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Abstract. The resampling algorithm of Moser & Tardos is a powerful approach to develop con-
structive versions of the Lovász Local Lemma. We develop a partial resampling approach motivated
by this methodology: when a bad event holds, we resample an appropriately-random subset of the
variables that define this event, rather than the entire set as in Moser & Tardos. This is particularly
useful when the bad events are determined by sums of random variables. This leads to several im-
proved algorithmic applications in scheduling, graph transversals, packet routing etc. For instance,
we improve the approximation ratio of a generalized D-dimensional scheduling problem studied by
Azar & Epstein from O(D) to O(logD/ log logD), and settle a conjecture of Szabó & Tardos on
graph transverals asymptotically.

1. Introduction

The Lovász Local Lemma (LLL) [7] is a fundamental probabilistic tool. The breakthrough of
Moser & Tardos shows that a very natural resampling approach yields a constructive approach to
the LLL [23]; this, along with a few subsequent investigations [9, 18], gives a fairly comprehensive
suite of techniques to develop algorithmic versions of the LLL. The basic algorithm of [23] is as
follows. Suppose we have “bad” events E1, E2, . . . , Em, each Ei being completely determined by
a subset {j ∈ Si : Xj} of independent random variables X1, X2, . . . , Xℓ. Then, assuming that the
standard sufficient conditions of the LLL hold, the following resampling algorithm quickly converges
to a setting of the Xj ’s that simultaneously avoids all the Ei:

• first sample all the Xj ’s (independently) from their respective distributions;
• while some bad event is true, pick one of these, say Ei, arbitrarily, and resample (indepen-
dently) all the variables {j ∈ Si : Xj}.

We develop a partial resampling approach motivated by this, which we simply call the Partial
Resampling Algorithm (PRA); the idea is to carefully choose a distribution Di over subsets of
{j ∈ Si : Xj} for each i, and then, every time we need to resample, to first draw a subset from
Di, and then only resample the Xj ’s that are contained in this subset. This partial-resampling
approach leads to algorithmic results for many applications that are not captured by the LLL.

Conference versions of this work. Preliminary versions of parts of this paper appeared in two
papers by the authors: [10, 11].

In order to motivate our applications, we start with two classical problems: scheduling on unre-
lated parallel machines [21], and low-congestion routing [27]. In the former, we have n jobs and K
machines (we interchange the standard use of the indices i and j here, and use K in place of the
usual “m”, in order to conform to the rest of our notation), and each job i needs to be scheduled
on any element of a given subset Xi of the machines. If job i is scheduled on machine j, then j
incurs a given load of pi,j . The goal is to minimize the makespan, the maximum total load on any
machine. The standard way to approach this is to introduce an auxiliary parameter T , and ask
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if we can schedule with makespan T [21, 31]. Letting [k] denote the set {1, 2, . . . , k}, a moment’s
reflection leads to the following integer-programming formulation:

∀i ∈ [n],
∑

j∈Xi

xi,j = 1;(1)

∀j ∈ [K],
∑

i

pi,jxi,j ≤ T ;(2)

∀(i, j), pi,j > T =⇒ xi,j = 0;(3)

∀(i, j), xi,j ∈ {0, 1}.(4)

(Although (3) is redundant for the IP, it will be critical for the natural LP relaxation [21].) In
low-congestion routing, we are given a collection of (source, destination) pairs {(si, ti) : i ∈ [n]} in
a V -vertex, K-edge directed or undirected graph G with edge-set E; each edge f ∈ E has a capacity
cf , and we are also given a collection Xi = {Pi,j} of possible routing paths for each (si, ti)-pair,
with each such path indexed by i and an auxiliary index j. We aim to choose one path from Xi for
each i, in order to minimize the relative congestion: the minimal T such that the maximum load
on any edge f is at most T · cf . We get a similar IP formulation:

minimize T subject to



∀i,
∑

j

xi,j = 1; ∀f ∈ E,
∑

(i,j): f∈Pi,j

xi,j ≤ T · cf ; xi,j ∈ {0, 1}.





Our class of problems. Given the above two examples, we are ready to define the class of
problems that we will study. As above, we have n “categories” (finite sets) X1, X2, . . . , Xn; we
need to choose one element from each category, which is modeled by “assignment constraints” (1)
on the underlying indicator variables xi,j . In addition, we have K (undesirable) Boolean functions
B1, B2, . . . , BK , each of which is an increasing function of the variables xi,j ; we aim to choose
the xi,j in order to satisfy the assignment constraints, and such that all the Bk are falsified. It is
easily seen that our two applications above, have the undesirable events Bk being linear threshold
functions of the form “

∑

i,j ak,i,jxi,j > bk”; we also allow explicitly-nonlinear Bk, some of which will
be crucial in our packet-routing application. We develop a partial resampling approach to our basic
problem in Section 2; Theorem 2.5 presents some general conditions under which our algorithm
quickly computes a feasible solution {xi,j}.

The probabilistic analysis of the Moser-Tardos and related algorithms is governed by witness
trees. While these are easy to count when all bad-events are essentially the same (the “Symmetric
LLL”), this can be complicated in the more general (“Asymmetric”) case.

A key technical tool in our analysis is a new formula for counting the witness trees. This
greatly simplifies the analysis of the Asymmetric LLL. It is critical to obtaining usable formulas
for complicated applications of the Partial Resampling framework, but it is also very useful for
analyzing the standard Moser-Tardos framework.

We will need the following relative of the standard Chernoff upper-tail bound:

Definition 1.1. (The Chernoff separation function) For 0 < µ ≤ t, letting δ = δ(µ, t) =
t/µ− 1 ≥ 0, we define

Chernoff(µ, t) =
( eδ

(1 + δ)1+δ

)µ
;

i.e., Chernoff(µ, t) is the Chernoff bound that a sum of [0, 1]-bounded and independent random
variables with mean µ will exceed t. If t < µ we define Chernoff(µ, t) = 1.

Let us next motivate our result by describing three families of applications.
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1.1. The case of non-negative linear threshold functions. The scheduling and routing ap-
plications had each Bk being a non-negative linear threshold function: our constraints (i.e., the
complements of the Bk) were of the form

(5) ∀k ∈ [K],
∑

i,j

ak,i,jxi,j ≤ bk.

(The matrix A of coefficients ak,i,j here, has K rows indexed by k, and some N columns that are
indexed by pairs (i, j).) Recall that all our problems will have the assignment constraints (1) as
well. There are two broad types of approaches for such problems, both starting with the natural
LP relaxation of the problem, wherein we allow each xi,j to lie in [0, 1]. Suppose the LP relaxation
has a solution {yi,j} such that for all k, “

∑

i,j ak,i,jyi,j ≤ b′k”, where b′k < bk for all k; by scaling,

we will assume throughout that ak,i,j ∈ [0, 1]. The natural question is:

“What conditions on the matrix A and vectors b′ and b ensure that there is an integer
solution that satisfies (1) and (5), which, furthermore, can be found efficiently?”

The first of the two major approaches to this is polyhedral. Letting D denote the maximum
column sum of A, i.e., D = maxi,j

∑

k ak,i,j , the rounding theorem of [17] shows constructively that
for all k,

(6) bk = b′k +D

suffices. The reader is asked to verify that given a solution to the LP-relaxation of makespan
minimization that satisfies (1), (2) and (3), bound (6) implies that we can find a schedule with
makespan at most 2T efficiently. This 2-approximation is the currently best-known bound for this
fundamental problem, and what we have seen here is known to be an alternative to the other
polyhedral proofs of [21, 31].

The second approach to our problem is randomized rounding [27]: given an LP-solution {yi,j},
choose exactly one j independently for each i, with the probability of choosing j in category i
equaling yi,j . The standard “Chernoff bound followed by a union bound over all K rows” approach
[27] shows that Chernoff(b′k, bk) ≤ 1/(2K) suffices, for our goal to be achieved with probability at
least 1/2. That is, there is some constant c0 > 0 such that

(7) bk ≥ c0 ·
logK

log(2 logK/b′k)
if b′k ≤ logK; bk ≥ b′k + c0 ·

√

b′k · logK if b′k > logK

suffices. In particular, the low-congestion routing problem can be approximated to within
O(logK/ log logK) in the worst case, where K denotes the number of edges.

Let us compare these known bounds (6) and (7). The former is good when all the b′k are “large”
(say, much bigger than, or comparable to, D – as in the 2-approximation above for scheduling); the
latter is better when D is too large, but unfortunately does not exploit the sparsity inherent in D –
also note that K ≥ D always since the entries ak,i,j of A lie in [0, 1]. A natural question is whether
we can interpolate between these two: especially consider the case (of which we will see an example
shortly) where, say, all the values b′k are Θ(1). Here, (6) gives an O(D)-approximation, and (7)
yields an O(logK/ log logK)-approximation. Can we do better? We answer this in the affirmative
in Theorem 5.2 – we are able to essentially replace K by D in (7), by showing constructively that
for any desired constant C1 > 0, there exists a constant C0 > 0 such that

(8) bk ≥ C0 ·
logD

log(2 logD/b′k)
if b′k ≤ logD; bk ≥ b′k + b′kD

−C1 + C0 ·
√

b′k · logD if b′k > logD

suffices.

Application to multi-dimensional scheduling. Consider the following D-dimensional generalization
of scheduling to minimize makespan, studied by Azar & Epstein [4]. Their (D + 1)-approximation
here also holds for the following generalization, and again follows quickly from (6). Here, when job
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i gets assigned to machine j, there are D dimensions to the load on j (say runtime, energy, heat
consumption, etc.): in dimension ℓ, this assignment leads to a load of pi,j,ℓ on j (instead of values
such as pi,j in [21]), where the numbers pi,j,ℓ are given. Analogously to (1), (2) and (3), we ask
here: given a vector (T1, T2, . . . , TD), is there an assignment that has a maksepan of at most Tℓ in
each dimension ℓ? The framework of [4] and (6) gives a (D + 1)-approximation1 while our bound
(8) yields an O(logD/ log logD)-approximation; since D ≪ K typically in this application, this is
also a significant improvement over the O(logK/ log logK)-approximation that follows from (7).

Comparison with other known bounds. As described above, our bound (8) improves over the two
major approaches here. However, two related results deserve mention. First, a bound similar to (8)
is shown in [19, 10], but with D∗, the maximum number of nonzeroes in any column of A, playing
the role of D. Note that D∗ ≥ D always, and that D∗ ≫ D is possible. Moreover, the bound of
[19] primarily works when all the b′k are within an O(1) factor of each other, and rapidly degrades
when these values can be disparate; the bound of [10] is nonconstructive.

1.2. Transversals with omitted subgraphs. Given a partition of the vertices of an undirected
graph G = (V,E) into blocks (or classes), a transversal is a subset of the vertices, one chosen from
each block. An independent transversal, or independent system of representatives, is a transversal
that is also an independent set in G. The study of independent transversals was initiated by
Bollobás, Erdős & Szemerédi [5], and has received a considerable amount of attention (see, e.g.,
[1, 2, 3, 14, 15, 16, 22, 32, 33]). Furthermore, such transversals serve as building blocks for other
graph-theoretic parameters such as the linear arboricity and the strong chromatic number [2, 3].
We improve (algorithmically) a variety of known sufficient conditions for the existence of good
transversals, in Section 4. In particular, Szabó & Tardos present a conjecture on how large the
blocks should be, to guarantee the existence of transverals that avoid Ks [32]; we show that this
conjecture is true asymptotically for large s. We also study weighted transversals, as considered by
Aharoni, Berger & Ziv [1], and show that near-optimal (low- or high-) weight transversals exist, and
can be found efficiently. In particular, we improve the quantitative bounds of [10] and show that
“large-weight” (existentially-optimal) independent transversals exist, once the smallest block-size
becomes reasonably large.

1.3. Packet routing with low latency. A well-known packet-routing problem is as follows. We
are given an undirected graph G with N packets, in which we need to route each packet i from
vertex si to vertex ti along a given simple path Pi. The constraints are that each edge can carry
only one packet at a time, and each edge traversal takes unit time for a packet; edges are allowed to
queue packets. The goal is to conduct feasible routings along the paths Pi, in order to minimize the
makespan T , the relative of the scheduling notion above that refers to the time by which all packets
are delivered. Two natural lower-bounds on T are the congestion C (the maximum number of the Pi

that contain any given edge of G) and the dilation D (the length of the longest Pi); thus, (C+D)/2
is a universal lower-bound, and there exist families of instances with T ≥ (1 +Ω(1)) · (C +D) [28].
A seminal result of [20] is that T ≤ O(C +D) for all input instances, using constant-sized queues
at the edges; the big-Oh notation hides a rather large constant. Building on further improvements
[29, 26], our work [10] developed a nonconstructive 7.26(C + D) and a constructive 8.84(C + D)
bound; we improve these further to a constructive 5.70(C +D) here.

