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The morphology, molecular development and
ecological function of pseudonectaries on Nigella
damascena (Ranunculaceae) petals
Hong Liao1,3, Xuehao Fu 1,2,3, Huiqi Zhao1,2,3, Jie Cheng 1,2, Rui Zhang1, Xu Yao 1, Xiaoshan Duan1,

Hongyan Shan1 & Hongzhi Kong 1,2✉

Pseudonectaries, or false nectaries, the glistening structures that resemble nectaries or

nectar droplets but do not secrete nectar, show considerable diversity and play important

roles in plant-animal interactions. The morphological nature, optical features, molecular

underpinnings and ecological functions of pseudonectaries, however, remain largely unclear.

Here, we show that pseudonectaries of Nigella damascena (Ranunculaceae) are tiny, regional

protrusions covered by tightly arranged, non-secretory polygonal epidermal cells with flat,

smooth and reflective surface, and are clearly visible even under ultraviolet light and bee

vision. We also show that genes associated with cell division, chloroplast development and

wax formation are preferably expressed in pseudonectaries. Specifically, NidaYABBY5, an

abaxial gene with ectopic expression in pseudonectaries, is indispensable for pseudonectary

development: knockdown of it led to complete losses of pseudonectaries. Notably, when

flowers without pseudonectaries were arrayed beside those with pseudonectaries, clear

differences were observed in the visiting frequency, probing time and visiting behavior of

pollinators (i.e., honey bees), suggesting that pseudonectaries serve as both visual attractants

and nectar guides.
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N
ectaries, the highly specialized glands or tissues that
secrete nectar, are widespread in flowering plants (i.e.,
angiosperms) and play key roles in plant–animal inter-

actions1–4. Nectaries can be floral or extrafloral and structural or
nonstructural, depending on where they are located and how
complex they are5–7. Floral nectaries with distinct structures are
of particular interest to plant taxonomists and evolutionary
biologists because they are usually tightly associated with polli-
nation and because pollination is always the prerequisite of suc-
cessful sexual reproduction3,8–10. In angiosperms, floral nectaries
show considerable diversity in number, location (i.e., on sepals,
petals, stamens, staminodes, carpels, or receptacle), and mor-
phology (i.e., convex, concave, or disc- or cup-shaped), and are
believed to be results of parallel or even convergent
evolution4,5,9,11. Despite the diversity, it is widely accepted that
the nectary has been one of the most influential key innovations
that promoted the diversification of many plant lineages7,12–14.
Meanwhile, it has been found that, to secrete nectar, nectary cells
should be able to synthesize and transport sugar and other
necessary components10,15–17; genes regulating the formation and
proper functioning of nectaries, such as CRABS CLAW (CRC) of
the YABBY family, STYLISH1(STY1), STY2, and LATERAL
ROOT PROMORDIUM (LRP) of the STY family, and SWEET9 of
the SWEET family, therefore, are indispensable (at least in
eudicots)2,16,18–20.

In addition to nectaries, many plants produce false nectaries, or
pseudonectaries, that imitate or mimic nectaries or nectar droplets
but do not secrete nectar4,21–23. Like nectaries, pseudonectaries
also show considerable variation in size (from ~0.01 to ~0.5 cm),
number (i.e., one, two, or many), location (i.e., on sepals, petals,
stamens, or staminodes), color (i.e., green, yellowish, pink, or even
black), and morphology (i.e., clavate, globular, hemispherical,
convex, or patch- or cone-shaped)22–33. Yet, unlike nectaries,
which have been investigated extensively in many aspects, pseu-
donectaries have not attracted sufficient attention until very
recently24,34. Nevertheless, it has been shown that, acting as visual
attractants or nectar guides, pseudonectaries of at least some
plants play key roles in flower–animal interactions25–27,35.
Pseudonectaries of Lopezia (Onagraceae) and Pelargonium
(Geraniaceae), for example, can attract or guide their favorite
pollinators (i.e., syrphids and Megapalus capensis, respectively) to
proper positions and assist them to find the hidden nectary,
suggestive of functional importance25,27,33. Pseudonectaries of
carnivorous plants (e.g., Cephalotus follicularis) and deceptive
flowers (e.g., Ophrys muscifera) also function to deceive the vis-
iting insects36,37. Some studies also tried to understand the evo-
lutionary histories of pseudonectaries24, yet the available data are
still insufficient for a general picture. Meanwhile, due to the lack
of suitable study systems, little is known about the morphological
nature, optical features, developmental process, molecular
underpinnings, and ecological functions of pseudonectaries.

