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ABSTRACT

Graph analytics on social networks, Web data, and com-
munication networks has been widely used in a plethora of
applications. Many graph analytics algorithms are based on
breadth-first search (BFS) graph traversal, which is not only
time-consuming for large datasets but also involves much
redundant computation when executed multiple times from
different start vertices. In this paper, we propose Multi-

Source BFS (MS-BFS), an algorithm that is designed to
run multiple concurrent BFSs over the same graph on a
single CPU core while scaling up as the number of cores
increases. MS-BFS leverages the properties of small-world

networks, which apply to many real-world graphs, and en-
ables efficient graph traversal that: (i) shares common com-
putation across concurrent BFSs; (ii) greatly reduces the
number of random memory accesses; and (iii) does not in-
cur synchronization costs. We demonstrate how a real graph
analytics application—all-vertices closeness centrality—can
be efficiently solved with MS-BFS. Furthermore, we present
an extensive experimental evaluation with both synthetic
and real datasets, including Twitter and Wikipedia, showing
that MS-BFS provides almost linear scalability with respect
to the number of cores and excellent scalability for increasing
graph sizes, outperforming state-of-the-art BFS algorithms
by more than one order of magnitude when running a large
number of BFSs.

1. INTRODUCTION
An ever-growing amount of information has been stored

and manipulated as graphs. To better comprehend and as-
sess the relationships between entities in this data, as well
as to uncover patterns and new insights, graph analytics has
become essential. Numerous applications have been exten-
sively using graph analytics, including social network analy-
sis, road network analysis, Web mining, and computational
biology. A typical example in the field of social networks
is identifying the most central entities, as these potentially
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have influence on others and, as a consequence, are of great
importance to spread information, e.g., for marketing pur-
poses [20].

In a wide range of graph analytics algorithms, including
shortest path computation [13], graph centrality calcula-
tion [9, 27], and k-hop neighborhood detection [12], breadth-

first search (BFS)-based graph traversal is an elementary
building block used to systematically traverse a graph, i.e.,
to visit all reachable vertices and edges of the graph from a
given start vertex. Because of the volume and nature of the
data, BFS is a computationally expensive operation, lead-
ing to long processing times, in particular when executed in
large datasets that are commonplace in the aforementioned
fields.

To speed up BFS-based graph analytics, significant re-
search has been done to develop efficient BFS algorithms
that can take advantage of the parallelism provided by mod-
ern multi-core systems [2, 5, 7, 14, 18]. They optimize the
execution of a single traversal, i.e., a single BFS, mostly by
visiting and exploring vertices in a parallel fashion. Hence,
previous work had to address not only parallelization-specific
issues, such as thread synchronization and the presence of
workload imbalance caused by skew, but also fundamental
challenges in graph processing, including poor spatial and
temporal locality in the memory access pattern [24]. Recent
work on processing graphs in distributed environments—
including scalable traversal techniques [10, 11, 30], graph
databases [26, 33], and platforms for distributed analyt-
ics [15, 23, 25, 31]—can be used to span the execution of
parallel graph traversals to multiple machines, improving
the overall performance and coping with data that is parti-
tioned across different nodes.

Although many graph analytics algorithms (e.g., shortest
path computation on unweighted graphs) involve executing
single BFSs and can make good use of the existing paral-
lel implementations, there is a plethora of other applica-
tions that require hundreds (or even millions) of BFSs over
the same graph—in many cases, one BFS is needed from
each vertex of the graph. Examples of such applications in-
clude calculating graph centralities, enumerating the neigh-
borhoods for all vertices, and solving the all-pairs shortest
distance problem. These scenarios do not fully benefit from
current parallel BFS approaches: often, the best one can do
in order to reduce the overall runtime is to execute multiple
single-threaded BFSs in parallel, instead of running parallel
BFSs sequentially, because the former avoids synchroniza-
tion and data transfer costs, as we discuss in Section 6. By
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doing so, however, one misses opportunities for sharing com-
putation across multiple BFSs when the same vertex is vis-
ited by various traversals. This hampers scalability, making
single BFS traversals inefficient for large graphs.

In this paper, we propose Multi-Source BFS (MS-BFS),
a new BFS algorithm for modern multi-core CPU architec-
tures designed for graph analytics applications that run a
large number of BFSs from multiple vertices of the same
graph. MS-BFS takes an approach that is orthogonal to
previous work: instead of parallelizing a single BFS, we fo-
cus on processing a large number of BFSs concurrently in a

single core, while still allowing to scale up to multiple cores.
This approach allows us to share computation between dif-
ferent BFSs without incurring synchronization cost.

This work leverages properties of small-world networks [3]:
the distance between any two vertices is very small compared
to the size of the graph, and the number of vertices discov-
ered in each iteration of the BFS algorithm grows rapidly.
Concretely, this means that a BFS in such a network dis-
covers most of the vertices in few iterations, and concurrent
BFSs over the same graph have a high chance of having
overlapping sets of discovered vertices in the same iteration.
Based on these properties, in MS-BFS, we combine accesses
to the same vertex across multiple BFSs. This amortizes
cache miss costs, improves cache locality, avoids redundant
computation, and reduces the overall runtime. Note that
small-world networks are commonplace as these properties
apply to many real-world graphs, including social networks,
gene networks, and Web connectivity graphs, which are of
interest for many graph analytics applications.

MS-BFS executes concurrent BFSs in a data-parallel fash-
ion that can be efficiently implemented using bit fields in
wide CPU registers and requires neither locks nor atomic
operations. We assume that the graph fits in main memory,
which is a realistic assumption for many real-world graphs
and applications (e.g., the Who to Follow service at Twit-
ter [17]) as modern servers can store up to hundreds of bil-
lions of edges in memory. This design choice avoids over-
heads from disk accesses and network roundtrips, allowing
unprecedented analytics performance. Nevertheless, the op-
timized variants of our algorithm, described in Sections 3.2
and 4.1.1, allow data to be scanned sequentially and thus
can be easily adapted to provide good performance for disk-
resident graphs as well.

MS-BFS is a generic BFS algorithm that can be applied
to many graph problems that run multiple traversals from
different start vertices. As an example of a real application,
we demonstrate how it can be used to efficiently solve the
computationally expensive problem of calculating the close-
ness centrality values for all vertices in a graph. We also
present an extensive experimental evaluation using synthetic
datasets generated with the LDBC Social Network Data
Generator [8, 21], as well as real-world graphs from Twit-
ter and Wikipedia, showing that MS-BFS (i) outperforms
existing BFS algorithms by more than one order of mag-
nitude when running multiple BFSs, and (ii) scales almost
linearly with respect to graph size and number of cores. It
is worth noting that the approach presented here was suc-
cessfully used by the two leading teams—first and second
place—in the SIGMOD 2014 Programming Contest.

Overall, our contributions are as follows:

• We propose Multi-Source BFS (MS-BFS), a graph traver-
sal algorithm that can efficiently execute multiple concur-

rent BFSs over the same graph using a single CPU core
(Section 3). MS-BFS is most efficient in small-world net-
works, where it combines the execution of multiple BFSs
in a synchronization-free manner, improves the memory
access pattern, and avoids redundant computation. We
also discuss tuning strategies to further improve the per-
formance of the algorithm (Section 4).