Informal discussion of the Partial Resampling Algorithm. To understand the intuition
behind our Partial Resampling Algorithm, consider the situation in which we have bad events of
the form Z1 + · · ·+Zv ≥ µ+ t, where the expected value of Z1 + · · ·+Zv is µ. There are two basic
ways to set this up for the standard LLL. The most straightforward way would be to construct a

1As usual in this setting, an “approximation” here is an algorithm that either proves that the answer to this
question is negative (by showing that the LP is infeasible), or presents the desired approximation simultaneously for
each Tℓ.
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single bad-event for Z1+ · · ·+Zv ≥ µ+t. In this case, the single event would depend on v variables,
which might be very large. Alternatively, one could form

(

v
µ+t

)

separate bad-events, corresponding

to every possible set of µ+ t variables. Each of these bad-events individually would have a very low
probability, and the overall dependency would also be low. The problem with this approach is that
the collective probability of the bad-events has become very large. In effect, one is approximating
the probability of the bad-event Z1 + · · · + Zv ≥ µ + t by a union-bound over all

(

v
µ+t

)

subsets.

When t is small, this union bound is very inaccurate.
In fact, both of these approaches are over-counting the dependence of the bad-event. In a sense,

a variable Zi is causing the bad-event only if it is “the straw that breaks the camel’s back,” that
is, if it is the key variable which brings the sum Z1+ · · ·+Zv over the threshold µ+ t. Really, only
about t of the variables are “guilty” of causing the bad-event. The first µ variables were expected
to happen anyway; after reaching a total µ + t variables, any remaining variables are redundant.
Any individual variable Zi only has a small chance of being a guilty variable.

In effect, there are many variables which have have some effect on the bad event, but this effect
is typically very small. The standard LLL, which is based on a binary classification of whether a
variable affects a bad-event, cannot see this. We will give a new criterion which quantifies how likely
a variable is to be responsible for the bad-event. This will in turn greatly lower the dependency
between bad events, while still keeping an essentially accurate bound on the probability. Further
specific comparisons with the standard LLL are made in Sections 4 and 5.1.

In general, the Partial Resampling Algorithm tends to work well when there are common con-
figurations, which are not actually forbidden, but are nonetheless “bad” in the sense that they are
leading to a forbidden configuration. So, in the case of a sum of random variables, if a large group
of these variables is simultaneously one, then this is bad but, by itself, still legal. We will see other
examples of more complicated types of bad-but-legal configurations.

Organization of the paper. The partial resampling algorithm is discussed in detail in Sec-
tion 2; a related, but incomparable, approach is presented in Section 3. Applications are discussed
in the following three sections: transversals with omitted subgraphs, improved integrality gaps for
column-sparse packing problems, and packet routing in Sections 4, 5.1, and 6 respectively. The
appendix contains numerical results and a useful lemma.

2. The Partial Resampling Algorithm

2.1. Notation. We begin by discussing some basic definitions that will apply throughout.
We have n categories, which we identify with the set [n] = {1, . . . , n}. Each category has a set

of possible assignments, which may be countably infinite or finite, and which we identify with (a
subset of) the integers. We specify a probability distribution pi on each category i, with

∑

j pi,j = 1,
where j ranges over the set of valid assignment to category i. Henceforth we will not be explicit
about the set of possible assignments, so we write simply

∑

j pi,j = 1.

We refer to any ordered pair 〈i, j〉 where j is an assignment of category i, as an element ; we
sometimes refer to an element as (i, j) as well. We let X denote the set of all elements. We suppose

|X| = N and we sometimes identify X with the set [N ]. Given any vector ~λ = (~λi,j) indexed by
elements 〈i, j〉, we define, for any set Y ⊆ X,

(9) ~λY =
∏

〈i,j〉∈Y

~λi,j .

Events as set-families, and increasing bad events. Suppose we are given some K increasing
bad events B1, B2, . . . , BK , such that each Bk is an upward-closed collection of subsets of X. Note
that in the preceding sentence – and in a few places later – we identify each event such as Bk with
a family of subsets of X in the obvious manner: i.e., if Fk is this family, then Bk is true iff there is
some G ∈ Fk such that all members of G (each of which is an “element” in our terminology of a few
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lines above) have been chosen. Equivalently, since each Bk is upward-closed, we can identify each
bad event Bk with its atomic bad events Ak,1, . . . , Ak,mk

: Bk holds iff there is some j such that all
members of Ak,j have been chosen, and each Ak,j is minimal inclusion-wise. That is, viewing each
Bk as a family of subsets, we have

(10) Bk = {Y ⊆ X | Ak,1 ⊆ Y ∨ · · · ∨Ak,mk
⊆ Y }.

We are not making any sparsity assumptions about the bad events Bk, for example that they
depend only on a (small) subset of the categories.

2.2. Fractional hitting-sets. In order to use our algorithm, we will need to specify an additional
parameter, for each bad event Bk. We must specify a fractional hitting-set B′

k, which essentially
tells us how to resample the variables in that bad event.

Definition 2.1. Let B ⊆ 2X be a given increasing bad event on the ground set X. (As usual,
2X denotes the family of subsets of X.) Suppose C : 2X → [0, 1] is some weight function on the
subsets of X. We say that C is a fractional hitting set for B if, viewing B as a family of subsets
of X as in (10), we have for all A ∈ B that

(11)
∑

Y⊆A

C(Y ) ≥ 1.

Remark regarding Definition 2.1. It clearly suffices to show that (11) holds for the minimal
atomic bad events A of B. We may assume, without loss of generality, that if Y is a subset of
X which contains two members of the same category, that is, it contains 〈i, j〉 and 〈i, j′〉, then
C(Y ) = 0.

We will fix a fractional hitting-set for each bad event Bk, and so we write B′
k for the fractional

hitting-set associated with Bk. One possible choice is the bad-event itself, which is easily verified
to be a valid fractional hitting-set:

Definition 2.2. Let B ⊆ X be a given bad event, with atomic bad events A1, . . . , Am. We define
the trivial hitting-set for B by

C(Y ) =

{

1 if Y = At for some t = 1, . . . ,m

0 otherwise

If the trivial hitting-set is used, then our analysis essentially reduces to the ordinary Moser-
Tardos algorithm (but we will still show improvements in that case). We will discuss later how to
construct such fractional hitting-sets, but for now we suppose that B′

k is specified.

2.3. Partial Resampling Algorithm and the Main Theorem. We present our partial resam-
pling algorithm, and main theorem related to it.

Consider the following relative of the Moser-Tardos algorithm. We refer to this as the Partial
Resampling Algorithm or abbreviate as PRA.

• Select one element from each category i = 1, . . . , n. The probability of selecting 〈i, j〉 is pi,j .
• Repeat the following, as long as there is some k such that the current assignment makes
the bad event Bk true:

– Select, arbitrarily, some atomic bad event A ∈ Bk that is currently true. We refer to
this set A as the violated set.

– Select exactly one subset Y ⊆ A. The probability of selecting a given Y is given by

P(select Y ) =
B′

k(Y )
∑

Y ′⊆AB′
k(Y

′)
;

we refer to Y as the resampled set.
– Resample all the categories in Y independently, using the vector p.
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This algorithm is similar to, and inspired by, the Moser-Tardos algorithm. The main difference is
that in [23], if there is a bad event that is currently true, we would resample all the variables which
it depends upon. Here, we only resample a (carefully-chosen, random) subset of these variables.

We will need to keep track of the dependency graph corresponding to our fractional hitting set.
This is more complicated than the usual Moser-Tardos setting, because we will need to distinguish
two ways that subsets of elements Y, Y ′ could affect each other: they could share a variable, or they
could both be potential resampling targets for some bad-event. In the usual Moser-Tardos analysis,
we only need to keep track of the first type of dependency. The following symmetric relation ≈
(and its two supporting relations ∼ and ⊲⊳) will account for this:

Definition 2.3. (Symmetric relations ∼, ⊲⊳k, and ≈) Let Y, Y ′ ⊆ X.
We say Y ∼ Y ′ iff there exists a triple (i, j, j′) such that 〈i, j〉 ∈ Y and 〈i, j′〉 ∈ Y ′: i.e., iff Y

and Y ′ overlap in a category. We also write i ∼ Y (or Y ∼ i) to mean that Y involves category i
(i.e., 〈i, j〉 ∈ Y for some j).

For each k, we say Y ⊲⊳k Y ′ iff Y 6∼ Y ′ and there is some atomic event A′′ ∈ Bk with Y, Y ′ ⊆ A′′.
Relation ≈ is defined between pairs (Y, k): We define (Y, k) ≈ (Y ′, k′) iff Y ∼ Y ′ or Y ⊲⊳k Y ′.

Note that, by definition, it is impossible for both to occur simultaneously.

Remark. At this point, we can clarify a subtle point in the framework of the Resampling Algo-
rithm. We have defined multiple bad-events B1, . . . , BK , each of which can in turn contain multiple
atomic bad-events. This two-layer structure seems redundant. It would seem more natural to keep
track of atomic bad-events only. Equivalently, there would be only one bad-event (K = 1), includ-
ing multiple atomic bad-events. Indeed, in many of our applications, such as the tranvsersals with
omitted subgraphs, we will use this approach. When using the trivial hitting-set, then a single
global bad-event is always equivalent to multiple bad-events.

However, atomic bad-events which are contained in the same bad-event may have complicated
and non-linear interactions due to ⊲⊳. This is particularly problematic when we have B′

k(Y ) 6=
B′

k′(Y ), and both of these are non-zero. For some constructions, such as column-sparse packing
and packet-routing, these interactions are difficult to control. In such cases, it is useful to define
multiple bad-events. We will need to analyze the ⊲⊳ interactions within a single bad-event, but we
will not have to worry about interactions across the separate bad-events. This allows us to compute
a “badness” measure for a single bad-event, depending only on local parameters, and then add this
up across the entire space.

We now also define:

Definition 2.4. (Values Gk
i,j, Gk

i , and Gk that depend on a vector ~λ) Suppose we are given

an assignment of non-negative real numbers ~λi,j to each element 〈i, j〉. For each bad event Bk,
recalling the notation (9), we define

Gk
i,j(

~λ) =
∑

Y ∋〈i,j〉
B′

k(Y )~λY

along with “summation notations”

Gk
i (
~λ) =

∑

j

Gk
i,j(

~λ) and Gk(~λ) =
∑

i,j

Gk
i,j(

~λ).

We will often omit the dependence on ~λ if it is clear from context. Roughly speaking, Gk
i,j is the

probability that variable i takes on value j, and causes bad-event Bk to occur, and is selected for
resampling.

Our main theorem is as follows. In part (a), it assumes that the vector p has been given. In

parts (b) and (c), it assumes the existence of a suitable vector ~λ, from which p is explicitly derived
in the statement of the theorem.
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Theorem 2.5. (Main Theorem) In each of the following three cases, the PRA converges to a
feasible configuration avoiding all bad events with probability one.

(a) Suppose there exists µ : 2X × [K] → [0,∞) which satisfies, for all Y ⊆ X and all k ∈ [K],

µ(Y, k) ≥ pY B′
k(Y )

(

∏

Y ′∼Y
k

(1 + µ(Y ′, k′))
)(

1 +
∑

Y ′′⊲⊳kY

µ(Y ′′, k)
)

Then, the expected number of resamplings of any category i is at most
∑

(Y,k): Y∼i µ(Y, k).

For the next two cases, we assume we are given an assignment of non-negative real numbers ~λi,j

to each element 〈i, j〉, and suppose that we run the PRA with pi,j = ~λi,j/
∑

j′
~λi,j′ for all i, j. We

will use Definition 2.4 and ~λi
.
=
∑

j
~λi,j in these two cases.

(b) Suppose that for all k, Gk(~λ) < 1; suppose further that

∀i, ~λi ≥ 1 +
∑

k

Gk
i (
~λ)

1−Gk(~λ)
.

Then the expected number of resamplings of a category i is at most ~λi.

(c) Suppose the ⊲⊳k relations are null: that is, whenever there is an atomic event A with Y, Y ′ ⊆ A

and B′
k(Y ) > 0, B′

k(Y
′) > 0 then Y ∼ Y ′. Suppose further that ∀i, ~λi ≥ 1 +

∑

k G
k
i (
~λ). Then the

expected number of resamplings of a category i is at most ~λi.

2.4. Proof ingredient: Witness Trees. A key component of our proofs will be the notion of
witness trees similar to [23]; we develop this notion now. As in the proof of [23], we define an
execution log of this algorithm to be a listing of all pairs (Y, k) that were encountered during the
run; it is crucial to note that we do not list the violated sets A themselves. Given a log, we define
the witness tree which provides a justification for any given resampling in the execution log. Not
listing the violated sets themselves, is one of our critical ideas, and helps prune the space of possible
witness trees substantially.

We form the witness tree in a manner similar to [23], driven by the relation ≈, but there is a key
difference. Each event Y,Bk is only allowed to have a single child due to the relation ⊲⊳k. As we
will see, a single ⊲⊳-child provides all the information needed. A much simpler proof for the critical
Witness Tree Lemma could be obtained if we allow for multiple ⊲⊳k-children, but later on this gives
formulas that are more complicated and slightly weaker.

