
CONTRIBUTED RESEARCH ARTICLE 77

The mosaic Package: Helping Students to

‘Think with Data’ Using R
by Randall Pruim, Daniel T Kaplan, Nicholas J Horton

Abstract The mosaic package provides a simplified and systematic introduction to the core functional-
ity related to descriptive statistics, visualization, modeling, and simulation-based inference required
in first and second courses in statistics. This introduction to the package describes some of the guiding
principles behind the design of the package and provides illustrative examples of several of the most
important functions it implements. These can be combined to help students “think with data" using R
in their early course work, starting with simple, yet powerful, declarative commands.

Motivation

In order to make sense of rich data that is increasingly available, students need computational tools
and facility for data management, exploratory analysis, visualization, and modeling (e.g., Nolan
and Lang (2010); Horton et al. (2015); Horton and Hardin (2015); Ridgway (2016)). To extract useful
information from the complex systems that generate this rich data, students should learn to “think
with data” (in the phrase coined by Diane Lambert of Google): using previous results from data to
drive statistical investigations and to inform the choice of analysis and presentation possibilities.

Yet many students enter statistics courses with little or no computational experience. Software
such as R that encompass the tools for thinking with data are sometimes regarded as off-putting and
inaccessible to students. With the mosaic package, we have sought to remove unnecessary difficulty
in the use of R by students. Our students have demonstrated that it is feasible to integrate computing
into our curricula early and often, in a way that provides students with success, confidence, and room
to grow.

A guiding principle: Less volume, more creativity

The mosaic (Pruim et al., 2016b) package reflects attempts by each of the authors to make the power of
R accessible and rewarding to students, especially in the context of undergraduate statistics courses,
and, in one case, also in calculus. One of the guiding principles behind the development of the mosaic
package has been “Less volume, more creativity.” By “less volume,” we mean reducing the cognitive
load involved in using R. By “more creativity” we mean two things. First, we want to provide access to
R tools in a way that fosters choices and decision making by students. Such decisions might be about
modes of analysis or visualization or about the variables and covariates to consider when exploring
relationships with data. Second, we want to encourage students to creatively engage with statistical
inference methods via simulation techniques such as randomization and resampling with data analysis
and presentation.

Our route to “less volume” is to provide a set of three command templates — formulas, functions,
and extractors — that standardize usage across many tasks and that highlight the connections between
graphical summaries, numerical summaries, models, and inference. The templates themselves are
designed to be consistent and concise. Consistency enables a student to generalize from a specific task
to a wide set of possibilities. Conciseness means avoiding unnecessary elements so that the essential
inputs to a computation are made clear and organized according a syntax that makes the role of each
input understandable and predictable.

The importance of multivariate thinking

The importance of giving students experience with multivariable thinking is a point of emphasis in the
newly revised ASA Guidelines for assessment and instruction in statistics education (GAISE) report
(ASA GAISE College working group et al., 2016):

When students leave an introductory course, they will likely encounter situations within
their own fields of study in which multiple variables relate to one another in intricate
ways. We should prepare our students for challenging questions that require investigating
and exploring relationships among more than two variables. (page 16)

Perhaps the best place to start is to consider how a third variable can change our un-
derstanding of the relationship between two variables. . . . Simple approaches (such as

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=mosaic

CONTRIBUTED RESEARCH ARTICLE 78

stratification) can help to discern the true associations. Stratification requires no advanced
methods, nor even any inference, though some instructors may incorporate other related
concepts and approaches such as multiple regression. These examples can help to intro-
duce students to techniques for assessing relationships between more than two variables.
Including one or more multivariable examples early in an introductory statistics course
may help to prepare students to deal with more than one or two variables at a time. . .
(page 34)

The mosaic package helps support these goals by providing a unified framework within which
multivariable graphical and numerical summaries are easy to create, even for beginners.

The formula template

Our most important template makes use of a “formula interface” that has long been used by familiar R
functions like t.test(), lm(), and the plotting functions in lattice (Sarkar, 2008). Our initial example
uses the Births78 data set, which records the number of live births in the United States for each day
of 1978.

library(mosaic)

head(Births78, 3)

date births dayofyear wday

1 1978-01-01 7701 1 Sun

2 1978-01-02 7527 2 Mon

3 1978-01-03 8825 3 Tues

We will use this example to illustrate the difference between using a consistent interface across
graphical and numerical summaries and the limitations of basic R functions that do not use formulas.

We typically introduce the formula template in the context of exploring the relationship between
two variables, e.g.

goal(y ~ x, data = MyData, ...) # pseudo-code for the formula template

We teach students to read y ~ x as “y wiggle x” and to interpret this in any of several essentially
equivalent forms: “y broken down by x”; “y modeled by x”; “y explained by x”; “y depends on x”; or
“y accounted for by x.” For graphics, it’s reasonable to read the formula as “y vs. x”, which is exactly
the convention used for coordinate axes. But “y vs. x” does not as clearly convey the asymmetry of
the other forms.

This template is not original to mosaic. Those familiar with R will recognize this as the template
already used by functions such as lm() and the lattice plotting functions. The mosaic package extends
this template to numerical summaries and provides some additional features for plotting and fitting
models, thereby bringing all of these activities into a consistent, unified appraoch.

Our first plot of the Births78 data might be a scatterplot showing how the number of births
depends on the date. Using our template and the lattice function xyplot(), we can create this with
the following simple command by filling in the slots in our formula template.

library(lattice)

xyplot(births ~ date, data = Births78)

date

b
ir

th
s

7000

8000

9000

10000

Jan Apr Jul Oct Jan

The scatterplot reveals some interesting patterns over the course of the year. Getting students to
make conjectures about possible explanations can help diagnose how well students understand the
information displayed in the scatterplot. (Students who suggest that there are two parallel waves

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=mosaic

CONTRIBUTED RESEARCH ARTICLE 79

because more children are born at certain times of the year reveal that they are misunderstanding this
plot, for example.)

One reasonable conjecture for the two parallel waves is a weekend effect. We would like our
students to be able to explore this conjecture graphically, numerically, and (eventually) with statistical
models. We might begin by creating side-by-side boxplots. The lattice package makes this as easy as
the scatterplot above. We simply replace xyplot() with bwplot() because we have a different goal. If
we prefer, we can also reverse the order of the variables in the formula to flip which axis is used for
which purpose.

bwplot(births ~ wday, data = Births78)

bwplot(wday ~ births, data = Births78, pch = "|") # a more common way to show median

b
ir

th
s

7000

8000

9000

10000

Sun Mon Tues Wed Thurs Fri Sat births

Sun

Mon

Tues

Wed

Thurs

Fri

Sat

7000 8000 9000 10000

To quantify the differences observed in these plots, we might like to compute the mean (or median)
number of births for each weekday. Basic statistical calculations can be admirably concise in R. For
instance, the mean number of daily births (over all days) can be calculated with

mean(Births78$births) # or use with() instead of $

[1] 9132

Unfortunately, this is a dead end when it comes to thinking with data. How, for instance, does
one explore whether there is a day-of-the-week component to the number of births? Here are a few
conventional approaches in R to such a calculation.

aggregate(Births78$births, FUN = mean, by = list(Births78$wday))

or, equivalently,

with(Births78, aggregate(births, FUN = mean, by = list(wday)))

Group.1 x

1 Sun 7951

2 Mon 9371

3 Tues 9709

4 Wed 9498

5 Thurs 9484

6 Fri 9626

7 Sat 8309

or, alternatively,

with(Births78, tapply(births, wday, mean))

Sun Mon Tues Wed Thurs Fri Sat

7951 9371 9709 9498 9484 9626 8309

None of these show any similarity to mean(Births78$births) or to the commands that created the
plots that generated our conjecture. All of them bury mean() in the center or at the end of the
command and require additional structure like aggregate(), tapply(), lists, and nested parentheses.
Even reading the commands is difficult.