• To demonstrate the feasibility of our approach, we show
how a real graph analytics application—the all-vertices
closeness centrality computation—can be efficiently im-
plemented using MS-BFS (Section 5).

• We present an extensive experimental evaluation1 with
synthetic and real datasets, showing that MS-BFS scales
almost linearly with an increasing number of CPU cores
and that it exhibits excellent scalability under changes
to the input graph size. We further show that MS-BFS
greatly outperforms existing state-of-the-art BFS algo-
rithms when running multiple BFSs (Section 6).

2. BACKGROUND
In this paper, we consider an unweighted graph G =
{V, E}, where V = {v1, . . . , vN} is the set of vertices, E =
{neighbors

vi
|Ni=1} is the set of edges, neighbors

v
is the set

of vertices to which v connects (neighbor vertices of v), and
N is the number of vertices in the graph. We further as-
sume that G exhibits properties of small-world networks

(Section 2.1), and that the graph analytics algorithms to
be used over G is based on BFS (Section 2.2).

2.1 Small-World Networks
In small-world networks, as the graph size increases, the

average geodesic distance—the number of edges—between
vertices increases logarithmically. In other words, we say
that a graph G has small-world properties if its diameter,
i.e., the longest distance between any two vertices in G, is
low even for a large N [3]. Another property of many small-
world graphs is that their distribution of vertex degree, i.e.,
the number of neighbors of a vertex, follows a power law rela-
tionship: few vertices have a very high number of neighbors,
while most of the vertices have few connections. Graphs
exhibiting the latter property are also known as scale-free

networks [3].
A famous example of these properties is the six degrees

of separation theory, suggesting that everyone is only six or
fewer steps away from each other. A recent study showed
that 92% of Facebook users (N ≈ 720 million) are con-
nected by only 5 steps, and that the average distance be-
tween users is 4.74 [4]. In fact, besides social networks,
many other real-world graphs that are of critical interest for
both academia and industry—including gene and neural net-
works, the world-wide web, wikis, movie-actor and scientific
collaboration networks, and electrical power grids—exhibit
small-world properties [3].

2.2 Breadth-First Search Overview
Breadth-first search (BFS) is an algorithm to systemati-

cally traverse a graph G from a given start vertex, or source,
s ∈ V . We present the original BFS algorithm, to which we
refer as textbook BFS, in Listing 1. There are two main states
for a vertex during a BFS traversal: discovered, which means

1Code available at https://github.com/mtodat/ms-bfs
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that the BFS has already visited the vertex, and explored,
which means that not only the vertex but also its edges and
neighbors have been visited. The algorithm starts by adding
s to seen, which is the set of vertices that have been discov-
ered. It also adds the source vertex to visit, which is the
set of vertices yet to be explored. By iterating over visit in
Line 7, vertices in visit are explored to find new reachable
vertices. Vertices connected to v (Line 8) that have not been
discovered yet (Line 9) are added to both seen and visitNext.
Furthermore, newly discovered vertices are processed by the
graph analytics application that uses the BFS (Line 12),
e.g., a shortest path algorithm stores the distance between s
and n. The visitNext set becomes the next visit set after all
the vertices in the current one have been explored (Lines 13
and 14).

Note that for every iteration in Line 6, visit only con-
tains vertices that have the same geodesic distance from the
source s: we say that these vertices are in the same BFS

level. The maximum number of levels that any BFS can
have in G is equivalent to the diameter of G. Since G is a
small-world network, its diameter is low, which means that
a BFS will have a small number of levels as well: all vertices
are discovered in few iterations, and the number of vertices
discovered in each level grows rapidly. Table 1 shows this
behavior in a synthetic dataset of 1 million vertices (gener-
ated with the data generator from LDBC), where a BFS is
run over a connected component that comprises more than
90% of the vertices of the graph. Note that the number of
BFS levels is small compared to the size of the graph, and
that nearly 95% of the vertices are discovered in BFS levels 3
and 4.

In a traditional implementation of the BFS algorithm,
list or queue data structures are often used for visit and
visitNext, while seen is represented by either a list or a hash
set. The set E of edges is usually implemented as an adja-
cency list, where each vertex has its own list of neighbors,
i.e., neighbors

v
is a list containing all the neighbor vertices

of v.

Optimizing BFS. Small-world graphs tend to have few
connected components. Often, the entire graph is a single
component, which means that every vertex is reachable from
every other vertex. As a consequence, the larger the tra-
versed graph, the more vertices and edges need to be visited
by the BFS, which becomes a significantly time-consuming
operation. This issue is exacerbated by BFS’s lack of mem-
ory locality, as shown in the random accesses to seen and to
the adjacency list (Lines 8 and 9), reducing the usefulness of
CPU caches. Furthermore, towards the end of the BFS exe-
cution, most of the vertices will have been already discovered
(see Table 1), and there will be much fewer non-discovered
vertices than vertices in the visit set. As a consequence,
there will be a significant number of failed checks to seen

(Line 9) that consume resources unnecessarily [7].
Optimizing the execution of the BFS algorithm for large

datasets is essential for graph analytics, and there has been
substantial work in this direction. Most of this work is
focused on implementing a single parallel BFS, i.e., paral-
lelizing a single BFS execution, mainly by making use of
the level-synchronous approach: vertices are explored and
discovered in parallel for each BFS level, i.e., the loops in
Lines 7 and 8 are executed in parallel for each level. The
main idea of this approach is to divide the work across mul-

Listing 1: Textbook BFS algorithm.

1 Input: G, s
2 seen ← {s}
3 visit ← {s}
4 visitNext ← ∅

5

6 while visit 6= ∅

7 for each v ∈ visit

8 for each n ∈ neighbors
v

9 if n /∈ seen

10 seen ← seen ∪ {n}
11 visitNext ← visitNext ∪ {n}
12 do BFS computation on n
13 visit ← visitNext

14 visitNext ← ∅

tiple cores and thus speed up the execution of one BFS.
However, this comes at a cost: visit and visitNext must be
synchronized at the end of each BFS level (before a new iter-
ation at Line 6 starts), and race conditions must be avoided
when multiple threads access seen.

For shared-memory and multi-core CPUs, numerous op-
timizations have been proposed to efficiently implement the
level-synchronous approach and to address the foregoing
challenges [2, 5, 6, 7, 14, 18], including the use of more effi-
cient data structures, mechanisms to improve memory local-
ity, e.g., sequential access to data structures [18], and further
optimizations specific to certain hardware architectures. No-
tably, Beamer et al. [7] propose a bottom-up approach to
avoid many unnecessary checks to seen as mentioned before:
instead of visiting new vertices by looking at the outgoing
edges of discovered vertices, the approach iterates over non-
discovered vertices, looking for edges that connect them to
vertices that have already been discovered (i.e., that are in
visit). The authors combine the textbook BFS with the
bottom-up approach in a hybrid direction-optimized tech-
nique. Although their implementation is for single parallel
BFSs, the optimization is mostly orthogonal to paralleliza-
tion and can be used for sequential execution. We further
use this technique to optimize our algorithm (Section 4.1.2)
and for comparison purposes (Section 6).

