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Abstract

We show that the Hotelling-Lau elasticity of substitution, an extension of the Allen-Uzawa
elasticity to allow for optimal output-quantity (or utility) responses to changes in factor
prices, inherits all of the failings of the Allen-Uzawa elasticity identified by Blackorby and
Russell [1989 AER]. An analogous extension of the Morishima elasticity of substitution to
allow for output quantity changes preserves the salient properties of the original Hicksian
notion of elasticity of substitution.

JEL classification: D11, D24, D33.
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Introduction

The two-variable elasticity of substitution was introduced by Hicks (1932)

to study the evolution of relative factor shares in a growing economy. A

logarithmic derivative of a quantity ratio with respect to a technical rate of

substitution (with respect to a price ratio under the assumption of price-

taking, cost-minimizing behavior), it is an intuitive measure of curvature

of an isoquant and provides immediate information about the comparative

statics of factor shares. Of two generalizations to encompass more than two

inputs suggested by Allen and Hicks (1934), only one survived. That notion

became known as the Allen-Uzawa elasticity of substitution after Uzawa

(1962) (AUES) provided a much more elegant (and more general) formulation

in the dual (in terms of derivatives of the cost function). Untold thousands

of Allen-Uzawa elasticities have been estimated over the ensuing years to

analyze substitutability and complementarity relationships among inputs and

among consumption goods.

Blackorby and Russell (1981, 1989) later argued that the AUES preserves

none of the salient properties of the original Hicksian notion and proposed

an alternative elasticity, first formulated by Morishima (1967) (though in-

dependently discovered by Blackorby and Russell (1975]). The Morishima

elasticity of substitution (MES) was shown to be the natural generalization

of the original notion of Hicks when there are more than two inputs. The MES

is gradually making its way into the empirical literature on substitutability

and complementarity.

Both the AUES and the MES are computed using constant-output (com-

pensated) demands. If the production function is homothetic (as was as-

sumed by Hicks), this places no particular restriction on the resulting elas-
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ticities since they are then independent of output (as are optimal quantity

ratios). When the technology is not homothetic, however, the use of com-

pensated input demands is a real restriction, and these net elasticities may in

fact be misleading because, as input prices vary, optimal output also changes,

inducing scale effects on input quantity ratios. Following the original study

of Hicks, we may be interested in the evolution of relative shares and other

information about the quantity effects of price changes while optimally ad-

justing output.

In two recent papers, Bertoletti (2001, 2005) has resurrected a version

of the AUES that allows output to adjust optimally, a concept that he calls

the Hotelling-Lau elasticity of substitution (HLES) (first formulated in Lau

(1978)). It is formulated by simply replacing the cost function with the profit

function in the definition of of the AUES. In this note we argue that the HLES

suffers from the same failings as the AUES and show that the Morishima gross

elasticity of substitution (MGES), a natural extension of the MES to take

account of optimal output adjustments, preserves the salient properties of

the original Hicksian notion.1

There are n inputs, x = (x1, ..., xn), that are employed to produce a scalar

output y according to a production function, y = f(x). The cost function is

given by

c(y, w) = min
x
{w · x : f(x) ≥ y} ,

where w is a vector of input prices. The AUES for inputs i and j is defined

by

σAU
ij (y, w) =

cij(y, w)c(y, w)

ci(y, w)cj(y, w)
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where subscripts of c denote partial derivatives. The MES is given by

σM
ij (y, w) = wi

(
cij (y, w)

cj (y, w)
− cii (y, w)

ci (y, w)

)
.

The profit function is defined by

π (p, w) = max
y,x

{py − w · x : f(x) ≥ y} ,

where p is the output price. The HLES for inputs i and j is defined by

σHL
ij (p, w) = −πij(p, w)π(p, w)

πi(p, w)πj(p, w)
. (1)

The MGES is defined by

σMG
ij (p, w) = wi

(
πij(p, w)

πj(p, w)
− πii(p, w)

πi(p, w)

)
. (2)

The next section contains an example designed to persuade the reader

that the proposed gross elasticity of substitution, HLES, suffers from all of

the problems attributed to the AUES plus one additional problem, namely,

that the gross and net elasticities are not the same in the case of a homothetic

production function. This is inconsistent with Hicks’s original concept of the

elasticity of substitution. On the other hand, the GMES preserves these

properties.