The essential elements in each of these calculations are mean(), Births78, births and wday: We
want to see how the mean number of births depends on the day of the week using data from 1978.
The mosaic formula template for this calculation mirrors the template used to create plots in lattice
and highlights these essential elements:

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 80

library(mosaic)

mean(births ~ wday, data = Births78)

Sun Mon Tues Wed Thurs Fri Sat

7951 9371 9709 9498 9484 9626 8309

This form makes clear that the mean() is being calculated and that Births78 holds the data. The
relationship between the variables is specified by the formula. Most importantly, it is the same
template that was used to create the plots that preceded it – we simply replace bwplot() or xyplot()
with mean().

Using the mosaic package, this same template extends to many other numerical summaries, e.g.,

median(births ~ wday, data = Births78)

Sun Mon Tues Wed Thurs Fri Sat

7936 9321 9668 9362 9397 9544 8260

sd(births ~ wday, data = Births78)

Sun Mon Tues Wed Thurs Fri Sat

410 608 527 461 551 488 390

favstats(births ~ wday, data = Births78)

wday min Q1 median Q3 max mean sd n missing

1 Sun 7135 7691 7936 8196 8711 7951 410 53 0

2 Mon 7527 9097 9321 9838 10414 9371 608 52 0

3 Tues 8433 9304 9668 10084 10711 9709 527 52 0

4 Wed 8606 9196 9362 9880 10703 9498 461 52 0

5 Thurs 7915 9171 9397 9958 10499 9484 551 52 0

6 Fri 8892 9198 9544 10088 10438 9626 488 52 0

7 Sat 7527 8007 8260 8586 9170 8309 390 52 0

The mosaic package provides formula interfaces for mean(), median(), sd(), var(), cor(), cov(),
quantile(), max(), min(), range(), IQR(), iqr(), fivenum(), prod(), and sum(). In each case we have
been careful not to break behavior of the underlying functions from base and stats.

Model-building functions such as lm() and glm() also employ the same template:

births.model <- lm(births ~ wday, data = Births78)

so early experience with graphical and numerical summaries prepares students for statistical modeling
later in the course.

When working with categorical data, tabulation is an important technique. The table() function
does not accept formulas and xtabs() uses formulas in a different way. The mosaic package provides
a formula-template tally() function for counting categorical variables. We illustrate its use with
another data set from mosaicData (Pruim et al.). Whickham contains data from a UK study that enrolled
subjects in 1972–74 and conducted a follow-up 20 years later.

tally(outcome ~ smoker, data = Whickham)

smoker

outcome No Yes

Alive 502 443

Dead 230 139

tally(outcome ~ smoker, data = Whickham, margins = TRUE)

smoker

outcome No Yes

Alive 502 443

Dead 230 139

Total 732 582

tally(outcome ~ smoker, data = Whickham, margins = TRUE, format = "proportion")

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=mosaicData

CONTRIBUTED RESEARCH ARTICLE 81

smoker

outcome No Yes

Alive 0.686 0.761

Dead 0.314 0.239

Total 1.000 1.000

Notice that in the final example, conditional proportions are calculated. The conditional probabilities
were computed in a way that respects the asymmetric meaning of the formula outcome ~ smoker:
using smoker to account for outcome. The probabilities indicate that smokers were more likely to be
alive in the follow-up study. More on this in a moment.

The formula template can be extended to handle one variable or more than two variables, but
for several reasons we recommend introducing it in the context of two-variable plots and numerical
summaries. We offer this recommendation because (1) two-variable plots and numerical summaries
are more “impressive” than one-variable plots and less likely to be something students can as readily
do with tools they already know, (2) working with more than one variable from the start (correctly)
suggests that the most interesting parts of statistics involve more than one variable (Wild et al., 2011),
and (3) the formula syntax for a single variable makes more sense in the context of two-sided formulas
than it does in isolation.

Formulas with a single variable correspond to situations where there is no “explanatory” variable
to be included, for example in simple numerical summaries or depictions of the distribution of a
variable.

mean(~ age, data = Whickham)

[1] 46.9

histogram(~ age, data = Whickham)

age

D
e
n
s
it
y

0.000

0.005

0.010

0.015

0.020

20 40 60 80

To some instructors, it seems more natural when there is no explanatory variable for the single variable
to be on the left-hand side of ~. But the R parser does not support this: a formula must have a
right-hand side. Even if R allowed such formulas, the use of y ~ would break the analogy to graphical
summaries where a single variable is traditionally displayed on the x-axis, as in the histogram above.

The numerical summary functions provided by mosaic also allow formulas like age ~ NULL to
signify there is no explanatory variable.

mean(age ~ NULL, data = Whickham)

[1] 46.9

We don’t emphasize this form, however, since it is not supported by the lattice functions.

“Thinking with data” implies the ability to examine relationships among multiple variables. The
formula template accomodates more than one variable on the right-hand side of the tilde, for instance:

mean(age ~ smoker + outcome, data = Whickham)

No.Alive Yes.Alive No.Dead Yes.Dead

40.0 40.1 67.6 59.2

The lattice package provides a number of ways to include additional variables in plots. Inclusion
of | in a formula, for example, specifies a variable to be used for defining subpanels (or facets).

histogram(~ age | smoker, data = Whickham)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 82

age

D
e
n
s
it
y

0.000

0.005

0.010

0.015

0.020

0.025

20 40 60 80

No

20 40 60 80

Yes

Another option is to overlay multiple layers in a plot; lattice does this via a groups argument.

xyplot(births ~ date, groups = wday, data = Births78, type = "l")

densityplot(~ births, groups = wday, data = Births78, auto.key = list(columns = 3))

date

b
ir

th
s

7000

8000

9000

10000

Jan Apr Jul Oct Jan

births

D
e
n
s
it
y

0.0000

0.0002

0.0004

0.0006

0.0008

7000 8000 9000 10000 11000

Sun
Mon
Tues

Wed
Thurs
Fri

Sat

Each of these two plots shows a clear difference in the distribution of births on the two weekend days
compared to the other five days of the week.

For ease in moving between plots and numerical summaries, mosaic functions such as mean() and
tally() also accept this expanded syntax.

mean(~ age | smoker, data = Whickham)

No Yes

48.7 44.7

mean(~ births, groups = wday, data = Births78)

Sun Mon Tues Wed Thurs Fri Sat

7951 9371 9709 9498 9484 9626 8309

Notice that the mean age for smokers in the Whickham study is substantially lower than for the
non-smokers, so an accurate comparison of survival rates must take age into account.

The formula template allows students to think about relationships between and among two or
more variables and to test conjectures using graphical and numerical summaries. Having learned
the formula interface to graphical and numerical summaries early on, new users are well prepared
for modeling with lm(), glm(), and various “test” functions such as t.test() when the time comes.
More importantly, they begin early to train their minds to ask questions of the form “How does this
depend on that (and some other things)?”.

By emphasizing the formula template, each of the following commands can be viewed as instances
of a common template, rather than as separate things to learn.

bwplot(age ~ smoker, data = Whickham) # standard function in lattice

mean(age ~ smoker, data = Whickham) # formula interface added in mosaic

sd(age ~ smoker, data = Whickham) # formula interface added in mosaic

lm(age ~ smoker, data = Whickham) # standard function in stats

Similarly, by adding additional formula interfaces to t.test(), binom.test(), and prop.test(), and
adding some additional plot types, for one-variable situations we have

mean(~ age, data = Whickham) # formula interface added in mosaic

sd(~ age, data = Whickham) # formula interface added in mosaic

favstats(~ age, data = Whickham) # new function in mosaic

histogram(~ age, data = Whickham) # standard function in lattice

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 83

t.test(~ age, data = Whickham) # formula interface added in mosaic

binom.test(~ smoker, data = Whickham) # formula interface added in mosaic

prop.test(~ smoker, data = Whickham) # formula interface added in mosaic

Adding covariates to one- or two- variable graphical or numerical summaries fits readily into the
template as well.

mean(~ age | smoker, data = Whickham) # formula interface added in mosaic

sd(~ age | smoker, data = Whickham) # formula interface added in mosaic

histogram(~ age | smoker, data = Whickham) # standard lattice

t.test(~ age | smoker, data = Whickham) # expanded formula interface in mosaic

While specifying the correct formula can produce some challenges for new users, clearly explaining
the roles of each component for plotting, for numerical summaries, and for model fitting helps
demystify the situation. Instructors have had students create and interpret bivariate and trivariate
graphical displays on the first day of class (Wang et al., 2017). We have also found that explicit,
early, low-stakes assessment of student mastery of the formula interface greatly improves student
performance. A first quiz consisting of a single item (What is the formula template?) followed by one
or two simple pencil-and-paper quizzes asking students to write the commands to recreate a handful
of numerical and graphical summaries suffices.