Executing the BFS algorithm in distributed memory sys-
tems has also been extensively studied before [10, 11, 30],
as this raises a new range of issues, including the need
to manage communication between CPUs and to partition
the graph among processors, which is challenging and can
deeply impact performance. Frameworks such as Parallel
BGL [16], Pregel [25], Trinity [31], GraphLab [23], and Ter-
adata Aster [32] provide APIs to facilitate the scale-out
of graph traversal and other graph algorithms to multiple
nodes. Distributed graph databases, e.g., Titan [33], allow

Table 1: Number of newly discovered vertices in

each BFS level for a small-world network.

Level Discovered Vertices ≈ Fraction (%)
0 1 < 0.01
1 90 < 0.01
2 12,516 1.39
3 371,638 41.16
4 492,876 54.58
5 25,825 2.86
6 42 < 0.01
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Figure 1: Percentage of vertex explorations that can

be shared per level across 512 concurrent BFSs.

users to store and query graphs that are partitioned in multi-
machine clusters, and engines such as Faunus [15] can be
used on top of these databases to optimize the performance
when doing large-scale graph analytics. Recently, there has
also been an increasing interest in traversing and processing
graphs using MapReduce [28].

3. MULTI-SOURCE BFS
As mentioned before, numerous graph analytics algorithms

rely on executing multiple independent BFS traversals over
the same graph from different sources. Often, a BFS traver-
sal is run from every vertex in the graph. Clearly, this is
very expensive, in particular for large real-world graphs that
often have millions of vertices, and hence, require the execu-
tion of millions of BFSs. Our prime goal is to optimize the
execution of multiple independent BFSs on the same graph
in order to improve the performance of such graph analytics
applications. We focus on a non-distributed environment—
a single server—and in-memory processing to exploit the
capabilities of modern multi-core servers with large mem-
ories. This is reasonable even for graphs with hundreds of
billions of edges, as shown by Gupta et al. [17], and provides
a better performance per dollar for workloads that process
multi-gigabyte datasets [29]. Note that these are not limi-
tations of our algorithm, which can be extended to handle
disk-resident graphs.

To the best of our knowledge, Multi-Source BFS (MS-BFS)
is the first approach for efficiently executing a large num-
ber of BFSs over the same graph. Most of the existing ap-
proaches for multi-core CPUs, as presented in the previous
section, are orthogonal to our goal: they optimize the ex-
ecution of a single BFS, while we optimize the execution
for multiple BFSs. This introduces a new range of issues
and requirements: (i) executing multiple traversals over the
same graph exacerbates memory locality issues because the
same vertices need to be discovered and explored for mul-
tiple BFSs, resulting in a higher number of cache misses;
(ii) resource usage should be kept to a minimum to make
the approach scalable for a large number of BFSs and as the
number of cores increases; and (iii) synchronization costs
of any kind should be avoided as their overheads become
especially apparent when executing vast amounts of BFSs.

To address these requirements, we (i) share computation
across concurrent BFSs, exploiting the properties of small-
world networks; (ii) execute hundreds of BFSs concurrently

in a single CPU core; and (iii) use neither locking nor atomic

Listing 2: The MS-BFS algorithm.

1 Input: G,B, S
2 seensi

← {bi} for all bi ∈ B

3 visit ←
⋃

bi∈B
{(si, {bi})}

4 visitNext ← ∅

5

6 while visit 6= ∅

7 for each v in visit

8 B
′
v ← ∅

9 for each (v′,B′) ∈ visit where v′ = v
10 B

′
v ← B

′
v ∪ B

′

11 for each n ∈ neighbors
v

12 D← B
′
v \ seenn

13 if D 6= ∅

14 visitNext ← visitNext ∪ {(n,D)}
15 seenn ← seenn ∪ D

16 do BFS computation on n
17 visit ← visitNext

18 visitNext ← ∅

operations, which makes the execution more efficient and
also improves its scalability on multi-core systems.

In this section, we describe in detail our novel approach.
We begin by introducing the algorithm in Section 3.1. Sec-
tion 3.2 then shows how this algorithm can be mapped to
efficient bit operations.

3.1 The MS-BFS Algorithm
An important observation about running multiple BFSs

from different sources in the same graph is that every ver-
tex is discovered multiple times—once for every BFS if we
assume the graph has a single connected component—and
every time the vertex is explored, its set of neighbors must
be traversed, checking if each of them has already been dis-
covered. This leads to many random memory accesses and
potentially incurs a large number of cache misses.

To decrease the amortized processing time per vertex and
to reduce the number of memory accesses, we propose an
approach to concurrently run multiple BFSs and to share the
exploration of vertices across these BFSs by leveraging the
properties of small-world networks. Recall that the diameter
of such graphs is low—which means that the number of BFS
levels is also small compared to the size of the graph—and
that the number of discovered vertices in each level grows
rapidly. Since in few steps, all the vertices of the graph are
discovered, we expect the likelihood of multiple concurrent
BFSs having to explore the same vertices in the same level
to be high. For a concrete example of this behavior, we
analyze the LDBC graph with 1 million vertices introduced
in the previous section. Figure 1 depicts for every BFS level
the percentage of vertex explorations that can be shared
by at least 2, 50, 100, and 250 BFSs out of 512 concurrent
BFSs as indicated by the bar height and color. Note that
the exploration of more than 70% of the vertices in levels 3
and 4 can be shared among at least 100 BFSs, and in level 4
more than 60% of them can be shared by at least 250 BFSs.
Concretely, this means that in level 4 it is possible to explore
more than 60% of the vertices only once for 250 or more
BFSs, instead of exploring them individually for each BFS.
This significantly reduces the number of memory accesses
and speeds up the overall processing.

We present the MS-BFS algorithm in Listing 2. In addi-
tion to the graph G, MS-BFS also receives as input the set
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Figure 2: An example of the MS-BFS algorithm, where vertices 3 and 4 are explored once for two BFSs.

of BFSs B = {b1, . . . , bω}, where each bi represents a BFS,
and ω is the total number of BFSs to be executed. Another
input is the set S = {s1, . . . , sω} that contains the source
vertex si for each BFS bi.

MS-BFS marks discovered vertices and vertices yet to be
explored differently from the textbook BFS (Listing 1). In-
stead of having a single set seen of discovered vertices, each
vertex v has its own set seenv⊆B of BFSs that have already
discovered it. Furthermore, the sets visit and visitNext com-
prise tuples (v′,B′), where the set B

′ ⊆B contains the BFSs
that must explore v′.

Similar to the textbook BFS, MS-BFS initially marks the
source of each BFS as discovered (Line 2), and includes in
visit each source with its corresponding BFS identifier to
indicate which vertex needs to be explored for which BFS
(Line 3). Next, for each BFS level (Line 6), the algorithm
repeatedly selects a vertex v to be explored (Line 7) and
merges all BFS sets from visit that refer to v into a set B

′
v

(Line 10). Thus, B′
v contains all BFSs that explore v in the

current level, so that v is explored only once for all of them
at the same time.