1 An Illustrative Example

We consider the technology given by the production function

y = f(x) = [min {x1, g(x2, x3)}]b , 0 < b < 1, (3)

where g(·) is homogeneous of degree one in (x2, x3). It can be shown that

the cost function for the overall technology (3) is given by

c(y, w) = [w1 + e(w2, w3)] y
1/b, (4)
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where

e(w2, w3) = min {w2x2 + w3x3 : g(x2, x3) ≥ 1} (5)

is the unit cost function for g(x2, x3) (see the Appendix). The Allen-Uzawa

elasticity of substitution for inputs 2 and 3 is

σAU
23 (y, w) =

c23(y, w)c(y, w)

c2(y, w)c3(y, w)
.

Define v = (w2, w3) so that e(w2, w3) = e (v) . For the cost function in (4), it

can be shown (see the Appendix) that

σAU
23 (y, w) =

w1e23(v)

e2(v)e3(v)
+

e23(v)e(v)

e2(v)e3(v)
. (6)

Now suppose that the 2-3 aggregator function in (3) is given by the Cobb-

Douglas form:

g(x2, x3) = xa
2x

1−a
3 . (7)

It is straightforward (see the Appendix) to derive the unit cost function for

(7). It is

e(v) =
(w2

a

)a
(

w3

1− a

)1−a

. (8)

Take the appropriate partial derivatives of e(·) and use (6) to obtain

σAU
23 (y, w) = aa(1− a)1−aw1w

−a
2 wa−1

3 + 1. (9)

Since the aggregator function is Cobb-Douglas one would expect that AUES

for inputs 2 and 3 would be unity. However, the AUES in (9) can take on

any value between one and infinity as input prices vary for any a ∈ (0, 1).

This was the key feature in the example provided by Blackorby and Russell

(1989). (They set a = 1/2.)
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We now compute the profit function for (3). It is defined by

π(p, w) = max
y

{py − c(y, w)}

= max
y

{
py − [w1 + e(v)] y1/b

}
.

One can show (see the Appendix) that the profit function is given by

π(p, w) =
B

1 + d

[
p

1
1−b

]
[w1 + e(v)]1+d , (10)

where

1 + d = − b

1− b
and B = (1 + d)

[
b

b
1−b − b

1
1−b

]
. (11)

This is a special case of equation (11) in Bertoletti (2005).

The Hotelling-Lau elasticity of substitution is defined by

σHL
23 (p, w) = −π23(p, w)π(p, w)

π2(p, w)π3(p, w)
. (12)

For the profit function in (10), this becomes

σHL
23 (p, w) =

1− b

b
σAU

23 (y, w)− 1

b
, (13)

where σAU
23 (y, w) was given in (6).2 It is clear from (13) that all of the prob-

lems associated with the AES are inherited by the HLES. In addition, (13)

demonstrates that the HLES is inconsistent with the very concept of the

elasticity of substitution. The production function in the example is homo-

thetic; hence, as emphasized by Kim [2000] and Stern [2004], the curvature

is the same on every isoquant (as they are radial translates of one another),

there are no scale effects on optimal quantity ratios, and the net and gross

elasticities ought to be the same.
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To make this point more explicit, suppose that the 2-3 aggregator function

is Cobb-Douglas. Arguing, as in Blackorby-Russell (1989), that a reason-

able value for σAU
23 (y, w) is unity, the Hotelling-Lau elasticity of substitution

should be equal to

σHL
23 (w) =

1− b

b
− 1

b

=
1− b− 1

b

= −1.

However, when the aggregator is Cobb-Douglas (7), the Hotelling-Lau elas-

ticity of substitution is given by

σHL
23 (w) =

1− b

b

[
aa(1− a)1−aw1w

−a
2 wa−1

3 + 1
]
− 1

b
,

which can take any value from −1/b to infinity for any a ∈ (0, 1) and b ∈

(0, 1).

