shown in Fig. 3.c and Fig. 3.f). Each clus-
ter can potentially generate one or multiple object hypotheses,
and also contain outliers that cannot be used for any hypoth-
esis. A common approach for hypothesis generation is the use
of RANSAC along with a pose estimation algorithm, although
other approaches are equally valid. In RANSAC, we choose sub-
sets of features at random within the cluster, then hypothesize
an object pose that best fits the subset of features, and finally
check how many features in the cluster are consistent with the
pose hypothesis. This process is repeated multiple times and a
set of object hypotheses is generated for each cluster. The ad-
vantage of restricting the search space to that of feature clusters
is the higher likelihood that features from only one object in-
stance are present, or at most a very limited number of them.
This process can be performed regardless of whether the fea-
tures belong to one or multiple images.

The set of hypotheses from the Estimation step are then uti-
lized to further refine the membership of each feature to each
cluster (Fig. 3.d-e). The whole process is iterated until conver-
gence, which is reached when no features change their member-
ship in a Clustering step (Fig. 3.f).

In practice, ICE requires very few iterations until conver-
gence, usually as little as 2 for setups with one or a few simul-
taneous images. Parallelization is easy, since the initial steps
are independent for each cluster in each image and object type.
Therefore, large sets of images can be potentially integrated
into ICE with very little impact on overall system latency. Two
ICE iterations are required for increased robustness and speed
in setups ranging from one to a few simultaneous images, while
further iterations of ICE might potentially be necessary if tens
or hundreds of simultaneous images are to be processed.

4

The International Journal of Robotics Research, April, 2011

3.1 ICE as Expectation-Maximization

It is interesting to note the conceptual similarity between ICE
and the well-known Expectation-Maximization (EM) (Demp-
ster et al., 1977) algorithm, particularly in the learning of Gaus-
sian Mixture Models (GMM) (Redner and Walker, 1984). EM
is an iterative method for finding parameter estimates in sta-
tistical models than contain unobserved latent variables, alter-
nating between expectation (E) and maximization (M) steps.
The expectation (E) step computes the expected value of the
log-likelihood using the current estimate for the latent vari-
ables. The maximization (M) step computes the parameters
that maximize the expected log-likelihood found on the E step.
These parameter values determine the latent variable distribu-
tion in the next E step. In Gaussian Mixture Models, the EM
algorithm is applied to find a set of Gaussian distributions that
best fits a set of data points. The E step computes the expected
membership of each data point to one of the Gaussian distri-
butions, while the M step computes the parameters for each
distribution given the memberships computed in the E step.
Then, the E step is repeated with the updated parameters to
recompute new membership values. The entire procedure is
repeated until model parameters converge.

Despite the mathematical differences, the concept behind
ICE is essentially the same. The problem of object recogni-
tion in the presence of severe clutter and/or repeated objects
can be interpreted as one of estimation of model parameters
—the pose of a set of objects—, where the model depends on
unobserved latent variables —the correspondences of image fea-
tures to particular object instances—. Under this perspective,
the Clustering step of ICE computes the expected membership
of each local feature to one of the object instances, while the
Estimation step computes the best object poses given the fea-
ture memberships computed in the Clustering step. Then, the
entire procedure is repeated until convergence. If our object
models were Gaussian distributions, ICE and GMMs would be
virtually equivalent.

4 The MOPED Framework

This section contains a brief summary of the MOPED frame-
work and its components. Each individual component is ex-
plored in depth in subsequent sections.

The steps itemized below compose the basic MOPED frame-
work for the typical requirements of a robotics application. In
essence, MOPED is comprised of a single feature extraction
and matching step per image, and multiple iterations of Iter-
ative Clustering-Estimation (ICE) that efficiently perform ob-
ject recognition and pose estimation per object in a bottom-up
approach. Assuming the most common setup of object recog-
nition, utilizing a single or a small set of images (i.e. less than
10), we fix ICE to compute two full Clustering-Estimation iter-
ations plus a final cluster merging to remove potential multiple
detections that might have not yet converged. This way, we
ensure a good trade-off between high recognition rate and re-
duced system latency, but a greater number of iterations should

be considered if working with a larger set of simultaneous im-
ages.

1. Feature Extraction. Salient features are extracted from
each image. We represent images I as sets of local features fm.
Each image Im ∈ I is processed independently, so that

Im = {Km, Tm, fm} fm = FeatExtract(gm). (4)

Each individual local feature fj;m from image m is defined
by a 2D point location pj;m = [x, y]T and its corresponding
feature descriptor dj;m; that is,

fm = {f1;m, . . . , fj;m, . . . , fJ;m} fj;m = {pj;m, dj;m}. (5)

We define the union of all extracted local features from all
images m as f =

⋃M

m=1 fm.
2. Feature Matching. One-to-one correspondences are

created between extracted features in the image set and object
features stored in the database. For efficiency, approximate
matching techniques can be used, at the cost of a decreased
recognition rate. Let C be a correspondence between an image
feature fj;m and a model feature Fi;o, such that

Co
j,m =

{

(fj;m, Fi;o) , if fj;m ↔ Fi;o

∅, otherwise
. (6)

The set of correspondences for a given object o and image m
is represented as Co

m =
⋃

∀j C
o
j;m. The sets of correspondences

Cm, Co are defined equivalently as Cm =
⋃

∀j,o C
o
j;m and Co =

⋃

∀j,m Co
j;m.

3. Feature Clustering. Features matched to a particular
object are clustered in image space (x, y), independently for
each image. Given that spatially close features are more likely
to belong to the same object instance, we cluster the set of
feature locations p ∈ Co

m, producing a set of clusters that group
features spatially close together.
Each cluster Kk is defined by an object identity o, an image

index m, and a subset of the correspondences to object O in
image Im, that is,

Kk = {o,m,Ck ⊂ Co
m}. (7)

The set of all clusters is expressed as K.
4. Estimation #1: Hypothesis Generation. Each clus-

ter is processed in each image independently in search of ob-
jects. RANSAC and Levenberg-Marquardt (LM) are used to
find object instances that are loosely consistent with each ob-
ject’s geometry in spite of outliers. The number of RANSAC
iterations is high and the number of LM iterations is kept low,
so that we discover multiple object hypotheses with coarse pose
estimation. At this step, each hypothesis h consists of

h = {o, k, Th,Ch ⊂ Ck}, (8)

where o is the object identity of hypothesis h, k is a cluster
index, Th is a 4×4 transformation matrix that defines the object
hypothesis pose with respect to the world reference frame, and
Ch is the subset of correspondences that are consistent with
hypothesis h.

5

The International Journal of Robotics Research, April, 2011

5. Cluster Clustering. As the same object might be
present in multiple clusters and images, poses are projected
from the image set onto a common coordinate frame, and fea-
tures consistent with a pose are re-clustered. New, larger clus-
ters are created, that often contain all consistent features for
a whole object across the entire image set. These new clusters
contain

KK = {o,CK ⊂ Co}. (9)

6. Estimation #2: Pose Refinement. After Steps 4
and 5, most outliers have been removed, and each of the new
clusters is very likely to contain features corresponding to only
one instance of an object, spanned across multiple images. The
RANSAC procedure is repeated for a low number of iterations,
and poses are estimated using LM with a larger number of
iterations to obtain the final poses from each cluster that are
consistent with the multi-view geometry.
Each multi-view hypothesis H is defined by

H = {o, TH ,CH ⊂ CK}, (10)

where o is the object identity of hypothesis H, TH is a 4 × 4
transformation matrix that defines the object hypothesis pose
with respect to the world reference frame, and CH is the subset
of correspondences that are consistent with hypothesis H.

7. Pose Recombination. A final merging step removes
any multiple detections that might have survived, by merging
together object instances that have similar poses. A set of hy-
potheses H, with Hh = {o, TH}, is the final output of MOPED.

5 Addressing Complexity

In this section, we provide an in-depth explanation of our con-
tributions to address complexity that have been integrated in
the MOPED object recognition framework, and how each of
our contributions relate to the Iterative Clustering-Estimation
procedure.

5.1 Image Space Clustering

The goal of Image Space Clustering in the context of object
recognition is the creation of object priors based solely on im-
age features. In a generic unstructured scene, it is infeasible to
attempt the recognition of objects with no higher-level reason-
ing than the image-model correspondences Co

j,m = (fj;m, Fi;o).
Correspondences for a single object type o may belong to dif-
ferent object instances, or may be matching outliers. Multi-
camera setups are even more uncertain, since the amount of
image features increases dramatically, and so does the proba-
bility of finding multiple repeated objects in the combined set
of images. Under these circumstances, the ability to compute a
prior over the image features is of utmost importance, in order
to evaluate which of the features are likely to belong to the same
object instance, and which of them are likely to be outliers.
RANSAC (Fischler and Bolles, 1981) and M-estimators are

often the methods of choice to find models in the presence of

Figure 4: Example of highly cluttered scene and the importance
of clustering. (Top-left) Scene with 9 overlapping notebooks.
(Bottom-left) Recovered poses for notebooks with MOPED.
(Right) Clusters of features in image space.

outliers. However, both of them fail in the presence of heavy
clutter and multiple objects, in which only a small percentage
of the matched correspondences belong to the same object in-
stance. To overcome this limitation, we propose the creation of
object priors based on the density of correspondences across the
image, by exploiting the assumption that areas with a higher
concentration of correspondences for a given model are more
likely to contain an object than areas with very few features.
Therefore, we aim to create subsets of correspondences within
each image that are reasonably close together and assume they
are likely to belong to the same object instance, avoiding the
waste of computation time in trying to relate features spread
all across the image. We can accomplish this goal by seek-
ing the modes of the density distribution of features in image
space. A well-known technique for this task is Mean Shift clus-
tering (Cheng, 1995), which is a particularly good choice for
MOPED because no fixed number of clusters needs to be spec-
ified. Instead, a radius parameter needs to be chosen, that
intuitively selects how close two features must in order to be
part of the same cluster. Thus, for each object in each image
independently, we cluster the set of feature locations p ∈ Co

m

(i.e. pixel positions p = (x, y)), producing a set of clusters K
that contain groups of features spatially close together. Clus-
ters that contain very few features, those in which no object
can be recognized, are discarded, thus considering the features
as outliers and discarding them as well.