The family Ranunculaceae is an excellent system for the study
of pseudonectary development and evolution, for three reasons.
First, pseudonectaries, especially those that are located on petals,
have been documented in at least four genera (i.e., Nigella,
Trollius, Eranthis, and Xanthorhiza), and show considerable
diversity in number, colour, morphology, and functions24,32,38,39

(Fig. 1). This provides an excellent opportunity for a compre-
hensive understanding of the generalities and peculiarities of
pseudonectaries. Second, according to the recent results of
ancestral character-state reconstruction, pseudonectaries of these
taxa have been results of convergent evolution, followed by
independent losses in a few cases24,40. This makes the family an
excellent system for the study of the molecular bases of pseudo-
nectary evolution. Third, one species of Nigella, N. damascena,
has been developed into a model species, for which virus-induced

gene silencing (VIGS) and many other functional technologies are
applicable24,41. This suggests that the hypotheses related to
pseudonectary development and evolution, if any, can be tested.

Here, by using N. damascena as a model, we investigate the
morphological nature, optical features, developmental process,
molecular bases, and ecological functions of pseudonectaries. We
find that pseudonectaries are quite different from nectaries in
morphological, anatomical, micromorphological, and functional
properties, and that genes associated with cell division, chlor-
oplast development, and wax formation are key to pseudonectary
formation. In particular, an ortholog of an abaxial gene,
NidaYABBY5 (NidaYAB5), seems to be important for pseudo-
nectary development: knockdown of it led to the complete losses
of pseudonectaries and, therefore, significantly decreased the
attractiveness of the petals. Our results not only provide a com-
prehensive portrait of pseudonectaries, but also clarify the dif-
ferences between pseudonectaries and nectaries.

Results
Morphological, anatomical, and micromorphological features
of pseudonectaries. To understand the morphological nature of
pseudonectaries, we first performed morphological, anatomical,
and micromorphological studies. Under stereomicroscope, petals
of N. damascena appear to be long-stalked, hair-bearing, doubly
geniculated, and vertically bilabiate structures (Fig. 2a, b). Pseu-
donectaries, which are located at the distal geniculate bend of the
lower petal lip, are hemispherical, emerald, glistening, and nectar
droplet-like, and about 700 μm in diameter and 500 μm in height
(Fig. 2a, b). Under X-ray microcomputed tomography (micro-
CT), the pseudonectaries are obviously thicker than the other
regions of the lower petal lip (Fig. 2c, d), suggesting that they were
caused by regional thickening rather than simple surface curving.
Under microscope, pseudonectaries are composed of 8–12 layers
of irregularly arranged parenchyma cells covered by the tightly
arranged epidermal cells (Fig. 2e, f). Both the parenchyma and
epidermal cells are large in size and stained lightly and have large
vacuoles and small nuclei (Fig. 2e, f). This, in fact, is also quite
different from what we saw in nectary cells. In nectary tissues, the
cells are small in size and stained darkly, suggestive of large nuclei
and tiny or no vacuole (Fig. 2g, h). Under scanning electron
microscopy (SEM), the features observable under stereomicro-
scope are even more obvious, and clear micromorphological
differences can be seen between pseudonectaries and all other
parts of the petal (Fig. 2i). Specifically, in addition to the long
hairs, there are two types of polygonal cells (with smooth and
grainy surfaces, respectively) that were exclusively found on
pseudonectaries. Notably, however, it is these tightly arranged,
nonsecretory polygonal epidermal cells with flat and smooth
surface that can reflect light and make pseudonectaries shiny and
attractive. Taken together, these results suggest that, as nectar
droplet-like, nonsecretory protrusions with various exquisite
morphological and optical modifications, pseudonectaries are
quite different from nectaries and all other parts of the petal in
many aspects.