2 Properties of the MGES

Let x∗i and x∗j be the profit-maximizing quantities of inputs i and j. We are

interested in calculating how the ratio of input quantities, x∗i /x
∗
j , changes in

response to a change in the ratio of input prices, wi/wj. We begin by noting

that, by Hotelling’s Lemma,

ln

(
x∗i
x∗j

)
= ln

(
−πi (p, w)

−πj (p, w)

)
= ln

(
πi (p, w)

πj (p, w)

)
. (14)

To differentiate (14) with respect to the log of wi/wj, we first note that

π (p, w) = wjπ̂
(
p/wj, w

−j/wj

)
, (15)
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where w−j = (w1, ..., wj−1, wj+1, ..., wn) and π̂ (p/wj, w
−j/wj) = π (p/wj, w/wj).

Using Hotelling’s Lemma and (15) we get the MGES:

− ∂

∂ ln (wi/wj)
ln

(
x∗i
x∗j

)
= σMG

ij (p, w) = wi

(
πij(p, w)

πj(p, w)
− πii(p, w)

πi(p, w)

)
.

Thus, the MGES indicates how the income ratio, Sij(p, w) = wix
∗
i /wjx

∗
j ,

changes with a change in the input price ratio. In particular,

∂ ln Sij(p, w)

∂ ln

(
wi

wj

) = 1− σMG
ij

It is also interesting to derive the relationship between the MES and

the MGES. Let x = h(y, w) and x = x(p, w) be the cost-minimizing and

profit-maximizing choices for the input vector. Also, y = y(p, w) be the

profit-maximizing output. Then

x(p, w) = h(y(p, w), w). (16)

Differentiate (16) with respect to wj to get

∂xi(p, w)

∂wj

=
∂hi(y, w)

∂wj

+
∂hi(y, w)

∂y

∂y(p, w)

∂wj

. (17)

Invoking Hotelling/Shephard, we obtain

πij(p, w) = − [cij(y, w) + ciy(y, w)πpj(p, w)]

and

πii(p, w) = − [cii(y, w) + ciy(y, w)πpi(p, w)] .

The Morishima gross elasticity of substitution is defined by

σMG
ij (p, w) = wi

(
πij(p, w)

πj(p, w)
− πii(p, w)

πi(p, w)

)
.
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Thus, it is clear that the MGES can be written as a function of the MES as

follows:

σMG
ij (p, w)

= wi

(
− [cij(y, w) + ciy(y, w)πpj(p, w)]

πj(p, w)
− − [cii(y, w) + ciy(y, w)πpi(p, w)]

πi(p, w)

)

= wi

(
cij(y, w)

cj(y, w)
− cii(y, w)

ci(y, w)

)
+ wiciy(y, w)

(
πpj(p, w)

πj(p, w)
− πpi(p, w)

πi(p, w)

)

= σM
ij (y, w) + wiciy(y, w)

(
πpj(p, w)

πj(p, w)
− πpi(p, w)

πi(p, w)

)
. (18)

We now show that the MGES and the MES are equal if and only if

the production function is homothetic. It is apparent from (18) that the

Morishima gross elasticity of substitution is equal to the Morishima (net)

elasticity of substitution for all input pairs if and only if

πpj(p, w)

πj(p, w)
− πpi(p, w)

πi(p, w)
= 0, i, j = 1, ..., n

This is equivalent to the condition that

∂

∂p

(
πi(p, w)

πj(p, w)

)
=

πj(p, w)πip(p, w)− πi(p, w)πjp(p, w)

[πj(p, w)]2

=
πj(p, w)πpi(p, w)− πi(p, w)πpj(p, w)

[πj(p, w)]2

= 0, i, j = 1, ..., n.

This is the well-known condition for separability of input prices from the

output price. This separability condition is equivalent to homotheticity of

the production function. Not surprisingly, for our example, the MES and

MGES are equal.
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3 Concluding Remarks

The original Hicksian elasticity of substitution is an insightful concept, for-

mulated to answer specific economic questions. Generalizations of this notion

should be faithful to the original conception, preserving those properties that

infuse it with economic content. As shown by Blackorby and Russell [1981,

1989], the Allen-Uzawa elasticity of substitution preserves none of the salient

properties of the original Hicksian notion: it “(i) is not a measure of the

‘ease’ of substitution, or curvature of the isoquant, (ii) provides no infor-

mation about relative factor shares, . . . and (iii) cannot be interpreted as a

logarithmic derivative of a quantity ratio with respect to a price ratio . . . ”

(Blackorby and Russell [1989, p. 883]).