The model-function template

Modeling functions like lm() and glm() can fit a wide range of statistical models. But functions like
predict() are challenging for new users (primarily because of the user must create a data frame in
order to evaluate the model function on user-specified inputs), and constructing a useful graphical
representation of a data set together with a logistic regression fit even more so. The mosaic functions
makeFun(), plotFun(), and plotModel() make these tasks easier.

In particular, makeFun() extracts from a model object created by lm() or glm() a function that is a
wrapper around predict() and can be used with standard function syntax that is familiar to students
from the way functions are typically described in secondary school and in calculus. This wrapper
around predict() is easier for beginners to use because (1) it returns a function to which inputs can
be supplied without creating a data frame, (2) the resulting function returns values on the response
scale by default, and (3) it back transforms a few common transformations of the response variable,
including log() and sqrt() (and allows the user to provide a custom value to the transformation

argument to handle other cases).

The functions extracted from models using makeFun() (and functions created in other ways) can
be plotted with plotFun(). In the example below, we illustrate the use of makeFun() and plotFun() to
compare linear and quadratic fits to the same data.

cars.mod1 <- lm(dist ~ speed, data = cars)

cars.mod2 <- lm(dist ~ poly(speed,2), data = cars)

extract functions for each model that compute distance from speed

cars.dist1 <- makeFun(cars.mod1)

cars.dist2 <- makeFun(cars.mod2)

evaluate these functions as user-specified values of speed

cars.dist2(speed = 15)

1

38.7

cars.dist2(speed = 15, interval = "confidence")

fit lwr upr

1 38.7 33 44.3

add plots of these functions to a scatter plot

xyplot(dist ~ speed, data = cars, alpha = 0.4)

plotFun(cars.dist1(speed) ~ speed, add = TRUE, col = 2, lwd = 2)

plotFun(cars.dist2(speed) ~ speed, add = TRUE, col = 3, lwd = 2)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 84

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

For logistic regression, when the response is coded as a factor, we need to adjust things slightly
when plotting because the model function returns values between 0 and 1, but 2-level factors are
coded as 1 and 2 in R.

smoker.mod <- glm(outcome ~ smoker + age, data = Whickham, family = binomial)

smoker.fun <- makeFun(smoker.mod)

smoker.fun(age = 60, smoker = "Yes")

1

0.507

smoker.fun(age = 60, smoker = "No")

1

0.456

xyplot(outcome ~ age, groups = smoker, data = Whickham, jitter.y = TRUE, alpha = 0.1)

plotFun(1 + smoker.fun(age, smoker = "No") ~ age, col = 1, add = TRUE)

plotFun(1 + smoker.fun(age, smoker = "Yes") ~ age, col = 2, add = TRUE)

age

o
u
tc

o
m

e

Alive

Dead

20 40 60 80

When the response variable in the model is transformed, the transformation argument to
makeFun() can be used to specify the back-transformation. For a few common transformations
(e.g., log() and sqrt()), the value of transformation is determined automatically (by default).

mtcars.mod <- lm(log(mpg) ~ log(wt) + factor(cyl), data = mtcars)

mileage <- makeFun(mtcars.mod)

xyplot(mpg ~ wt, data = mtcars, groups = cyl)

plotFun(mileage(wt, cyl = 4) ~ wt, add = TRUE, col = 1)

plotFun(mileage(wt, cyl = 6) ~ wt, add = TRUE, col = 2)

plotFun(mileage(wt, cyl = 8) ~ wt, add = TRUE, col = 3)

wt

m
p
g

10

15

20

25

30

35

2 3 4 5

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 85

For models with two quantitative predictors, plotFun() can create a contour plot. The following
model explores how the average SAT score depends on the amount of money spent on education (in
thousands of dollars per student) by a US State and the precent of students in that state who take the
SAT exam.

SAT.mod <- lm(sat ~ expend * frac, data = SAT)

msummary(SAT.mod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1057.121 42.040 25.15 < 2e-16 ***

expend 0.629 7.846 0.08 0.936

frac -4.232 0.818 -5.18 4.9e-06 ***

expend:frac 0.237 0.135 1.75 0.087 .

##

Residual standard error: 31.8 on 46 degrees of freedom

Multiple R-squared: 0.831, Adjusted R-squared: 0.82

F-statistic: 75.2 on 3 and 46 DF, p-value: <2e-16

sat.pred <- makeFun(SAT.mod)

plotFun(sat.pred(expend, frac) ~ expend + frac,

expend.lim=c(3.6,9.7), frac.lim=c(0,83))

expend

fr
a
c

20

40

60

80

4 5 6 7 8 9

800

850

900

950

1000

1050

The msummary() function provides a terser summary of the model object than summary(). The
plot shows that this model predicts performance on the exam to increase with increased expenditure
and decreased participation in the exam. (In states with lower participation rates there is a selection
bias toward stronger students who are seeking admission into out-of-state colleges and universities.)
Furthermore, the effect of increased spending appears to be greater when a larger percent of the
students take the exam. Interestingly, a simpler linear model that includes only expenditure as a
predictor has a negative slope.

For many simple models, creating a plot can be even simpler using plotModel(), which also
eliminates the need to manually adjust logistic regression plots when the response is a factor. For
models with multiple predictors, we can supply a formula to indicate which predictor we prefer to
have on the x-axis.

plotModel(cars.mod2)

plotModel(smoker.mod, outcome ~ age, jitter.y = TRUE)

speed

d
is

t

0

20

40

60

80

100

120

5 10 15 20 25

age

o
u
tc

o
m

e

Alive

Dead

20 40 60 80

No Yes

The plotModel() function can also simplify visualization of more complex models.

mtcars.mod2 <- lm(mpg ~ log(wt) + factor(cyl) + factor(am), data = mtcars)

plotModel(mtcars.mod2, mpg ~ wt | factor(am))

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 86

wt

m
p
g

10

15

20

25

30

35

2 3 4 5

0

2 3 4 5

1

4 6 8

The extractor template

The use of makeFun() to create a function from a model illustrates another important template, the
extractor template:

object <- { some computation }

extractor(object) # extract some information from object

R has many such extractors which summarize, display, or extract partial information from an
object. The print(), plot(), and summary() functions are examples of extractors that can be applied
to many types of objects. Other extractors, like coef(), resid(), and fitted() are designed to work
with a much smaller set of objects. The mosaic package defines several extractors including those
listed in Table 1.

confint(t.test(~ age, data = Whickham)) # works for any "htest" object

mean of x lower upper level

1 46.9 46 47.9 0.95

pval(t.test(age ~ smoker, data = Whickham)) # works for any "htest" object

p.value

2.06e-05

stat(t.test(age ~ smoker, data = Whickham)) # works for any "htest" object

t

4.27

rsquared(lm(age ~ smoker, data = Whickham))

[1] 0.0131

The mplot() function

Like plot(), mplot() has many uses depending on the kind of input it receives. The two primary uses
cases are creating diagnostic plots for lm and glm objects, and interactively creating data visualizations
using the variables in a data frame.

Given a model object as its first argument, mplot() provides similar diagnostic plots to those
produced via plot() but with two primary differences: the user may select to use either lattice or
ggplot2 (Wickham, 2009) graphics instead of base graphics, and an additional plot type is provided to
visualize the confidence intervals for the coefficients of a regression model.

Extractor Purpose
makeFun() Extract a fitted function from a model.
rsquared() Extract r2 from a linear model.
stat() Extract the test statistic from a hypothesis test.
pval() Extract the p-value from a hypothesis test.
confint() Extract the confidence interval from a hypothesis test.
mplot() Create a plot from an object.