Cellular basis of pseudonectary development. To understand
how pseudonectaries were made through development, we per-
formed time-course micromorphological and anatomical studies.
We found that pseudonectaries, as well as the long hairs on them,
started to emerge at about the sixth stage (S6) of petal develop-
ment24, likely due to active cell division underneath the epidermis
(Fig. 3a–p). Then, during development, pseudonectaries became
more and more protuberant and conspicuous, and eventually
reached their final sizes at the twelfth stage (S12) of petal devel-
opment (Fig. 3a–p). Notably, while both cell division and cell
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expansion have played key roles in pseudonectary development,
their contributions are different: at the early stage of pseudo-
nectary development (i.e., from S5 to S8 of petal development),
the number of cell layers increased dramatically (Fig. 3q), sug-
gestive of more active cell division; at the late stage of pseudo-
nectary development (i.e., from S9 to S12 of petal development),
the size of the cells increases more quickly (Fig. 3r), suggestive of
more active cell expansion. Clearly, the ninth stage of petal
development (S9) marks the transition between more active cell
division and more active cell expansion during pseudonectary
formation. Yet, it was the additive effect of cell division and cell
expansion that led to the regional thickening and rapid formation
of pseudonectaries (Fig. 3s).

Genes involved in pseudonectary formation. To further
understand the uniqueness of pseudonectaries, we divided the S9
petals into four parts (i.e., Parts I, II, III, and IV; Fig. 4a, b) and
conducted RNA sequencing analyses. Of the 21,223 genes that are
expressed in the petals of this stage, 172 and 652 are specifically
and preferably expressed in the pseudonectary-containing Part III
as compared with the other three parts (Fig. 4c, d; Supplementary
Dataset 1), respectively, suggestive of the uniqueness of this part.
Interestingly, of the genes that are preferably expressed in this
part, there are homologs of the well-known regulators of photo-
synthetic apparatus and cell division, such as the GOLDEN2-
LIKE1 (GLK1) and CYTOKININ-RESPONSIVE GATA FACTOR
1 (CGA1)42,43, and the gene ontology (GO) categories that were
enriched include “photosynthesis”, “chlorophyll biosynthetic
process”, and “response to cytokinin” (Supplementary Table 1).
Genes involved in nectary development, such as orthologs of
STY1/2 and LRP20, however, are preferably expressed in the
nectary-containing Part II (Supplementary Dataset 1), suggesting
that pseudonectaries indeed have nothing to do with nectaries.

To identify the genes that are involved in pseudonectary
formation, we also compared Part III with its neighboring regions
(i.e., Parts II and IV) by using DESeq244. We found that,
compared with Part II, Part III has 3075 (including 87
transcription factor genes; hereafter called TFs) and 2943 (169
TFs) up- and down-regulated genes, respectively (Fig. 4e, g;
Supplementary Dataset 1). Similarly, compared with Part IV, Part
III has 1818 (61 TFs) and 1239 (73 TFs) up- and down-regulated

genes, respectively (Fig. 4f, g; Supplementary Dataset 1), in which
917 (27 TFs) and 536 (25 TFs) were shared by the two
comparisons (Fig. 4g; Supplementary Dataset 1). Of the genes
that are up-regulated in both comparisons, there are homologs of
the genes associated with cell division (e.g., CGA1 and CYCLIN
P2;1, CYCP2;1)42,45, chloroplast development (e.g., GLK1)43, wax
formation (e.g., SHINE1, SHN1)46, and leaf morphogenesis (e.g.,
LATE MERISTEM IDENTITY1, LMI1)47 (Fig. 4h). Because these
processes are required for the formation of pseudonectaries, it is
very likely that they are key regulators of pseudonectary
development.