The Hotelling-Lau elasticity of substitution, constructed by analogy to

the Allen-Uzawa notion (substituting the profit function for the cost func-

tion) inherits the problems presented by the AUES. It is not a logarithmic

derivative of a quantity ratio with respect to a price ratio—allowing output

to change, and it does not provide comparative static content about relative

factor incomes. In fact, it is not even a generalization of the AUES in any

meaningful sense, since it does not reduce to the latter under the assumption

of a homotheticity.

The Morishima gross elasticity of substitution, on the other hand, does

provide immediate comparative-static information about the (qualitative and

quantitative) effect of changes in relative prices on factor income ratios and

is a logarithmic derivative of a quantity ratio with respect to a price ratio,

allowing output to change. Moreover, the MGES reduces to the MES under

the assumption of homotheticity.
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The HSES can be written as a function of the AUES, but this simply com-

pounds the problems with the latter, since the AUES provides no meaningful

information about ease of substitution or the curvature of the isoquant.

The MGES can be written as a function of the MES, thus incorporating

information about ease of substitution along an isoquant into the measure

of substitution when output is allowed to vary. In short, the MGES is the

“real” elasticity of gross substitutability.
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Appendix

Derivation of (4): Given the problem,

c(y, w) = min
{
w1x1 + w2x2 + w3x3 : min {x1, g(x2, x3)} ≥ y1/b

}
,

let

e(y23, v) = min {w2x2 + w3x3 : g(x2, x3) ≥ y23}

= e(v)y23.

Then

c(y, w) = min
x1,y23

{
w1x1 + e(v)y23 : min {x1, y23} ≥ y1/b

}
= [w1 + e(v)] y1/b.

Derivation of (6): The relevant partial derivatives of c are (partial differen-

tiation denoted by subscripts)

c2(y, w) = e2(v)y1/b, (19)

c3(y, w) = e3(v)y1/b, (20)

and

c23(y, w) = e23(v)y1/b. (21)

The Allen-Uzawa Elasticity of Substitution (AUES) for inputs 2 and 3 is

given by

σAU
23 (y, w) =

c23(y, w)c(y, w)

c2(y, w)c3(y, w)
, (22)
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and in this case, using (19), (20), and (21), we get

σAU
23 (y, w) =

[
e23(v)y1/b

]
[w1 + e(v)] y1/b

[e2(v)y1/b] e3(v)y1/b

=
e23(v) [w1 + e(v)]

e2(v)e3(v)
.

With a slight rearrangement,

σAU
23 (y, w) =

w1e23(v)

e2(v)e3(v)
+

e23(v)e(v)

e2(v)e3(v)
. (23)

Derivation of (8): Let g(x2, x3) = xa
2x

1−a
3 . Then

e(w2, w3) = min
{
w1x1 + w2x2 : xa

2x
1−a
3 ≥ 1

}
.

Form the Lagrangian:

L = w2x2 + w3x3 − λxa
2x

1−a
3 .

Then two of the first-order conditions are

L1 = w2 − aλxa−1
2 x1−a

3 = w2 − aλ
1

x2

= 0 (24)

and (25)

L2 = w3 − (1− a)λxa
2x

−a
3 = w3 − (1− a)λ

1

x3

= 0, (26)

where the second equality in (24) and (26) follows from xa
2x

1−a
3 = 1. The

solutions for the input quantities are

x2 =
a

w2

λ (27)

and (28)

x3 =
1− a

w3

λ. (29)
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It follows that

1 = xa
2x

1−a
3 =

(
a

w2

λ

)a (
1− a

w3

λ

)1−a

=

(
a

w2

)a (
1− a

w3

)1−a

λ,

so that

λ =
(w2

a

)a
(

w3

1− a

)1−a

.

Put this result into (27) and (29) to get

x∗2 =
a

w2

(w2

a

)a
(

w3

1− a

)1−a

and

x∗3 =
1− a

w3

(w2

a

)a
(

w3

1− a

)1−a

.