Table 1: Extractors defined in the mosaic package.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 87

mod <- lm(length ~ width * sex, data = KidsFeet)

mplot(mod, system = "lattice", which = 1:7)

Residuals vs Fitted

Fitted Value

R
e
s
id

u
a
l

−1

0

1

2

23 24 25 26

Normal Q−Q

Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

−1

0

1

2

−2 −1 0 1 2

Scale−Location

Fitted Value

S
ta

n
d
a
rd

iz
e

d
 r

e
s
id

u
a
ls

0.5

1.0

23 24 25 26

Cook's Distance

Observation number

C
o
o
k
's

 d
is

ta
n
c
e

0.00

0.05

0.10

0 10 20 30 40

Residuals vs Leverage

Leverage

S
ta

n
d
a
rd

iz
e
d
 R

e
s
id

u
a
ls

−1

0

1

2

0.05 0.10 0.15 0.20

Cook's dist vs Leverage

Leverage

C
o
o
k
's

 d
is

ta
n
c
e

0.00

0.05

0.10

0.05 0.10 0.15 0.20

95% confidence intervals

estimate

c
o
e
ff
ic

ie
n
t

width:sexG

sexG

width

(Intercept)

−10 0 10 20

We can also use mplot() to visually represent the results of TukeyHSD(), which has been modified
so that it can be applied directly to objects produced by lm().

mplot(TukeyHSD(lm(births ~ wday, data = Births78)), order = "pval")

95% family−wise confidence level

difference in means

Thurs−Wed
Fri−

Tues

Thurs−Mon
Wed−Mon

Fri−
Wed

Fri−
Thurs

Wed−Tues

Thurs−Tues
Fri−

Mon
Tues−Mon

Sat−Sun
Wed−Sun
Tues−Sun

Thurs−Sun
Sat−Wed
Sat−Tues

Sat−Thurs
Sat−MonSat−Fri
Mon−Sun

Fri−
Sun

−1000 0 1000 2000

wday

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 88

The resulting plots are formatted in a way that makes them usable in a wider range of scenarios than
are those produced using plot().

A second use for mplot() is to create lattice and ggplot2 plots interactively within RStudio. Issuing
the following command in RStudio will bring up a plot that can be modified by making choices in the
accompanying menu.

mplot(KidsFeet)

The menu allows the user to choose either lattice or ggplot2 graphics, to select the type of plot and the
variables used, and to control a few of the most commonly used features that modify a plot (faceting,
color, legends, log-scaling, fitting a linear model or LOESS smoother). The “Show Expression” button
exports the command used to create the plot into the console. From there it can be edited or copied
and pasted into an R Markdown document. This can be very useful for new users working to master
the syntax for a particular graphical system.

Randomization and resampling

Resampling approaches have become increasingly important in statistical education (Tintle et al.,
2015; Hesterberg, 2015). The mosaic package provides simplified functionality to support teaching
inference based on randomization tests and bootstrap methods. Our goal was to focus attention on the
important parts of these techniques (e.g., where randomness enters in and how to use the resulting
distribution) while hiding some of the technical details involved in creating loops and accumulating
values.

A first example

As a first example, we often introduce (a version of) the story of the lady tasting tea. (See Salsburg
(2002) for the details of this famous story.) But here we will test a coin to see whether it is a “fair coin”.
Suppose we flip the coin 20 times and observe only 6 heads, how suspicious should we be that the
coin is not fair? The statistical punchline for either the lady tasting tea or testing a coin is that we want
to compute the p-value for a binomial test via simulations rather than using formulas for the binomial
distribution or normal approximations. But we want to do this on the first day of class, and without
using any of the jargon of the preceding sentence.

Because students do not know about sampling distributions or random variables yet, but do
understand the idea of a coin toss, we have provided rflip() to simulate tossing a coin one or several
times:

rflip()

##

Flipping 1 coin [Prob(Heads) = 0.5] ...

##

H

##

Number of Heads: 1 [Proportion Heads: 1]

rflip(20)

##

Flipping 20 coins [Prob(Heads) = 0.5] ...

##

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLE 89

H T T T H T H H H H H T T H H T T H H T

##

Number of Heads: 11 [Proportion Heads: 0.55]

To test a null hypothesis of a fair coin, we need to simulate flipping 20 coins many times, recording
for each simulation the number of heads that were observed. The do() function allows us to do just
that using the following template

do(n) * {stuff to do} # pseudo-code

where {stuff to do} is typically a single R command, but may be something more complicated. We
teach this syntax by reading it aloud: “Do n times . . . ” For example, we can flip 20 coins three times as
follows.

do(3) * rflip(20) # do 3 times flip 20 coins

n heads tails prop

1 20 10 10 0.50

2 20 8 12 0.40

3 20 15 5 0.75

Notice that do() (technically cull_for_do()) has been clever about what information is stored for
each group of 20 coin tosses and that the results are returned in a data frame.

It is now a simple matter to do this many more times and use numerical or graphical summaries
to investigate how unusual it is to get so few heads if the coin is indeed a fair coin.

Sims <- do (1000) * rflip(20)

histogram(~ heads, data = Sims, width = 1, groups = heads <= 6)

tally (~ (heads <= 6), data = Sims)

(heads <= 6)

TRUE FALSE

54 946

heads

D
e
n
s
it
y

0.00

0.05

0.10

0.15

5 10 15

Readers familiar with lattice will notice that the mosaic package adds some additional arguments
to the histogram() function. Among these are width and center which can be used to control the
width and position of the bins and are much easier for new users to master than the breaks argument
supplied by lattice.

The sample(), resample(), and shuffle() functions

To facilitate randomization and bootstrapping, mosaic extends sample() to operate on data frames.
The shuffle() function is an alternative name for sample(), and resample() is sample() with replace

= TRUE. With these in hand, all of the tests and confidence intervals seen in a traditional first course in
statistics can be performed using a common outline:

1. Do it to your data
2. Do it to a randomized version of your data
3. Do it to lots of randomized versions of your data.

For example, we can use randomization in place of the two-sample t test to obtain an empirical
p-value.

D <- diffmean(age ~ smoker, data = Whickham); D

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 90

diffmean

-4.02

do(1) * diffmean(age ~ shuffle(smoker), data = Whickham)

diffmean

1 -1.69

Null.dist <- do(5000) * diffmean(age ~ shuffle(smoker), data = Whickham)

histogram(~ diffmean, data = Null.dist, v = D, xlim = c(-5,5))

prop(~ (diffmean < D), data = Null.dist)

TRUE

0

diffmean

D
e
n
s
it
y

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

None of the 5000 replications led to a difference in means as large as the one in the original data.

It should be noted that although this is typically not done in simulation-based introductory statis-
tics texts, one might prefer to calculate p-values by including the observed data in the randomization
distribution. This avoids an empirical p-value of 0 and guarantees that the actual type I error rate
will not exceed the nominal type I error rate. This amounts to adding one to the numerator and
denominator. The prop1() function automates this for us.

prop1(~ (diffmean < D), data = Null.dist)

TRUE

2e-04

1/5001

[1] 2e-04

For more precise estimation of small p-values, additional replications should be used.

The example above introduces three additional mosaic functions. The prop() and prop1() func-
tions compute the proportion of logical vector that is (by default) TRUE or of a factor that is (by default)
in the first level; diffmean() is similar to diff(mean()), but labels the result differently (diffprop()
works similarly for differences in proportions).

If we are interested in a confidence interval for the difference in group means, we can use
resample() and do() to generate a bootstrap distribution in one of two ways.