This shared exploration process is shown in Lines 11–16.
For each neighbor n of v, the algorithm first identifies the
set D of all the BFSs that need to explore n in the next
level (Line 12). A BFS bi must explore n if it explores v
in the current level (bi ∈ B

′
v) and if it has not discovered

n yet (bi /∈ seenn). If D is not empty, there is at least
one BFS that needs to explore n in the next level. Hence,
we add a tuple (n,D) to visitNext (Line 14). Furthermore,
we mark n as discovered (Line 15) and process it in the
BFS computation (Line 16) for all BFSs in D. Note that
neighbors

v
is traversed only once for all bi ∈ D, and in the

next level, each vertex n will be explored only once for these
BFSs. This significantly reduces the number of memory
accesses when running a large number of BFSs. Similar to
the textbook BFS, visitNext is used as the visit set for the
next BFS level (Lines 17 and 18).

Figure 2 shows an example of running MS-BFS for two
BFSs, b1 and b2, starting from vertices 1 and 2 of graph G,
respectively. At the beginning of the algorithm all seen sets
are initialized (we omit the empty ones) and visit contains
the information that b1 needs to explore vertex 1 and that b2

needs to explore vertex 2. In the first BFS level, vertices 1
and 2 are explored. Since they are both adjacent to vertices
3 and 4, the visit set for the next level contains tuples for
vertices 3 and 4 in BFSs b1 and b2. In the second BFS
level, vertices 3 and 4 are explored. When picking vertex 3,
Line 10 of the algorithm merges the sets of BFSs that need to
explore 3 (see the highlighted section in Figure 2), resulting

in B
′
3 = {b1, b2}. Therefore, 3 is explored only once for b1

and b2, and vertex 5 is discovered simultaneously by both
BFSs as shown by the tuple (5, {b1, b2}) in visit. Similarly,
vertex 4 is explored for both BFSs (B′

4={b1, b2}), and vertex
6 is discovered simultaneously for both of them, adding the
tuple (6, {b1, b2}) to the next visit. During the second BFS
level, vertex 1 is also discovered for b2, and vertex 2 for b1.
Since all vertices are already discovered at this point (i.e.,
all the seen sets contain both BFSs), no tuples are added to
visit in the third level, and the algorithm finishes.

Note that this approach differs from parallelizing a sin-
gle BFS since MS-BFS still discovers and explores vertices
sequentially. However, with MS-BFS, multiple BFSs are ex-
ecuted concurrently and share the exploration of vertices.

3.2 Leveraging Bit Operations
In practice, it is inefficient to run MS-BFS using set data

structures as presented in Listing 2 because the union and
set difference operations on seen and visitNext are expensive
when applied to large numbers of concurrent BFSs. In ad-
dition, it is prohibitively expensive for large graphs to scan
visit every time a vertex v is picked in order to merge the
BFS sets corresponding to this vertex.

To solve these issues, we leverage bit operations to design
a more efficient version of MS-BFS. We fix the maximum
number of concurrent BFSs ω to a machine-specific param-
eter, as elaborated in Section 4.2.1. This allows us to rep-
resent a set B

′ ⊆ B of BFSs as a fixed-size bit field f1. . .fω

where fi = 1 if bi ∈ B
′, and fi = 0 otherwise. Thus, we rep-

resent seen for a vertex v as seenv = f1. . .fω, where fi = 1 if
bi has discovered v. Furthermore, visit for v is represented
by visitv = g1. . .gω, where gi = 1 if v needs to be explored
by bi. The same applies for visitNext.

The main advantage of representing BFS sets as bit fields
is that MS-BFS can use efficient bit operations instead of
complex set operations. Set unions A∪B become binary or

operations A | B. Similarly, a set difference A \B becomes
a binary and operation of A with the negation of B, i.e.,
A & ∼B. We further denote an empty bit field as B∅ and a
bit field that only contains BFS bi as 1 << bi.

To provide constant-time access to the bit fields of visit,
visitNext, and seen, we store them in arrays with one bit field
for each vertex in the graph. Thus, we have: visitv =visit[v],
visitNextv = visitNext[v], and seenv = seen[v]. In addition,
we write visit = ∅ to represent the fact that visit[vi] = B∅

for all i = 1, . . . , N .
Listing 3 presents the MS-BFS algorithm from Listing 2

using bit operations and array data structures. The overall
logic of MS-BFS does not change: Lines 7, 11, 13, and 14
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Listing 3: MS-BFS using bit operations.

1 Input: G,B, S
2 for each bi ∈ B

3 seen[ si ]← 1 << bi

4 visit[ si ]← 1 << bi

5 reset visitNext

6

7 while visit 6= ∅

8 for i = 1, . . . , N
9 if visit[vi] = B∅, skip

10 for each n ∈ neighbors[vi]
11 D← visit[vi] & ∼seen[n]
12 if D 6= B∅

13 visitNext[n]← visitNext[n] | D
14 seen[n]← seen[n] | D
15 do BFS computation on n
16 visit ← visitNext

17 reset visitNext

from Listing 3 are equivalent to Lines 6, 12, 14, and 15 from
Listing 2, respectively. Note that it is a significant improve-
ment to use bit fields to represent BFS sets and arrays for
visit because it avoids the expensive merging loop of Lines 9
and 10 from Listing 2.

We assume that the neighbors adjacency list is imple-
mented as a single array that contains all the neighbors
for all vertices, and that neighbors[vi] points to the mem-
ory block in neighbors that encompasses the neighbors of
vi. Also, these memory blocks are stored in order, i.e.,
neighbors[vi−1] precedes neighbors[vi] for all i = 2, . . . , N .
This representation improves memory locality for the algo-
rithm: vertices are explored in order (Line 8), and as a con-
sequence, the neighbors array can be retrieved in order as
well (Line 10), which maximizes opportunities for sequential
reads and makes better use of caching [18].

Figure 3 shows the example presented in Figure 2 using
arrays of bit fields for visit and seen. As in the previous
figure, the visitNext array is similar to the visit array of the
next BFS level and is omitted for clarity. Each row repre-
sents the bit field for a vertex, and each column corresponds
to one BFS. The symbol X indicates that the bit value is 1;
otherwise, the value is 0.

By processing the visit array in the first BFS level, vertices
3 and 4 are discovered for both BFSs, since both of them are
neighbors of the sources 1 and 2. Hence, seen[3] and seen[4]
have a bit field of value 11, indicating that both BFSs have
discovered these vertices. The bit fields visit[3] and visit[4]
have this value as well, indicating that these vertices need
to be explored for both BFSs in the next level. During the
second BFS level, vertices 3 and 4 are explored only once
for both b1 and b2 (since visit[3] = visit[4] = 11 at the end
of the first level), leading to the discovery of vertices 5 and
6 for both BFSs. As the seen array does not contain bits of
value 0 anymore, no new vertices are discovered in the third
BFS level.

Note that our algorithm can leverage efficient native bit
operations, in particular when ω is a multiple of the ma-
chine’s register width. Furthermore, because we process
concurrent BFSs in a single CPU core, we do not need to
synchronize memory accesses between them. This allows
our approach to scale nearly linear when multiple cores are
used for MS-BFS runs. We elaborate on both these points
in Section 4.2.1.
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Figure 3: An example showing the steps of MS-BFS

when using bit operations. Each row represents the

bit field for a vertex, and each column corresponds

to one BFS. The symbol X indicates that the value

of the bit is 1.

4. ALGORITHM TUNING
In this section, we discuss techniques to further improve

the performance of MS-BFS, including techniques to im-
prove the algorithm’s memory locality and to avoid—even
more—the impact of random memory accesses (Section 4.1).
Furthermore, we describe efficient strategies to execute a
number of BFSs greater than the size ω of the used bit fields
(Section 4.2). We evaluate the impact of the presented tech-
niques in Section 6.2.