Importance of NidaYAB5 in pseudonectary development. Of
the genes that are upregulated in Part III, one (i.e., NidaYAB5;
Fig. 4e, f, h) attracted our special attention because it is the
ortholog of a known abaxial gene (i.e., YAB5)24 and because
ectopic expression of adaxial/abaxial genes have been shown to
play key roles in the formation of outgrowths on leaf-like struc-
tures48–52. To gain some insights into its function, we first per-
formed detailed mRNA in situ hybridization studies (Fig. 5a–c).
We found that, as expected, NidaYAB5 was first expressed in the
adaxial side of the upper lip and the abaxial side of the lower lip
of the petals. Then, at S6, the signal of NidaYAB5 also expanded
to the places where pseudonectaries would be initiated, although
the expression level was rather low. Thereafter, the expression of
NidaYAB5 in the developing pseudonectaries became stronger
and stronger, and eventually reached the summit at S9 (Fig. 4h).
Clearly, the ectopic expression of NidaYAB5 strongly coincides
with the formation of pseudonectaries.

To understand the function of NidaYAB5, we attempted to
knock down its expression by using VIGS technique. Compared
with the tobacco rattle virus (TRV2)-treated flowers (i.e., the
mock) and TRV2-NidaYAB5-treated flowers with weak and
moderate phenotypic changes, TRV2-NidaYAB5-treated flowers
with strong phenotypic changes no longer produce pseudonec-
taries, whereas all other parts of the petals remain largely
unaffected (Fig. 5d, e, h, i, n; Supplementary Fig. 1). Moreover, in
the area where pseudonectaries were supposed to be, the
polygonal epidermal cells with smooth and grainy surfaces were
all transformed into conical cells, the highly specialized cell types
that are widely distributed on the adaxial surface of the petal lobes

a b

dc

Fig. 1 Flowers and their pseudonectary-bearing petals in representative species of the Ranunculaceae. a Eranthis stellata. b Trollius buddae. c Nigella

arvensis ssp. arvensis. d N. damascena. Red arrows point to the pseudonectaries. Scale bars at the right side of flowers: 1 cm; scale bars at the right side of

petals: 1 mm.
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(Fig. 5f, j). When sectioned, the number and size of the cells in the
pseudonectary regions decreased dramatically, whereas the
number of cells in the lobe regions were largely not affected
(Fig. 5g, k–m). This confirms that NidaYAB5 plays key roles in
pseudonectary development.

The contribution of pseudonectaries to pollination success.
Previous studies have proposed that pseudonectaries may func-
tion as nectar guides or visual attractants4,21,22,27,53. To test this
hypothesis, we first examined the optical properties of pseudo-
nectaries (Fig. 6a–c). We found that, under ultraviolet (UV) light,
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the experiments were repeated three times independently with similar results.
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pseudonectaries are shiny and reflective, suggestive of UV
reflection, whereas all other parts of the petals and the flower are
dark black (Fig. 6b), suggestive of UV absorption. Under bee
vision, the pseudonectaries are still shiny and reflective, while all
other parts of the petals and the flower become dark green
(Fig. 6c), suggesting that the pseudonectaries may be seen by bees.
In addition, because of the formation of two quasi-perpendicular,
geniculate bends on the lower petal lip, pseudonectaries became
more conspicuous than any other parts of the flower. When all
petals of a flower were considered together, the pseudonectaries
form a concentric circle, in which the two from each petal mark
the entrance of the nectary chamber (Fig. 6d–j).

To further understand the function of pseudonectaries, we
performed pollination studies. We found that, consistent with
previous studies54, the most frequent visitors and effective
pollinators of N. damascena are honey bees (Apis mellifera),
although the contribution of bumblebees (Bombus lucorum) and
wasps (Polistes dominulus) were also substantial (about 10% of the
recorded times of visitations). When flowers with and without
pseudonectaries (i.e., mock flowers and the TRV2-NidaYAB5-
treated flowers with strong phenotypic changes, respectively) were
arrayed side by side (Fig. 6k), both types could attract honey bees.
However, both the visiting frequency and probing time of honey
bees decreased significantly in flowers without pseudonectaries than
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in those with pseudonectaries (Fig. 6l, m), suggestive of the
differences in attractiveness. More interestingly, when a pollinator
landed on a flower with pseudonectaries, it tried to check every petal
in a clockwise or anticlockwise direction; when it landed on a flower