Boot1 <- do(1000) * diffmean(age ~ smoker, data = resample(Whickham))

Boot2 <- do(1000) * diffmean(age ~ smoker, data = resample(Whickham, groups = smoker))

In the second example, the resampling happens within the smoker groups so that the marginal counts
for each group remain fixed. This can be especially important if one of the groups is small, because
otherwise some resamples might not include any observations of that group.

favstats(age ~ smoker, data = Whickham)

smoker min Q1 median Q3 max mean sd n missing

1 No 18 32 48 65 84 48.7 18.8 732 0

2 Yes 18 32 45 57 84 44.7 15.3 582 0

favstats(age ~ smoker, data = resample(Whickham))

smoker min Q1 median Q3 max mean sd n missing

1 No 18 32 48 65 84 48.6 18.8 752 0

2 Yes 18 32 45 56 83 44.8 15.0 562 0

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 91

favstats(age ~ smoker, data = resample(Whickham, groups = smoker)) # fix margins

smoker min Q1 median Q3 max mean sd n missing

1 No 18 33 49.0 66 84 49.3 18.9 732 0

2 Yes 18 31 44.5 56 82 44.3 15.4 582 0

Using either bootstrap distribution, two simple confidence intervals can be computed. We typically
introduce percentile confidence intervals first (but note that these can have poor performance for small
sample sizes). A percentile confidence interval is calculated by determining the range of a central
portion of the bootstrap distribution, which can be automated using cdata(). Visually inspecting the
bootstrap distribution for skew and bias is an important step to make sure the percentile interval is
not being applied in a situation where it may perform poorly.

histogram(~ diffmean, data = Boot2, v = D)

qqmath(~ diffmean, data = Boot2)

diffmean

D
e
n
s
it
y

0.0

0.1

0.2

0.3

0.4

−7 −6 −5 −4 −3 −2

qnorm

d
if
fm

e
a
n

−6

−5

−4

−3

−2

−2 0 2

cdata(~ diffmean, p = 0.95, data = Boot2)

low hi central.p

-5.93 -2.30 0.95

Alternatively, we can compute a confidence interval based on a bootstrap estimate of the standard
error.

SE <- sd(~ diffmean, data = Boot2); SE

[1] 0.941

D + c(-1,1) * 2 * SE

[1] -5.90 -2.14

The primary pedagogical value of the bootstrap standard error approach is its close connection to
the standard formula-based confidence interval methods. How to replace the constant 2 with an
appropriate value to create more accurate intervals or to allow for different confidence levels is a matter
of some subtlety (Hesterberg, 2015). The simplest method is to use quantiles of a normal distribution,
but the resulting intervals will typically undercover. Replacing the normal distribution with an
appropriate t-distribution will widen intervals and can improve coverage, but the t-distribution is only
correct in a few cases – such as when estimating the mean of a normal population – and can perform
badly when the population is skewed.

Calculating simple confidence intervals can be further automated using an extension to confint().

confint(Boot2, method = c("percentile", "stderr"))

name lower upper level method estimate margin.of.error df

1 diffmean -5.93 -2.3 0.95 percentile -4.02 NA NA

2 diffmean -5.89 -2.2 0.95 stderr -4.02 1.85 1313

Additional examples

One of the package vignettes (Pruim et al., 2016a) contains a list of mosaic-related resources. Included
in the list are links to companion volumes for several textbooks, including two simulation-based texts
(Lock et al., 2013; Tintle et al., 2016) and several traditional textbooks (De Veaux et al., 2015; Moore
et al., 2014; De Veaux et al., 2014; Ramsey and Schafer, 2013). Each of these companion volumes
demonstrates how to use R and the mosaic package to recreate the analyses for the examples in the
text.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 92

Vignettes

The mosaic package includes several vignettes that provide additional material on using the package
and on the “less volume, more creativity” approach.

A particularly useful vignette is a one-page list of commands that are more than sufficient for a
first course, originally presented as part of a roundtable discussion at the Joint Statistics Meetings.
(Pruim, 2011)

RMarkdown

“Thinking with data” goes hand-in-hand with communicating those thoughts. The R Markdown
system provides valuable facilities for reliable and reproducible reporting of computational ideas and
results. See Baumer et al. (2014) for a discussion of how R Markdown can be used in statistics courses.

The mosaic package contains three templates for creating R Markdown documents in RStudio.
Each ensures that the mosaic package is attached, sets the default theme for lattice graphics to
theme.mosaic(), chooses a somewhat smaller default size for graphics, and includes a comment
reminding users to attach any packages they intend to use. The “fancy” template demonstrates several
features of R Markdown, and the “plain” templates allow users to start with a clean slate.

Workarounds for unfortunate name collisions

The mosaic package depends on lattice and ggplot2 so that plots can be made using either system
whenever the mosaic package is attached. It also depends on dplyr (Wickham and Francois, 2015), but
for a different reason. The functions in dplyr implement a “less volume, more creativity” approach
to data transformation and we encourage its use alongside mosaic. Unfortunately, there are several
function names – most notably do() and tally() – that exist in both packages. After the release of
dplyr we modified the functions in mosaic so that the two packages can coexist amicably as long as
mosaic comes before dplyr in the search path.

Discussion

Advantages of the mosaic approach

One of the keys to successfully empowering students to think with data is providing them both a
conceptual framework that allows them to know what to look for and how to interpret what they find,
and a computational toolbox that allows them to do the looking. The approach made possible with
the mosaic package simplifies the transition from thinking to computing by reducing the number of
computational templates students learn so that cognitive effort can be spent elsewhere, and by having
those templates reflect, support, and deepen the underlying thinking (Grolemund and Wickham,
2014).

Because of the connection between conceptual understanding and these computational tools, the
use of R can also help reveal misunderstandings that might otherwise go unnoticed. For example, if a
student attempts to use t.test() or to create a histogram using a categorical variable, the student will
receive error or warning messages that are an indication that either the student does not understand
the current data set or still has confusion regarding what it means for a variable to be categorical or
continuous and which operations are suited for each kind of variable. We encourage students to make
sure they can answer two important questions before attempting to issue a command in R:

1. What do I want the computer to do for me?

2. What does it need to know in order to do that?

If these two questions can be answered clearly and correctly, then the student’s primary issue is
one of creating the correct R code. If they cannot, then the problem lies elsewhere. In our experience,
students who can consistently answer these two questions have relatively little trouble translating the
answers into R code using the commands we teach.

R has the capability to support the increasing complexity of the data and analyses students
encounter in subsequent courses and research projects. Eventually, students will need to learn more
about the structure of R as a language, the types of objects it supports, and alternative ways of
approaching the same task. But early on, it is more important that students can successfully and
independently exercise computational and statistical creativity.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr

CONTRIBUTED RESEARCH ARTICLE 93

Challenges of using R in introductory courses

Using R is not without some challenges. The first challenge is to get all of the students up and running.
The use of an RStudio server allows an institution or instructor to install and configure R and its
packages and students to work within a web browser, essentially eliminating the start-up costs for the
students. Otherwise, instructors must assist students as they navigate installation of R and whichever
additional packages are required.

Once students have access to R, the mosaic package reduces, but does not eliminate, the amount of
syntax students need to learn. It is important to emphasize the similarity among commands within a
template, to remind students that R is case sensitive, to show them how to take advantage of shortcuts
like tab completion and code history navigation, and to explicitly teach students how to interpret
some of the most common R error messages. This goes a long way toward smoothing the transition to
a command line interface that is not as forgiving as Google search (which may be many students’ only
other experience with computerized response to things they type).

In our experience, the most commonly occurring struggles for students using mosaic are

1. General anxiety over typing commands.

Although students are very familiar with using computers and computerized devices like smart
phones, many of them have little experience typing commands that require following syntax
rules. The “less volume, more creativity" approach helps with this, by reducing the cognitive
burden. But it remains important to highlight repeatedly the similarities among commands.
Students should also be taught how to interpret the most common error messages R produces
so that they can quickly, easily, and comfortably recover from inevitable typing errors. Even if a
class does not typically meet in a computer laboratory or take advantage of student laptops, it
can be useful to arrange some sessions early in the course where students are using RStudio
while someone is there to quickly help them when they get stuck. Avoiding frustration in
students’ early experience with R goes a long way in overcoming anxiety.

As a bonus instructional method, the authors make frequent typing mistakes in front of the class.
While we could not avoid this if we tried, it does serve to demonstrate both how to recover from
errors and that nothing drastic has happened when an error message is displayed.

One big advantage of the command line interface is that it is much easier to help students by
email or in a discussion forum. Encourage students to copy both their commands and the error
messages or output that were produced. Even better, have them share their work in the form of
an R Markdown file. We find students are much more capable of doing this than they are of
correctly describing the chain of events they initiated in a menu-driven system. (It is also much
easier to give detailed instructions and examples.)

2. Confusion over the tilde (~).

The tilde is a small symbol, easily overlooked on the screen or on paper (or mistaken for -),
so students will sometimes omit it, or put it where it doesn’t belong. As a visual aid, we
recommend surrounding the ~ with a space on either side, even in 1-sided formulas.