4.1 Memory Access Tuning

4.1.1 Aggregated Neighbor Processing

As mentioned earlier, sequentially checking the elements
in the visit array in Listing 3 improves the memory locality
of MS-BFS and results in fewer caches misses. However,
there are still random accesses to the visitNext and seen

arrays (Lines 11, 13, and 14) as the same neighbor vertex
n can be discovered by different vertices and BFSs in the
same level, i.e., visitNext[n] and seen[n] may be accessed in
different iterations of the loop in Line 8. In addition, the
application-specific BFS computation for n (Line 15) may
have to be executed multiple times as well, which worsens
the issue.

To provide further improvements in memory locality, we
propose the aggregated neighbor processing (ANP) technique.
The main idea of ANP is to reduce the number of both BFS
computation calls and random memory accesses to seen by
first collecting all the vertices that need to be explored in
the next BFS level, and then processing in batch the remain-
der of the algorithm. This removes the dependency between
visit and both seen and the BFS computation.

Listing 4 shows the MS-BFS algorithm using ANP. Con-
cretely, when using ANP, we process a BFS level in two
stages. In the first stage (Lines 8–11), we sequentially ex-
plore all vertices in visit to determine in which BFSs their
neighbors should be visited and write this information to
visitNext. In the second stage (Lines 13–18), we sequen-
tially iterate over visitNext, update its bit fields based on
seen, and execute the BFS computation. Note that we only
perform these steps once for every newly discovered vertex,
and thus we aggregate the neighbor processing.

ANP leverages the fact that visitNext is reset for every
new BFS level. In addition, Lines 11 and 15 in Listing 4
are equivalent to Lines 11 and 13 in Listing 3 by means of
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Listing 4: MS-BFS algorithm using ANP.

1 Input: G,B, S
2 for each bi ∈ B

3 seen[ si ]← 1 << bi

4 visit[ si ]← 1 << bi

5 reset visitNext

6

7 while visit 6= ∅

8 for i = 1, . . . , N
9 if visit[vi] = B∅, skip

10 for each n ∈ neighbors[vi]
11 visitNext[n]← visitNext[n] | visit[vi]
12

13 for i = 1, . . . , N
14 if visitNext[vi] = B∅, skip

15 visitNext[vi]← visitNext[vi] & ∼seen[vi]
16 seen[vi]← seen[vi] | visitNext[vi]
17 if visitNext[vi] 6= B∅

18 do BFS computation on vi

19 visit ← visitNext

20 reset visitNext

the distributive property of binary operations; for a vertex
n and vertices v1, . . . , vk of which n is a neighbor:

(

visit[v1] | . . . | visit[vk]
)

& ∼seen[n] ≡
(

visit[v1] & ∼seen[n]
)

| . . . |
(

visit[vk] & ∼seen[n]
)

Note that the random memory accesses to visitNext in
Line 11 are inevitable. We discuss how to mitigate this is-
sue in Section 4.1.3. Nevertheless, ANP brings a range of
advantages. Notably, it: (i) reduces the number of mem-
ory accesses to seen, since the array is only retrieved once
for every discovered vertex v, independent of the number of
vertices of which v is a neighbor; (ii) replaces random access
with sequential access to seen, which improves memory lo-
cality; and (iii) reduces the number of times that the BFS
computation is executed. With these advantages, ANP im-
proves the usage of low cache levels, prevents stalls caused by
cache misses, and thus, reduces the overall execution time
of MS-BFS. As reported in Section 6.2, ANP speeds up
MS-BFS by 60 to 110%.

4.1.2 Direction­Optimized Traversal

As we focus on small-world graphs, it is further beneficial
to apply the direction-optimized BFS technique, introduced
by Beamer et al. [7], to MS-BFS. The technique chooses at
runtime between two BFS strategies: top-down and bottom-

up. The former strategy is a conventional BFS, discovering
new vertices by exploring the ones found in the previous
level, i.e., by exploring the visit array in Lines 8–10 in List-
ing 3. In contrast, the bottom-up approach, when applied
to MS-BFS, avoids traversing the visit array, and instead,
scans the seen array for vertices that have not yet been dis-
covered by all BFSs. When such a vertex v is found, the
approach traverses its edges and processes the visit entries
of the neighbor vertices n that are adjacent to v:

visitNext[v]← visitNext[v] | visit[n]

Note that, as suggested by the technique name, the two
strategies work in different directions: the top-down one
goes from discovered to non-discovered vertices, while the

bottom-up one goes in the opposite direction. Direction-
optimized traversal uses a heuristic based on the number of
non-traversed edges during the BFS and a threshold to per-
form either the top-down or the bottom-up strategy. Con-
cretely, the heuristic often chooses the top-down approach
for the initial BFS levels, and the bottom-up approach for
the final steps, where most of the vertices have already been
discovered. The reader is referred to Beamer et al. [7] for
further details.

Our experiments (Section 6.2) show that with both this
hybrid approach and ANP, MS-BFS can significantly reduce
the number of random accesses to visit and visitNext, further
improving the performance by up to 30%.

4.1.3 Neighbor Prefetching

Recall that the ANP technique reduces the number of
random accesses to the seen array. However, many ran-
dom accesses are still unavoidable when updating visitNext

(Line 11 in Listing 4).
To mitigate the high latency of these memory accesses, it

is beneficial to use prefetching: once the vertex vi is picked
from visit, we detect its neighbors and the memory addresses
of their entries in visitNext. We can then explicitly prefetch

some of these entries before computing visitNext for them.
As a consequence, the iteration in Line 10 is less prone to
execution stalls because the prefetched visitNext entries are
likely to be in the CPU cache when they are required, which
provides an additional speedup to MS-BFS. Instead of do-
ing the prefetching interleaved with the algorithm execution,
it is also beneficial to do it asynchronously in simultaneous
multithreading cores [22]. We identified experimentally that
by prefetching tens or even hundreds of neighbors the per-
formance of MS-BFS can be improved by up to 25%, as
elaborated in Section 6.2.

4.2 Execution Strategies

4.2.1 How Many BFSs?

Conceptually, the MS-BFS algorithm can be used to run
any number of concurrent BFSs by using bit fields of ar-
bitrary sizes. However, our approach is more efficient when
the bit operations are implemented using native machine in-
structions. Thus, to achieve optimal performance, ω should
be set according to the register and instruction width of the
used CPU. As an example, on modern Intel CPUs, there
are instructions and registers with a width of up to 256 bits,
thus allowing MS-BFS to efficiently execute 256 concurrent
BFSs; in CPUs supporting the AVX-512 extension, there
are instructions that operate on 512 bits, which doubles the
number of concurrent BFSs that can be executed using a
single CPU register per vertex and data structure.

Nevertheless, it is often the case that applications need to
run BFSs for a number of sources greater than the size of
any CPU-optimized ω. In this case, there are three different
strategies that can be used: (1) increase ω by using mul-
tiple CPU registers for the bit fields, (2) execute multiple
MS-BFS runs in parallel, and (3) execute multiple MS-BFS
runs sequentially. In the first approach, multiple CPU reg-
isters are used to represent the bit fields in seen, visit, and
visitNext, i.e., ω is set to a multiple of the register width.
As an example, we can leverage two 128-bit registers to have
256-bit fields, which, in turn, enable us to run 256 BFSs
concurrently. The main advantage of this approach is that,
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Table 2: Memory consumption of MS-BFS for N
vertices, ω-sized bit fields, and P parallel runs.