Here is how we build a witness tree for an event of interest E (for example, the final resampling).
The event E goes at the root of the tree. This, and all nodes of the tree, will be labeled by
the corresponding pair (Y, k) – we will sometimes also refer to these labels as (Y,Bk). Stepping
backward in time, suppose the current event being processed is labeled (Y, k). Suppose that either
there is a node (Y ′, k′) in the current tree with Y ′ ∼ Y , or there is an node (Y ′, k) and Y ⊲⊳k Y ′

and the node (Y ′, k) does not currently have a child (Y ′′, k) with Y ′′ ⊲⊳k Y . In this case, we find
the node v of lowest level (i.e. highest depth) which satisfies either of these conditions, and make
the new node labeled (Y, k) a child of the node v. If there are no nodes satisfying either condition,
we skip (Y, k). Continue this process going backward in time to complete the construction of the
witness tree.

Because this will come up repeatedly in our discussion, given a node v = (Y, k), we refer to a
child (Y ′, k) with Y ⊲⊳k Y ′ as a ⊲⊳-child. If a node v has a ⊲⊳-child v′ we say it v is saturated by v′

otherwise we say v is unsaturated. Evidently in this construction each node may have one or zero
⊲⊳-children.

As in [25], note that all nodes in any level of the witness tree must form an independent set
under ∼; this will be useful in our analysis.
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We next introduce our main Lemma 2.6, which parallels the analysis of [23], connecting the
witness trees to the execution logs. However, as pointed out after the proof of the lemma, its proof
is much more involved than in [23], since we cannot conduct a direct coupling as in [23].

Lemma 2.6 (Witness Tree Lemma). Suppose we construct witness trees as described. Let τ be any
tree, with nodes labeled by (Y1, k1), (Y2, k2) . . . , (Yt, kt). Then the probability that the witness tree τ
is produced by the execution log, is at most

P(τ occurs as witness tree) ≤
t
∏

s=1

pYsB′
ks(Ys).

Remark. Recall the notation (9) in parsing the value “pYs” above.

Proof. We will construct a necessary conditions for the tree τ to appear. These conditions all
have the following form: they contain some conditions on the past history of the PRA; as soon as
these conditions are triggered, we demand that the random variable which is about to be sampled
takes on a specific value. We refer to the preconditions of each of these checks as triggers and the
demanded event to be the target. The target will be either that some category i we are about to
resample takes on a specific value j; or that when we detect an atomic bad event A ∈ Bk, we select
some specified Y ⊆ A to resample. For the tree τ to appear, it must be the case that each trigger is
detected exactly once in the execution log and no two triggers occur simultaneously. In this case,
Lemma B.1 from Appendix B can be used to show that the probability of this event is at most the
product of the individual target probabilities, namely pi,j and B′

k(Y ) respectively.
Recall that we do an initial sampling of all categories (which we can consider the zeroth re-

sampling), followed by a sequence of resamplings. Now, consider a node s of τ labeled by (Y, k).
Suppose 〈i, j〉 ∈ Y . Because any node – labeled (Y ′, k′), say – in which i is sampled would satisfy
(Y, k) ∼ (Y ′, k′), it must be that any earlier resamplings of the category i must occur at a lower
level of the witness tree. So if we let r denote the number of times that category i has appeared
in lower levels of τ , then we are demanding that the rth resampling of category i selects j. Such a
condition has the form we mentioned earlier; the trigger is that we have come to resample i for the
rth time, and the target is that we select 〈i, j〉. The probability of this is pi,j .

We next consider the probability of selecting set Y . Consider all the nodes (Y1, k1), . . . , (Yl, kl) ≈
(Y, k) of the witness tree which are at a lower level than Y . To simplify the discussion, we will
suppose that Yi are distinct; if not, we would simply have to count events with their appropriate
multiplicities.

We divide these nodes into four mutually exclusive categories:

(1) Yi ∼ Y
(2) ki = k and Yi ⊲⊳k Y and (Yi, k) is unsaturated
(3) ki = k and Yi ⊲⊳k Y and (Yi, k) is saturated by Y ′

i and (Yi, k) is the ⊲⊳k-child of (Y, k).
(4) ki = k and Yi ⊲⊳k Y and (Yi, k) is saturated by Y ′

i and (Yi, k) is not the ⊲⊳k-child of (Y, k).

Define a potential time for (Y, k) as some time in the execution of the PRA after we have selected
each node of type (1), (2), or (3), and which satisfies that condition that, for each node of type (4),
either Y ′

i has not been selected or Yi and Y ′
i have been selected. Note that the potential times are

not necessarily contiguous in time — these conditions can flip multiple times between satisfied and
unsatisfied.

We begin by claiming that Y must have been selected during a potential time. For, suppose
that there is a node Yi of type (1), but Y occured before Yi. Then, forming the witness tree in the
backward manner, by the time Y is added to the witness tree, Yi is already present. So Y would
be placed below Yi, contradicting the way we have defined the enumeration. A similar argument
is seen to apply to nodes of type (2) and (3). For a node of type (4), we suppose for contradiction
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that we encounter Y after Y ′
i but before Yi. In this case, going backward in time, when Y is added

to the tree, node Yi is present but lacks its ⊲⊳k-child. So Y would eligible to be placed beneath Yi.
We now claim that the first bad-event A for which Y is eligible during a potential time, that we

must select Y . For, suppose not. In order for τ to appear we must eventually select Y ; let Y ′′ be
the last such set selected before Y , while Y was eligible during a potential time. Again to simplify
the notation we suppose Y ′′ 6= Y1, . . . , Yl.

We claim that Y ′′ must be placed below Y in the witness tree. This is obvious if Y ′′ ∼ Y so
suppose Y ′′ ⊲⊳k Y . First suppose that (Y, k) has no ⊲⊳k child. In this case, Y ′′ would be eligible to
placed as a ⊲⊳k child if it were not already eligible below Y in the witness tree. Next, suppose that
Y has a ⊲⊳k-child Y ′ in τ . Our definition of a potential time specifies that we encounter Y ′′ and
Y after observing this Y ′. In that case, going backward to form the witness tree, at the time Y is
created its ⊲⊳k-child Y ′ has not been added. So again Y ′′ would be eligible to be placed under Y .

In any of these cases, the node Y ′′ appears below Y in the witness tree.
Suppose that node Y ′′ is not saturated. Then node Y ′′ is of type (2) in the above listing. This

implies that in any potential time, node Y ′′ would be have selected. But node Y ′′ is selected during
a potential time, i.e. node Y ′′ is selected after node Y ′′ is selected. This is impossible.

Suppose that node Y ′′ is saturated by Z. As Z was placed as a child of Y ′′, it must be that Z
occured before Y ′′. So, during the time that Y ′′ was created, Y ′′ would have a node of type (3).
This again contradicts the definition of a potential time.

In summary, we have shown that the first potential time in which Y is eligible to be selected
for some violated set A ∈ Bk, it is in fact selected. Critically, the target of this condition has a
probability of at most B′

k(Y ) due to (11), irrespective of what the violated set A was.
It is clear that each condition of the first kind, refers to a distinct target. The second type of

event must also — for if (Y, k) and (Y ′, k′) are selected in the same event, then k = k′ and Y = Y ′

and one of these nodes would have placed above the other in the witness tree. Observe that if
two identical nodes appear in the witness tree, then our conditions state that one must be selected
before the other.

By Lemma B.1, taking the product over all such conditions, the total probability is at most
∏

pYsB′
ks
(Ys). The key point in this proof is that, based on the execution of the PRA and the

information in the tree τ , we can determine exactly when each Ys, ks should have been selected and
what these should be resampled to. �

The PRA and its proof are very similar to the Moser-Tardos algorithm, and it is tempting to
view this as a special case of that algorithm. However, the proof of the analogue of Lemma 2.6 for
the Moser-Tardos algorithm uses a quite different argument based on coupling. In that proof, we
imagine that before running the resampling algorithm we select in advance all future resamplings
of every category. The witness tree τ then imposes necessary conditions on these samplings, whose
probability distribution can be computed easily. While this coupling argument works for the value
selected in each category, it does not appear to work for bounding the probability of selecting a
given Y . For this, we appear to need the “Nostradamus Lemma”: Lemma B.1 from Appendix B.

For any tree τ , we define its weight

w(τ) =
∏

s

pYsB′(Ys).

In order to show that this algorithm converges, we bound the total weight of the the witness trees
is small. Using arguments from Moser & Tardos, we can immediately show Theorem 2.5(a):

Theorem 2.5(a). Suppose there exists µ : 2X × [K] → [0,∞) which satisfies, for all Y ⊆ X and
all k ∈ [K]

µ(Y, k) ≥ pY B′
k(Y )

(

∏

(Y ′,k′)∼(Y,k)

(1 + µ(Y ′, k′))
)(

1 +
∑

Y ′′⊲⊳kY

µ(Y ′′, k)
)
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Then, the expected number of resamplings of any category i is at most
∑

(Y,k): Y∼i µ(Y, k).

For many applications of the PRA, in which the fractional hitting-sets are relatively simple, this
criterion is sufficient. However, it can be awkward to use in more general settings. The reason is
that it requires us to specify yet another function µ, and check a constraint for every Y, k. In the
next section, we develop an alternative approach to counting witness trees.

2.5. A new approach to counting witness trees. As we have seen, the standard accounting of
witness trees includes a parameter µ for each bad-event. We will reduce the number of parameters
dramatically by rephrasing the LLL criterion in terms of each category.

There are several advantages to the category-based approach. First, in the collection of all
witness trees, certain subtrees always co-occur; the total weight of these fragments is more critical
than the individual weight of any of them. In many cases, there is information about a category
which cannot be easily localized to any individual event. (For example – jumping ahead – in the
independent-transversal application of Section 4, we may know the total number of edges touching
a block, without any bounds on the number of edges touching any particular vertex in that block.)

A second advantage that it makes it easier to show that PRA converges in polynomial time.
In some applications, the number of bad events may be exponentially large while the number
of categories is polynomial. In this case, we need to show an upper bound on the number of
resamplings of a category.

Finally, the PRA criterion is given in terms not just of the bad-events, but includes a necessary
condition on every subset of the bad-events. It is very cumbersome to check this condition indi-
vidually for each subset. By grouping them into categories, we obtain a much more succinct and
tractable condition on the PRA.

This type of accounting is useful not just for our PRA, but for the usual LLL and Moser-Tardos
algorithm as well. When applied to the usual Moser-Tardos algorithm, this will give us a simplified
and slightly weakened form of Pegden’s criterion [25]. Nevertheless, it is stronger and more simple
than the standard LLL, particularly the asymmetric LLL.

Lemma 2.8. Suppose we construct witness trees as described. For any category i, let Th(i) denote
the total weight of all witness trees of height ≤ h with root labeled by (Y, k) for an arbitrary k and
an arbitrary Y ⊆ X with Y ∼ i. Let Sh(k, Y ) denote the total weight of all witness trees of height
≤ h with root labeled by Y, k. Then Th, Sh satisfy the mutual recurrences

Sh+1(k, Y ) ≤ B′
k(Y )pY

(

∏

i: i∼Y

(1 + Th(i))

)

·



1 +
∑

Y ′: Y ′⊲⊳kY

Sh(k, Y
′)



(12)

Th(i) ≤
∑

(k,Y ): Y∼i

Sh(k, Y ).(13)

Proof. The bound (13) is obvious; so we just need to show (12). Let τ be a tree of height h + 1
rooted at a node r labeled (Y, k). Then the weight of τ is pY B′

k(Y ) times the weight of all the
children of r – which are all trees of height ≤ h. Let us count these subtrees now. The node (Y, k)
may contain one or zero ⊲⊳k-children — this accounts for the factor “1 +

∑

Y ′: Y ′⊲⊳kY
Sh(k, Y

′)”.
The other children are nodes labeled (Y ′, k′), with Y ′ ∼ Y . As noted by [25] (and is easily checked
by the way witness trees are constructed), such children of r must be independent under ∼. Thus,
for each i such that Y ∼ i, we can have at most one such child of r. This explains the term
“
∏

i: i∼Y (1 + Th(i))” term in (12). �
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Lemma 2.9. Suppose we are given some S(k, Y ) ∈ [0,∞) for all k and for all Y ⊆ X, and some
T (i) ∈ [0,∞) for each category i, such that for all i, k, Y we satisfy

S(k, Y ) ≥ B′
k(Y )pY

(

∏

i: i∼Y

(1 + T (i))

)

·



1 +
∑

Y ′:Y ′⊲⊳kY

S(k, Y ′)





T (i) ≥
∑

k,Y∼i

S(k, Y )

Then we have Th(i) ≤ T (i) and Sh(k, Y ) ≤ S(k, Y ) for all h, i, k, Y . Also, the PRA terminates
with probability one, and the expected number of resamplings of any category i is at most T (i).

Proof. The bounds Th(i) ≤ T (i) and Sh(k, Y ) ≤ S(k, Y ) follow by induction on h.
Construct the witness-tree corresponding to each resampling of category i. These are all distinct,

and each such tree occurs with probability at most its weight. Hence the expected number of
resamplings is at most the sum of the weights of all trees rooted at i, which in turn is at most
T∞(i) ≤ T (i). �

Hence, whatever running-time parameter κ we use, if the number of categories n and all the
T (i) are polynomially bounded in κ, and a single iteration of the modified Moser-Tardos algorithm
can be implemented in poly(κ) time, then we get a poly(κ)-time algorithm to find a configuration
avoiding all bad events; in particular, such a configuration exists. The number of bad events and
the number of possible assignments to each category may be exponentially large or even infinite,
but that presents no problem for the algorithm.