The advantage of using Mean Shift clusters as object priors
is illustrated in Fig. 4. In Fig. 4.(top-left) we see an image with
9 notebooks. As a simple example, let us imagine that all note-
books have the same number of correspondences, and that 70%
of those correspondences are correct, i.e., that the global inlier
ratio w = # inliers

points = 0.7. The inlier ratio for a particular note-
book is then wobj =

w
obj = 0.0778. The number of iterations

k theoretically required (Fischler and Bolles, 1981) to find one
particular instance of a notebook with probability p is

k =
log(1− p)

log(1− (wobj)n)
, (11)

6

The International Journal of Robotics Research, April, 2011

where n is the number of inliers for a successful detection.
If we require n = 5 inliers and a probability p = 0.95 of find-
ing a particular notebook, then we should perform k = 1.05M
iterations of RANSAC. On the other hand, clustering the corre-
spondences in smaller sets as in Fig. 4.(right) means that fewer
notebooks (at most 3) are present in a given cluster. In such
a scenario, finding one particular instance of a notebook with
95% probability requires 16, 586 and 4386 iterations when 1, 2
and 3 notebooks, resp., are present in a cluster, at least three
orders of magnitude lower than the previous case.

5.2 Estimation #1: Hypothesis generation

In the first Estimation step of ICE, our goal is to generate coarse
object hypotheses from clusters of features, so that the object
poses can be used to refine the cluster associations. In gen-
eral, each cluster Kk = {o,m,Ck ⊂ Co

m} may contain features
from multiple object hypotheses as well as matching outliers.
In order to handle the inevitable presence of matching outliers,
we use the robust estimation procedure RANSAC. For a given
cluster Kk, we choose a subset of correspondences C ⊂ Ck and
estimate an object hypothesis with the best pose that mini-
mizes the sum of reprojection errors (see Eq. (18)). We mini-
mize the sum of reprojection errors via a standard Levenberg-
Marquardt (LM) non-linear least squares minimization. If the
amount of correspondences in Ck consistent with the hypothe-
sis is higher than a threshold ǫ, we create a new object instance
and refine the estimated pose using all consistent correspon-
dences in the optimization. We then repeat this procedure un-
til the amount of unallocated points is lower than a threshold,
or the maximum number of iterations has been exceeded. By
repeating this procedure for all clusters in all images and ob-
jects, we produce a set of hypotheses h, where each hypothesis
h = {o, k, Th,Ch ⊂ Ck}.

At this stage, we wish to obtain a set of coarse pose hy-
potheses to work with, as fast as possible. We require a large
number of RANSAC iterations to detect as many object hy-
potheses as possible, but we can use a low maximum number of
LM iterations and loose threshold ǫ when minimizing the sum
of reprojection errors. Accurate pose will be achieved in later
stages of MOPED. The initialization of LM for pose estimation
can be implemented with either fast PnP solvers such as the
ones proposed in (Collet et al., 2009, Lepetit et al., 2008) or
even completely at random within the space of possible poses
(e.g. some distance in front of the camera). Random initializa-
tion is the default choice for MOPED, as it is more robust to
the pose ambiguities that sometimes confuse PnP solvers.

5.3 Hypothesis Quality Score

It is useful at this point to introduce a robust metric to quan-
titatively compare the goodness of multiple object hypotheses.
The desired object hypothesis metric should favor hypotheses
with:

• The most amount of consistent correspondences.

• The minimum distance error in each of the correspon-
dences.

The sum of reprojection errors in Eq. (19) is not a good
evaluation metric according to these requirements, as this error
is bound to increase whenever an extra correspondence is added.
Therefore, the sum of reprojection errors favors hypotheses with
the least amount of correspondences, which can lead to choosing
spurious hypotheses over more desirable ones.

In contrast, we define a robust estimator based on the Cauchy
distribution that balances the two criteria stated above. Con-
sider the set of consistent correspondences Ch for a given ob-
ject hypothesis, where each correspondence Cj = (fj;m, Fi;o).
Assume the corresponding features in Cj have locations in an
image pj and in an object model Pj . Let dj = d(pj , ThPj) be
an error metric that measures the distance between a 2D point
in an image and a 3D point from hypothesis h with pose Th
(e.g. reprojection, backprojection errors). Then, the Cauchy
distribution ψ(dj) is defined by

ψ(dj) =
1

1 +
(

dj

σ

)2 , (12)

where σ2 parameterizes the cut-off distance at which ψ(dj) =
0.5. In our case, the distance metric dj is the reprojection error
measured in pixels. This distribution is maximal when dj = 0,
i.e. ψ(0) = 1, and monotonically decreases to zero when a
pair of correspondences are infinitely away from each other, i.e.
ψ(∞) = 0. The Quality Score Q for a given object hypothesis
h is then defined as a summation over the Cauchy scores ψ(dj)
for all correspondences:

Q(h) =
∑

∀j:Cj∈Ch

ψ(dj) =
∑

∀Cj∈Ch

1

1 +
d2(pj ,ThPj)

σ2

. (13)

The Q-Score has a lower bound at 0, if a given hypothesis
has no correspondences or if all its correspondences have infinite
error, and has an upper bound at |O|, which is the total number
of correspondences for model O. This score allows us to reliably
rank our object hypotheses and evaluate their strength.

The cut-off distance σ may be either a fixed value, or adjusted
at each iteration via robust estimation techniques (Zhang,
1997), depending on the application. Robust estimation tech-
niques require a certain minimum outlier/inlier ratio to work
properly (# outliers

inliers < 1 in all cases), known as the breaking point

of a robust estimator (Huber, 1981). In the case of MOPED,
the outlier/inlier ratio is often well over the breaking point of
any robust estimator, especially when multiple instances of an
object are present; as a consequence, robust estimators might
result in unrealistically large values of σ in complex scenes.
Therefore, we choose to set a fixed value for the cut-off param-
eter, σ = 2 pixels, for a good balance between encouraging a
large number of correspondences while keeping their reprojec-
tion error low.

7

The International Journal of Robotics Research, April, 2011

5.4 Cluster Clustering

The disadvantage of separating the image search space into a
set of clusters is that the produced pose hypotheses may be
generated with only partial information from the scene, given
that information from other clusters and other views is not
considered in the initial Estimation step of ICE. However, once
a rough estimate of the object poses is known, we can merge
the information from multiple clusters and multiple views to
obtain sets of correspondences that contain all features from a
single object instance (see Fig. 3).
Multiple alternatives are available to group similar hypothe-

ses into clusters. In this section, we propose a novel hypothesis
clustering algorithm called Projection Clustering, in which we
perform correspondence-level grouping from a set of object hy-
potheses h and provide a mechanism to robustly filter any pose
outliers.
For comparison, we introduce a simpler Cluster Clustering

scheme based on Mean Shift, and analyze the computational
complexity of both schemes to conclude in which cases we might
prefer one over the other.

5.4.1 Mean Shift clustering on pose space

A straightforward hypothesis clustering scheme is to perform
Mean Shift clustering on all hypotheses h = {o, k, Th,Ch ⊂ Ck}
for a given object type o. In particular, we cluster the pose
hypotheses Th in pose space. In order to properly measure
distances between poses, it is convenient to parameterize rota-
tions in terms of quaternions and project them in the same half
of the quaternion hypersphere prior to clustering, using then
Mean Shift on the resulting 7-dimensional poses. After this
procedure, we merge the correspondence clusters Ch of those
poses that belong to the same pose cluster TK .

CK =
⋃

Th∈TK

Ch (14)

This produces clusters KK = {o,CK ⊂ Co} whose corre-
spondence clusters span over multiple images. In addition, the
centroid of each pose cluster TK can be used as initialization
for the following Estimation iteration of ICE. At this point, we
can discard all correspondences not consistent with any pose hy-
pothesis, thus filtering many outliers and reducing the search
space for future iterations of ICE. The computational complex-
ity of Mean Shift is O(dN2t), where d = 7 is the dimensionality
of the clustered data, N = |h| is the total number of hypothe-
ses to cluster, and t is the number of iterations that Mean Shift
requires. In practice, the number of hypotheses is often fairly
small, and t ≤ 100 in our implementation.

5.4.2 Projection clustering

Mean Shift provides basic clustering in pose space, and works
well when multiple correct detections of an object are present.
However, it is possible that spurious false positives are detected
in the hypothesis generation step. It is important to realize that
these false positives are very rarely exclusively due to random

outliers in the feature matching process. To the contrary, most
outlier detections are artifacts of the projection of a 3D scene
into a 2D image when captured by a perspective camera. In
particular, we can distinguish two different cases:

• A group of correct matches whose 3D configuration is de-
generate or near-degenerate (e.g. a group of 3D points that
are almost collinear), incorrectly grouped with one single
matching outlier. In this case, the output pose is largely
determined by the location of the matching outlier, which
causes arbitrarily erroneous hypotheses to be accepted as
correct.