N ω P Concurrent BFSs Memory
1,000,000 64 1 64 22.8 MB
1,000,000 64 16 1,024 366.2 MB
1,000,000 64 64 4,096 1.4 GB
1,000,000 512 1 512 183.1 MB
1,000,000 512 16 8,192 2.9 GB
1,000,000 512 64 32,768 11.4 GB

50,000,000 64 64 4,096 71.5 GB
50,000,000 512 64 32,768 572.2 GB

clearly, the graph needs to be traversed less often as more
BFSs are executed simultaneously, thus allowing additional
sharing of vertex explorations. Moreover, when these regis-
ters are stored adjacent in memory, they can be aligned to
cache line boundaries so that accessing part of the bit field
ensures that its other parts are in the CPU cache as well.
Hence, we further reduce the number of main memory ac-
cesses during a MS-BFS run. In Section 6.2, we show that
having bit fields that are exactly sized to fit a cache line ex-
hibits the best performance. On current Intel CPUs, cache
lines are 64 bytes wide, which allows efficient processing of
512 sources per MS-BFS run.

A second approach to execute a larger number of BFSs
is to make use of parallelism. While the presented MS-BFS
algorithm runs in a single core, multiple cores can be used to
execute multiple MS-BFS runs in parallel since these runs
are independent from each other. As a result, MS-BFS scales
almost linearly with an increasing number of cores.

The drawback of the first two approaches is their poten-
tially high memory consumption. For P parallel runs and
N vertices, MS-BFS requires P × 3 × N × ω bits of mem-
ory to store the fields for seen, visit and visitNext. Table 2
gives some examples of the total memory consumption for
different graph sizes and numbers of parallel runs, running
from hundreds to tens of thousands of BFSs concurrently.

Last, it is possible to execute multiple MS-BFS runs se-
quentially, since, again, runs are independent. This is par-
ticularly interesting when memory becomes an issue. Based
on the available memory and to adapt to different situa-
tions, we can choose the best strategy and combine the three
approaches. For instance, multiple threads, each using bit
fields that are several registers wide, can be used to execute
sequences of MS-BFS runs.

4.2.2 Heuristic for Maximum Sharing

When executing a number of BFSs greater than ω, it is
useful to group BFSs in the same MS-BFS run, i.e., in the
same set B, that will share most computations at each level.
Recall that the main idea of MS-BFS is to share vertex ex-
plorations across concurrent BFSs. As a consequence, the
more BFSs explore the same vertex v in a given level, the
less often v will have to be explored again in the same run,
and the faster MS-BFS becomes.

The first clear approach to allow sharing of vertex explo-
rations is to group BFSs based on their connected compo-
nents: BFSs running in the same component should be in
the same MS-BFS run, as different components do not share
any vertices or edges. To optimize the sharing in a sin-
gle connected component, we propose a heuristic to group
BFSs based on ordering their corresponding source vertices

by degree. Recall that small-world networks are often scale-
free as well, which means that there are few vertices with a
high degree, while most of the vertices have a significantly
smaller number of neighbors. Based on this property and
the fact that small-world networks have a low diameter, our
intuition is that vertices with higher degrees will have a sig-
nificant number of neighbors in common. Therefore, this
heuristic comprises sorting the source vertices by descend-
ing degree, and then grouping BFSs according to this order
to improve the sharing of vertex explorations. We expect
that a MS-BFS run starting from the highest degree vertices
will have a very efficient execution. In fact, our evaluation
in Section 6.2 shows that, compared with a random assign-
ment of BFSs to MS-BFS runs, this heuristic can improve
the performance by up to 20%.

5. APPLICATION: COMPUTING

CLOSENESS CENTRALITY
Since our approach executes multiple concurrent BFSs,

MS-BFS must efficiently handle the application-specific com-
putation for multiple BFSs (Line 15 in Listing 3). As it is
common for graph algorithms to determine the number of
neighbors found in a BFS level, we elaborate on how this
can be done in MS-BFS. Based on this, we describe how
MS-BFS can be used to solve the graph analytics problem
of all-vertices closeness centrality, which comprises calculat-
ing the closeness centrality value for all vertices in a graph.

Closeness Centrality. Computing vertex centrality met-
rics is an important application in graph analytics. Cen-
trality metrics can be used, for instance, to gain knowledge
about how central persons are distributed in a social net-
work, which can, in turn, be used for marketing purposes or
research of the network structure. In the literature, many
centrality metrics have been proposed, including closeness
centrality [27] and betweenness centrality [9]. For the pur-
pose of this discussion, we focus on the former.

The closeness centrality value of a vertex v measures how
close v is, in terms of shortest path, from all other vertices
in the graph. Essentially, it is based on the inverse of the
sum of the distances between v and all other vertices. From
Wasserman and Faust [34]:

ClosenessCentrality
v

=
(Cv − 1)2

(N − 1) ∗ Σu∈V d(v, u)

where Cv is the number of vertices in the connect compo-
nent of v, and d(v, u) denotes the geodesic distance (i.e.,
the length of the shortest path) between v and u. To com-
pute d(v, u) for all u ∈ V in an unweighted graph, a BFS-
based traversal from v is required to calculate and maintain
the geodesic distance in the BFS computation. For the all-

vertices closeness centrality problem, a BFS must be run for
every vertex in the graph, which makes this computation-
ally expensive. We use this problem as an example of the
applicability of MS-BFS in a real-world application.

Using MS-BFS. We can leverage MS-BFS to efficiently
solve the all-vertices closeness centrality problem by run-
ning hundreds of concurrent BFSs per core to calculate the
required geodesic distances. Note that the algorithm does
not need to store each distance d(v, u) since it suffices to
find the sum of all distances computed during the BFSs.
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An efficient way to find this sum is to count the number of
discovered vertices for each BFS level, multiply this number
by the current distance from the source, and then finally
sum all obtained multiplication results. Note that the num-
ber of discovered vertices may be different for each concur-
rent BFS, so they need to be counted separately. For every
discovered vertex v, each BFS can determine whether this
vertex belongs to it by detecting if the bit field visitNext[v]
contains a bit of value 1 for it. If so, a BFS-local counter is
incremented. This naive approach takes O(ω) time for each
discovered vertex in the BFS level.

An alternative is to use hardware operations that count
the number of leading or trailing bits 0 in a bit field: we
continuously find the position of a bit 1 using such an op-
eration, increase the respective BFS-local counter, and set
the bit to 0, until there are no more bits 1 in the bit field.
This approach takes O(m) time, where m≤ω is the number
of BFSs that discovered the vertex in that level. However,
this is still inefficient when most of the bits in a field have
value 1, and also because this operation is sensitive to branch
mispredictions, since the CPU cannot predict well whether
there will be another iteration.