without pseudonectaries, however, it usually flew away after brief
tries. Taken together, these results tend to suggest that pseudonec-
taries can not only attract suitable pollinators but also mark the
entrance of the nectar chamber, thereby guiding their visitation.
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Discussion
In this study, by conducting careful morphological, anatomical,
and micromorphological studies, we uncovered the morphologi-
cal nature of pseudonectaries. We found that pseudonectaries of
N. damascena (and other species of Nigella) are protrusive,
emerald, glistening, and nonsecretory structures that mimic
nectar drops but do not produce and secrete nectar. We also

found that under UV light and bee vision, pseudonectaries are
shiny and reflective, whereas all other parts of the petals and the
flower are black or dark green. This, together with the observation
on many other plants22,28,39,55,56, suggests that protrusion, col-
oration, reflectivity, and being nonsecretory may be the most
important features that characterize pseudonectaries. Specifically,
being protrusive, colorful, and reflective makes pseudonectaries
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visible and attractive to specific pollinators (usually bees and
flies), whereas being nonsecretory makes pseudonectaries func-
tionally distinct to real nectaries.

Several scenarios have been proposed for the ecological func-
tions of pseudonectaries. Based mainly on morphological obser-
vations, many authors believe that, by forming protrusive,
colorful, and glistening structures that mimic nectaries, nectar
droplets or even pollinators, pseudonectaries serve to optically
attract pollinators21,22,29,56. Some other authors, however, insist
that in addition to optical attraction, pseudonectaries can tell
pollinators the position of hidden nectar or pollens, thereby
guiding the visitation25,27,31. While these two scenarios are not
mutually exclusive, there is a third viewpoint, which postulates
that pseudonectaries function to distract undesirable visitors from
rewards intended for pollinators53. In this study, we not only
examined the optical features of pseudonectaries but also con-
ducted controlled experiments. We found that pseudonectaries
are indeed visible to pollinators (i.e., bees), and that pseudonec-
taries from all the petals of a flower form a concentric circle, in
which the two from each petal mark the entrance of the nectary
chamber. When flowers without pseudonectaries were arrayed
beside the ones with pseudonectaries, clear differences were
observed in the visiting frequency, probing time and visiting
behavior of the pollinators. This suggests that pseudonectaries
can not only optically attract pollinators but also help them find
the hidden nectar, thereby guiding their visitation. The distrac-
tion scenario of pseudonectaries, however, cannot be supported
or rejected in this study.

It is interesting that plants bearing pseudonectaries usually also
produce real nectaries. If the functions of pseudonectaries are to
attract pollinators and help them find the hidden nectar, why do
plants hide their nectar? One explanation is that exposed nectar
that can be easily foraged by both preferred and nonpreferred
visitors and/or quickly dry off, thereby causing the waste of
energy. The plants, therefore, have evolved various strategies to
hide their nectar. Indeed, in most of the plants with floral pseu-
donectaries, nectar and real nectaries are very well hidden, either
in the spurs or pockets of petals or in the tube formed by cor-
olla22. However, in many of these cases, it would become difficult
even for the preferred visitors and real pollinators to find and
reach the nectar. The formation of pseudonectaries, hence, would
be one of the best strategies to attract preferred visitors without
losing the hidden nectar.

It is interesting that, by conducting extensive transcriptomic
and functional studies, we identified the genes and networks that
likely play key roles in the formation of the various aspects of
pseudonectaries. Genes involved in cell division and cell expan-
sion (e.g., CGA1, CYCP2;1, and YUCCA10), for example, seem to
be required for the outgrowth of pseudonectaries, while those
associated with chloroplast development (e.g., GLK1) and wax
formation (e.g., SHN1) are indispensable for the formation of
optical features43,46. Genes involved in nectary development, such
as orthologs of STY1/2 and LRP, however, are not required,
suggesting that pseudonectaries indeed have nothing to do with
nectaries. In addition, we found that the abaxial gene NidaYAB5
is a key regulator of pseudonectary formation; knockdown of it
not only led to complete losses of pseudonectaries but also
eliminated all cell types associated with pseudonectories. It is
possible that the gene was initially ectopically expressed on the
adaxial surface to promote outgrowth but then controls all aspects
of pseudonectary development by regulating its downstream
genes. Notably, consistent with the widely accepted theory of leaf-
like structure formation51, ectopic expression of NidaYAB5 can
explain the reason why pseudonectaries were formed in the
adaxial side of the lower lip of the petal.