• Pose ambiguities in objects with planar surfaces. The
sum of reprojection errors in planar surfaces may contain
two complementary local minima in some configurations
of pose space(Schweighofer and Pinz, 2006), which often
causes the appearance of two distinct and partially over-
lapping object hypotheses. These hypotheses are usually
too distant in pose space to be grouped together.

The false positives output in the pose hypothesis generation
are often too distant from any correct hypothesis in the scene,
and cannot be merged using regular clustering techniques (e.g.
Mean Shift). However, the point features that generated those
false positives are usually correct, and they can provide valuable
information to some of the correct object hypotheses. In Pro-
jection clustering, we process each point feature individually,
and assign them to the strongest pose hypothesis to which they
might belong. Usually, spurious poses only contain a limited
number of consistent point features, thus resulting in lower Q-
scores (Section 5.3) than correct object hypotheses. By trans-
ferring most of the point features to the strongest object hy-
potheses, we not only utilize the extra information available in
the scene for increased accuracy, but also filter most false pos-
itives by lowering their number of consistent points below the
required minimum.

The first step in Projection clustering is the computation
of Q-Scores for all object hypotheses h. We generate a pool of
potential correspondences Co that contains all correspondences
for a given object type that are consistent with at least one pose
hypothesis. Correspondences from all images are included in
Co. We compute the Quality score for each hypothesis h from
all correspondences Cj = (fj , Fj) such that Cj ∈ Co.

Q(h) =
∑

∀j:Cj∈Co

ψ(dj) =
∑

∀Cj∈Co

1

1 +
d2(pj ,ThPj)

σ2

(15)

For each potential correspondence Cj inCo, we define a set of
likely hypotheses hj as the set of those hypotheses h whose re-
projection error is lower than a threshold γ. This threshold can
be interpreted as an attraction coefficient; large values of γ lead
to heavy transference of correspondence to strong hypotheses,
while small values cause few correspondences to transfer from
one hypothesis to another. In our experiments, a large thresh-
old γ of 64 pixels is used.

8

The International Journal of Robotics Research, April, 2011

h ∈ hj ⇐⇒ d2(pj , ThPj) < γ (16)

At this point, the relation between correspondences Cj and
hypotheses h is broken. In other words, we empty the set of
correspondences Ch for each hypothesis h, so that Ch = ∅.
Then, we re-assign each correspondence Cj ∈ Co to the pose
hypothesis h within hj with stronger overall Q-Score:

Ch ← Cj : h = arg max
h∈hj

Q(h) (17)

Finally, it is important to check the remaining number of cor-
respondences that each object hypothesis has after Projection
clustering. Pose hypotheses that retain less than a minimum
number of consistent correspondences are considered outliers
and therefore discarded.
The Projection Clustering algorithm we propose has a com-

putational complexity O(MNI), where M = |C| is the total
number of correspondences to process, N = |h| is the number
of pose hypotheses and I = |I| is the total number of images.
Comparing this with the complexity O(dN2t) of Mean Shift, we
see that the only advantage of Mean Shift in terms of computa-
tional cost would be in the case of object models with enormous
numbers of features and many high resolution images, so that
O(MNI) ≫ O(dN2t). While offering a similar computational
complexity, the advantage of Projection Clustering with respect
to Mean Shift is in terms of improved robustness and outlier
detection, both of which are essential for handling increased
complexity in MOPED.

5.4.3 Performance Comparison

In this experiment, we compare the recognition performance of
MOPED when using the two Cluster Clustering approaches ex-
plained in this section. In addition, and given that Projection
Clustering depends on the behavior of a hypothesis ranking
mechanism, we implement four different ranking mechanisms
and compare their performance. The first ranking mechanism
is our own Q-Score introduced in Section 5.3, while the other
approaches considered are the sum of reprojection errors, the
average reprojection error, and the number of consistent cor-
respondences. The performance of MOPED when using the
different Cluster Clustering and hypothesis ranking algorithms
is shown in Table 1, on a subset of 100 images from the Simple
Movie Benchmark (Section 6.2.3) that contain a total of 1289
object instances.
An object hypothesis is considered a true positive if its pose

estimate is within 5 cm and 10 degrees of the ground truth pose.
Object hypotheses whose pose is outside this error range are
considered false positives. Ground truth objects without an as-
sociated true positive are considered false negatives. According
to these performance metrics, the appearance of pose ambigu-
ities and misdetections is particularly critical, since they often
produce both a false positive –the rotational error is greater
than the threshold– and a false negative –no pose agrees with
the ground truth–.
The overall best-performer is Projection Clustering when us-

ing Q-Score as its hypothesis ranking metric, which correctly

Table 1: Mean Recognition per Image: Mean Shift vs Pro-
jection Clustering, in the Simple Movie Benchmark (see Sec-
tion 6.2.3 for details).

True Pos. False Pos. False Neg.

Mean Shift 10.92 3.32 1.97
P.Clust. (Q-Score) 11.3 2.29 1.59

P.Clust. (Reproj) 11.05 7.4 1.84
P.Clust. (Avg Reproj) 10.88 7.81 2.01
P.Clust. (# Corresp) 3.6 9.82 9.29

recognizes and estimates the pose of 87.6% of the objects in the
dataset. Mean Shift is the second best performer, but the in-
creased false positive rate is mainly due to pose ambiguities that
cannot be resolved and produce spurious detections. The dif-
ferent hypothesis ranking schemes critically impact the overall
performance of Projection Clustering, as multiple poses often
need to be merged after the first Clustering-Estimation itera-
tion. Ranking spurious poses over correct poses results in an
increased number of false positives, as Projection Clustering is
unable to merge object hypothesis properly. While Q-Score is
able to estimate the best pose out a set of multiple detections,
Reprojection and Avg. Reprojection select sub-optimal poses
that contain just a few points, often including outliers. This
behavior severely impacts the performance of Projection Clus-
tering, which barely merges any pose hypotheses and produces
an increased number of false positives. The Num. Correspon-
dences metric prefers hypotheses with many consistent matches
in the scene, and Projection Clustering merges hypotheses cor-
rectly. Unfortunately, the chosen best hypotheses are in most
cases incorrect due to ambiguities, estimating only 28% of the
poses correctly. It must be noted that in simple scenes with a
few unoccluded objects all the evaluated metrics perform sim-
ilarly well. Projection Clustering and Q-Score, however, show-
case increased robustness when working with the most complex
scenes.

5.5 Estimation #2: Pose Refinement

At the second iteration of ICE, we use the information from
initial object hypotheses to obtain clusters that are most likely
to belong to a single object instance, with very few outliers.
For this reason, the Estimation step at the second iteration of
ICE requires only a low number of RANSAC iterations to find
object hypotheses. In addition, we use a high number of LM
iterations to estimate object poses accurately.

This procedure is equivalent to that of the first Estimation
step, being the objective function to minimize the only differ-
ence between the two. For a given multi-view feature clus-
ter KK , we perform RANSAC on subsets of correspondences
C ⊂ CK and obtain pose hypotheses H = {o, TH ,CH ⊂ CK}
with consistent correspondences CH ⊂ CK . The objective
function to minimize can be either the sum of reprojection er-

9

The International Journal of Robotics Research, April, 2011

rors (Eq. (19)) or the sum of backprojection errors (Eq. (24)).
See Appendix A for a discussion on these two objective func-
tions.
We initialize the non-linear minimization of the chosen ob-

jective function using the highest-ranked pose in CK according
to their Q-Scores. This non-linear minimization is performed,
again, with a standard Levenberg-Marquardt non-linear least
squares minimization algorithm.

5.6 Truncating ICE: Pose Recombination

An optional final step should be applied in case ICE has not
converged after two iterations, in order to remove multiple de-
tections of objects. In this case, we perform a full Clustering
step as in Section 5.4, and if any hypothesis H ∈ H is updated
with transferred correspondences, we perform a final LM opti-
mization that minimizes Eq. (24) on all correspondences CH .

6 Addressing Scalability and Latency

In this section, we present multiple contributions to optimize
MOPED in terms of scalability and latency. We first introduce
a set of four Benchmarks designed to stress test every compo-
nent of MOPED. Each of our contributions is evaluated and
verified on this set of benchmarks.

6.1 Baseline system

For comparison purposes, we provide results for a Baseline sys-
tem that implements the MOPED framework with none of the
optimizations described in Section 6. In each case, we have
tried to choose the most widespread publicly available code li-
braries for each task. In particular, the following configuration
is used as the baseline for our performance experiments:
Feature Extraction with an OpenMP-enabled, CPU-

optimized version of SIFT we have developed.
Feature matching with a publicly available implementation

of ANN by Arya et al. (1998) and 2-NN Per Object (described
in Section 6.3.1).
Image Space clustering with a publicly available C imple-

mentation of Mean Shift (Dollár and Rabaud, 2010).
Estimation #1 with 500 iterations of RANSAC and up to

100 iterations of the Levenberg-Marquardt (LM) implementa-
tion from Lourakis (2010), optimizing the sum of reprojection
errors in Eq. (18).
Cluster Clustering with Mean Shift, as described in Sec-

tion 5.4.1.
Estimation #2 with 24 iterations of RANSAC and up to

500 iterations of LM, optimizing the sum of backprojection
errors in Eq. (24). The particular number of iterations of
RANSAC in this step is not a critical factor, as most objects
are successfully recognized in the first 10-15 iterations. It is
useful, however, to use a multiple of the number of concurrent
threads (see Section 6.4.3) for performance reasons.
Pose Recombination with Mean Shift and up to 500 iter-

ations of LM.