Theorem 2.11 sometimes offers a useful way to employ Lemma 2.9. In many settings, the linkages
due to ⊲⊳ are relatively insignificant compared to the linkages due to ∼. One possible reason for
this is that the ⊲⊳ linkage becomes null; this always occurs in the usual Moser-Tardos algorithm
(without partial resampling). Alternatively, there may be many bad events each of which has
relatively small probability. We can simplify our LLL in this setting; in particular, we can avoid
the mutual recursion as in (12) and (13): we get a “pure” recurrence (14), which can then be used
in (15). We start with the following definition:

Definition 2.10. (Value Ŝk that depends on a vector ~λ) Suppose that we are given an as-

signment of non-negative real numbers ~λi,j to each element 〈i, j〉. For each k and Y , suppose
∑

Y ′⊲⊳kY

B′
k(Y

′)~λY ′

< 1

We define, for each k, the parameter Ŝk > 0 to be

(14) Ŝk = max
Y : B′

k
(Y )>0

1

1−∑Y ′⊲⊳kY
B′

k(Y
′)~λY ′

Note that if the ⊲⊳ relation is null (i.e. for B′(Y1) > 0, B′(Y2) > 0 we have Y1 6⊲⊳k Y2) then Ŝk = 1.
Also, we have the upper bound

Ŝk ≤ 1

1−Gk

Theorem 2.11. Suppose we are given an assignment of non-negative real numbers ~λi,j to each

element 〈i, j〉. For any category i, define ~λi =
∑

j
~λi,j. Suppose that

(15) ∀i, ~λi ≥ 1 +
∑

k

ŜkG
k
i ,

where Gk
i is as in Definition 2.4. Then the PRA terminates with probability one, and the expected

number of resamplings of a category i is at most ~λi.
12



Proof. Use Lemma 2.9 with pi,j =
~λi,j

~λi

, T (i) = ~λi − 1, and S(k, Y ) = ŜkB
′
k(Y )~λY . �

Parts (b) and (c) of Theorem 2.5 now follows from Theorem 2.11.
Parts (b) and (c) of the Theorem 2.5 can be unified if we define, each element 〈i, j〉,

Hi,j =
∑

k

ŜkG
k
i,j

and similarly Hi =
∑

j Hi,j . Then the criterion of Theorem 2.5 has the simple form ~λi −Hi ≥ 1.

We may assume without loss of generality that ~λi,j ≥ Hi,j for each 〈i, j〉; for if not, we may set
~λi,j = Hi,j = 0 and still satisfy Theorem 2.5.

The parameter Hi,j will turn out to play the crucial role in Section 2.6 which analyzes the LLL
distribution.

It is instructive to compare these formulas to those conditions of Theorem 3.2.

2.6. The LLL distribution. If we are given ~λ,B′
k satisfying Theorem 2.11, then we know that

there exists a configuration which avoids all bad events. Furthermore, such a configuration can be
found by running the PRA.

We may wish to learn more about such configurations, other than that they exist. We can use the
probabilistic method, by defining an appropriate distribution on the set of feasible configurations.
The PRA naturally defines a probability distribution, namely, the distribution imposed on elements
after the algorithm terminates.

The following theorem bounds the probability that an event E occurs in the output of the PRA:

Theorem 2.12.

(a) Suppose that we satisfy Theorem 2.5(a). Then, for any atomic event E, the probability that
E true in the output of the PRA, is at most

P(PRA output satisfies E) ≤ P (E)
∏

k,Y∼E

(1 + µ(k, Y ))

(b) Suppose that we satisfy Theorem 2.5(b) or Theorem 2.5(c). Let J be a set of assignments
to category i. The probability that the PRA ever selects 〈i, j〉 for j ∈ J is bounded by

P(Select 〈i, j〉 for some j ∈ J) ≤
∑

j∈J
~λi,j

~λi −Hi +
∑

j∈J Hi,j

(c) Suppose that we satisfy Theorem 2.5(b) or Theorem 2.5(c). The probability that the PRA
ever simultaneously selects 〈i1, j1〉, . . . , 〈ik, jk〉, is at most

P(Select 〈i1, j1〉, . . . , 〈ik, jk〉) ≤ λi1,j1 . . . λik,jk

Proof. Case (a) is shown in [9]. Case (c) is similar to case (b), but easier. We will only prove case
(b).

We consider the first occurence of 〈i, j〉, for j ∈ J , during the execution of the PRA. There are
two cases for this occurence; we may either select 〈i, J〉 initially, or we resample some Y ∋ 〈i, J̄〉,
and then we select some 〈i, J〉. (We will abuse notation so that 〈i, J〉 denotes all elements of the
form 〈i, j〉 for j ∈ J ; and similarly 〈i, J̄〉 denotes the elements with j /∈ J .)

Consider the witness tree corresponding to this event. This tree is either null or is rooted in
some Y ∋ 〈i, J〉, k, and cannot contain any instances of 〈i, J̄〉 below the root.

Let R denote the total weight of all witness trees rooted in some Y ∋ 〈i, J̄〉, below which
never occurs any 〈i, J〉. Consider the root node Y, k; this may have children corresponding to any
Y ′ ⊲⊳k Y ; or it may have children from any of the other categories in Y (other than i); or it may
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have another child also rooted in such a Y ∋ 〈i, J̄〉. Along similar lines to Lemma 2.9, if a value
r > 0 satisfies the condition

(16) r ≥
∑

k

∑

Y ∋〈i,J̄〉
B′

k(Y )pY (1 + S(k, Y ))(1 + r)
∏

i′ 6=i,i′∼Y

(1 + T (i′))

then it must be that R ≤ r.
The main term of (16) can be rewritten as
∑

k

∑

Y ∋〈i,J̄〉
B′

k(Y )pY (1 + S(k, Y ))
∏

i′ 6=i
i′∼Y

(1 + T (i′)) =
∑

k

∑

j /∈J

∑

Y ∋〈i,j〉
B′

k(Y )~λY pi,j
~λi,j

(1 + S(k, Y ))

=
∑

j /∈J

pi,j
~λi,j

Hi,j =
1

~λi

∑

j /∈J
Hi,j

Hence we have R ≤ Hi,J̄

~λi−Hi,J̄

. Bearing in mind that we may have initially selected 〈i, J〉, we have

P (ever select 〈i, J〉) ≤ pi,J(1 +R)

≤ pi,j(1 +
Hi,J̄

~λi −Hi,J̄

)

=

∑

j∈J
~λi,j

~λi −Hi +
∑

j∈J Hi,j

�

A simple corollary of Theorem 2.12 shows a lower bound on the probability that the PRA
terminates by selecting a given element 〈i, j〉:

Corollary 2.13. Suppose that we satisfy Theorem 2.5(b) or Theorem 2.5(c). Let J be a set of
possible assignments to category i. The probability that the PRA terminates by selecting 〈i, j〉 for
j ∈ J is bounded by

P(PRA finally selects 〈i, j〉 for some j ∈ J) ≥
∑

j∈J
~λi,j −

∑

j∈J Hi,j

~λi −
∑

j∈J Hi,j

Proof. Apply Theorem 2.12(b) to bound from above the probability of ever selecting 〈i, J̄〉. �

3. A probabilistic LLL variant

The standard LLL has two faces: the efficient algorithm of Moser-Tardos, which finds a valid
configuration by resampling bad-events, and the original probabilistic formulation of Erdos and
Lovász [7]. In the latter formulation, one selects the variables according to the indicated distribu-
tion, without any resamplings. One then has a positive, exponentially small, probability of avoiding
all bad-events. This typically gives an existence proof, without a corresponding polynomial-time
algorithm.

These two interpretations of the LLL lend themselves to different generalizations and there are
many useful interconnections between them. Historically, many improvements and specializations
of the LLL were first developed in the probabilistic framework (including the original LLL itself),
and then were translated into the Moser-Tardos framework. The Partial Resampling Algorithm we
have given follows the opposite path: it is a generalization of the Moser-Tardos framework, without
any probabilistic interpretation.
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In this section, we will describe a probabilistic variant of the LLL which closely parallels the
PRA. This process does not exactly match the bounds of the PRA; it is sometimes stronger but
usually weaker. We will discuss the connections between the interpretations in Section 3.3.

We begin by setting and recalling some notations. We let [n] index the blocks, and let Zi,j be the
indicator for selecting the jth element from block i. Each bad event Bk is determined by, and is an
increasing function of a subset Sk of the Z variables. (Note that this differs from the formulation
of the PRA, which never explicitly required that the Bk had sparse support). As before, we refer
to an ordered pair 〈i, j〉 as an element. Recall that we let X denote the set of all elements; we let
|X| = N .

3.1. The assignment LLL. Unlike in the usual LLL, we cannot simply define a probability dis-
tribution and compute the probability of the bad event occuring. We will only have partial control
over this probability distribution, and the following definition will be important:

Definition 3.1. (UNC) Given a probability distribution Ω on the underlying indicator variables
Z, we say that Ω satisfies upper negative correlation with respect to probability vector p or simply
“UNC(p)” if all entries of p lie in [0, 1] and if for all elements x1, . . . , xk, we have

PΩ(Zx1 = · · · = Zxk
= 1) ≤ px1 . . . pxk

.

For an event E and a probability vector p, we define P∗
p(E) to be the minimum, over all Ω satisfying

UNC(p), of PΩ(E). (As the number of variables is finite, this minimum is achieved.)

Essentially, when computing P∗(E), we are not allowing the random variables Z to be positively
correlated. For some types of events, such as large-deviation events, this allows us to control the
probability very strongly; for other events, such as a union of many events, this is no better than
the union bound.

Our main theorem is:

Theorem 3.2 (Assignment LLL). Suppose we are given a CSP for which there exists λ ∈ [0, 1]N

such that when we sample all the Zx independently with Pr[Zx = 1] = λx, we have

∀i ∈ [n],
∑

j

λi,j ·P∗
λ[
⋂

B∈Bi,j

B
∣

∣ Zi,j = 1] > 1.

Then, if no bad-event B ∈ B is a tautology, the CSP is feasible.

To prove the theorem, we will study the following probabilistic process. We are given a vector
p ∈ [0, 1]N of probabilities, one for each indicator Zx. Each Zx is drawn independently as Bernoulli-
p, i.e. P (Zx = 1) = px. (If for some event x we have px > 1, then by an abuse of notation, we take
this to mean that Zx = 1 with certainty). Our goal is to satisfy all the assignment constraints and
avoid all the events in B. If C ⊆ B, we use the notation ∃C to denote the event that some B ∈ C
occurs. So in this case, we want to avoid the event ∃B. For an element x we define Bx to index the
set of all bad events Bk ∈ B which are (explicitly) affected by Zx.

We recall a basic lemma concerning increasing and decreasing events, which follows from the
FKG inequality [8]:

Lemma 3.3. Let X0, X1 ⊆ X be two disjoint subsets of the elements. Let E1 be some event
depending solely on variables in X1. Let E− be a decreasing event. Then,

P(∀x ∈ X0 Zx = 1 | E1, E−) ≤ pX0

Similarly, if E+ is increasing, then P(∀x ∈ X0 Zx = 1 | E1, E
+) ≥∏x∈X0

pX0.

Recall that we are using the power notation so that pX0 means simply
∏

x∈X0
px.
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Proof. We will only prove the first part of this lemma; the second is analogous.
We average over all assignments to the variables Zx, for x ∈ X1. For any such assigment-vector

~z, the event
∧

x∈X0
Zx = 1 is an increasing function, while E− is a decreasing function in the

remaining variables. Hence, by FKG, the probability of this event conditional on (ZX1 = ~z ∧ E−)
is at most its value conditional on ZX1 = ~z alone. But, the events

∧

x∈X0
ZX0 = 1 and ZX1 = ~z

involve disjoint sets of variables, so they are independent. Hence this probability is at most the
unconditional probability of

∧

x∈X0
Zx = ~1, namely pX0 . �

If A ⊆ [n] is any subset of the blocks, we define the event Assigned(A) to be the event that, for
all i ∈ A, there is at least one value of j for which Zi,j = 1. Our goal is to satisfy the constraint
Assigned([n]). If i ∈ [n] we write Assigned(i) as short-hand for Assigned({i}). Because all the bad
events are increasing Boolean functions, if we can find a configuration in which each block has at
least one value assigned, we can easily alter it to a feasible configuration in which each block has
exactly one value assigned.

We are now ready to state the first lemma concerning this probabilistic process. We want to show
that the there is a positive probability of satisfying all the assignment constraints and avoiding all
bad events. We will show the following by induction, with stochastic domination playing a key role:

Lemma 3.4. Let ǫ < 1. Suppose p ∈ [0, ǫ]N is a probability vector such that for all blocks i,
∑

j

pi,j(P
∗
p/ǫ(¬∃Bi,j | Zi,j = 1))−

∑

j,j′

pi,jpi,j′ ≥ ǫ.

Then for any block i, any C ⊆ B a set of bad events, and any A ⊆ [n], we have

P(Assigned(i) | ¬∃B′,Assigned(A)) ≥ ǫ.