A similar thing occurs with explicitly naming the data argument, which is not required for the
lattice functions, but is for several other functions. Teaching the forms that work in all contexts
is easier than teaching which contexts allow which forms.

3. Difficulty in setting up the R environment

This is all but eliminated when using an RStudio server, but in situations where instructors
prefer a local R installation for each student, there are often a few issues involved in getting all
students up and running. Installation of R and RStudio is straightforward, but one should make
sure that students all have the latest version of each. To use the mosaic package, a number of
additional packages must be installed. We recommend beginning with

update.packages()

or the equivalent operation from the RStudio “Packages” tab to make sure all packages currently on
the system are up to date. In most cases,

install.packages("mosaic")

(again, this can also be done via the “Packages” tab in RStudio) will take care of the rest. But
occasionally some package will not install correctly on a particular student’s computer. Installing that
package directly rather than as part of the dependencies of mosaic often solves this problem or at least
provides a useful diagnostic regarding what the problem might be.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 94

Impact

In 2016, the available CRAN logs indicate that mosaic was downloaded to approximately 96,000
unique IP addresses. Strong peaks over January and September suggest that much of this demand
comes from university courses.

Efficiency Issues

For applications where speed is of utmost importance, the mosaic wrappers may not be the optimal
approach. For the numerical summary functions, the mosaic versions cannot be faster than their
counterparts in base or stats (because eventually they call the underlying functions) and may be
noticeably slower in contexts where they are called many times. In particular, using the formula
interface requires parsing the formula and creating a new object to contain the data described by
the formula. On the other hand, for aggregated numerical summaries, the loss in performance may
represent a small price to pay for the simplified syntax.

Similarly, using do() comes at a price, although here the increased computation time has more to
do with the extra work involved in culling the objects and reformatting the results. The looping itself
is as fast as using replicate() – indeed the underlying code is very similar – and can be faster when
the parallel package is attached; even on a laptop with a single quad-core processor, the speed-up is
noticeable.

Lattice vs. ggplot2

Early on, we chose to adopt lattice graphics because of its compatibility with the formula template.
This provides a simple, consistent means of creating the plots our students need. One weakness of
the lattice system is the difficulty of creating complex plots by overlaying mutliple simpler layers.
Beginners are not in a position to create the panel (and pre-panel) functions that lattice requires for
this. Recently, we have begun work on a new package (ggformula, currently avilable via github) that
provides a formula interface for creating ggplot2 plots. This package could replace lattice for users
who desire some of the features of ggplot2 but want to keep a consistent formula interface. Initial
use with our students suggests that this works at least as well as lattice and much better if plots with
multiple layers and data sources are required.

Be selective

Over the years we have been developing the mosaic package, it has grown to the point that it now
contains much more than a minimally sufficient set of commands for an introductory course. While we
have attempted to give some sense of the scope of the package in this article, we advise instructors to
use things selectively, keeping in mind their students and the goals for the course. What may represent
just the right tool in one setting may be too much in another. Of course, the same advice holds for
using functions from other packages as well. The instructor’s temptation is often to do too much,
forgetting the cognitive burden this can place on students. Less volume and more creativity will at
times pull in opposite directions, and a skilled instructor must determine the appropriate balance for
each setting.

Acknowledgments

Partial support for this work was provided by the National Science Foundation DUE 0920350 (Project
MOSAIC). We thank Johanna Hardin, Colin Rundel, Xiaofei (Susan) Wang, and the reviewers for
helpful comments and all of the users of the mosaic package who have provided feedback on their
experience and offered suggestions for improvement.

Appendix: Additional features of the mosaic package

Table 2 lists some additional functions in the mosaic package not highlighted above.

Handling missing data

When there are missing values, the numerical summary functions in base and stats return results that
may surprise new users.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=parallel

CONTRIBUTED RESEARCH ARTICLE 95

Function Uses

CIsim() Demonstrate coverage rates of confidence intervals.
statTally() Investigate test statistics and their empirical distributions.
panel.lmbands() Add confidence and prediction bands to scatter plots.
ladd() Simplified layering in lattice plots.
xchisq.test() An extension to chisq.test() that prints a table including observed and expected

counts, contribution to the chi-squared statistic and residuals.
zscore() Convert a numeric vector into z-scores by subtracting the mean and dividing by

the standard deviation.
col.mosaic() A lattice theme with colors that work better in project images than the lattice

defaults.
dot(), project(), vlength() Functions from linear algebra.
ediff() Like diff(), but the returned vector is padded with NAs so that the length is the

same as the input vector.
SAD(), MAD() all pairs sum and mean of absolute differences
rgeo() randomly sample latitude, longitude pairs uniformly over the globe
googleMap() show google maps in a browser. Together with rgeo(), this can be used to view

maps of randomly selected points on the globe. See Stoudt et al. (2014) for an
example of how this can be used for a classroom activity.

Table 2: Some additional functions in the mosaic package.

mean(~ dayslink, data = HELPmiss)

[1] NA

While there are workarounds using options to functions to drop values that are missing before
performing the computation, these may be intimidating to new users.

mean(~ dayslink, data = HELPmiss, na.rm = TRUE)

[1] 257

We offer two other solutions to this situation. Our favorite is the favstats() function which
computes a set of useful numerical summaries on the non-missing values and also reports the number
of missing values.

favstats(~ dayslink, data = HELPmiss)

min Q1 median Q3 max mean sd n missing

2 75 363 365 456 257 151 447 23

The second solution is to change the default behavior of na.rm using options(). This will, of
course, only affect the mosaic versions of these functions.

options(na.rm = TRUE)

mean(~ dayslink, data = HELPmiss)

[1] 257

with(HELPmiss, base::mean(dayslink))

[1] NA

Users also have the option of changing the default for na.rm back if they like.

options(na.rm = NULL)

mean(~ dayslink, data = HELPmiss)

[1] NA

Inspecting a data frame

Summaries of all variables in a data frame can be obtained using inspect(). For quantitative variables,
the results of favstats() are displayed. Other summaries are provided for categorical and time
variables.

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 96

inspect(Births78)

##

categorical variables:

name class levels n missing distribution

1 wday ordered 7 365 0 Sun (14.5%), Mon (14.2%), Tues (14.2%) ...

##

quantitative variables:

name class min Q1 median Q3 max mean sd n missing

1 births integer 7135 8554 9218 9705 10711 9132 818 365 0

2 dayofyear integer 1 92 183 274 365 183 106 365 0

##

time variables:

name class first last min_diff max_diff n missing

1 date POSIXct 1978-01-01 1978-12-31 1 1 365 0

Additional high-level lattice plots

The mosaic package provides several new high-level lattice plots, including bargraph(), dotPlot(),
freqpolygon(), ashplot(), xqqmath(), and plotPoints().

bargraph(~ smoker, data = Whickham, main = "bargraph()")

dotPlot(~ age, data = Whickham, width = 1, main = "dotPlot()")

bargraph()

smoker

c
o
u
n
t

0

200

400

600

No
Yes

dotPlot()

age

C
o
u
n
t

0

10

20

30

20 40 60 80

freqpolygon(~ age, data = Whickham, width = 5, main = "freqpolygon()")

ashplot(~ age, data = Whickham, width = 5, main = "ashplot()")

freqpolygon()

age

D
e
n
s
it
y

0.005

0.010

0.015

0.020

20 40 60 80

ashplot()

age

D
e
n
s
it
y

0.000

0.005

0.010

0.015

0.020

20 40 60 80

xqqmath(~ age, data = Whickham, main = "xqqmath()")

plotPoints(length ~ width, data = KidsFeet, main = "plotPoints()")

xqqmath()

qnorm

a
g
e

20

40

60

80

−2 0 2

plotPoints()

width

le
n
g
th

22

23

24

25

26

27

8.0 8.5 9.0 9.5

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 97

The bargraph() function eliminates the need to first summarize the data before constructing a
plot with barplot() and makes creating these plots from raw data simpler. The dot plots produced
by dotPlot() are quite different from the Cleveland-style dot plots produced by dotplot(). The
former are essentially histograms made of stacked dots and can be seen in many introductory statistics
texts. They are also useful for producing plots from which students can quickly estimate p-values by
counting dots in the tail of a randomization distribution. Frequency polygons and ASH plots (average
shifted histograms) are less common, but share many features in common with density plots and are
easier to explain to students. The main motivation for plotPoints() is the ability to use it to create
additional layers on an existing plot with the option add = TRUE, otherwise xyplot() would suffice.