6.2 Benchmarks

We present four benchmarks (Fig. 5) designed to stress test ev-
ery component of our system. All benchmarks, both synthetic
and real-world, provide exclusively a set of images and ground
truth object poses (i.e., no synthetically computed feature lo-
cations or correspondences). We performed all experiments on
a 2.33GHz quad-core Intel(R) Xeon(R) E5345 CPU, 4 GB of
RAM and a nVidia GeForce GTX 260 GPU running Ubuntu
8.04 (32 bits).

6.2.1 The Rotation Benchmark

The Rotation Benchmark is a set of synthetic images that con-
tains highly cluttered scenes with up to 400 cards in differ-
ent sizes and orientations. This benchmark is designed to test
MOPED’s scalability with respect to the database size, while
keeping a constant number of features and objects. We have
generated a total of 100 independent images for different res-
olutions (1400 × 1050, 1000 × 750, 700 × 525, 500 × 375 and
350× 262). Each image contains from 5 to 80 different objects
and up to 400 simultaneous object instances.

6.2.2 The Zoom Benchmark

The Zoom Benchmark is a set of synthetic images that pro-
gressively zooms in on 160 cards until only 12 cards are visible.
This benchmark is designed to check the scalability of MOPED
with respect to the total number of detected objects in a scene.
We generated a total of 145 independent images for different
resolutions (1400× 1050, 1000× 750, 700× 525, 500× 375 and
350×262). Each image contains from 12 to 80 different objects
and up to 160 simultaneous object instances. This benchmark
simulates a board with 160 cards seen by a 60◦ FOV camera at
distances ranging from 280mm to 1050mm. The objects were
chosen to have the same number of features at each scale. Each
image has over 25000 features.

6.2.3 The Simple Movie Benchmark

Synthetic benchmarks are useful to test a system in controlled
conditions, but are a poor estimator of the performance of a
system in the real world. Therefore, we provide two real-world
scenarios for algorithm comparison. The Simple Movie Bench-
mark consists of a 1900-frame movie at 1280 x 720 resolution,
each image containing up to 18 simultaneous object instances.

6.2.4 The Complex Movie Benchmark

The Complex Movie Benchmark consists of a 3542-frame movie
at 1600 x 1200 resolution, each image containing up to 60 si-
multaneous object instances. The database contains 91 models
and 47342 SIFT features when running this benchmark. It
is noteworthy that the scenes in this video present particu-
larly complex situations, including: several objects of the same
model contiguous to each other, which stresses the cluster-
ing step; overlapping partially-occluded objects, which stresses
RANSAC; and objects in particularly ambiguous poses, which

10

The International Journal of Robotics Research, April, 2011

Figure 5: MOPED Benchmarks. For the sake of clarity, only half of the detected objects are marked. (a) The Rotation
Benchmark: MOPED processes this scene 36.4x faster than the Baseline. (b) The Zoom Benchmark: MOPED processes this
scene 23.4x faster than the Baseline. (c) The Simple Movie Benchmark. (d) The Complex Movie Benchmark.

stresses both LM and the merging algorithm, that encounter
difficulties determining which pose is preferable.

6.3 Feature Matching

Once a set of features have been extracted from input image(s),
we must find correspondences between the image features and
our object database. Matching is done as a nearest neighbor
search in the 128-dimensional space of SIFT features. An av-
erage database of 100 objects can contain over 60,000 features.
Each input image, depending on the resolution and complexity
of the scene, can contain over 10,000 features.
The feature matching step aims to create one-to-one corre-

spondences between model and image features. The feature
matching step is, in general, the most important bottleneck
for model-based object recognition to scale to large object
databases. In this section, we propose and evaluate different
alternatives to maximize scalability with respect to the number
of objects in the database, without sacrificing accuracy. The
extension of the matching search space is, in this case, the bal-
ancing factor between accuracy and speed when finding nearest

neighbors.

There are no known exact algorithms for solving the matching
problem that are faster than linear search. Approximate algo-
rithms, on the other hand, can provide massive speedups at the
cost of a decreased matching accuracy, and are often used wher-
ever speed is an issue. Many approximate approaches for find-
ing the nearest neighbors to a given feature are based on kd-trees
(e.g. ANN (Arya et al., 1998), randomized kd-trees (Silpa-Anan
and Hartley, 2008), FLANN (Muja and Lowe, 2009)) or hash-
ing (e.g. LSH (Andoni and Indyk, 2006)). A ratio test between
the first two nearest neighbors is often performed for outlier
rejection. We analyze the different alternatives in which these
techniques are often applied to feature matching, and propose
an intermediate solution that achieves a good balance between
recognition rate and system latency.

6.3.1 2-NN per Object

On the one end, we can compare the image features against each
model independently. If using e.g. ANN, we build a kd-tree for
each model in the database once (off-line), and we match each of

11

The International Journal of Robotics Research, April, 2011

them against every new image. This process entails a complex-
ity of O(|fm||O| log(|F̄o|)), where |fm| is the number of features
on the image, |O| the number of models in the database, and
|F̄o| the mean number of features for each model. When |O|
is large, this approach is vastly inefficient as the cost of access-
ing each kd-tree dominates the overall search cost. The search
space is in this case very limited, and there is no degradation in
performance when new models are added to the database. We
refer to it as OBJ MATCH.

6.3.2 2-NN per Database

On the other end, we can compare the image features against
the whole object database. This näıve alternative, which we
term DB MATCH, builds just one kd-tree containing the fea-
tures from all models. This solution has a complexity of
O(|fm| log(|O||F̄o|)). The search space is in this case the whole
database. While this approach is orders of magnitude faster
than the previous one, every new object added to the database
degrades the overall recognition performance of the system due
to the presence of similar features in different objects. In
the limit, if an infinite number of objects were added to the
database, no correspondences would ever be found, because the
ratio test between the first and second nearest neighbor would
be always close to 1.

6.3.3 Brute Force on GPU

The advent of GPUs and their many-core architecture allows
the efficient implementation of an exact feature matching al-
gorithm. The parallel nature of the brute force matching al-
gorithm suits the GPU, and allows it to be faster than the
ANN approach when |O| is not too large. Given that this al-
gorithm scales linearly with the number of features instead of
logarithmically, we can match each model independently with-
out performance loss.

6.3.4 k-NN per Database

Alternatively, one can consider the closest k nearest neigh-
bors instead (with k > 2). k-ANN implementations using kd-
trees can provide more neighbors without significantly increas-
ing their computational cost, as they are often a byproduct of
the process of obtaining the nearest neighbor. An intermediate
approach to the ones presented before is the search for k mul-
tiple neighbors in the whole database. If two neighbors from
the same model are found, the distance ratio is then applied
to the 2 nearest neighbors from the same model. If the near-
est neighbor is the only neighbor for a given model, we apply
the distance ratio with the second nearest neighbor to avoid
spurious correspondences. This algorithm (with k = 90) is the
default choice for MOPED.

6.3.5 Performance comparison

Fig. 6 compares the cost of the different alternatives on the
Rotation Benchmark. OBJ MATCH and GPU scale linearly
with respect to |O|, while DB MATCH and MOPED-k scale

Table 2: Feature matching algorithms in the Simple Movie
Benchmark. GPU used as performance baseline, as it computes
exact nearest neighbors.

Corresp: After Matching After clustering Final

GPU 3893.7 853.2 562.1
OBJ MATCH 3893.6 712.0 449.2
DB MATCH 1778.4 508.8 394.7
MOPED-90 3624.9 713.6 428.9

Matching Time(ms) Objects Found

GPU 253.34 8.8
OBJ MATCH 498.586 8.0
DB MATCH 129.85 7.5
MOPED-90 140.36 8.2

0

2

4

6

8

10

12

14

0 20 40 60 80

La
te

n
cy

 (
s)

Models in DB (lin)

0

0.5

1

1.5

2

2.5

5 10 20 40 80

La
te

n
cy

 (
re

la
ti

v
e

)

Models in DB (log)

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

5 10 20 40 80

O
b

je
ct

s
F

o
u

n
d

 (
re

la
ti

v
e

)

Models in DB (log)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

5 10 20 40 80

S
IF

T
s

p
e

r
O

b
je

ct
 (

re
la

ti
v

e
)

Models in DB (log)

MOPED 30 MOPED 90 GPU OBJ_MATCH DB_MATCH

Figure 6: Scalability of feature matching algorithms with re-
spect to the database size, in the Rotation Benchmark at
1400× 1050 resolution.

almost logarithmically. We show MOPED-k using k = 90 and
k = 30. The value of k adjusts the speed and quality behavior
of MOPED between OBJ MATCH (k =∞) and DB MATCH
(k = 2). The recognition performance of MOPED-k when us-
ing the different strategies is shown in Table 2. GPU provides
an upper bound for the object recognition, as it is an exact
search method. OBJ MATCH comes closest in raw match-
ing accuracy with MOPED-90 a close second. However, the
number of objects detected are nearly the same. The match-
ing speed of MOPED-90 is, however, significantly better than
OBJ MATCH. Feature matching in MOPED-90 thus provides
a significant performance increase without sacrificing much ac-
curacy.