Proof. We show this by induction on |C| + |A|. We may assume that i /∈ A, as otherwise this is
vacuous. First, suppose |C| = 0. Then, P(Assigned(i) | ¬∃C,Assigned(A)) equals P(Assigned(i))
as these events are independent. By Inclusion-Exclusion, the latter probability is at least

P(Assigned(i)) ≥
∑

j

pi,j −
∑

j,j′

pi,jpi,j′

and it is easy to see that the lemma’s hypothesized constraint implies that this is at least ǫ.
Next suppose |C| > 0. We use Inclusion-Exclusion to estimate P(Assigned(i) |

¬∃C,Assigned(A)). First, consider the probability that a distinct pair j, j′ in block i are jointly
chosen, conditional on all these events. For this, by Lemma 3.3 we have

(17) P(Zi,j = Zi,j′ = 1 | Assigned(A),¬∃C) ≤ pi,jpi,j′

as i 6∈ A and ¬∃C is decreasing.
Let us fix j. We next need to show a lower bound on P(Zi,j = 1 | Assigned(A),¬∃C). This is

easily seen to equal P(Zi,j = 1) if Bi,j ∩ C = ∅, so we can assume Bi,j ∩ C 6= ∅. We see by Bayes’
Theorem that P(Zi,j = 1 | Assigned(A),¬∃C) equals

P(¬∃(C ∩ Bi,j) | Zi,j = 1,Assigned(A),¬∃(C − Bi,j))

P(¬∃(C ∩ Bi,j) | Assigned(A),¬∃(C − Bi,j))
×P(Zi,j = 1 | Assigned(A),¬∃(C − Bi,j))

since the denominator is a probability, Lemma 3.3 yields

P(Zi,j = 1 | Assigned(A),¬∃C) ≥ pi,j ·P(¬∃Bi,j | Zi,j = 1,Assigned(A),¬∃(C − Bi,j)).

(This approach to handling a conditioning was inspired by [6].)
Consider the random variables Z conditioned on the events Assigned(A),¬∃(B−Bi,j), Zi,j = 1.

Our key claim now is that these conditional random variables Z (apart from Zi,j itself) satisfy
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UNC(p/ǫ): note that p/ǫ is a valid probability vector since p ∈ [0, ǫ]N . To show this, we need to
upper-bound P(E1 | E2), where

E1 ≡ (Zi′1,j
′

1
= · · · = Zi′

k
,j′
k
= 1) and

E2 ≡ (Assigned(A),¬∃(Y − Bi,j), Zi,j = 1),

and where k and i′1, j
′
1, . . . , i

′
k, j

′
k are arbitrary. Letting I ′ = {i′1, . . . , i′k}, we also define

E3 ≡ (Zi,j = 1,Assigned(A− I ′),¬∃(B − Bi,j)).

By simple manipulations, we see that P(E1 | E2) is at most

(18) P(E1 | E3)/P(Assigned(i′1, . . . , i
′
k) | E3).

Note that E1 does not share any variables with (Zi,j = 1,Assigned(A − i′1 − · · · − i′k)), and that
¬∃(B − Bi,j) is a decreasing event. Hence by Lemma 3.3 the numerator is at most pi′1,j′1 . . . pi′k,j

′

k
.

Now let us examine the denominator. The variable Zi,j does not affect any of the events mentioned
in the denominator, so we may remove it from the conditioning:

P(Assigned(I ′) | E3) = P(Assigned(I ′) | Assigned(A− I ′),¬∃(B − Bi,j)),

which in turn is at least ǫ|I
′|, by iterated application of the induction hypothesis (recall that

Bi,j ∩ C 6= ∅).
Putting this all together, we have that the probability of the event Zi′1

= · · · = Zi′
k
is at most

pk/ǫ|I
′| ≤ (p/ǫ)k. So the random variables Z satisfy UNC(p/ǫ) and we have

P(¬∃Bi,j | Zi,j = 1,Assigned(A),¬∃(C − Bi,j)) ≥ P∗
p/ǫ(¬∃Bi,j | Zi,j = 1)

The right-hand side is substantially simpler, as there is no conditioning to link the variables. Sub-
stituting this into (17) and (3.1), we get

P(Assigned(i) | Assigned(A),¬∃C) ≥
∑

j

pi,jP
∗
p/ǫ(¬∃Bi,j | Zi,j = 1)−

∑

j,j′

pi,jpi,j′

and by our hypothesis the right-hand side is at least ǫ. �

We can now allow all entries of p to tend to 0 at the same rate, which simplifies our formulae:

Theorem 3.2 (Assignment LLL – restated). For any element x ∈ X and any vector of probability
λ ∈ [0, 1]N define

hx(λ) = P∗
λ(¬∃Bx | Zx = 1)

For any block i define

Hi(λ) =
∑

j

λi,jhi,j(λ)

Suppose that for all blocks i ∈ [n] we satisfy the constraint Hi(λ) > 1. Then the corresponding
CSP has a feasible solution.

Proof. Let p = αλ and let ǫ = α for some α > 0. In order to use Lemma 3.4, it suffices to satisfy
the constraint for all i

(19)
∑

j

pi,jhi,j(p/ǫ)−
∑

j,j′

pi,jpi,j′ ≥ ǫ.

Let us fix a block i. Suppose we allow α → 0. In this case, (19) will be satisfied for some α > 0
sufficiently small if we have

∑

j

λi,j ·P∗
λ(¬∃Bi,j | Zi,j = 1) > 1

As there are only finitely many blocks, there is α > 0 sufficiently small which satisfies all
constraints simultaneously.
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In this case, we claim that there is a positive probability of satisfying Assigned(i), Bk for all
blocks i and all bad events Bk, when we assign variables Z independently Bernoulli-p. First,
P(¬∃B) ≥ ∏

x∈X P(Zx = 0), since no Bk is a tautology; the latter product is clearly positive for
small-enough α. Next, by Lemma 3.4 and Bayes’ Theorem,

P(Assigned(1) ∧ · · · ∧Assigned(n) | ¬∃Y ) ≥
n
∏

i=1

ǫ > 0.

In particular, there is a configuration of the Zx which satisfies all the constraints simultaneously. �

3.2. Computing P∗. In the usual LLL, one can fully specify the underlying random process, so
one can compute the probability of a bad event fairly readily. In the assignment LLL, we know that
the random variables must satisfy their UNC constraints, but we do not know the full distribution
of these variables. This can make it much harder to bound the probability of a bad event.

Roughly speaking, the UNC constraints force the underlying variables to be negatively correlated
(or independent). For some types of bad events, this is enough to give strong bounds:

Lemma 3.6. For random variables Zx1 , . . . , Zxk
, let µ = λx1 + · · ·+ λxk

. Then

P∗
λ(Zx1 + · · ·+ Zxk

≤ µ(1 + δ)) ≥ 1−
( eδ

(1 + δ)1+δ

)µ

Proof. The Chernoff upper-tail bound applies to negatively correlated random variables [24]. �

Suppose we have an increasing bad event B which depends on Zx1 , . . . , Zxk
. We are given

λ ∈ [0, 1]N . Note that Ω is a probability distribution on Z1, . . . , ZN , but we abuse notation to view
it as a distribution on Zx1 , . . . , Zxk

as well. We describe a generic algorithm to compute P∗
λ(B)

(we sometimes just denote P∗
λ(·) as P∗(·)).

As B is an increasing event, we can write B = a1∨· · ·∨an, where each ai ∈ B is an atomic event,
and is minimal in the sense that for all a′ < ai we have a′ 6∈ B. We assume 0 /∈ B, as otherwise B
is a tautology and P∗(B) = 1.

We say that a probability distribution Ω on the variables Zx1 , . . . , Zxk
is worst-case if P∗

λ(B) =
PΩ(B). By finiteness, such Ω exists. The basic idea of our algorithm is to view each PΩ(ω) as an
unknown quantity, where ω ∈ Ω is an atomic event. We write qω = PΩ(ω) for simplicity. In this
case, PΩ(B) is the sum

PΩ(B) =
∑

ω∈B
qω

Furthermore, the UNC constraints can also be viewed as linear constraints in the variable qω.
For each x′1, . . . , x

′
k′ , we have the constraint

∑

ωx′1
=···=ωx′

k′
=1

qω ≤ λx′

1
. . . λx′

k′

This defines a linear program, in which we maximize the objective function P∗(B) =
∑

ω∈B qω
subject to the UNC constraints. The size of this linear program may be enormous, potentially
including 2k variables and 2k constraints. However, in many applications k is a parameter of the
problem which can be regarded as constant, so such a program may still be tractable.

In general, we can reduce the number of variables and constraints of this linear program with
the following observations:

Proposition 3.7. There is a distribution Ω such that PΩ(B) = P∗(B) and such that Ω is only
supported on the atomic events {0, a1, . . . , an}.
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Proof. Suppose Ω satisfies the UNC constraints. Then define Ω′ as follows. For each atomic event
ω, if ω /∈ B, then shift the probability mass of ω to 0; otherwise, shift the probability mass of ω
to any minimal event ai underneath it. This preserves all UNC constraints as well as the objective
function. �

For some types of bad events, there are certain symmetries among classes of variables. In this
case, one can assume that the distribution Ω is symmetric in these variables; hence the probabilities
of all such events can be collapsed into a single variable.

Proposition 3.8. Given a group G ⊆ Sk, where Sk is the symmetric group on k letters, define
the group action of G on a probability distribution Ω by permutation of the indices and on λ by
permutation of the coordinates. Suppose B, λ are closed under the action of G. Then there is a
worst-case probability distribution Ω which is closed under G. For this probability distribution Ω,
we only need to keep track of a single unknown quantity q′ for each orbit of G.

Proof. Given a worst-case distribution Ω, let Ω′ = 1
|G|
∑

g∈G gΩ. As B is closed under G, each of

the distributions gΩ has the same probability of the bad event B. As λ is closed under G, all the
UNC constraints are preserved in each gΩ. �

3.3. Comparing the Assignment LLL and PRA. Although it is not obvious in the form we
have stated it, there are connections between the PRA, and in particular Theorem 2.11, Assign-
ment LLL of Theorem 3.2. Of course, the latter is nonconstructive, while the former is usually
a polynomial-time algorithm. Moreover, for all the applications in this paper, the PRA leads to
efficient algorithms, and in most cases, to bounds which are (significantly) improved compared to
the Assignment LLL.

However, we have not been able to prove a general theorem to the effect that the PRA is a
constructive form of the Assignment LLL or is always better. Indeed, there appear to be some
parameter regimes of Theorem 5.2 in which Theorem 3.2 can give slightly better bounds. In order
to explain some links between the Assignment LLL and our resampling approach, we next give
some intuitive connections between the two.

Note that in Theorem 2.11, the values of p and T are not significant by themselves, only their

product ~λ = p(1+T ). A way to interpret this result is that we are “oversampling” each element x.

We imagine that there is a process in which individual indicator variable Zx is Bernoulli-~λx, and
the Zx variables are negatively correlated, but we relax the restriction that exactly one element is
selected from each category.

A fractional hitting-set B′ provides an upper bound on the probability of the bad event B.
Furthermore, this upper bound depends only on the negative correlation of these variables:

Proposition 3.9. For each element x = 〈i, j〉 ∈ X, we define the indicator variable Zx which
is 1 is x is selected and 0 otherwise. Suppose that the indicator variables Zx are each individ-

ually Bernoulli-~λ and are negatively correlated. (We are provided no other information on their

distribution). Then the probability of any bad event B is at most P(B) ≤∑Y⊆B B′(Y )~λY .

Furthermore, let p∗ denote the maximum possible value of P(B), over all distributions Ω on
the indicator variables which satisfy these two properties, namely that the indicator variables are

individually Bernoulli-~λ and are negatively correlated. Then there is a fractional hitting-set B′ with
p∗ =

∑

Y⊆B B′(Y )~λY .

Proof. Consider the following process: we draw the variables Z as indicated. If the bad event B
occurs, we select some violated subset A ⊆ B and draw Y ⊆ A with probability proportional to
B′(Y ). Otherwise we do not draw. The probability of selecting a subset is P(B). But, we can also

19



count it as

P(B) =
∑

Y⊆B

P(Y | B)

≤
∑

Y

P(∀y ∈ Y Zy = 1)
∑

Y⊆A∈B
P(select A from Y ) ·P(select A)

≤
∑

Y

~λY B′(Y )

We prove that there is a hitting-set B′ achieving p∗ =
∑

Y⊆B B′(Y )~λY by LP duality. We can
view the probability of each atomic event ω ∈ Ω as a linear unknown. Then the constraint that the
variables are negatively correlated is a linear constraint, and the objective function P(B) is linear.
It is not hard to see that a feasible dual corresponds to a fractional hitting-set. �

We can imagine that we are drawing the variables Zx, not by selecting exactly one element from
each category, but according to some more complicated distribution of which we know two things:

the marginal distribution of each element is ~λx; and the elements are negatively correlated.
In this case, the term Gk is measuring the probability of a bad event. The term Gk

x is measuring
how much of this probabiltiy is “due to” the variable x. If the variable x does not affect the bad
event at all, then Gk

x = 0. If the bad event is equivalent to x being selected (i.e. B = {x}), then
Gk

x = ~λx. The standard LLL would not distinguish between a variable affecting the bad event by
“a little” or “a lot”, but the Partial Resampling Algorithm interpolates smoothly between these
extremes.