It is worth mentioning that in Nigella, pseudonectaries are
actually a kind of new character originated during the evolution
of the genus and that pseudonectaries of different species show
very little variation in morphology, micromorphology, and
developmental process24. Therefore, if ectopic expression of
YAB5 can explain the reason why pseudonectaries of one species
are formed, it can explain the formation of pseudonectaries in
other species of Nigella. In reality, however, it is still difficult to
conclude that ectopic expression of NidaYAB5 is the sole cause
for the formation and origination of pseudonectaries in Nigella
because changes in the expression pattern of a gene can be caused
by many factors, such as alterations of the cis-regulatory elements
of the gene or mutations of its upstream transcription factors30,57.
In addition, previous studies have shown that regional cell divi-
sion and/or cell expansion, as well as reactivation of the mer-
istematic program, can also lead to the formation of a protrusion
on the surface of lateral organs58,59, suggestive of the complexity
of the problem. More in-depth studies, therefore, are required to
uncover the mechanisms underlying the formation, development,
and origination of pseudonectaries.

Methods
Plant materials and growth conditions. Seeds of N. damascena, purchased from
B & T World Seeds (Paguignan, France), were sown in soil (vermiculite:nutrient
soil= 2:1) and grown under conditions of 24 °C, 60% relative humidity, and a 12-
h-light/12-h-dark photoperiod.

Microscopy and histology. For stereomicroscope photographing, typical mature
petals of N. damascena were dissected and photographed with a Nikon Model C-
DSS230 stereomicroscope assembled with a Nikon digital camera DXM1200F
(Nikon Instech Co. Ltd, Kawasaki, Japan). For micro-CT scanning, typical mature
petals of N. damascena were mounted in a plastic box with wet absorbent paper
paved at the bottom to prevent dehydration and were subject to take the high-
resolution three-dimensional (3D) images (16-bit .tif format) by using a micro-CT
scanner (Bruker Sky Scan 1172; Bruker Corp., Billerica, MA, USA). Three-
dimensional reconstructions were then performed with NRECON v.1.6 to remove
the noise and convert the slices into an 8-bit .bmp format. Regions of interest were
further selected by using CTAN v.1.10 and saved as datasets. The datasets were
then loaded into CTVOX v.2.2 for the manipulation of 3D surface-rendered
models. The internal sections of interest within the petal model were explored with
the cutting/clipping shape editor and were captured as screenshots for showing. For
SEM, typical petals of N. damascena at different developmental stages were fixed in
fresh FAA (3.7% formaldehyde, 5% acetic acid, and 50% ethanol), followed by
dehydration in a graded water–ethanol series, and dried with a CO2 critical-point
dryer. After being sputter-coated with gold, the dried petals were examined with a
Hitachi S-4800 scanning electron microscope. For histological observation, paraffin
and semi-thin section series were performed. For the former, the pretreatment,
embedding, and sectioning of petals were carried out as described24 but sections
were stained with safranine and fast green. For the latter, petals were fixed in 2.5%
glutaraldehyde (pH 7.2) and embedded in Spurr resin. Serial sections were pre-
pared on an ultramicrotome Leica EM UC7 and stained with 0.33% toluidine blue.
The sections were photographed with a Leica DM5000B light microscope. The cell
layer of the pseudonectary and lobe areas in the median transverse semi-thin
sections was counted directly, and the width of three representative cells in each
area was measured using tpsUtil and tpsDIG260. Significance evaluation (P value)
between adjacent stages was evaluated using the Wilcoxon rank sum test.

Computational modeling. The pictures in Fig. 3s were generated by using GFtbox
(http://sourceforge.net/projects/gftbox) with two coordinated networks: the
Polarity Regulatory Network and Growth Rates Regulatory Network61,62. The
initial state was a mesh which consists of 36,000 finite elements with a grid showing
the deformation. The elastic growth rate across the whole tissue is isotropic
(Kpar =Kpar2= Kper), and is higher in the region where pesudonectaries will be
formed. Code is available upon request.