12

The International Journal of Robotics Research, April, 2011

6.4 Architecture Optimizations

Our algorithmic improvements were focused mainly on boosting
the scalability and robustness of the system. The architectural
improvements of MOPED are obtained as a result of an imple-
mentation designed to make the best use of all the processing
resources of standard compute hardware. In particular, we use
GPU-based processing, intra-core parallelization using SIMD
instructions, and multi-core parallelization. We have also care-
fully optimized the memory subsystem, including bandwidth
transfer and cache management.
All optimizations have been devised to reduce the latency

between the acquisition of an image and the output of the pose
estimates, to enable faster response times from our robotic plat-
form.

6.4.1 GPU and Embarrassingly Parallel Problems

State-of-the-art CPUs, such as the Intel Core i7 975 Extreme,
can achieve a peak performance of 55.36 GFLOPS, according to
the manufacturer (Intel Corp., 2010). State-of-the-art GPUs,
such as the ATI Radeon HD 5900, can achieve a peak perfor-
mance of 4640 SP GFLOPS (AMD, 2010).
To use GPU resources efficiently, input data needs to be

transferred to the GPU memory. Then, algorithms are executed
simultaneously on all shaders, and finally recover the results
from the GPU memory. As communication between shaders is
expensive, the best GPU-performing algorithms are those that
can be divided evenly into a large number of simple tasks. This
class of easily separable problems is called Embarrassingly Par-
allel Problems (EPP) (Wilkinson and Allen, 2004).

GPU-Based Feature Extraction. Most feature extraction
algorithms consist of an initial keypoint detection step followed
by a descriptor calculation for each keypoint, both of which
are EPP. Keypoint detection algorithms can process each pixel
from the image independently. They may need information
about neighboring pixels, but they do not typically need results
from them. After obtaining the list of keypoints, the respective
descriptors can also be calculated independently.
In MOPED, we consider two of the most popular locally in-

variant features: SIFT (Lowe, 2004) and SURF (Bay et al.,
2008). SIFT features have proven to be among the best-
performing invariant descriptors in the literature (Mikolajczyk
and Schmid, 2005), while SURF features are considered to be a
fast alternative to SIFT. MOPED uses SIFT-GPU (Wu, 2007)
as its main feature extraction algorithm. If compatible graphics
hardware is not detected MOPED automatically reverts back to
performing SIFT extraction on the CPU, which is an OpenMP-
enabled, CPU-optimized version of SIFT we have developed. A
GPU-enabled version of SURF, GPU-SURF (Cornelis and Van
Gool, 2008), is used for comparison purposes.
We evaluate the latency of the three implementations in

Fig. 7. The comparison is as expected: GPU versions of both
SIFT and SURF provide tremendous improvements over their
non-GPU counterparts. Table 3 compares the object recogni-
tion performance of SIFT and SURF: SURF proves to be 2.59x

Table 3: SIFT vs. SURF: Mean Recognition Performance per
Image in Zoom Benchmark.

Latency (ms) Recognized Objects

SIFT 223.072 13.83
SURF 86.136 6.27

0

500

1000

1500

2000

2500

SIFT-CPU SIFT-GPU

La
te

n
cy

 (
m

s)

0

50

100

150

200

250

300

SIFT-GPU SURF-GPU

La
te

n
cy

 (
m

s)

350 500 700 1000 1400

Figure 7: SIFT-CPU vs. SIFT-GPU vs. SURF-GPU, in the
Rotation Benchmark at different resolutions. (left) SIFT-CPU
vs. SIFT-GPU: 658% speed increase in SIFT extraction on
GPU. (right) SIFT-GPU vs. SURF-GPU: 91% speed increase
in SURF over SIFT at the cost of lower matching performance.

faster than SIFT at the cost of detecting 54% less objects. In
addition, the performance gap between both methods decreases
significantly as image resolution increases, as shown in Fig. 7.
For MOPED, we consider SIFT to be almost always the better
alternative when balancing recognition performance and system
latency.

GPU Matching. Performing feature matching in the GPU
requires a different approach than the standard Approximate
Nearest Neighbor techniques. Using ANN, each match involves
searching in a kd-tree, which requires fast local storage and a
heavy use of branching that are not suitable for GPUs.

Instead of using ANN, Wu (2007) suggests the use of brute
force nearest neighbor search on the GPU, which scales quite
well as vector processing matches the GPU structure quite well.
In Fig. 6, brute force GPU matching is shown to be faster than
per-object ANN and provide better quality matches because it
is not approximate. As graphics hardware becomes cheaper and
more powerful, brute-force feature matching in large databases
might become the most sensible choice in the near future.

6.4.2 Intra-core optimizations

SSE instructions allow MOPED to perform 12 floating point
instructions per cycle instead of just one. The 3D to 2D projec-
tion function, critical in the pose estimation steps, is massively
improved by using SSE-specific algorithms from Van Weveren
(2005) and Conte et al. (2000).

The memory footprint of MOPED is very lightweight for cur-
rent computers. In the case of a database of 100 models and
a total of 102.400 SIFT features, the required memory is less
than 13MB. Runtime memory footprint is also small: a scene

13

The International Journal of Robotics Research, April, 2011

0 500 1000 1500 2000 2500 3000

Latency (ms)

without SSE with SSE

Figure 8: SSE performance improvement in the Complex Movie
Benchmark. Time per frame without counting SIFT extraction.

with 100 different objects with 100 matched features each would
require less than 10 MB of memory to be processed. This is pos-
sible thanks to using dynamic and compact structures, such as
lists and sets, and removing unused data as soon as possible. In
addition, SIFT descriptors are stored as integer numbers in a
128-byte array instead of a 512-byte array. Cache performance
has been greatly improved due to the heavy use of memory-
aligned and compact data structures (Dysart et al., 2004).
The main data structures are kept constant throughout the

algorithm, so that no data needs to be copied or translated
between steps. k-ANN feature matching benefits from compact
structures in the kd-tree storage, as smaller structures increase
the probability of staying in the cache for faster processing.
In image space clustering, the performance of Mean Shift is
boosted 250 times through the use of compact data structures.
The overall performance increase is over 67% in CPU pro-

cessing tasks (see Fig. 8).

6.4.3 Symmetric Multiprocessing

Symmetric Multiprocessing (SMP) is a multiprocessor com-
puter architecture with identical processors and shared mem-
ory space. Most multi-core based computers are SMP systems.
OpenMP is a standard framework for multi-processing in SMP
systems that we implement in MOPED.
We use Best Fit Decreasing (Johnson, 1974) to balance the

load between cores using the size of a cluster as an estimate of its
processing time, given that each cluster of features can be pro-
cessed independently. Tests on a subset of 10 images from the
Complex Movie Benchmark show performance improvements
of 55% and 174% on dual and quad core CPUs respectively, as
seen in Fig. 9.

6.4.4 Multi-Frame Scheduling

In order to maximize the system throughput, MOPED can ben-
efit from GPU-CPU pipeline scheduling (Chatha and Vemuri,
2002). In order to use all available computing resources, a sec-
ond execution thread can be added, as shown in Fig. 10. How-
ever, the GPU and CPU execution times are not equal in real
scenes, and one of the execution threads often needs to wait for

0 200 400 600 800

Latency (ms)

1 Core 2 Core 4 Core

Figure 9: Performance improvement of Pose Estimation step
in multi-core CPUs, in the Complex Movie Benchmark.

Table 4: Impact of pipeline scheduling, in the Simple Movie
Benchmark. Latency measurements in ms.

FPS Latency Latency Sd

Sched. MOPED 3.49 368.45 92.34
Non-Sched. MOPED 2.70 303.23 69.26

Baseline 0.47 2124.30 286.54

the other (see Fig. 11). The impact of pipeline scheduling de-
pends heavily on image resolution, as shown in Fig. 12, because
the GPU and CPU loads do not increase at the same rate when
increasing the number of features but keeping the same num-
ber of objects in each scene. In MOPED, pipeline scheduling
may increase latency significantly, especially if using high res-
olution images, but also increases throughput almost two-fold.
Since GPU processing is the bottleneck on very small resolu-
tions, these are the best scenarios for pipeline scheduling. For
example, as seen in Fig. 12, at a lower resolution of 500× 380,
throughput is increased by 95.6% and latency is increased by
9%.

We further test the impact of pipeline scheduling in a real
sequence in the Simple Movie Benchmark, in Table 4. The
average throughput of the overall system is increased by 25%
when using pipeline scheduling, at the cost of 21.5% more la-
tency. In addition, we see the average system latency fluctuates
33.2% more when using pipeline scheduling. In our particular
application, latency is a more critical factor than throughput,
as our robot HERB (Srinivasa et al., 2010) must interact with
the world in real time. Therefore, we choose not to use pipeline
scheduling in our default implementation of MOPED (and in
the experiments displayed in this paper). In general, pipeline
scheduling should be implemented in any kind of offline process,
or whenever latency is not a critical factor in object recognition.

6.5 Performance evaluation

In this section, we evaluate the impact of our combined op-
timizations on the overall performance of MOPED, compared

14

The International Journal of Robotics Research, April, 2011

Figure 10: (top) Standard MOPED uses the GPU to obtain
the SIFT features, then the CPU to process them. (bottom)
Addition of a second execution thread does not substantially
increase the system latency.

Figure 11: (top) Limiting factor: CPU. GPU thread processing
frame N+1 must wait for CPU processing frame N to finish,
increasing latency. (bottom) Limiting factor: GPU. No sub-
stantial increase in latency.

to the Baseline system in Section 6.1, and we analyze how the
application of our optimizations improves system latency and
scalability.