One important difference between the Assignment LLL and the Partial Resampling Algorithm
is that for the Assignment LLL, we compute P∗ based on the structure of the bad-events. For the
PRA, we choose the fractional hitting-set B′. For a given bad-event B, there is not necessarily a
“best” choice of B′; a choice of B′ can affect the whole dependency structure of the bad-events,
and this can have complicated interactions. In general, the optimal choice for the Assignment LLL
is not necessarily optimal for the PRA.

Furthermore, although the assignment LLL does (implicitly) choose a fractional hitting-set for
each bad-event Bk, in fact this hitting-set may depend not only on k but on the category i it
impacts. The PRA can only select a single fractional hitting-set for each Bk. Although the PRA
is generally stronger, in this one regard it can be slightly weaker than the assignment LLL.

4. Transversals with omitted subgraphs

Suppose we are given a graph G = (V,E) with a partition of its vertices into sets V = V1 ⊔
V2 ⊔ · · · ⊔ Vl, each of size b. We refer to these sets as blocks or classes. We wish to select exactly
one vertex from each block. Such a set of vertices A ⊆ V is known as a transversal. There is a
large literature on selecting transversals such that the graph induced on A omits certain subgraphs.
(This problem was introduced in a slightly varying form by [5]; more recently it has been analyzed
in [32, 15, 33, 16, 13]). For example, when A is an independent set of G (omits the 2-clique K2),
this is referred to as an independent transversal.

It is well-known that a graph G with n vertices and average degree d has an independent set
of size at least n/(d + 1). For an independent transversal, a similar criterion exists. Alon gives a
short LLL-based proof that a sufficient condition for such an independent transversal to exist is to
require b ≥ 2e∆ [2], where ∆ is the maximum degree of any vertex in the graph. Haxell provides
an elegant topological proof that a sufficient condition is b ≥ 2∆ [14]. The condition of [14] is
existentially optimal, in the sense that b ≥ 2∆− 1 is not always admissible [16, 33, 32]. The work
of [15] gives a similar criterion of b ≥ ∆+ ⌊∆/r⌋ for the existence of a transversal which induces no
connected component of size > r. (Here r = 1 corresponds to independent transversals.) Finally,
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the work of [22] gives a criterion of b ≥ ∆ for the existence of a transversal omitting K3; this is the
optimal constant but the result is non-constructive.

These bounds are all given in terms of the maximum degree ∆, which can be a crude statistic.
The proof of [14] adds vertices one-by-one to partial transversals, which depends very heavily on
bounding the maximum degree of any vertex. It is also highly non-constructive. Suppose we let
d denote the maximum average degree of any class Vi (that is, we take the average of the degree
(in G) of all vertices in Vi, and then maximize this over all i). This is a more flexible statistic
than ∆. We present our first result here in parts (R1), (R2), and (R3) of Theorem 4.1. As shown
in [16, 33, 32], the result of (R1) cannot be improved to b ≥ 2∆ − 1 (and hence, in particular, to
b ≥ 2d − 1). As shown in [22], the result of (R3) cannot be improved to b ≥ cd for any constant
c < 1. The result (R1) for independent transversals can also be obtained using the LLL variant of
[25], but (R2) and (R3) appear new to our knowledge.

Theorem 4.1. Suppose we have a graph G whose vertex set is partitioned into blocks of size at
least b. Suppose that the average degree of the vertices in each block is at most d. Then:

(R1): If b ≥ 4d, then G has an independent transversal;
(R2): If b ≥ 2d, then G has a transversal which induces no connected component of size > 2;
(R3): If b ≥ (4/3)d, then G has a transversal which induces no 3-clique K3.

Furthermore, these transversals can be constructed in expected polynomial time.

Proof. In the framework of our PRA, we associate each block to a category. For each forbidden
subgraph which appears in G, we associate an atomic bad event. (Note that the atomic bad events
for (R2) are all the path of length two in G; for (R3) they are the triangles of G.)

There is a single bad event B = B1, which is that one of the forbidden subgraphs appears in the
transversal. We define a fractional hitting set B′ as follows. For each edge f = 〈u, v〉 ∈ E we assign
weight B′({u, v}) = 1/r, where r is a parameter depending on the structure we are avoiding. For
case (R1), we assign r = 1. For case (R2), we assign r = 2; for case (R3) we assign r = 3. (B′ is
zero everywhere else.) Now, note that in any of the three cases, the atomic bad events all involve
exactly r edges, so the fractional hitting set is valid. Furthermore, any pair of such edges overlap
in at least one vertex, so the ⊲⊳ relation is null in this case – i.e., all 1-neighborhoods are empty
(recall that the only index k for a bad event here is k = 1).

Note that the precondition of Theorem 2.5(c) holds here. We apply Theorem 2.5(c) with all

entries of
~~λ being α, for some scalar α to be determined. Let dv denote the degree of vertex v.

Then, in order to prove (15) for category i (i.e., for block Vi), what we need is

bα−
∑

v∈Vi

dvα
2/r ≥ 1, i.e., bα− bdα2/r ≥ 1 suffices.

This has a solution α > 0 iff

b ≥ 4d

r
,

which gives us the three claimed results. �

4.1. Avoiding large cliques. For avoiding cliques of size s > 3, the above approach based on the
maximum average degree d no longer works; we instead give a bound in terms of the maximum
degree ∆. We will be interested in the case when both s and ∆ is large. That is, we will seek to
show a bound of the form b ≥ γs∆+o(∆), where γs is a term depending on s and s is large. Clearly
we must have γs ≥ 1/(s− 1); e.g., for the graph G = Ks, we need b ≥ 1 = ∆/(s− 1). An argument
of [32] shows the slightly stronger lower bound γs ≥ s

(s−1)2
; intriguingly, this is conjectured in [32]

to be exactly tight. On the other hand, a construction in [22] shows that γs ≤ 2/(s − 1). This is
non-constructive, even for fixed s; this is the best upper-bound on γs previously known.
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We show that the lower-bound of [32] gives the correct asymptotic rate of growth, up to lower-
order terms; i.e., we show in Theorem 4.2 that γs ≤ 1/s+ o(1/s). In fact, we will show that when
b ≥ ∆/s+ o(∆), we can find a transversal which avoids any s-star; that is, all vertices have degree
< s. This implies that the transversal avoids Ks. Furthermore, such transversals can be found in
polynomial time.

Comparison with the standard LLL: Before we give our construction based on the PRA, we
discuss how one might approach this problem using the standard LLL, and why this approach falls
short. As in [2], we make the natural random choice for a transversal: choose a vertex randomly
and independently from each Vi. Suppose we define, for each s-clique H of the graph, a separate
bad event. Each bad event has probability (1/b)s. We calculate the dependency of an s-clique as
follows: for each vertex v ∈ H, we choose another v′ in the category of v, and v′ may be involved
in up to ∆s−1/(s− 1)! other s-cliques. This gives us the LLL criterion

e× (1/b)s × sb∆s−1/(s− 1)! ≤ 1

which gives us the criterion

b/∆ ≥ (
es

(s− 1)!
)

1
s−1 = e/s+ o(1/s)

Now note that when we are calculating the dependency of a bad event, we must take the worst-
case estimate of how many other s-cliques a given vertex v may participate in. We bound this in
terms of the edges leaving v, so the number of such s-cliques is at most ∆s−1/(s − 1)!. However,
heuristically, this is a big over-estimate; there is an additional constraint that the endpoints of all
s − 1 such edges are themselves connected, which is very unlikely. Unfortunately, for any given
vertex v, or even a whole partition Vi, we cannot tighten this estimate; this estimate can only be
tightened in a global sense. The LLL is focused on the very local neighborhood of a vertex, and so
it cannot “see” this global condition.

In implementing the PRA, it is simpler to enforce the stronger condition that the traversal
produced omits s-stars. (That is, in the traversal T , no vertex may have induced degree ≥ s).
The PRA, gives us a way to “localize” global information to the neighborhood of a vertex. We
will resample only r ≤ s of the vertices in an s-star, chosen uniformly. In addition to all the local
information about the given position, we also know the global information that a neighborhood of
an s-star must contain

(

s
r

)

separate r-stars.

We now present our theorem here:

Theorem 4.2. There is a constant c > 0 such that, whenever

b ≥ ∆/s+ cs−3/2 log s

then there is a transversal which omits any s-stars. Furthermore, such a transversal can be found
in polynomial time.

Proof. We will use Theorem 2.5(c), assigning the same vector ~λ = α where α is a constant to be
chosen. There is a single bad event, which is that a Ks appears. We use the following fractional

hitting, which assigns weight
(

s
r

)−1
. In this case, ⊲⊳ is null: for any two r-stars H,H ′ which both

correspond to the same s-star, will overlap in their central vertex.
Then the condition of Theorem 2.5(c) becomes

bα− b
(

(

∆

r

)

+∆

(

∆− 1

r − 1

)

)

(

s

r

)−1

αr+1 ≥ 1

Routine algebra shows that this is satisfied when b ≥ ∆/s + cs−3/2 log s, for some sufficiently
large constant c.

To implement a step of the PRA, one must search the graph for any s-star in the current
candidate transversal; this can be done easily in polynomial time. �
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We note that this result improves on [22] in three distinct ways: it gives a better asymptotic
bound; it is fully constructive; it finds a transversal omitting not only s-cliques but also s-stars.

4.2. Weighted independent transversals. We next study weighted transversals, as considered
by [1]. We use our weighting condition to lower- and upper- bound the weights of independent
transversals, which is not possible using [14] or [25].

Suppose that we are given weights w(v) ≥ 0 for each vertex of G. There is a simple argument

that G = (V,E) has an independent set of weight at least w(V )
∆+1 and that G has a transversal (not

necessarily independent) of weight at least w(V )
b . Likewise, G has independent sets or transversals

with weight at most w(V )/(∆+1) or w(V )/b, respectively. Note also that we cannot always expect
independent transversals of weight more (or less) than w(V )/b: e.g., consider the case of all weights
being equal. Our theorems 4.3 and 4.4 improve quite a bit upon the (nonconstructive) bounds of

[10]; among other things, we show next that weight at least w(V )
b is in fact achievable if b ≥ 4.5∆,

a result that was shown to be true asymptotically for large b in [10].

Theorem 4.3. Suppose 4∆ ≤ b ≤ 4.5∆. Then there is an independent transversal I ⊆ V with
weight

w(I) ≥ w(V )
(

√
b+

√
b− 4∆√

b(2b− 1) +
√
b− 4∆

)

≥ w(V )

8∆− 1
.

Suppose b ≥ 4.5∆. Then there is an independent transversal I ⊆ V with weight

w(I) ≥ w(V ) ·min(1/b,
4

27∆− 2
).

Furthermore, independent transversals with weight at least (1−n−Θ(1)) times these lower-bounds,
can be found in polynomial time with high probability.

Proof. The first result follows in a straightforward manner from Theorem 2.12 when we set each

entry of ~λ to the scalar constant α = b−
√
b
√
b−4∆

2b∆ ; we use a single bad-event B1 with the trivial
hitting-set, whose atomic events correspond to every edge separately. Then the ⊲⊳1-relation is null
and we have Ŝ1 = 1, and the condition of Theorem 2.11 requires

bα− b∆α2 ≥ 1

which is easily checked. Now for each vertex v ∈ Vi we have Hi,v ≤ α2∆; so the probability of
selecting this vertex in the LLL distribution is

P(select v) ≥
~λi,j −Hi,v

~λi −Hi,v

≥ α− α2∆

bα− α2∆
=

√
b+

√
b− 4∆√

b(2b− 1) +
√
b− 4∆

To obtain the second result, in each block Vi, we discard all but the b′ = ⌊9/2∆⌋ highest-weight
vertices. To simplify the proof, consider only the case when ∆ is even (the odd ∆ is similar).

In this case, we assign ~λ = α = 1
3∆ for each of the b′ highest-weight vertices, and ~λ = 0 for

the remaining. Let us fix a block Vi, consisting of vertices v1, . . . , vb sorted by weight so that
w(v1) ≥ w(v2) ≥ · · · ≥ w(vb). By Theorem 2.12, each of the high-weight vertices is selected with

probability ≥ α−∆α2

b′α−∆α2 = 4
27∆−2 . Hence the expected weight of the independent transversal selected

is at least (w(v1) + · · ·+w(vb′))
4

27∆−2 . By concavity, subject to a fixed value of w(Vi), the choices

of weights w(v1), . . . , w(vb) which minimizes this assigns constant weight x to all vertices, except
for an additional vertex which receives an additional weight of w(Vi)− xb. The expected weight of
this block then becomes

E[w(Vi ∩ I)] = x+ (w(Vi)− bx)
4

27∆− 2
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This achieves its minimum at either x = 0 or x = 1/b, yielding

E[w(I)] ≥ w(V ) ·min(
1

b
,

4

27∆− 2
).