In order to provide a more efficient solution, we designed
an amortized O(1) algorithm that efficiently updates the
BFS-local neighbor counters in a branch-free manner. Our
general idea is to use a space-efficient 1 byte wide neigh-
bor counter for every BFS. We update these counters ev-
ery time the BFS computation is executed and copy their
information to wider fields once they overflow. The main
difference to the previous approaches is that we update the
1-byte counters using SIMD instructions available in mod-
ern CPUs: by masking the visitNext[v] bit field, we incre-
ment every counter belonging to a BFS that discovered v
in the current level and leave other counters unmodified.
Note that, since the runtime of this BFS computation step
is independent from the number of BFSs that discover v,
it optimally leverages the benefits of ANP as presented in
Section 4.1.1, which reduces the number of executions of the
BFS computation. Due to the lack of space, we omit further
details of our BFS-computation approach.

6. EXPERIMENTAL EVALUATION
To assess the efficiency of our approach and the presented

optimizations, we studied the performance of MS-BFS using
both synthetic and real datasets. Notably, we report exper-
iments on scalability with respect to input size, number of
cores and number of BFSs (source vertices), and discuss
the impact of the tuning techniques introduced in Section 4.
Also, we compare the performance of MS-BFS with the text-
book BFS and a state-of-the-art BFS algorithm.

6.1 Experimental Setup

BFS Algorithms. In our experimental evaluation, we used
a number of different BFS implementations for comparison
purposes: (i) MS-BFS for the CPU register widths of 64,
128, and 256 bits; (ii) a non-parallel version of the Direction-
Optimized BFS (DO-BFS) [7], a state-of-the-art BFS algo-
rithm; and (iii) Textbook BFS (T-BFS) as shown in List-
ing 1.

For each MS-BFS variant, we evaluated the performance
when using a single register as well as when using multiple
registers for a single bit field to fill an entire cache line.

Table 3: Properties of the evaluated datasets.

Graph Vertices (k) Edges (k) Diameter Memory
LDBC 50k 50 1,447 10 5.7 MB
LDBC 100k 100 5,252 6 20.4 MB
LDBC 250k 250 7,219 10 28.5 MB
LDBC 500k 500 14,419 11 56.9 MB
LDBC 1M 1,000 81,363 8 314 MB
LDBC 2M 2,000 57,659 13 228 MB
LDBC 5M 5,000 144,149 13 569 MB
LDBC 10M 10,000 288,260 15 1.14 GB
Wikipedia 4,314 112,643 17 446 MB
Twitter 41,652 2,405,026 19 9.3 GB

We indicate the latter using the suffix CL and follow the
approach explained in Section 4.2.1. We also enabled all
other optimizations from Section 4 in our experiments with
MS-BFS unless otherwise noted.

We performed the comparisons by using each of the al-
gorithms to compute all-vertices closeness centrality, which,
as described before, is a computationally expensive graph
analytics problem that uses BFS-based graph traversal. It
is worth mentioning that the overheads for computing the
closeness centrality values were similar among the BFS al-
gorithms in order to provide a fair comparison.

Further Algorithms. Note that we do not compare our
approach with parallel BFS implementations, since they are
not optimized for the efficient execution of a large number
of BFSs. To understand this behavior, we implemented and
experimented with the single-socket version of the parallel
BFS introduced by Agarwal et al. [2], where the authors
propose a parallel BFS implementation that uses a bitmap
for the seen data structure, as well as efficient atomic op-
erations to amortize the synchronization costs of the level-
synchronous parallelization. When varying the number of
cores, running single-threaded T-BFSs or DO-BFSs showed
a significantly better BFS throughput than sequentially ex-
ecuting the same number of parallel BFSs to solve the all-
vertices closeness centrality problem. The main reason for
these results is that, although highly optimized, the syn-
chronization costs of parallel BFSs hamper good scalability
for running a large number of traversals. Due to the lack of
space, we do not elaborate on this experiment.

We also experimented with the well-known open-source
graph database Neo4j [26]. We used their integrated close-
ness centrality computation function and benchmarked its
hot-cache runtime. On a graph with 50,000 vertices and
1.5 million edges from the LDBC generator, the all-vertices
closeness centrality computation took 23 hours. As Neo4j
was running in a single CPU core, and assuming perfect
scalability, we estimated that its parallelized runtime on our
evaluation machine would be 23 minutes, which is still more
than two orders of magnitude slower than our T-BFS imple-
mentation. Compared to MS-BFS, it is nearly four orders
of magnitude slower. Therefore, we do not include Neo4j in
our comparison.

Software and Hardware Configuration. We ran most
of our experiments on a 4-socket server machine with In-
tel Xeon E7-4870v2 CPUs, which has a total of 60 cores at
2.30 GHz and with a Turbo Boost frequency of 2.90 GHz.
The server is equipped with 1 TB of main memory equally
divided among four NUMA regions. The experiments for
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Figure 4: Data size scalability results.

Figures 6 and 7 were run on a machine equipped with an
Intel Core i7-4770K CPU at 3.50 GHz with a Turbo Boost
frequency of 3.9 GHz; we use this CPU as it supports the
AVX-2 instruction set for bit operations on 256-bit wide reg-
isters. All algorithms were implemented in C++ 11, com-
piled with GCC 4.8.2, and executed on Ubuntu 14.04 with
kernel version 3.13.0-32.

Datasets. In our evaluation, we experimented with both
synthetic and real datasets. For the former, we used the
LDBC Social Network Data Generator [8, 21], which was
designed to produce graphs with properties similar to real-
world social networks. With this generator, we created syn-
thetic graphs of various sizes—from 50,000 to 10 million
vertices, and with up to 288 million edges. Additionally, we
evaluated the performance of MS-BFS using two real-world
datasets from Twitter and Wikipedia. The Twitter dataset2

contains 2.4 billion edges following the relationships of about
41 million users, while the Wikipedia dataset3 represents a
snapshot of the data as of July 2014, consisting of articles
and links connecting them. Note that we considered the
edges in all datasets as undirected. Table 3 shows the prop-
erties of the graphs that we used in our evaluation, including
their number of vertices and edges, diameter, and the mem-
ory consumption in our graph data structure.

6.2 Experimental Results

Data Size Scalability. To understand how MS-BFS scales
as the size of the graph increases, we measured its runtime
for different synthetic datasets, containing up to 10 million
vertices and 288 million edges. Figure 4 shows the scalability
of the BFS algorithms for all LDBC datasets we introduced
before. The runtimes are measured in minutes and do not
include loading times. The algorithms were executed using
60 cores, i.e., multiple runs of each algorithm were executed
in parallel using all the cores available in the machine.

From the results, it is clear that T-BFS and DO-BFS do
not scale well as the data size increases when running mul-
tiple BFSs. As an example, T-BFS and DO-BFS took 135
minutes and 22 minutes, respectively, to process the LDBC
graph with 1 million vertices, while MS-BFS took only 1.75
minutes.

MS-BFS showed excellent scalability for all the presented
graphs. In fact, it makes time-consuming computations fea-

2http://konect.uni-koblenz.de/networks/twitter
3http://dumps.wikimedia.org/enwiki/20140707

● ● ● ● ● ● ● ● ● ●

●

● ● ●

●0

200

400

600

0 10 20 30 40 50 60

# Cores

G
T

E
P

S

BFS Algorithm

● DO−BFS

MS−BFS 128

MS−BFS 128 CL

MS−BFS 64

MS−BFS 64 CL

T−BFS

Figure 5: Multi-core scalability results.

sible to run on a single machine, which is not possible to
achieve using traditional approaches: computations that for-
merly took hours are sped up to minutes.