Testing both systems on the Simple Movie Benchmark (Ta-
ble 4), MOPED outperforms the baseline with a 5.74x increase
in throughput and a 7.01x decrease in latency. These improve-
ments become more acute the greater the scene complexity is,
Our architectural optimizations offer improvement even with
the simple scenes, but the overhead of managing the SMP
and GPU processing is large enough to limit the improvement.
However, in scenes with high complexity (and, therefore, with
high number of features and objects) this overhead is negli-
gible, resulting in massive performance boosts. In the Com-

0

1

2

3

4

5

6

7

8

350 500 700 1000 1400

F
ra

m
e

s
p

e
r

S
e

co
n

d

Image Width

0

500

1000

1500

2000

2500

3000

350 500 700 1000 1400

La
te

n
cy

 (
m

s)

Image Width

Scheduled Non Scheduled

Figure 12: Impact of image resolution in Pipeline Scheduling,
in the Rotation Benchmark. (left) Latency comparison (ms).
(right) Throughput comparison (FPS).

plex Movie Benchmark, MOPED shows an average through-
put of 0.44 frames per second and latency of 2173.83 ms, a
30.1x performance increase over the 0.015 frames per second
and 65568.20 ms of average latency of the Baseline system.

It is also interesting to compare the Baseline and MOPED
in terms of system scalability. We are most interested in the
scalability with respect to image resolution, number of objects
in a scene and number of objects in the database. Our synthetic
benchmarks allow for a controlled comparison of these different
parameters without affecting the others.

The Rotation Benchmark contains images with a con-
stant number of object instances at 5 different resolutions.
Fig. 13.(left) shows that both MOPED and the Baseline sys-
tem scale linearly in execution time with respect to image res-
olution, i.e. quadratically with respect to image width. To
be more accurate, the implementation of ICE in both systems
allows their performance to increase linearly with the number
of feature clusters. The number of SIFT features and feature
clusters also increase linearly with respect to image resolution
in this Benchmark.

To test the scalability with respect to the number of objects
in the database, images from the Rotation Benchmark are gen-
erated to have a fixed number of object instances and poses,
and change the identity of the object instances from a mini-
mum of 5 different objects to a maximum of 80. The use of a
database-wide feature matching technique (k-NN Per Database,
Section 6.3.4) allows MOPED to perform almost constantly
with respect to the number of objects in the database. The
latency of the Baseline system, which performs independent
feature matching per object, increases roughly linearly. Fig. 13
shows the latency of each system relative to their best scores,
to see how latency increments when each of the parameters
change. Therefore, it is important to note that the latency of
MOPED and the Baseline are in different scales in Fig. 13, and
one should only compare the relative differences when changing
the image resolution and the size of the object database.

The number of objects in a scene is another factor that can
greatly affect the performance of MOPED. The Zoom Bench-
mark aims to show a relatively constant number of image fea-
tures (Fig. 14), despite being only 12 (large) objects visible at
280 mm and 160 (smaller) objects visible at 1050 mm. It is
interesting to notice that the required time is inversely pro-
portional to the number of objects in the image, i.e. a small
number of large objects are more demanding than large num-
bers of small objects. The explanation for this fact is that the
smaller objects in this benchmark are more likely to fit in a
single object prior in the first iteration of ICE. Clusters that
converge after the first iteration of ICE (i.e. with no corre-
spondences transferred to or from them) require very little pro-
cessing time in the second iteration of ICE. On the other hand,
bigger objects require more effort in the second iteration of ICE
due to the cluster merging process. It is also worth noting that
this experiment pushes the limits of our graphics card, caus-
ing an inevitable degradation in performance when the GPU
memory limit is reached. In the 850mm-1050mm range, the
number of SIFT features to compute is slightly lower than in

15

The International Journal of Robotics Research, April, 2011

0

2

4

6

8

10

12

14

16

350 500 700 1000 1400

La
te

n
cy

 (
re

la
ti

v
e

)

Image Width

0

1

2

3

4

5

6

5 10 20 40 79

La
te

n
cy

 (
re

la
ti

v
e

)

Models in Database

MOPED Baseline

Figure 13: Scalability experiments in the Rotation Benchmark.
(left) Latency with respect to image resolution. (right) Latency
with respect to database size.

0

0.5

1

1.5

2

2.5

3

3.5

4

280 340 410 500 600 750 900 1050

La
te

n
cy

 (
s)

Viewing Distance (mm)

0

10

20

30

40

50

60

70

80

90

280 340 410 500 600 750 900 1050

La
te

n
cy

 (
s)

Viewing Distance (mm)

Full Frame Matching Feature Extraction

Figure 14: Scalability with respect to the number of objects in
the scene in the Zoom Benchmark. The scale of the left chart
is 22.5 times that of the right chart for better visibility. (left)
Latency of MOPED. (right) Latency of the Baseline system.

the 280mm-850mm range. In the latter case, the memory limit
of the GPU is reached, causing a two-fold increase in feature
extraction latency when this happens. Despite this effect, the
average latency for MOPED in the Zoom Benchmark is 2.4
seconds, compared to 65.5 seconds in the Baseline system.

7 Recognition and Accuracy

In this section, we evaluate the recognition rate, pose estimation
accuracy and robustness of MOPED in the case of a single-
view setup (MOPED-1V) and a three-view setup (MOPED-
3V, shown in Fig. 16), and compare their results to other well-
known multi-view object recognition strategies.

We have conducted two sets of experiments to prove
MOPED’s suitability for robotic manipulation. The first set
evaluates the accuracy of MOPED in estimating the position
and orientation of a given object in a set of images. The sec-
ond set of experiments evaluates the robustness of MOPED
against modeling errors, which can greatly influence the accu-
racy of pose estimation. In all experiments, we estimate the
full 6-DOF pose of objects, and no assumptions are made on
their orientation or position. In all cases, we perform the image
space clustering step with a Mean Shift radius of 100 pixels, and
we use RANSAC with subsets of 5 correspondences to compute
each hypothesis. The maximum number of RANSAC iterations
is set to 500 in both Pose Estimation steps. In MOPED-3V, we
enforce the requirement that a pose must be seen by at least
two views, and that at least 50% of the points from the dif-

Figure 15: Examples scenes captured by our camera setup with
Cam 1 (top), Cam 2 (middle), and Cam 3 (bottom). (Col 1)
Rice box at 50 cm. (Col 2) Notebook at 60 cm. (Col 3) Coke
can at 80 cm. (Col 4) Juice bottle at 1m. (Col 5) Pasta box at
1.2m.

Figure 16: Three-camera setup used for accuracy tests with
coordinate frame indicated on bottom left corner.

ferent hypotheses are consistent with the final pose. We add
this requirement in order to prove that MOPED-3V takes full
advantage of the multi-view geometry to improve its estimation
results.

The experimental setup is a static three-camera setup with
approximately 10cm baseline between each two cameras (see
Fig. 16). Both intrinsic and extrinsic parameters for each cam-
era have been computed, considering camera 1 as the coordinate
origin.

7.1 Alternatives for multi-view recognition

and estimation

We consider two well-known techniques for object recognition
and pose estimation in multiple simultaneous views. The tech-
niques we consider are the Generalized Camera (Grossberg and
Nayar, 2001) and the pose averaging (Viksten et al., 2006) tech-
niques.

7.1.1 Generalized Camera

The Generalized Camera approach parameterizes a network of
cameras as sets of rays that project from each camera center
to each image pixel, thus expressing the network of cameras

16

The International Journal of Robotics Research, April, 2011

a single non-perspective camera with multiple projection cen-
ters and focal planes. Then, the camera pose is optimized in
this generalized space by solving the resulting non-perspective
PnP (i.e. nPnP) problem (Chen and Chang, 2004). While
such an approach is perfectly valid, it might not be entirely
feasible in real-time if the correspondence problem needs to be
addressed as well, as the search space increases dramatically
with each extra image added to the system. This process takes
full advantage of the multi-view geometry constraints imposed
by the camera setup, and its accuracy results can be consid-
ered a theoretical limit for multi-view model-based pose esti-
mation. In our experiments, we implement this technique and
use 1000 RANSAC iterations to robustly find correspondences
in the generalized space.

7.1.2 Pose averaging

One of the simplest and most used alternatives for multi-view
recognition is to combine multiple single-image algorithms via
pose verification (Selinger and Nelson, 2001), robust averaging,
or weighted voting (Viksten et al., 2006). These methods avoid
the larger search space that may cause difficulties in the Gener-
alized Image approach, but they fail to extract information from
the multi-view geometry to provide a globally optimized pose
estimate. In our experiments, we use the output of MOPED-1V
and perform pose robust averaging using the Q-Scores of the
MOPED-1V hypotheses as a weighting factor.

7.2 Pose estimation accuracy

In this set of experiments, we evaluate MOPED’s accuracy
over the range most useful in robotic manipulation. The three-
camera setup was mounted and calibrated on a flat table (see
Fig. 16). Our pose accuracy database is composed of five com-
mon household objects of various shapes and appearances. A
set of 27 different positions and orientations for each object
were gathered, with depths (i.e. distances from the central
camera) ranging from 0.4m to 1.2m in 10cm increments, lateral
movements of up to 20cm and out-of-plane rotations of up to
45 degrees. 10 images were taken with each camera at each
position to account for possible image noise and artifacts, pro-
ducing 810 images per object and a total of 4050 images. Some
example images from this dataset are shown in Fig. 15.

It is important to mention that the choice of camera and lens
can greatly affect pose estimation accuracy. The cameras we use
in these experiments are low-cost cameras of 640 × 480 pixels
with a 73◦ field of view. The usage of a higher resolution image
and a lens with a smaller field of view would greatly improve
these results.

