
The MorphoSys Parallel Reconfigurable System

Guangming Lu1, Hartej Singh1, Ming-hau Lee1, Nader Bagherzadeh1,
Fadi Kurdahi1, and Eliseu M.C. Filho2

1 Department of Electrical and Computer Engineering
University of California, Irvine

Irvine, CA 92715 USA
{glu, hsingh, mlee, nader, kurdahi}@ece.uci.edu
2 Department of Systems and Computer Engineering

Federal University of Rio de Janeiro/COPPE
P.O. Box 68511 21945-970 Rio de Janeiro, RJ Brazil

eliseu@lam.ufrj.br

Abstract. This paper introduces MorphoSys, a parallel system-on-chip
which combines a RISC processor with an array of coarse-grain reconfig-
urable cells. MorphoSys integrates the flexibility of general-purpose sys-
tems and high performance levels typical of application-specific systems.
Simulation results presented here show significant performance enhance-
ments for different classes of applications, as compared to conventional
architectures.

1 Introduction

General-purpose computing systems provide a single computational substrate
for applications with diverse characteristics. These systems are flexible but, due
to their generality, they may not match the computational needs of many appli-
cations. On the other hand, systems built around Application-Specific Integrated
Circuits (ASICs) exploit intrinsic characteristics of an algorithm that lead to a
high performance. However, the direct architecture–algorithm mapping restricts
the range of applicability of ASIC-based systems.

Reconfigurable computing systems represent a hybrid approach between the
design paradigms of general-purpose systems and application-specific systems.
They combine a software programmable processor and a reconfigurable hardware
component which can be customized for different applications. This combination
allows reconfigurable systems to achieve performance levels much higher than
that obtained with general-purpose systems, with a wider flexibility than that
offered by application-specific systems.

This paper introduces the MorphoSys parallel reconfigurable system. Mor-
phoSys (Morphoing System) is primarily targeted to applications with inherent
parallelism, high regularity, word-level granularity and computation-intensive
nature. Some examples of such applications are video compression, image pro-
cessing, multimedia and data security. However, MorphoSys is flexible enough
to support bit-level and irregular applications.

P. Amestoy et al. (Eds.): Euro-Par’99, LNCS 1685, pp. 727–734, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



728 Guangming Lu et al.

The remainder of this paper is organized as follows. Section 2 presents the
MorphoSys architecture and emphasizes its unique features. Section 3 discusses
the status of the MorphoSys prototype currently under development. Section
4 shows performance figures for important applications mapped to MorphoSys.
Finally, Section 5 presents the main conclusions.

2 The MorphoSys System

2.1 The Architecture

The basic architecture of a parallel reconfigurable system [1] comprises a soft-
ware programmable core processor and a reconfigurable hardware component.
The core processor executes sequential tasks of the application and controls data
transfers between the programmable hardware and data memory. In general, the
reconfigurable hardware is dedicated to exploitation of parallelism available in
the application. This hardware typically consists of a collection of interconnected
reconfigurable elements. Both the functionality of the elements and their inter-
connection are determined through a special configuration program.

Figure 1 shows the MorphoSys architecture. It comprises five components: the
core processor, the Reconfigurable Cell Array (RC Array), the Context Memory,
the Frame Buffer and a DMA Controller.

TinyRISC
Core Processor

Frame Buffer
(2 x 128 x 64)

RC Array
(8 x 8)

Context Memory
(2 x 8 x 16)

DMA Controller

Main
Memory

Fig. 1. Architecture of the MorphoSys reconfigurable system.