Our experiments show the benefits of sharing computation
among multiple concurrent BFSs. Even for large graphs,
MS-BFS has a good runtime as a significant amount of ver-
tex explorations is shared. Also, our use of bit operations
provides very efficient concurrent BFS execution in a single
core. MS-BFS runs many concurrent BFSs, while T-BFS
and DO-BFS can only perform one traversal per execution.
In Figure 4, we also show that using an entire cache line
for bit fields in MS-BFS significantly improves the perfor-
mance of the algorithm. Our evaluation machine uses 512
bit wide cache lines, which we filled using the data from 4
128-bit registers, thus executing up to 512 concurrent BFSs
in a single core.

Multi-Core Scalability. We studied the scalability of
MS-BFS, T-BFS, and DO-BFS with an increasing number
of CPU cores. Instead of showing the execution runtime,
we measured the performance in traversed edges per second

(TEPS), i.e., the total number of edges traversed by the algo-
rithm divided by the runtime [1], when running all-vertices
closeness centrality for LDBC 1M. We report the results in
GTEPS, i.e., billion TEPS.

Figure 5 depicts the nearly linear scalability of MS-BFS:
by keeping the resource usage low for a large number of
concurrent BFSs, the approach can execute more traversals
as the number of cores increases. Notably, by using 128-
bit registers and the entire cache line, MS-BFS could reach
670 GTEPS using 60 cores. T-BFS and DO-BFS showed a
significantly lower performance.

MS-BFS did not exhibit an exact linear scale-up due to the
activated Turbo Boost functionality in recent Intel CPUs.
Turbo Boost increases the clock frequency of the CPUs when
fewer cores are used, i.e., the more cores used, the lower the
clock rate. We chose not to disable this feature to show how
the algorithm would behave under real-world conditions.

BFS Count Scalability. The main goal of MS-BFS is to
execute a large number of BFSs efficiently. To evaluate this
property, we studied the scalability of MS-BFS as the num-
ber of BFSs increases. In Figure 6, we show the scalability
from 1 to 2,000 closeness centrality computations. Again,
we used the LDBC 1M dataset and report the results in
GTEPS. In contrast to the previous experiment, we only
used a single CPU core in order to make the results clearer.
DO-BFS is omitted in this experiment as it showed the same
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Figure 6: BFS count scalability results.

behavior as T-BFS. Furthermore, we note that we used the
same source vertices when comparing the algorithms.

For T-BFS, the number of traversed edges per second was
constant for any number of BFSs, which is the expected
result for an algorithm that runs BFSs sequentially. For
MS-BFS, we saw a different behavior: as more BFSs were
executed, the GTEPS increased, since multiple BFSs could
run concurrently in a single core. The peaks in the perfor-
mance correspond to when the number of BFSs is a multiple
of the bit field width of the MS-BFS run: 256 for MS-BFS
256, and 512 for MS-BFS 256 CL. The performance decays
are related to the sequential execution of multiple MS-BFS
runs as the bit fields became entirely filled. Nevertheless,
because of the source vertex re-ordering (Section 4.2.2), the
performance kept increasing as more BFSs were executed,
which shows that MS-BFS provides good scalability with
respect to the number of traversals.

Speedup. Table 4 shows the speedup of MS-BFS compared
to T-BFS and DO-BFS when running all-vertices closeness
centrality for two synthetic datasets, as well as for the Wiki-
pedia and Twitter datasets. In the Twitter dataset, we ran-
domly selected 1 million vertices and computed the closeness
centrality values for only these vertices. In these experi-
ments, 60 cores were used. Some runs, indicated by an aster-
isk, were aborted after executing for more than eight hours;
the runtimes were then estimated by extrapolating the ob-
tained results. We can see that MS-BFS outperformed both
T-BFS and DO-BFS by up to almost 2 orders of magnitude,
between 12.1x and 88.5x.

Impact of Algorithm Tuning. To analyze the perfor-
mance gains obtained by using each tuning technique de-
scribed in Section 4, we evaluated their impacts by means
of speedup. As the baseline, we used the MS-BFS algorithm
as described in Section 3.2 using 64-bit registers. We then
varied the register size and the techniques applied to the al-

Table 4: Runtime and speedup of MS-BFS com-

pared to T-BFS and DO-BFS.

Graph T-BFS DO-BFS MS-BFS Speedup
LDBC 1M 2:15h 0:22h 0:02h 73.8x, 12.1x
LDBC 10M ∗259:42h ∗84:13h 2:56h 88.5x, 28.7x
Wikipedia ∗32:48h ∗12:50h 0:26h 75.4x, 29.5x
Twitter (1M) ∗156:06h ∗36:23h 2:52h 54.6x, 12.7x
∗Execution aborted after 8 hours; runtime estimated.
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Figure 7: Speedup achieved by cumulatively apply-

ing different tuning techniques to MS-BFS.

gorithm cumulatively and in the following order: aggregated
neighbor processing (ANP), direction-optimized traversal
(DOT), use of entire cache lines of 512 bits (CL), neighbor
prefetching (PF) and heuristic for maximum sharing (SHR).
The results are shown in Figure 7.

Using wider registers was beneficial for all optimizations,
as more BFSs could be run concurrently. From the figure, we
can see that CL provided the most significant speedup. ANP
also showed a substantial speedup, in particular when using
wide registers, which demonstrates the impact of improv-
ing the memory locality for graph applications. Prefetch-
ing (PF) only showed noticeable speedup for smaller reg-
ister sizes; it exhibited nearly no improvement when ap-
plied to MS-BFS using wide registers. Together, the tuning
techniques improved the overall performance of MS-BFS by
more than a factor of 8 over the baseline.

7. CONCLUSION
In this paper, we addressed the challenge of efficiently

running a large number of BFS-based graph traversals in
graph analytics applications. By leveraging the properties
of small-world networks, we proposed MS-BFS, an algorithm
that can run multiple independent BFSs concurrently in a
single core. MS-BFS reduces the number of random memory
accesses, amortizes the high cost of cache misses, and takes
advantage of wide registers as well as efficient bit operations
in modern CPUs. We demonstrated how MS-BFS can be
used to improve the performance of solving the all-vertices
closeness centrality problem, and we are confident that the
principles behind our algorithm can significantly help speed
up a wide variety of other graph analytics algorithms as well.
Our experiments reveal that MS-BFS outperforms state-of-
the-art algorithms for running a large number of BFSs, and
that our approach, combined with the proposed tuning tech-
niques, provides excellent scalability with respect to data
size, number of available CPUs, and number of BFSs.

There are numerous interesting directions for future work,
remarkably: combining our approach with existing parallel
BFS algorithms; adapting MS-BFS for distributed environ-
ments and GPUs; analyzing how MS-BFS can be applied
to other analytics algorithms; assessing its behavior on dif-
ferent types of graphs; designing new heuristics to maxi-
mize the sharing among BFSs; and using MS-BFS in query
optimizers to improve the throughput of graph databases.
Furthermore, we plan to integrate MS-BFS with the graph
analytics capabilities of HyPer [19].
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