Finally, the high-probability bound follows by standard repetition of this basic randomized al-
gorithm. �

We show a matching upper bound on weights:

Theorem 4.4. Suppose 4∆ ≤ b ≤ 8∆. Then there is an independent transversal I ⊆ V with weight

w(I) ≤ w(V )
2

4
√
∆
√
b− 4∆ + b

Suppose b ≥ 8∆. Then there is an independent transversal I ⊆ V with weight

w(I) ≤ w(V )

b

Furthermore, independent transversals with weight at most (1+n−Θ(1)) times these upper-bounds,
can be found in polynomial time with high probability.

Proof. Suppose we discard all but the lowest-ranking b′ vertices in each block, where b′ = 4∆. For

these vertices v, we set ~λv = α = 1
2∆ , and we set ~λv = 0 for the remaining vertices. We have a

single bad-event with trivial hitting-set and atomic bad-events for each edge. Then we have Ŝ1 = 1,
and the condition of Theorem 2.11 is satisfied.

Fix a block Vi, in which the vertices are sorted in increasing order of their weight w(v1) ≤
w(v2) ≤ · · · ≤ w(vb). Then we can write the expected weight of the resulting block as

E[w(Vi ∩ I)] = w(v1) + (w(v2)− w(v1))(1−P(v1 selected)) + (w(v3)− w(v2))(1−P(v1 or v2 selected))

+ · · ·+ (w(vb′)− w(vb′−1)P(vb′ selected)

≤ w(v1) + (w(v2)− w(v1))(1−
α−∆α2

b′α−∆α2
) + (w(v3)− w(v2))(1−

2(α−∆α2)

b′α− 2∆α2
) + . . .

Subject to the constraints that w(v1) ≤ w(v2) ≤ . . . and w(v1) + · · ·+w(vb) = w(Vi), the choice
of w(v1), . . . , w(vb) which maximizes this is the following: for some 2 ≤ k ≤ b′, all the vertices
vk, . . . , vb have weight x, while vertex vk−1 has weight y ≤ x, and (b− k+ 1)x+ y = w(Vi). In this
case, we have

E[w(Vi ∩ I)] ≤ max
x≥y∈R,k∈{2,...,b′}

yP(vk−1, . . . , vb′ selected) + (x− y)P(vk, . . . vb′ selected)

≤ max
x≥y∈R,k∈{2,...,b′}

y
(b′ − k + 2)α

b′α− (k − 2)α∆2
+ (x− y)

(b′ − k + 1)α

b′α− (k − 1)α∆2

We now relax the restriction that k is an integer in the range {2, . . . , b′} to allow k to be a real
number in the interval [1, b′]. When k is relaxed in this way, the maximum of the above expression

occurs at y = 0 and x = w(Vi)
b−k+1 ; we thus have

E[w(Vi ∩ I)] ≤ max
k∈[1,b′]

w(Vi)

b− k + 1

(b′ − k + 1)α

b′α− (k − 1)α∆2

When b ≥ 8∆, this is decreasing function of k on the interval [1, b′], hence achieves its maximum
value at k = 1, yielding E[w(Vi ∩ I)] ≤ 1

b . When 4∆ < b ≤ 8∆, this achieves its maximum at the

critical point k = b′ + 1 − (
√
b′−4∆+

√
b′)
√

b′(b−b′)

2
√
∆

; this yields E[w(Vi ∩ I)] ≤ 2
4
√
∆
√
b−4∆+b

. Finally,

at b = 4∆, then we again restrict k to range over the integers; in this case it achieves a maximum
value at k = b yielding E[w(Vi ∩ I)] ≤ 2

1+4∆ .
Putting all these cases together gives us the claimed result. �
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We can give similar bounds for independent transversals omitting other subgraphs. Note that
such a bound cannot be specified in terms of the average degree, because we might add vertices of
small degree and weight.

5. Sums of random variables, and column-sparse packing

Different types of bad events call for different hitting-sets, and the best choice may depend on
“global” information about the variables it contains, in addition to local parameters. However,
there is a natural and powerful option for upper-tail bad events Bk of the form

∑

ℓ Zℓ ≥ k, which is
what we discuss next. As above, we work in our usual setup of elements, categories, and increasing
bad events Bk. In the discussion below, elements will often be referred to as x, xr etc.; note that
an element is always some pair of the form 〈i, j〉.

Theorem 5.1. Suppose we are given an assignment of non-negative real numbers ~λi,j to each

element 〈i, j〉. Let x1, . . . , xv be a set of elements. Define µ =
∑

t
~λxt , and for each category i let

µi =
∑

xt is in category i

~λxt

Suppose that in our usual setting of categories and bad events, there is a bad event Bk that Zx1 +
· · ·+Zxv ≥ µ(1+ δ), where δ > 0 and µ(1+ δ) is an integer. Let d ≤ µ(1+ δ) be a positive integer.
Then, recalling Definition 2.4, there is a fractional hitting-set B′

k with the property

Gk ≤ µd

d!
((1+δ)µ

d

)
; Gk

i ≤ (µi/µ) · d · (1− (µi/µ))
d−1 · µd

d!
((1+δ)µ

d

)
.

Also, we refer to the parameter d as the width of this hitting-set.

Proof. Assign the following fractional hitting-set: for each subset Y = {xr1 , . . . , xrd} of cardinality d
in which all the elements xr1 , . . . , xrd come from distinct categories, assign weight B′

k(Y ) = 1

((1+δ)µ
d )

.

Note that exactly one element gets assigned from each category; furthermore, an atomic bad event
is one in which µ(1+ δ) elements, all from different categories, get assigned. These two facts easily
help show that B′

k is a valid fractional hitting-set.
We now have

Gk =

∑

xr1<···<xrd
from distinct categories

~λr1 . . .
~λrd

((1+δ)µ
d

)

=

∑

0≤i1<···<id<n µi1 . . . µid
((1+δ)µ

d

)

≤
(

n
d

)

(µ/n)d
((1+δ)µ

d

)
≤ µd

d!
((1+δ)µ

d

)
.
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For a category i, we have

Gk
i ≤

∑

i1,...,id−1 6=i µi1 . . . µid−1
µi

((1+δ)µ
d

)

≤
µi

(

n−1
d−1

)

(µ−µi

n−1 )
d−1

((1+δ)µ
d

)

≤ µi(µ− µi)
d−1

(d− 1)!
((1+δ)µ

d

)

≤ (µi/µ)d(1− (µi/µ))
d−1 µd

d!
((1+δ)µ

d

)
.

�

Note that by setting d = ⌈µδ⌉, one can achieve the Chernoff bounds [30]:

µd

d!
((1+δ)µ

d

)
≤
( eδ

(1 + δ)1+δ

)µ
.

5.1. LP rounding for column-sparse packing problems. In light of Theorem 5.1, consider the
family of CSPs where we have a series of linear packing constraints of the form “

∑

x ak,xyx ≤ bk”,
with non-negative coefficients a, b. (Here and in what follows, x will often refer to some element
(i, j).) In addition, there is the usual assignment constraint, namely a series of disjoint blocks
X1, . . . , Xn with the constraint that

∑

j yi,j = 1. When does such an integer linear program have
a feasible solution?

Suppose we wish to solve this via LP relaxation. One technique is to solve the simpler linear
program where the integrality constraints on y ∈ {0, 1} are relaxed to y′ ∈ [0, 1], and in addition
the packing constraints are tightened to

∑

x ak,xyx ≤ b′k for some b′k ≤ bk. We assume that each
ak,x ∈ [0, 1] and that for each x we have

∑

k ak,x ≤ D.
We note that there are constructions using the standard LLL and standard Moser-Tardos algo-

rithm that can yield results qualitatively similar to the ones in this section. Two examples are [12]
and [19]. The analysis of [12] appears to only work in the regime b′k = 1; the analysis of [19] is
phrased in terms of the total number of constraints each variable participates in (as opposed to the
l1 sum of the corresponding coefficients). Tthe case in which b′k have differing magnitudes appears
to be beyond either of these analyses.

In addition, these papers are quite difficult technically; in [12], there is a quantization argument,
in which one must handle separately coefficients of different magnitudes. In [19], there is an iterated
application of the LLL, in which one must track quite carefully the sizes of the relevant papers as
they are reduced from the original system.

The PRA provides however, a simple and comprehensive framework to obtain an integral solution.
We have just a single application of the PRA which directly produces our desired solution, and we
handle fractional coefficients almost automatically.

Our condition on the separation between bk and b′k is based on the Chernoff bound. To state
this theorem in the simplest and broadest form, recall the Chernoff separation function from Defi-
nition 1.1.

Theorem 5.2. There is some universal constant C > 0 with the following property. Suppose that
we have an LP parametrized by ak,x, b

′
k, where D = maxx

∑

k,x ak,x ≥ 1.
Now let ǫ > 0, bk be given such that:

(C1): For all k we have bk
b′
k
Chernoff(b′k(1 + ǫ), bk) ≤ Cǫ

D

(C2): For all k we have bk ≥ 1
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(C3): For all k we have bk ≥ b′k(1 + ǫ)

Then if the linear program
∑

j

yi,j ≥ 1,
∑

x

ak,xyx ≤ b′k, yx ∈ [0, 1]

is satisfiable, then so is the integer program
∑

j

yi,j ≥ 1,
∑

x

ak,xyx ≤ bk, yx ∈ {0, 1}.

Furthermore, suppose we have a separation oracle for the LP and the IP. (That is, given a
variable assignment, we can either find a violated linear constraint, or determine that all constraints
are satisfied). Then such a satisfying assignment can be found in polynomial time.

Proof. We will prove this Theorem under the assumption that ǫ ∈ (0, 1]. As will be shown in
Proposition 5.3, we can then adjust the constant C so that the theorem holds for any ǫ ∈ (0,∞).

Using the separation oracle, one can solve the LP in polynomial time. Suppose we have a feasible

solution y to the relaxed linear program. Then we set ~λ = (1 + ǫ)y. We associate a bad event to
each packing constraint. Let us analyze a constraint k. Define µ = b′k(1 + ǫ), define t = bk, and
define δ = t/µ− 1. This corresponds to a bad-event

∑

x ak,xyx > bk. We use the fractional hitting
set which assigns, to each set of d elements x1, . . . , xd from distinct categories, the weight

B′
k({x1, . . . , xl}) =

ak,x1 . . . ak,xl
(

bk
l

)

where d = ⌈µδ⌉.
We first claim that this is a valid hitting set. For, suppose we have a set of d′ elements such that

ak,x1 + · · · + ak,xd′
> bk. As a ∈ [0, 1] we must have d′ > bk ≥ d. Furthermore, summing over all

d-subsets of {x1, . . . , xd′} we have

∑

s1<s2<···<sl

B′
k({xs1 , . . . , xsd}) =

∑

s1<s2<···<sd

ak,xs1
. . . ak,xsd
(

bk
d

)

This can be regarded as a polynomial in the weights a. Subject to the constraint ak,x1 + · · · +
ak,xd

≥ bk and a ∈ [0, 1], the numerator achieves its minimium value when there are are ⌊bk⌋
elements of weight a = 1 and one further element of weight a = bk − ⌊bk⌋. In particular, the

numerator is at least
(

bk
d

)

, and this sum is at least 1 as desired.
We will next bound the contribution of each bad event. For a constraint k, we have

Gk =
∑

x1<···<xd

~λx1 . . .
~λxd

B′
k{x1, . . . , xd}

=

∑

x1<···<xd

~λx1ak,x1 . . .
~λxd

ak,xl
(

bk
d

)

Now, note that
∑

x
~λxak,x =

∑

t ak,xyk,x(1 + ǫ) ≤ b′k(1 + ǫ). By concavity, the numerator is

maximized when all |X| terms ~λtak,t are equal to b′k(1 + ǫ)/|X|. (Recall that X is the set of all
possible ordered pairs 〈i, j〉.) Using a similar argument to Theorem 5.1, we have

Gk ≤
(|X|

d

)

(

b′k(1+ǫ)

|X|

)d

(

bk
l

) ≤ µd

d!
(µ(1+δ)

d

)
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For d = ⌈µδ⌉, this expression is bounded by the Chernoff bound

Gk ≤ Chernoff(b′k(1 + ǫ), bk)

≤ bk
b′k(1 + ǫ)

Chernoff(b′k(1 + ǫ), bk) by (C3)

≤ Cǫ

D(1 + ǫ)
by (C1)

≤ C;

for C sufficiently small this yields Gk ≤ 1− Ω(1).

Similarly, along the lines of Theorem 5.1, for a category i, set µi =
∑

j ak,i,j
~λi,j so that we have

Gk
i ≤ µid

µ

µd

d!
((1+δ)µ

d

)

≤ µi(δ + 1/µ)Chernoff(µ, t)

≤ µi(
bk + 1

b′k(1 + ǫ)
− 1)Chernoff(µ, t)

= O(Cµi
ǫ

D(1 + ǫ)
) by (C1), (C2)

Now, by Theorem 2.5(b), we sum over all j obtaining

∑

j

~λi,j −
∑

k

Gk
i

1−Gk
≥ (1 + ǫ)−

∑

k

µk,iO(Cǫ/(D(1 + ǫ))

Ω(1)

= (1 + ǫ)−
∑

j

∑

k

O(ak,i,j~λi,jC
ǫ

D(1 + ǫ)
)

≥ (1 + ǫ)− C
ǫ

1 + ǫ
O(
∑

j

~λi,j)

≥ 1 + ǫ−O(Cǫ);

for C sufficiently small, this is ≥ 1 as desired.