The core processor, also known as TinyRISC, is a MIPS-like processor with a
4-stage scalar pipeline. It has sixteen 32-bit registers and three functional units:
a 32-bit ALU, a 32-bit shift unit and a memory unit. An on-chip data cache
memory minimizes accesses to external main memory. In addition to typical
RISC instructions, TinyRISC’s ISA is augmented with specific instructions for
controlling other MorphoSys components. DMA instructions initiate data trans-
fers between main memory and the Frame Buffer, and configuration loading from



The MorphoSys Parallel Reconfigurable System 729

main memory into the Context Memory. RC Array instructions specify one of
the internally stored configuration programs and how it is broadcast to the RC
Array. The TinyRISC processor is not intended to be used as a stand-alone,
general-purpose processor. Although TinyRISC performs sequential tasks of the
application, performance is mainly determined from data-parallel processing in
the RC Array.

The RC Array consists of an 8×8 matrix of Reconfigurable Cells (RCs). An
important feature of the RC Array is its three-layer interconnection network.
The first layer connects the RCs in a two-dimensional mesh, allowing nearest
neighbor data interchange. The second layer provides complete row and column
connectivity within an array quadrant. It allows each RC to access data from
any other RC in its row/column in the same quadrant. The third layer supports
inter-quadrant connectivity. It consists of buses called express lanes, that run
along the entire length of rows and columns, crossing the quadrant borders. An
express lane carries data from any one of the four RCs in a quadrant’s row
(column) to the RCs in the same row (column) of the adjacent quadrant.

The Reconfigurable Cell (RC) is the basic programmable element in Mor-
phoSys. As Figure 2 shows, each RC comprises: an ALU-Multiplier, a shift unit,
input multiplexers, a register file with four 16-bit registers and the context reg-
ister.

R0

R1

R2

R3

MUX A MUX B

ALU-Multiplier

Shifter

output register

32

32

32 16

16

16 16
12context register

Register
File

w
r_

ex
p

reg

rs
_l

s

scnt mux_a mux_b alu_op imm

031

operand bus
16

to result bus, express lanes 
and other RCs

Fig. 2. Architecture of the Reconfigurable Cell (RC).

In addition to standard arithmetic and logical operations, the ALU-Multiplier
can perform a multiply-accumulate operation in a single cycle. The input mul-
tiplexers select one of several inputs for the ALU-Multiplier. Multiplexer MUX
A selects an input from: (1) one of the four nearest neighbors in the RC Array,
or (2) other RCs in the same row/column within the same RC Array quadrant,
or (3) the operand data bus, or (4) the internal register file. Multiplexer MUX



730 Guangming Lu et al.

B selects one input from: (1) three of the nearest neighbors, or (2) the operand
bus, or (3) the register file.

The context register provides control signals for the RC components through
the context word. The bits of the context word directly control the input mul-
tiplexers, the ALU/Multiplier and the shift unit. The context word determines
the destination of a result, which can be a register in the register file and/or the
express lane buses. The context word also has a field for an immediate operand
value.

The Context Memory stores the configuration program (the context) for the
RC Array. It is logically organized into two partitions, called Context Block 0
and Context Block 1. By its turn, each Context Block is logically subdivided into
eight partitions, called Context Set 0 to Context Set 7. Finally, each Context Set
has a depth of 16 context words. A context plane comprises the context words
at the same depth across the Context Block. As the Context Sets are 16 words
deep, this means that up to 16 context planes can be simultaneously resident in
each of the two Context Blocks. A context plane is selected for execution by the
TinyRISC core processor, using the RC Array instructions.

Context words are broadcast to the RC Array on a row/column basis. Con-
text words from Context Block 0 are broadcast along the rows, while context
words from Context Block 1 are broadcast along the columns. Within Context
Block 0 (1), Context Set n is associated with row (column) n, 0≤n≤7, of the RC
Array. Context words from a Context Set are sent to all RCs in the correspond-
ing row (column). All RCs in a row (column) receive the same context word and
therefore perform the same operation.

The Frame Buffer is an internal data memory logically organized into two
sets, called Set 0 and Set 1. Each set is further subdivided into two banks, Bank
A and Bank B. Each bank stores 64 rows of 8 bytes. Therefore, the entire Frame
Buffer has 128 × 16 bytes. A 128-bit operand bus carries data operands from the
Frame Buffer to the RC Array. This bus is connected to the RC Array columns,
allowing eight 16-bit operands to be loaded into the eight cells of an RC Array
column (i.e., one operand for each cell) in a single cycle. Therefore, the whole
RC Array can be loaded in eight cycles.