Visualizing distributions of random variables

A number of functions make it simple to visualize random variables. The plotDist() function creates
displays for any distribution for which standard d-, p-, and q- functions exist.

plotDist("norm", mean = 100, sd = 10)

plotDist("binom", size = 100, prob = 0.3)

0.01

0.02

0.03

0.04

0.05

0.06

80 90 100 110 120

0.02

0.04

0.06

0.08

0.10

0.12

20 25 30 35 40

Tail probabilities can be highlighted using the groups argument in a way that is analogous to the lattice
plots above.

plotDist("chisq", df = 4, groups = x > 9, type = "h")

0.05

0.10

0.15

0.20

0.25

5 10 15

Using the kind argument, we can obtain other kinds of plots, including cdfs and probability histograms.

plotDist("norm", mean = 100, sd = 10, kind = "cdf")

plotDist("binom", size = 100, prob = 0.3, kind = "histogram")

0.5

1.0

80 90 100 110 120

D
e
n
s
it
y

0.02

0.04

0.06

0.08

0.10

0.12

20 25 30 35 40

Any of these plots can be overlaid onto another plot using add = TRUE

favstats(~ age, data = Whickham)

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 98

min Q1 median Q3 max mean sd n missing

18 32 46 61 84 46.9 17.4 1314 0

histogram(~ age, data = Whickham, main = 'histogram() with added plotDist()')

plotDist("norm", params = list(mean = 46.9, sd = 17.4), add = TRUE)

histogram() with added plotDist()

age

D
e
n
s
it
y

0.000

0.005

0.010

0.015

0.020

20 40 60 80

or by using additional features of the histogram() function provided in the mosaic package:

histogram(~ age, data = Whickham, fit = "normal",

main = 'histogram() with fit = "normal"')

histogram() with fit = "normal"

age

D
e
n
s
it
y

0.000

0.005

0.010

0.015

0.020

20 40 60 80

Several other families of distributions can be added to a histogram in a similar way. The fitdistr()

function from the MASS (Venables and Ripley, 2002) is used to estimate the parameters of the
distribution.

For several distributions, we provide augmented versions of the distribution and quantile functions
that assist students in understanding what values are returned by functions like pnorm() and qnorm().

xpnorm(-2:2, main = "standard normal")

##

If X ~ N(0, 1), then

##

P(X <= -2) = P(Z <= -2) = 0.02275

P(X <= -1) = P(Z <= -1) = 0.15866

P(X <= 0) = P(Z <= 0) = 0.50000

P(X <= 1) = P(Z <= 1) = 0.84134

P(X <= 2) = P(Z <= 2) = 0.97725

P(X > -2) = P(Z > -2) = 0.97725

P(X > -1) = P(Z > -1) = 0.84134

P(X > 0) = P(Z > 0) = 0.50000

P(X > 1) = P(Z > 1) = 0.15866

P(X > 2) = P(Z > 2) = 0.02275

[1] 0.0228 0.1587 0.5000 0.8413 0.9772

xqt(0.975, df = 20, main = "t-distribution with df = 20")

95%

0.000 0.597

[1] 2.09

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://CRAN.R-project.org/package=MASS

CONTRIBUTED RESEARCH ARTICLE 99

standard normal

d
e
n
s
it
y

0.1

0.2

0.3

0.4

0.5

−2 0 2

0.
02

3

0.
13

6

0.
34

1

0.
34

1

0.
13

6

0.
02

3

t−distribution with df = 20

d
e
n
s
it
y

0.1

0.2

0.3

0.4

0.5

−2 0 2

0.
97

5

0.
02

5

Basic choropleth maps

The mUSMap() and mWorldMap() functions provide simple ways to construct choropleth maps of states
in the US or countries in the world, and makeMap() allows users to provide their own map data.

USArrests <- USArrests %>% mutate(state = row.names(USArrests))

mUSMap(USArrests, key = "state", fill = "UrbanPop")

40

50

60

70

80

90
UrbanPop

The do() function vs. the replicate() function

The usual alternative to do() is replicate(). For simple situations, replicate() can also be easy to
use. Each of these stores its results in a vector rather than in a data frame but is otherwise very similar
to the corresponding results using do(), although the first stores less information.

replicate(3, rflip(20))

[1] 9 13 11

replicate(3, diffmean(age ~ smoker, data = resample(Whickham)))

diffmean diffmean diffmean

-2.04 -4.56 -5.33

Where do() really shines is for simulations based on models. The results returned by do() are
stored in a data frame and include the components of the model most likely to be of interest.

do(3) * lm(shuffle(height) ~ sex + mother, data = Galton)

Intercept sexM mother sigma r.squared F numdf dendf .row .index

1 64.1 0.0356 0.04086 3.59 0.000708 0.3168 2 895 1 1

2 66.4 0.0869 0.00543 3.59 0.000156 0.0699 2 895 1 2

3 62.2 0.0175 0.07175 3.58 0.002132 0.9562 2 895 1 3

Resampling from a linear model performs residual resampling:

Galton.mod <- lm(height ~ sex + mother, data = Galton)

do(3) * lm(height ~ sex + mother, data = resample(Galton.mod))

Intercept sexM mother sigma r.squared F numdf dendf .row .index

1 41.2 5.01 0.358 2.44 0.534 513 2 895 1 1

2 41.1 5.26 0.357 2.40 0.563 577 2 895 1 2

3 41.7 5.07 0.351 2.37 0.553 554 2 895 1 3

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLE 100

In contrast, replicate() returns an object that is inscrutable and unusable for most beginners.

replicate(3, lm(shuffle(height) ~ sex + mother, data = Galton))

[,1] [,2] [,3]

coefficients Numeric,3 Numeric,3 Numeric,3

residuals Numeric,898 Numeric,898 Numeric,898

effects Numeric,898 Numeric,898 Numeric,898

rank 3 3 3

fitted.values Numeric,898 Numeric,898 Numeric,898

assign Integer,3 Integer,3 Integer,3

qr List,5 List,5 List,5

df.residual 895 895 895

contrasts List,1 List,1 List,1

xlevels List,1 List,1 List,1

call Expression Expression Expression

terms Expression Expression Expression

model List,3 List,3 List,3

With some additional work, this can be improved somewhat, although less information is being
recorded and the matrix should probably be transposed (and perhaps converted to a data frame).

replicate(3, coef(lm(shuffle(height) ~ sex + mother, data = Galton)))

[,1] [,2] [,3]

(Intercept) 67.774 70.4448 70.2286

sexM -0.226 0.0372 -0.0206

mother -0.014 -0.0578 -0.0539

Bibliography

ASA GAISE College working group, R. Carver, M. Everson, J. Gabrosek, G. H. Rowell, N. J. Horton,
R. Lock, M. Mocko, A. Rossman, P. Velleman, J. Witmer, and B. Wood. Guidelines for assessment and
instruction in statistics education: College report, 2016. URL http://www.amstat.org/education/

gaise. [p77]

B. Baumer, M. Cetinkaya-Rundel, A. Bray, L. Loi, and N. J. Horton. R markdown: Integrating a
reproducible analysis tool into introductory statistics. Technology Innovations in Statistics Education, 8
(1), 2014. URL http://escholarship.org/uc/item/90b2f5xh. [p92]

R. D. De Veaux, P. F. Velleman, and D. E. Bock. Intro Stats. Always learning. Pearson Education,
Limited, 2014. ISBN 9780321891358. URL https://books.google.com/books?id=3mhRnwEACAAJ.
[p91]

R. D. De Veaux, P. F. Velleman, and D. E. Bock. Stats: Data and Models. Pearson Education, 2015. ISBN
9780134175621. URL https://books.google.com/books?id=0degBwAAQBAJ. [p91]