From this it follows that

e(w2, w3) = w2x
∗
2 + w3x

∗
3

=
(w2

a

)a
(

w3

1− a

)1−a

.

Derivation of (10): The profit maximization problem is:

π(p, w) = max
y

{py − c(y, w)}

= max
y

{
py − [w1 + e(v)] y1/b

}
.

From the first-order condition,

p =
1

b
[w1 + e(v)] y(1/b)−1,

or, rearranging,

y
1−b

b = pb [w1 + e(v)]−1 ,
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so that profit-maximizing output is given by

y∗ = p
b

1−b b
b

1−b [w1 + e(v)]
−b
1−b . (30)

Note that

(y∗)1/b = p
1

1−b b
1

1−b [w1 + e(v)]
−1
1−b . (31)

Putting (30) and (31) into the profit expression, py− [w1 + e(v)] y1/b, we

arrive at

π(p, w) = pp
b

1−b b
b

1−b [w1 + e(v)]
−b
1−b − [w1 + e(v)] p

1
1−b b

1
1−b [w1 + e(v)]

−1
1−b

= p
1

1−b b
b

1−b [w1 + e(v)]
−b
1−b − p

1
1−b b

1
1−b [w1 + e(v)]

−b
1−b

=
[
b

b
1−b − b

1
1−b

] [
p

1
1−b

]
[w1 + e(v)]

−b
1−b .

Rewrite this as

π(p, w) =
B

1 + d

[
p

1
1−b

]
[w1 + e(v)]1+d , (32)

where

1 + d = − b

1− b
;

i.e, d = −1− b

1− b
=

−1

1− b

and

B = (1 + d)
[
b

b
1−b − b

1
1−b

]
.

Derivation of (13): Some partial derivatives of π in (10) are given by

π2(p, w) = B
[
p

1
1−b

]
[w1 + e(v)]d e2(v), (33)

14



π3(p, w) = B
[
p

1
1−b

]
[w1 + e(v)]d e3(v), (34)

and

π23(p, w) = dB
[
p

1
1−b

]
[w1 + e(v)]d−1 e2(v)e3(v)

+ B
[
p

1
1−b

]
[w1 + e(v)]d e23(v). (35)

The Hotelling-Lau Elasticity of Substitution is

σHL
23 (p, w) = −π23(p, w)π(p, w)

π2(p, w)π3(p, w)
.

Because of (33), (34), and (35), this becomes

σHL
23 (p, w)

= −π23(p, w)π(p, w)

π2(p, w)π3(p, w)

= −
dB [w1 + e(v)]d−1 e2(v)e3(v)

[
B

1+d
[w1 + e(v)]1+d

]
[
B [w1 + e(v)]d e2(v)

] [
B [w1 + e(v)]d e3(v)

]

−
B [w1 + e(v)]d e23(v)

[
B

1+d
[w1 + e(v)]1+d

]
[
B [w1 + e(v)]d e2(v)

] [
B [w1 + e(v)]d e3(v)

] .
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After some simplification,

σHL
23 (w) = − d

1 + d
− w1 + e(v)

1 + d

e23(v)

e2(v)e3(v)

= − d

1 + d
− 1

1 + d

[
w1e23(v)

e2(v)e3(v)
+

e23(v)e(v)

e2(v)e3(v)

]

= − d

1 + d
− 1

1 + d
σAU

23 (y, w) (using (23)).

Since

d =
−1

1− b
and 1 + d =

−b

1− b
,

we can rewrite this result as

σHL
23 (p, w) =

−1

b
+

1− b

b
σAU

23 (y, w)

or

σHL
23 (p, w) =

1− b

b
σAU

23 (y, w)− 1

b
. (36)
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Notes

∗ We thank Paolo Bertoletti for drawing our attention to the issue addressed

in this paper and for his comments on an earlier draft.

1The MGES was first formulated by Davis and Shumway (1996). Although

the formulation that follows, like theirs, is for a single output, the concept

can be straightforwardly extended to multiple outputs.

2 This is a special case of equation (11) in Bertoletti (2005).
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