In the current MorphoSys prototype, the operand bus has a single config-
uration mode, called interleaved mode. In this mode the operand bus carries
data from the Frame Buffer banks in the order A0,B0,A1,B1,...,A7,B7, where
An and Bn denote the nth byte from Bank A and Bank B, respectively. Each
cell in an RC Array column receives two bytes of data, one from Bank A and
the other from Bank B. This operation mode is appropriate for image processing
applications involving template matching, that compare two 8-bit operands.

The next MorphoSys implementation will allow a second configuration mode,
called contiguous mode. In this mode, the operand bus carries data in the order
A0,...,A7,B0,...,B7, where An and Bn denote the nth byte from Bank A and Bank
B, respectively. Each cell in an RC Array column receives two consecutive bytes
of data from either Frame Buffer Bank A or B. This additional mode satisfies
application classes that require 16-bit data transfers.



The MorphoSys Parallel Reconfigurable System 731

Results from the RC Array are written back to the Frame Buffer through a
separate 128-bit bus, called the result bus. Application mapping experience has
indicated the need for flexibility in the result bus too. In the current MorphoSys
prototype, the result bus operates in an 8-bit mode. In this mode, each cell of
an RC Array column provides an 8-bit result, forming a 64-bit word which is
written into Frame Buffer Bank A or B. But, in some applications, it is necessary
to write back 16-bit data from each RC. To satisfy this requirement, the result
bus in the next MorphoSys implementation will have an additional 16-bit mode.
Here, 16-bit results from the first four cells of an RC Array column are written
into Frame Buffer Bank A, while the 16-bit results from the remaining four cells
are stored into Bank B.

The DMA controller performs data transfers between the Frame Buffer and
the main memory. It is also responsible for loading contexts into the Context
Memory. The TinyRISC core processor uses DMA instructions to specify the
necessary data/context transfer parameters for the DMA controller.

2.2 Execution Flow Model

The execution model of MorphoSys is based on partitioning applications into
sequential and data-parallel tasks. The former are handled by TinyRISC core
processor whereas the latter are mapped to the RC Array. TinyRISC initiates
all data and context transfers. RC Array execution is also enabled by TinyRISC,
through the special context broadcast instructions. These instructions select one
of the context planes and send the context words to the RC Array. While RC
Array performs computations on data in one Frame Buffer set, fresh data may
be loaded in the other set or Context Memory may receive new contexts.

2.3 Important Features of MorphoSys

MorphoSys is a coarse-grain, multiple-context reconfigurable system with con-
siderable depth of programmability (32 context planes) and two different context
broadcast modes. Bus configurability supports applications with different data
sizes and data flow patterns. The hierarchical RC Array interconnection net-
work contributes for algorithm mapping flexibility. Structures like the express
lanes enhance global connectivity. Even irregular communication patterns, that
otherwise require extensive interconnections, can be handled efficiently.

MorphoSys is a highly parallel system. First, MorphoSys is dynamically re-
configurable. While the RC Array is executing one of the sixteen contexts in row
broadcast mode, the other sixteen contexts for column broadcast can be reloaded
into the Context Memory (or vice-versa). Secondly, RC Array computations us-
ing data in one Frame Buffer set can proceed in parallel with data transfers
from/to the other Frame Buffer set. The internal Frame Buffer and DMA con-
troller, and the adoption of wide datapaths, allow high-bandwidth transfers for
both data and configuration information.



732 Guangming Lu et al.

3 Implementation of MorphoSys

MorphoSys is tightly-coupled reconfigurable system. The TinyRISC core pro-
cessor, the RC Array and the remaining components are to be integrated into
a single chip. The first implementation of MorphoSys is called the M1 chip. M1
is being designed for operation at 100 MHz clock frequency, using a 0.35 µm
CMOS technology. The TinyRISC core processor and the DMA controller were
synthesized from a VHDL model. The other components (RC Array, Context
Memory and Frame Buffer) were completely custom designed. The final design
will be obtained through the integration of both synthesized and custom parts.