In all these experiments, the distance-normalized translation
error refers to the absolute translation error divided by the dis-
tance with respect to the closest camera. Rotation error is
measured as the quaternion angle α = 2cos−1(qT qgt). The cor-
rect detection rate counts all pose hypotheses that lie within 5
cm and 10 degrees of the true pose. It is important to note that
the correct detection, false positive and false negative rates do

Table 5: Average accuracy test. (1) MOPED-1V (2) Pose av-
eraging. (3) MOPED-3V (4) Generalized Image.

(1) (2) (3) (4)

TX error (cm) 1.45 1.36 0.47 0.46

TX error/dist. 1.80% 1.71% 0.61% 0.60%
Rot. error (deg) 6.27 8.11 5.69 3.48

Correct det. rate 85.0% 88.3% 88.3% 71.9%
False pos. rate 2.78% 0% 0% 0%
False neg. rate 13.61% 11.67% 11.67% 28.15%
Num iter./view 96.71 96.71 98.69 259.05

not necessarily need to add up to 100%, because an algorithm
might output a correct and an incorrect pose in the same image.

Table 5 compares the accuracy of MOPED-1V, robust pose
averaging over MOPED-1V, MOPED-3V and the Generalized
Image approach. MOPED-1V results show the average perfor-
mance over the three cameras in our setup.

As we can see in Table 5, accuracy is increased threefold
using MOPED-3V with respect to pose averaging, while re-
quiring little overhead with respect to MOPED-1V. It is note-
worthy that MOPED-3V and Generalized Image, considered a
theoretical limit, perform very similarly in terms of accuracy,
with a difference lower than 0.01%. The low detection rate of
the Generalized Image approach is due to its enormous com-
putational cost, as it often exceeds the maximum number of
iterations with no correct detection. The average number of
iterations required to detect a single object with a Generalized
Image approach is three times greater than MOPED, and its
computational complexity grows exponentially with respect to
the number of objects in a scene.

7.3 Robustness against modeling noise

In this set of experiments, we evaluate MOPED’s robustness
against modeling inaccuracies. Successful pose estimation in
MOPED-1V is heavily dependent on a good model calibration,
especially in terms of scaling, because depth is estimated en-
tirely based on the scale of each model. Therefore, extreme care
needs to be taken when generating models to set a proper scale,
and we often require several tests before a new object model can
be incorporated into the robot’s object database. For example,
a modeling error of 1mm in a coke can (i.e. 1mm larger than
its real size), translates into a depth estimation error of up to
3cm at a distance of 1m, large enough to cause problems to
the robotic manipulator. On the other hand, having multiple
views of the same object enables the use of further constraints
in its pose. In MOPED-3V, an “implicit triangulation” takes
place during the optimization, with the object drifting to its
true position to minimize the global backprojection error im-
posed by the multi-view geometry, despite the larger error when
MOPED-1V processes each view individually.

Table 6 and Table 7 showcase the effect of scaling errors dur-
ing the object modeling stage. MOPED-3V outperforms ev-

17

The International Journal of Robotics Research, April, 2011

Figure 17: Performance of MOPED-3V in complex scenes. (Cols 1-3) depict the recognized poses overlaid on each image. (Col
4) shows a reconstruction of the given scenes in our virtual environment.

Table 6: Average distance-normalized translation error with
varying model scale. See Table 5 for (1),(2),(3),(4)

Model scale (1) (2) (3) (4)

0.95 4.11% 4.20% 0.81% 0.81%
0.97 2.56% 2.65% 0.68% 0.62%
0.99 1.86% 1.76% 0.61% 0.54%
1.01 2.12% 1.95% 0.74% 0.69%
1.03 3.14% 2.90% 0.98% 0.94%
1.05 4.72% 4.43% 1.29% 1.18%

Table 7: Average Correct detection rate with varying model
scale. See Table 5 for (1),(2),(3),(4)

Model scale (1) (2) (3) (4)

0.95 69.7% 71.7% 80.8% 59.3%
0.97 82.2% 85.0% 85.8% 66.7%
0.99 84.4% 86.7% 86.7% 71.1%
1.01 84.2% 88.3% 88.3% 70.4%
1.03 74.4% 77.5% 87.5% 65.2%
1.05 55.8% 58.3% 85.0% 54.1%

ery other approach in terms of recognition rate, while achiev-
ing similar accuracy results than the Generalized Image ap-
proach. The Generalized Image approach suffers from a ma-
jor performance drop when modeling errors appear, since it
is often not able to find subsets of correspondences that are
consistent enough to generate good hypotheses. MOPED-1V
correctly finds object hypotheses in each image, but modeling
noise causes a drop in the correct detection rate, as the esti-
mated poses are often outside the 5cm threshold. MOPED-3V,
on the other hand, finds object hypotheses in each image, and
then uses the inherent multi-view constraints to correctly esti-
mate the final object poses.

8 Conclusion

We have presented and validated MOPED, an optimized frame-
work for the recognition and registration of objects that ad-
dresses the problems of high scene complexity, scalability and
latency that hamper object recognition systems when working
in real-world scenes. The use of Iterative Clustering-Estimation
(ICE) integrates single- and multi-view object recognition in an
efficient, robust, and easy to parallelize manner. The Hypoth-
esis Quality Score and Projection Clustering work together to
minimize the number of false positives and to re-utilize all avail-
able information in the accurate pose estimation of true pos-
itives. The multiple architectural improvements in MOPED
provide over 30x improvement in latency and throughput, al-
lowing MOPED to perform in real-time robotic applications.

The different accuracy and recognition experiments we per-
formed in this paper gives us a quantitative evaluation of
MOPED’s capabilities. However, the most stringent perfor-
mance test of an object recognition system for manipulation
is to actually integrate it in a robotic platform and use it to

18

The International Journal of Robotics Research, April, 2011

interact with people in real time. MOPED has been, for the
past two years, an active part of HERB (Srinivasa et al., 2010),
and the pose estimation outputs of MOPED have been used
to grasp more than 2000 objects. In a controlled experiment,
HERB and MOPED achieved a 91% grasping success rate using
a single-image setup (MOPED-1V) and 98% success rate using
a three-camera setup and MOPED-3V.

MOPED, however, is not without limitations. While we have
addressed the issue of handling scenes with high complexity
with minimal latency, the recognition performance of MOPED
is ultimately tied to the ability of finding enough local features
in a given object. If an object is not textured enough, too
far away, or has large specular reflections on its surface, the
feature extraction/matching steps might not find enough cor-
respondences in the object to perform any kind of recognition.
In our experience, we have found that a minimum of 8 to 10
correspondences are necessary to successfully recognize an ob-
ject and estimate its pose. Hsiao et al. (2010) showed that the
ability to generate more features in a scene can result in enor-
mous boosts in recognition rate for objects with little texture.
It would be interesting to evaluate the performance of such an
algorithm integrated in MOPED.

An additional issue that often arises in the model-based ob-
ject recognition literature is the model building stage. The
model building stage we use in MOPED (described in Collet
et al. (2009)), despite being mostly automatic, still requires a
certain amount of human supervision, and we have to carefully
scale our objects to achieve proper pose estimation from a sin-
gle view. An important path to follow in the future is the use
of object discovery techniques and multi-modal data to gener-
ate accurate models for MOPED. In particular, we are working
on joint camera-laser discovery of objects to eliminate the scale
uncertainty and obtain more robust object boundaries. The use
of laser data (or other kind of 3D information, such as RGB-
D cameras) to improve the Clustering and Estimation steps of
MOPED is another promising line of work to be investigated in
the future.

Appendix

A Pose estimation from point corre-

spondences

There are two main error metrics to recover the pose of a 3D
model from point correspondences, the reprojection and back-
projection errors. Both error functions perform equivalently
when estimating object poses in Euclidean space, so one may
choose either one. The reprojection error is usually preferred
in the computer vision community because it is invariant to
projective transformations, while the backprojection error is
meaningless in projective space (Hartley and Sturm, 1994). In
our particular case, working with calibrated cameras in an Eu-
clidean space, we have chosen the backprojection error because
it makes our framework more easily extensible to other types
of multi-modal data, such as LASER point clouds or RGBD

cameras, which we plan to incorporate in the near future. This
section contains a brief derivation of the error functions we use
in MOPED, both for the reprojection and backprojection er-
rors.