G. Grolemund and H. Wickham. A cognitive interpretation of data analysis. International Statistical
Review, 82(2):184–204, 2014. URL http://EconPapers.repec.org/RePEc:bla:istatr:v:82:y:2014:

i:2:p:184-204. [p92]

T. C. Hesterberg. What teachers should know about the bootstrap: Resampling in the undergraduate
statistics curriculum. The American Statistician, 69(4):371–386, 2015. URL http://www.ncbi.nlm.nih.

gov/pmc/articles/PMC4784504. [p88, 91]

N. J. Horton and J. S. Hardin. Teaching the next generation of statistics students to “think with data”:
Special issue on statistics and the undergraduate curriculum. The American Statistician, 69(4):259–265,
2015. URL http://amstat.tandfonline.com/doi/full/10.1080/00031305.2015.1094283. [p77]

N. J. Horton, B. S. Baumer, and H. Wickham. Setting the stage for data science: Integration of data
management skills in introductory and second courses in statistics. CHANCE, 28(2):40–50, 2015.
URL http://chance.amstat.org/2015/04/setting-the-stage. [p77]

R. H. Lock, P. F. Lock, K. L. Morgan, E. F. Lock, and D. F. Lock. Statistics: Unlocking the Power of Data.
John Wiley & Sons, 2013. [p91]

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

http://www.amstat.org/education/gaise
http://www.amstat.org/education/gaise
http://escholarship.org/uc/item/90b2f5xh
https://books.google.com/books?id=3mhRnwEACAAJ
https://books.google.com/books?id=0degBwAAQBAJ
http://EconPapers.repec.org/RePEc:bla:istatr:v:82:y:2014:i:2:p:184-204
http://EconPapers.repec.org/RePEc:bla:istatr:v:82:y:2014:i:2:p:184-204
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784504
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4784504
http://amstat.tandfonline.com/doi/full/10.1080/00031305.2015.1094283
http://chance.amstat.org/2015/04/setting-the-stage

CONTRIBUTED RESEARCH ARTICLE 101

D. S. Moore, G. P. McCabe, and B. A. Craig. Introduction to the Practice of Statistics. W. H. Freeman, 2014.
ISBN 9781464133633. URL https://books.google.com/books?id=pX1_AwAAQBAJ. [p91]

D. Nolan and D. T. Lang. Computing in the statistics curricula. The American Statistician, 64(2):97–107,
2010. URL http://dx.doi.org/10.1198/tast.2010.09132. [p77]

R. Pruim. Teaching statistics with R. In Joint Statistics Meetings Roundtable, 2011. [p92]

R. Pruim, D. T. Kaplan, and N. J. Horton. mosaicData: Project MOSAIC (Mosaic-Web.org) Data Sets. URL
https://github.com/ProjectMOSAIC/mosaicData. R package version 0.14.0. [p80]

R. Pruim, N. J. Horton, and D. T. Kaplan. Resources related to the mosaic package. Technical report,
Project MOSAIC, 2016a. URL https://cran.r-project.org/web/packages/mosaic/vignettes/

mosaic-resources.html. [p91]

R. Pruim, D. T. Kaplan, and N. J. Horton. Mosaic: Project MOSAIC Statistics and Mathematics Teaching
Utilities, 2016b. URL https://github.com/ProjectMOSAIC/mosaic. R package version 0.14.0. [p77]

F. Ramsey and D. Schafer. Statistical Sleuth: A Course in Methods of Data Analysis. Brooks-Cole, 2013.
[p91]

J. Ridgway. Implications of the data revolution for statistics education. International Statistical Review,
84(3):327–557, 2016. [p77]

D. Salsburg. The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. Holt
Paperbacks, 2002. ISBN 0805071342. [p88]

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York, 2008. URL
http://lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p78]

S. Stoudt, Y. Cao, D. Udwin, and N. J. Horton. What percent of the continental US is within one mile
of a road? Statistics Education Web, 2014. URL http://www.amstat.org/education/STEW/pdfs/

PercentWithinMileofRoad.pdf. [p95]

N. Tintle, B. Chance, G. W. Cobb, S. Roy, T. Swanson, and J. VanderStoep. Combating Anti-
Statistical Thinking Using Simulation-Based Methods throughout the Undergraduate Curriculum.
The American Statistician, 69(4):362–370, 2015. doi: 10.1080/00031305.2015.1081619. URL http:

//www.math.hope.edu/isi/presentations/white_paper_sim_inf_thru_curriculum.pdf. [p88]

N. Tintle, B. L. Chance, G. W. Cobb, A. J. Rossman, S. Roy, T. Swanson, and J. VanderStoep. Introduction
to Statistical Investigations. John Wiley & Sons, 2016. [p91]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer-Verlag, New York, 4th
edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0. [p98]

X. Wang, C. Rush, and N. J. Horton. Data visualization on day one: Bringing big ideas into intro
stats early and often. Technology Innovations in Statistics Education, in press, 2017. URL https:

//arxiv.org/abs/1705.08544. [p83]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2009. ISBN 978-0-387-98140-6.
URL http://had.co.nz/ggplot2/book. [p86]

H. Wickham and R. Francois. Dplyr: A Grammar of Data Manipulation, 2015. URL https://github.

com/hadley/dplyr. R package version 0.5.0.9000. [p92]

C. J. Wild, M. Pfannkuch, M. Regan, and N. J. Horton. Towards more accessible conceptions of
statistical inference. Journal of the Royal Statistical Society A, 174 (part 2):247–295, 2011. [p81]

Randall Pruim
Calvin College
Department of Mathematics and Statistics
3201 Burton St SE
Grand Rapids, MI 49546
rpruim@calvin.edu

Daniel T Kaplan
Macalester College
Department of Mathematics and Computer Science

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

https://books.google.com/books?id=pX1_AwAAQBAJ
http://dx.doi.org/10.1198/tast.2010.09132
https://github.com/ProjectMOSAIC/mosaicData
https://cran.r-project.org/web/packages/mosaic/vignettes/mosaic-resources.html
https://cran.r-project.org/web/packages/mosaic/vignettes/mosaic-resources.html
https://github.com/ProjectMOSAIC/mosaic
http://lmdvr.r-forge.r-project.org
http://www.amstat.org/education/STEW/pdfs/PercentWithinMileofRoad.pdf
http://www.amstat.org/education/STEW/pdfs/PercentWithinMileofRoad.pdf
http://www.math.hope.edu/isi/presentations/white_paper_sim_inf_thru_curriculum.pdf
http://www.math.hope.edu/isi/presentations/white_paper_sim_inf_thru_curriculum.pdf
http://www.stats.ox.ac.uk/pub/MASS4
https://arxiv.org/abs/1705.08544
https://arxiv.org/abs/1705.08544
http://had.co.nz/ggplot2/book
https://github.com/hadley/dplyr
https://github.com/hadley/dplyr
mailto:rpruim@calvin.edu

CONTRIBUTED RESEARCH ARTICLE 102

1600 Grand Avenue
St. Paul, MN 55105 USA
dtkaplan@macalester.edu

Nicholas J Horton
Amherst College
Department of Mathematics and Statistics
PO Box 5000 AC #2239
Amherst, MA 01002-5000
nhorton@amherst.edu

The R Journal Vol. 9/1, June 2017 ISSN 2073-4859

mailto:dtkaplan@macalester.edu
mailto:nhorton@amherst.edu

	The mosaic Package: Helping Students to `Think with Data' Using R
	Motivation
	A guiding principle: Less volume, more creativity
	The importance of multivariate thinking
	The formula template
	The model-function template
	The extractor template
	The mplot() function

	Randomization and resampling
	A first example
	The sample(), resample(), and shuffle() functions
	Additional examples
	Vignettes
	RMarkdown
	Workarounds for unfortunate name collisions

	Discussion
	Advantages of the mosaic approach
	Challenges of using R in introductory courses
	Impact
	Efficiency Issues
	Lattice vs. ggplot2
	Be selective

	Acknowledgments
	Appendix: Additional features of the mosaic package
	Handling missing data
	Inspecting a data frame
	Additional high-level lattice plots
	Visualizing distributions of random variables
	Basic choropleth maps
	The do() function vs. the replicate() function