There is a SUIF-based C compiler for the TinyRISC core processor and a
simple assembler-like parser for context generation. A GUI tool called mView
supports interactive programming and simulation. Using mView, the program-
mer can specify the functions and interconnections corresponding to each context
for the application. mView then automatically generates the appropriate con-
text file. As a simulation tool, mView reads a context file and displays the RC
outputs and interconnection patterns at each cycle of the application execution.

4 Algorithm Mapping and Performance Analysis

4.1 Image Processing Application: DCT/IDCT

The Discrete Cosine Transform (DCT) and Inverse Discrete Cosine Transform
(IDCT) are examples typifying the image processing area. Both transforms are
part of the JPEG and MPEG standards.

A two-dimensional DCT (2-D DCT) can be performed on an 8 × 8 pixel
matrix (the size in most image and video compressing standards) by applying
one-dimensional DCT (1-D DCT) [2] to the rows of the pixel matrix, followed
by 1-D DCT on the results along the columns. For high throughput, the eight
row (column) 1-D DCTs can be computed in parallel.

When mapping 2-DCT to MorphoSys, the operand and result buses are con-
figured for interleaved and 8-bit modes, respectively. For an 8 × 8 pixel matrix,
each pixel is mapped to a RC. To perform eight 1-D DCTs along the rows
(columns) of the pixel matrix, context is broadcast along the columns (rows) of
the RC Array. As MorphoSys has the ability to broadcast context along both
rows and columns of the RC Array, the need of transposing the pixel matrix is
eliminated, thus saving a considerable amount of cycles.

The operand data bus allows the entire pixel matrix to be loaded in eight
cycles. Once data is in the RC Array, two butterfly operations are performed
to compute intermediate variables. Inter-quadrant connectivity provided by the
express lanes enables one butterfly operation in three cycles. As the butterfly
operations are also performed in parallel, only six cycles are necessary to ac-
complish the butterfly operations for the whole matrix. Row/column 1-D DCTs
take 12 cycles. Two additional cycles are used for data re-arrangement. Finally,
eight cycles are needed for result write back.



The MorphoSys Parallel Reconfigurable System 733

Table I. Performance comparison for DCT/IDCT application.

System Performance
MorphoSys 36 cycles
sDCT 240 cycles
REMARC 54 cycles
V830 201 cycles
TMS 320 cycles

Table I shows performance figures for 2-D DCT on MorphoSys and other
systems. Performance is given in number of cycles, in order to isolate influ-
ences from the different integration technologies employed to implement the
systems. sDCT is a software implementation written in optimized Pentium as-
sembly code using 64-bit special MMX instructions [3]. REMARC [4] is another
reconfigurable system, targeting multimedia applications. V830R/AV [5] is a su-
perscalar multimedia processor. TMS320C80 [6] is a commercial digital signal
processor. Execution of DCT/IDCT on MorphoSys results in a speedup of 6X
as compared to a Pentium MMX-based system. MorphoSys yields a throughput
much better than that of the considered hardware designs.

4.2 Data Encryption/Decryption Application: IDEA

Today, data security is a key application domain. The International Data En-
cryption Algorithm (IDEA) [7] is a typical example of this application class.
IDEA involves processing of plaintext data (i.e., data to be encrypted) in 64-bit
blocks with a 128-bit encryption/decryption key. The algorithm performs eight
iterations of a core function. After the eighth iteration, a final transformation
step produces a 64-bit ciphertext (i.e., encrypted data) block. IDEA employs
three operations: bitwise exclusive-or, addition modulo 216 and multiplication
modulo 216 + 1. Encryption/decryption keys are generated externally and then
loaded once into the Frame Buffer.