A.1 Reprojection error

Consider a set of correspondences Cm in image m, where each
correspondence Co

j;m = (fj;m, Fi;o). Assume the corresponding
features in Co

j;m have locations pj;m in an image and Pi;o in an
object model. For a given transformation T and an image m
with extrinsic parameters Tm

1, the sum of reprojection errors
is defined by

ReprojectionErr(T,m) =
∑

Co
j;m

∈Cm

[pj;m − proj (TmTPi;o)]
2

(18)
The optimal single hypothesis h∗ for a given set of correspon-

dences C is one that minimizes the sum of reprojection errors
of the correspondences across all images. The pose T ∗

h for h∗ is
then defined as:

T ∗
h = arg min

T

M
∑

m=1

ReprojectionErr(T,m) (19)

A.2 Backprojection Error

Alternatively, one can define an analogous optimization in
terms of the backprojection error, by tracing the line Lj;m from
the camera center to each 2D point pj;m, and computing the
distance from Lj;m to the corresponding 3D point Pi;o. We
parameterize a line as L = (c, v), where v is a unit vector indi-
cating the line direction and c is an arbitrary point on that line,
e.g. the camera center. Using projective geometry, we obtain

v̄j;m =
K−1

m pj;m

‖K−1
m pj;m‖

(20)

where Km is a 3×3 intrinsic camera matrix for image m. Each
line Lj;m in the world reference frame is then given by

vj;m = (Rm)
T
v̄j;m cj;m = − (Rm)

T
tm (21)

The distance between a point Pi;o and Lj;m is given by

d(Pi;o, Lj;m) = ‖
(

I3×3 − vj;mvj;m
T
)

(Pi;o − cj;m) ‖ (22)

The analogous equation to Eq. (19) that minimizes the sum
of backprojection errors of a set of correspondences C with
Cj = (Pi;o, Lj;m) is given by

T ∗
h = arg min

T

M
∑

i=1

∑

Cj∈C

[d (TmTPi;o, Lj;m)]
2

(23)

Additionally, we found it useful to constrain the objects
to lie in front of the cameras. Given that vj;m are vectors

1Reminder: in tensor notation, Tm = (Tm)−1

19

The International Journal of Robotics Research, April, 2011

from the camera center pointing towards the image plane,
vj;m

T (Pi;o − cj;m) > 0 for all points Pi;o in front of camera
m. We incorporate this constraint as a regularizer (with weight
ξ > 0) in the minimization

T ∗
h = arg min

T

M
∑

i=1

∑

Cj∈C

[

d (TmTPi;o, Lj;m) + ξ

(

1− vj;m
T (Pi;o − cj;m)

‖Pi;o − cj;m‖

)]2

(24)

Acknowledgments

This material is based upon work partially supported by the
National Science Foundation under Grant No. EEC-0540865.
Alvaro Collet is partially supported by Caja Madrid fellowship.
Special thanks to Martial Hebert, Chris Atkeson and members
of the Personal Robotics Lab at Intel Pittsburgh for insightful
comments and discussions.

References

AMD. ATI Radeon HD 5970 Graphics Feature Sum-
mary, 2010. URL http://www.amd.com/us/products/

desktop/graphics/ati-radeon-hd-5000/hd-5970/

Pages/ati-radeon-hd-5970-specifications.aspx.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing al-
gorithms for approximate nearest neighbor in high dimen-
sions. In International Symposium on Foundations of Com-
puter Science, pages 459–468. IEEE, 2006.

Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Sil-
verman, and Angela Y. Wu. An optimal algorithm for ap-
proximate nearest neighbor searching fixed dimensions. Jour-
nal of the ACM, 45(6), 1998.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van
Gool. Speeded-Up Robust Features (SURF). Computer Vi-
sion and Image Understanding, 110(3):346–359, 2008.

K.S. Chatha and R. Vemuri. Hardware-software partition-
ing and pipelined scheduling of transformative applications.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 10(3):193–208, June 2002.

Chu-Song Chen and Wen-Yan Chang. On Pose Recovery For
Generalized Visual Sensors. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(7):848–61, July 2004.

Yizong Cheng. Mean Shift, Mode Seeking, and Clustering.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 17(8):790, 1995.

Alvaro Collet and Siddhartha S. Srinivasa. Efficient Multi-View
Object Recognition and Full Pose Estimation. In IEEE In-
ternational Conference on Robotics and Automation, Anchor-
age, May 2010. IEEE.

Alvaro Collet, Dmitry Berenson, Siddhartha S. Srinivasa, and
Dave Ferguson. Object recognition and full pose registration
from a single image for robotic manipulation. In IEEE In-
ternational Conference on Robotics and Automation, pages
48–55, Kobe, May 2009. IEEE.

G. Conte, S. Tommesani, and F. Zanichelli. The Long And
Winding Road to High-Performance Image Processing with
MMX/SSE. In IEEE International Workshop on Computer
Architectures for Machine Perception, page 302. IEEE, 2000.

Nico Cornelis and Luc Van Gool. Fast scale invariant feature
detection and matching on programmable graphics hardware.
In IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, 2008.

Daniel F. Dementhon and Larry S. Davis. Model-based object
pose in 25 lines of code. International Journal of Computer
Vision, 15(1-2):123–141, June 1995.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum like-
lihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society, Series B, 39(1):1–38, 1977.

20

The International Journal of Robotics Research, April, 2011

Piotr Dollár and Vincent Rabaud. Piotr Dollar’s Image & Video
Toolbox for Matlab, 2010. URL http://vision.ucsd.edu/

~{}pdollar/toolbox/doc/index.html.

T.J. Dysart, B.J. Moore, L. Schaelicke, and P.M. Kogge. Cache
implications of aggressively pipelined high performance mi-
croprocessors. In IEEE International Symposium on Per-
formance Analysis of Systems and Software, pages 123–132,
2004.

Martin Fischler and Robert Bolles. Random sample consen-
sus: a paradigm for model fitting with applications to image
analysis and automated cartography. Communications of the
ACM, 24(6), 1981.

W. Eric L. Grimson. Object Recognition by Computer. MIT
Press, 1991. ISBN 0-262-07130-4.

Michael D. Grossberg and Shree K. Nayar. A general imaging
model and a method for finding its parameters. In IEEE
International Conference on Computer Vision, pages 108–
115. IEEE, 2001.

Richard Hartley and Peter Sturm. Triangulation, 1994.

Edward Hsiao, Alvaro Collet, and Martial Hebert. Making spe-
cific features less discriminative to improve point-based 3D
object recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2010.

Peter J. Huber. Robust Statistics. Wiley, 1981.

Intel Corp. Core i7 Performance, 2010. URL http://www.

intel.com/support/processors/sb/cs-023143.htm.

David S. Johnson. Fast algorithms for bin packing. Journal of
Computer and System Sciences, 8(3):42, 1974.

Vincent Lepetit and Pascal Fua. Monocular Model-Based 3D
Tracking of Rigid Objects: A Survey. Foundations and
Trends in Computer Graphics and Vision, 1(1):1–89, 2005.

Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.
EPnP: An Accurate O(n) Solution to the PnP Problem.
International Journal of Computer Vision, 81(2):155–166,
February 2008.

Manolis Lourakis. LEVMAR: A Levenberg-Marquardt C++
Implementation, 2010. URL http://www.ics.forth.gr/

~{}lourakis/levmar.

David Lowe. Three-dimensional object recognition from single
two-dimensional images. Artificial Intelligence, 31(3):355–
395, March 1987.

David Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. International Journal of Computer Vision, 60(2):
91–110, 2004.

Donald W Marquardt. An Algorithm for Least-Squares Esti-
mation of Nonlinear Parameters. SIAM Journal on Applied
Mathematics, 11(2):431–441, 1963.

Manuel Martinez, Alvaro Collet, and Siddhartha S. Srinivasa.
MOPED: A Scalable and low Latency Object Recognition
and Pose Estimation System. In IEEE International Confer-
ence on Robotics and Automation, Anchorage, 2010. IEEE.

Krystian Mikolajczyk and Cordelia Schmid. A Performance
Evaluation of Local Descriptors. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 27(10), 2005.

Marius Muja and David Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In Interna-
tional Conference on Computer Vision Theory and Applica-
tions, pages 331–340, 2009.

Clark F. Olson. Efficient Pose Clustering Using a Randomized
Algorithm. International Journal of Computer Vision, 23(2):
131, 1997.

Mustafa Ozuysal, Michael Calonder, Vincent Lepetit, and Pas-
cal Fua. Fast keypoint recognition using random ferns. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
32(3):448–61, March 2010.

Richard A. Redner and Homer F. Walker. Mixture Densities,
Maximum Likelihood and the EM Algorithm. SIAM Review,
26(2):195–239, 1984.

Gerald Schweighofer and Axel Pinz. Robust pose estimation
from a planar target. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(12):2024–30, 2006.

Andrea Selinger and Randal C. Nelson. Appearance-based ob-
ject recognition using multiple views. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 905–911.
IEEE, 2001.

Chanop Silpa-Anan and Richard Hartley. Optimised KD-trees
for fast image descriptor matching. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8. IEEE,
2008.

Siddhartha S. Srinivasa, Dave Ferguson, Casey J. Helfrich,
Dmitry Berenson, Alvaro Collet, Rosen Diankov, Gar-
ratt Gallagher, Geoffrey Hollinger, James Kuffner, and
Michael Vande Weghe. HERB: a home exploring robotic but-
ler. Autonomous Robots, 28(1):5–20, 2010.

Richard Szeliski and Sing Bing Kang. Recovering 3D shape
and motion from image streams using nonlinear least squares.
Journal of Visual Communication and Image Representation,
5(1):10–28, March 1994.

J. Van Weveren. From Quaternion to Matrix and Back, 2005.

Fredrik Viksten, Robert Soderberg, Klas Nordberg, and Chris-
tian Perwass. Increasing pose estimation performance using
multi-cue integration. In IEEE International Conference on
Robotics and Automation, pages 3760–3767. IEEE, 2006.

21

The International Journal of Robotics Research, April, 2011

Barry Wilkinson and Michael Allen. Parallel Programming:
Techniques and Applications Using Networked Workstations
and Parallel Computers, chapter 3. Prentice Hall, 2 edition,
2004.

WillowGarage. The Personal Robot Project, 2008. URL http:

//www.willowgarage.com.

Changchang Wu. SiftGPU: A GPU Implementation of Scale
Invariant Feature Transform (SIFT), 2007. URL http://

cs.unc.edu/~{}ccwu/siftgpu.

Zhengyou Zhang. Parameter Estimation Techniques: A Tuto-
rial with Application to Conic Fitting. Image and Vision
Computing, 15(1):59–76, January 1997.

22