RNA sequencing analyses. The four parts of S9 petals, each with three biological
replicates, were subjected to total RNA extraction using the SV Total RNA Isola-
tion System (Promega). A total of 12 libraries were constructed independently for
single-end 100-bp-long reads sequencing on Illumina HiSeq2000. The clean reads
of 12 samples were separately mapped to the reference transcriptome of N.
damascena41 and the Reads Per Kilo bases per Million reads (RPKM) values were
calculated by RSEM63. The quality of all the 12 transcriptomes was reflected by
reads mapping rates (83.19–84.57%) and Pearson correlation coefficients between
triplicates (0.99–1.00). The genes showing RPKM ≥ 1 in at least one part are
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defined as expressed. Meantime, a gene is considered as specifically expressed if its
RPKM ≥ 1.0 in a specific part but <1.0 in other parts. A gene is regarded as
preferably expressed if its RPKM in a specific part is at least 1.5-fold higher than
those in any other parts. For GO analysis, the protein sequences of genes that are
preferably expressed in Part III were BLAST against the Arabidopsis thaliana non-
redundant protein database with an E value cut-off <1e−1064. The GO terms of
each gene were determined according to those of its best hit in A. thaliana. The GO
enrichment was carried out using the agriGO program with false discovery rate ≤
0.0565. Differential expression analyses between Part III and its neighboring areas
were performed using DESeq2 package in R44, Wald test, Benjamini and Hoch-
berg’s correction. The cut-off value of fold change and P value were 1.5 and 0.05,
respectively. The P values were adjusted using the Benjamini–Hochberg
procedure66.

Expression and functional studies. mRNA in situ hybridization was used to
investigate the expression patterns of NidaYAB5 following the procedure as
described24. VIGS was applied to study the function of NidaYAB5. The same gene
fragment used for the in situ hybridization was amplified and introduced into the
TRV2-based pYL156 vector, which was electroporated into Agrobacterium tume-
faciens strain GV3101. The detailed procedure of construct transformation and
plant treatment followed the previous study41. A total of three rounds of treatments
were conducted with TRV2-NidaYAB5 (Supplementary Table 3). Meanwhile,
parallel treatments with the empty TRV2 vector were also performed as a negative
control (mock). The morphology, micromorphology, and histology of flowers with
visible phenotypic changes were investigated as described above. The efficiency of
the silencing was checked by quantitative reverse-transcription PCR (qRT-PCR) as
described41. The primers used for vector construction and qRT-PCR were listed in
Supplementary Table 2.

Examination of optical properties. The same blooming flower under visible light,
UV light, and bee vision was photographed by a converted digital camera SONY
NEX-7 with BG39 filter, BG39+ ZWB3 filters, and BG39+ ZWB1 filters,
respectively.

Pollination studies. Pollination studies were carried out in an open area of the
Institute of Apicultural Research, Chinese Academy of Agricultural Sciences from
9:00 a.m. to 5:00 p.m. in four sunny and calm days of July, 2017. Visitors being able
to successfully transfer pollens from pollen sac to stigma were regarded as polli-
nators, while those that suck nectar but do not transfer pollens were regarded as
nectar robbers. The most effective pollinators are the pollinators that have the
highest frequency of visitation and longest time of probing. For the experiment,
flowers with and without pseudonectaries (i.e., 18 mock flowers and 18 TRV2-
NidaYAB5-treated flowers with strong phenotypic changes) were arrayed side by
side (Fig. 6k). For each kind of potential pollinators, both the visiting frequency
and probing time were recorded. After filtering inefficient data (i.e., visitation of
nectar robbers), significance evaluation of the two pollination parameters (P value)
were determined by using nonparametric Wilcoxon signed rank test.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA-seq data have been deposited in NCBI Short Read Archive with accession

number PRJNA611670. All other data supporting the findings of this study are available

within the paper and its Supplementary Information files. The source data underlying

Figs. 3q, r, 5l, m, and 6l, m and Supplementary Fig. 1j are provided as a Source Data file.

Code availability
Codes for computational modeling, differential expression analyses are available upon

request.
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