When mapping IDEA to MorphoSys, the operand bus and the result bus
are configured for the contiguous and 16-bit modes, respectively. Some opera-
tions of IDEA’s core function can be performed in parallel, while others must
be performed sequentially due to data dependencies. The maximum number of
operations that can be performed in parallel is four. In order to exploit this
parallelism, clusters of four cells in the RC Array columns are allocated to op-
erate on each plaintext block. Thus, the whole RC Array can operate on sixteen
plaintext blocks in parallel.

As two 64-bit plaintext blocks can be transferred simultaneously through the
operand bus, it takes only eight clock cycles to load 16 plaintext blocks into the
entire RC Array. Each of the eight iterations of the core function takes seven
clock cycles to execute in a cell cluster. The final transformation step needs one
additional cycle. Once the ciphertext blocks have been produced, eight cycles
are necessary to write them back to the Frame Buffer before loading the next
plaintext blocks. Therefore, it takes 73 cycles to produce 16 cyphertext blocks.



734 Guangming Lu et al.

Table II compares the performance of MorphoSys for the IDEA algorithm.
sIDEA is a software implementation on a Pentium II processor. Performance
shown was measured by using the Intel VTune profiling tool. HiPCrypto [8]
is a 7-stage pipelined ASIC chip that implements IDEA in hardware. A single
HiPCrypto produces 7 cyphertext blocks every 56 cycles. Two HiPCrypto chips
in a cascade produce 7 cyphertext blocks every 28 cycles. IDEA running on
MorphoSys is much faster than running on an advanced superscalar processor.
It is also faster that an IDEA ASIC processor in a single-chip configuration.

Table II. Performance comparison for IDEA application.

System Performance
MorphoSys 16 blocks/73 cycles
sIDEA 1 block/357 cycles
HiPCrypto, single-chip 7 blocks/56 cycles
HiPCrypto, two-chips 7 blocks/28 cycles

5 Concluding Remarks

In this paper, we described the MorphoSys parallel reconfigurable system. We
also presented results showing significant performance gains of MorphoSys for
important applications in the imaging processing and data security domains.
Overall, this paper demonstrates that the combination of general-purpose proces-
sors with reconfigurable hardware blocks represents a potential design paradigm
to address the performance needs of future applications and for the micropro-
cessors of the next decade.

References

[1] W. H. Mangione-Smith et al., Seeking Solutions in Configurable Computing, IEEE
Computer, Dec. 1997, pp. 38–43.

[2] W-H Chen, C. H. Smith, S. C. Fralick, A Fast Computational Algorithm for the
Discrete Cosine Transform, IEEE Trans. on Communications, Vol. 25, No. 9, Sept.
1997, pp. 1004–1009.

[3] App. Notes for Pentium MMX, http://developer.intel.com/drg/mmx/appnotes.
[4] T. Miyamori, K. Olukotun, A Quantitative Analysis of Reconfigurable Coprocessors

for Multimedia Applications, Proc. of the IEEE Symposium on Field Programmable
Custom Computing Machines, 1998.

[5] T. Arai et al., V830R/AV: Embedded Multimedia Superscalar RISC Processor,
IEEE Micro, Mar./Apr. 1998, pp. 36–47.

[6] F. Bonimini et al., Implementing an MPEG2 Video Decoder Based on TMS320C80
MVP, SPRA 332, Texas Instruments, Sept. 1996.

[7] B. Schneier, Applied Cryptography, John Wiley, New York, NY, 1996.
[8] S. Salomao, V. Alves, E. C. Filho, HiPCrypto: A High Performance VLSI Crypto-

graphic Chip, Proc. of the 1998 IEEE ASIC Conference, pp. 7–13.


	Introduction
	The MorphoSys System
	The Architecture
	Execution Flow Model
	Important Features of MorphoSys

	Implementation of MorphoSys
	Algorithm Mapping and Performance Analysis
	Image Processing Application: DCT/IDCT
	Data Encryption/Decryption Application: IDEA

	Concluding Remarks