Furthermore, we have
∑

j
~λi,j ≤ 1+ǫ ≤ 2, so the PRA terminates to such a configuration after an

expected constant number of iterations. Although the number of constraints may be exponential, it
is not hard to see that one can efficiently implement a single step of the PRA using the separation
oracle. So this gives a polynomial-time algorithm.

�

To complete this proof, we show that, by adjusting C slightly, one can extend the above proof
to cover the case when ǫ → ∞:

Proposition 5.3. Let C be an arbitrary constant. There is a constant C ′ < C with the following
property. Suppose that, for some ǫ′ ∈ (0,∞), we satisfy

∀k bk
b′k

Chernoff(b′k(1 + ǫ′), bk) ≤
C ′ǫ
D

Then, with ǫ = min(1, ǫ′) we satisfy

∀k bk
b′k

Chernoff(b′k(1 + ǫ), bk) ≤
Cǫ

D
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Now, if we replace the constant C determined in the proof of Theorem 5.2 (which was only valid
in the range ǫ ∈ (0, 1]), with the constant C ′, then it should be clear that Theorem 5.2 holds for any
ǫ ∈ (0,∞).

Proof. This theorem obviously holds when ǫ′ < 1, so it will suffice to show that there is some
constant φ > 0 such that, for all real numbers x, y with y ≥ 1, y ≥ 2x we have

min
ǫ∈[1,y/x−1]

Chernoff(x(1 + ǫ), y)

ǫ
≥ φChernoff(2x, y)

(Here x plays the role of b′k and y plays the role of bk; note we must have bk ≥ (1 + ǫ)b′k ≥ 2bk,
which explains the constraints y ≥ 2x and ǫ ≤ y/x− 1).

Let ǫ∗ = argminǫ∈[1,y/x−1]
Chernoff(x(1+ǫ),y)

ǫ . Using simple calculus, we see that ǫ∗ = 1, y/x− 1 or

the critical point
−
√

(x−y+1)2−4x−x+y−1

2x ; the latter is only possible when it is a real number, i.e.
y ≥ 1 + 2

√
x+ x.

Let us first deal with the case ǫ∗ = y/x− 1. For this case, we have

Chernoff(x(1 + ǫ∗), y)
ǫ∗Chernoff(2x, y)

=
1

Chernoff(2x, y)(y/x− 1)
≥ 1

Chernoff(2x/y, 1)(y/x− 1)
;

the latter is a decreasing function of y/x, which approaches to a limit of 1/(2e) as y/x → ∞. Hence
for ǫ∗ = y/x− 1 we have

Chernoff(x(1 + ǫ∗), y)
ǫ∗

≥ Chernoff(2x, y)

2e
.

We next consider ǫ∗ =
−
√

(x−y+1)2−4x−x+y−1

2x . In order to have the latter expression be a real
number in the range [1,∞), we must have

0 < x ≤ 1 1 + 2
√
x+ x ≤ y ≤ 2 + 2x

Through simple calculus, one can verify that the minimum value of Chernoff(x(1+ǫ∗),y)
ǫ∗ in this domain

is obtained at x → 0, y → 1 yielding

Chernoff(x(1 + ǫ∗), y)
ǫ∗

≥ Chernoff(2x, y)

2
.

This completes the proof. �

In a typical application of this theorem, one is given some fixed LP which specifies a, b′k, D. One
wants to choose bk, ǫ to satisfy Theorem 5.2; typically, it is important to make the bk as small as
possible so as to get a good approximation ratio to the LP, while ǫ is not important except inasmuch
as it satisfies the Theorem.

Comparison with the standard LLL: We note that it is quite difficult for the standard LLL to
approach this result, at least in its full generality. The reason is that variable yi,j affects constraint
k if ak,i,j > 0, and it is possible that every variable affects every constraint. To get around this in
[12], there is a complex quantization scheme in which coefficients which are small are ignored at
certain stages of the construction. By contrast, the PRA is able to handle all sizes of coefficients
in a unified and simple way.

Example parameters: Theorem 5.2 is given a very generic setting, which is intended to handle
a wide range of sizes for the parameters bk, b

′
k, D. When we can restrict these parameters, we can

obtain much more explicit and straightforward bounds. We illustrate some typical results.

Proposition 5.4. Suppose we are given an LP satisfying the requirement of Theorem 5.2; let c > 0
be any desired constant. Then we can set bk as follows so as to satisfy Theorem 5.2:

(1) For each k with b′k = O(1), we set bk = O( logD
log logD );
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(2) For each k with b′k ≥ Ω(logD), there is some constant c′ > 0 such that we may set bk =

b′k(1 +D−c) + c′
√

b′k logD.

Values of b′k which are not covered by these cases, will have a similar but more complicated value
of bk.

Proof. To simplify the notation, we suppose D ≥ D0 for some sufficiently large constant D0. We
set ǫ = D−c.

We first prove case (1). In this case, let bk = b′k(1 + ǫ) + φ( log(D
log logD ) for some constant φ to be

specified. In this case, the critical constraint is (C1); we bound it as

bk
b′k

Chernoff(b′k(1 + ǫ), bk) = O
( φ logD

log logD

)( eδ

(1 + δ)1+δ

)−O(1)

where δ = Ω(φ
logD

log logD
)

= O
( φ logD

log logD

)(

D−Ω(φ)
)−O(1)

≤ φD−xφ where x is a constant

≤ Cǫ

(1 + ǫ)D
for φ sufficiently large

Case (2) is analogous. �

The multi-dimensional scheduling application from the introduction follows as an easy application
of Proposition 5.4. First, given (T1, T2, . . . , TD), we can, motivated by (3), set xi,j := 0 if there
exists some ℓ for which pi,j,ℓ > Tℓ. After this filtering, we solve the LP relaxation. If it gives
a feasible solution, we scale the LP so that all r.h.s. values b′k equal 1; our filtering ensures that
the coefficient matrix has entries in [0, 1] now, as required. By Proposition 5.4, we can now set
bk = O(logD/ log logD). This result is not new to this paper, but it is obtained in a particularly
straightforward way.

The multiplicative factor (1 +D−c) in Proposition 5.4 is required when the right-hand sides b′k
have different magnitudes. When they all have the same magnitude, a simpler bound is possible:

Proposition 5.5. Suppose we are given an LP satisfying the requirement of Theorem 5.2; suppose
that there is some T ≥ Ω(logD) such that, for all k, we have b′k ≤ T . Then setting bk = T +
O(

√
T log T ) suffices to satisfy Theorem 5.2.

Proof. Set ǫ = T−1/2; the remainder of the proof is similar to Proposition 5.4. �

6. Packet routing

6.1. Review of background and known approaches. We begin by reviewing the basic strategy
of [29], and its improvement by [26]. [29] is a very readable overview of our basic strategy, and we
will not include all the details which are covered there. Our choice of parameters will be slightly
improved from [29] and [26]. We note that [26] studied a more general version of the packet-routing
problem, so their choice of parameters was not (and could not be) optimized.

We are given a graph G with N packets. Each packet has a simple path, of length at most D,
to reach its endpoint vertex (we refer to D as the dilation). In any timestep, a packet may wait
at its current position, or move along the next edge on its path. Our goal is to find a schedule of
smallest makespan in which, in any given timestep, an edge carries at most a single packet.

We define the congestion C to be the maximum, over all edges, of the number of packets scheduled
to traverse that edge. It is clear that D and C are both lower bounds for the makespan, and [20]
has shown that in fact a schedule of makespan O(C + D) is possible. [29] provided an explicit
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constant bound of 39(C +D), as well as describing an algorithm to find such a schedule. This was
improved to 23.4(C +D) in [26] as will be described below.

While the final schedule only allows one packet to cross an edge at a time, we will relax this
constraint during our construction. We consider “infeasible” schedules, in which arbitrarily many
packets pass through each edge at each timestep. We define an interval to be a consecutive set
of times in our schedule, and the congestion of an edge in a given interval to be the number of
packets crossing that edge. If we are referring to intervals of length i, then we define a frame to be
an interval which starts at an integer multiple of i.

From our original graph, one can easily form an (infeasible) schedule with delay D and overall
congestion C. Initially, this congestion may “bunch up” in time, that is, certain edges may have
very high congestion in some timesteps and very low congestion in others. So the congestion is not
bounded on any smaller interval than the trivial interval of length D. During our construction, we
will “even out” the schedule, bounding the congestion on successively smaller intervals.

Ideally, one would eventually finish by showing that on each each individual timestep (i.e. interval
of length 1), the congestion is roughly C/D. In this case, one could turn such an infeasible schedule
into a feasible schedule, by simply expanding each timestep into C/D separate timesteps.

As [26] showed, it suffices to control the congestion on intervals of length 2. Given our infeasible
schedule, we can view each interval of length 2 as defining a new subproblem. In this subproblem,
our packets start at a given vertex and have paths of length 2. The congestion of this subproblem
is exactly the congestion of the schedule. Hence, if we can schedule problems of length 2, then we
can also schedule the 2-intervals of our expanded schedule.

We quote the following result from [26].

Proposition 6.1 ([26]). Suppose there is a instance G with delay D = 2 and congestion C. Then
there is a schedule of makespan C + 1. Furthermore, such a schedule can be formed in polynomial
time.

[26] used this to improve the bound on the makespan to 23.4(C + D). [26] speculated that by
examining the scheduling for longer, but still small, delays, one could further improve the general
packet routing. Unfortunately, we are not able to show a general result for small delays such as
D = 3. However, as we will see, the schedules that are produced in the larger construction of [29]
are far from generic, but instead have relatively balanced congestion across time. We will see how
to take advantage of this balanced structure to improve the scheduling.

We begin by first reviewing the general construction of [29].

6.2. Using the LLL to find a schedule. The general strategy for this construction is to add
random delays to each packet, and then allowing the packet to move through each of its edges in
turn without hesitation. This effectively homogenizes the congestion across time. We have the
following lemma:

Lemma 6.2. Let i′ < i, let m,C ′ be non-negative integers. Suppose there is a schedule S of length
L such that every interval of length i has congestion at most C. Suppose that we have

e×P(Binomial(C,
i′

i− i′
) > C ′)× (Cmi2 + 1) < 1

Then there is a schedule S′ of length L′ = L(1 + 1/m) + i, in which every interval of length i′

has congestion ≤ C ′. Furthermore, this schedule can be constructed in expected polynomial time.

Proof. We break the schedule S into frames of length F = mi, and refine each separately. Within
each frame, we add a random delay of length i− i′ to each packet separately.

Let us fix an F -frame for the moment. Associate a bad event to each edge f and i′-interval I,
that the congestion in that interval and edge exceeds C ′.
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For each I, e, there are at most C possible packets that could cross, and each does so with
probability p = i′

i−i′ . Hence the probability of the bad event is at most the probability that a

Binomial random variable with C trials and probability p exceeds C ′.
Next consider the dependency. Given an edge f and i′-interval I, there are at most C packets

crossing it, each of which may pass through up to mi other edges in the frame. We refer to the
combination of a specific packet passing through a specific edge as a transit. Now, for each transit,
there are (depending on the delay assigned to that packet) at most i other i′-intervals in which this
transit could have been scheduled. Hence the dependency is at most Cmi2.

By the LLL, the condition in the hypothesis guarantees that there is a positive probability that
the delays avoid all bad events. In this case, we refine each frame of S to obtain a new schedule S′

as desired. We can use the algorithmic LLL to actually find such schedules S′ in polynomial time.
So far, this ensures that within each frame, the congestion within any interval of length i′ is at

most C ′. In the refined schedule S′ there may be intervals that cross frames. To ensure that these
do not pose any problems, we insert a delay of length i′ between successive frames, during which no
packets move at all. This step means that the schedule S′ may have length up to L(1+1/m)+i. �

Using this Lemma 6.2, we can transform the original problem instance (in which C,D may be
unbounded), into one in which C,D are small finite values. In order to carry out this analysis
properly, one would need to develop a series of separate bounds depending on the sizes of C,D.
To simplify the exposition, we will assume that C,D are very large, in which case certain rounding
effects can be disregarded. When C,D are smaller, we can show stronger bounds but doing this
completely requires extensive case analysis of the parameters.

Lemma 6.3. Assume C +D ≥ 2896. There is a schedule of length at most 1.004(C +D) and in
which the congestion on any interval of length 224 is at most 17040600. Furthermore, this schedule
can be produced in polynomial time.

Proof. Define the sequence ak recursively as follows.

a0 = 256 ak+1 = 2ak

There is a unique k such that a3.5k ≤ (C+D) < a3.5k+1. By a slight variant on Lemma 6.2, one can
add delays to obtain a schedule of length C +D, in which the congestion on any interval of length
i′ = a3k is at most C ′ = i′(1 + 4/ak).

At this point, we use Lemma 6.2 repeatedly to ensure to control the congestion intervals of length
a3j , for j = k − 1, . . . 0. At each step, this increases the length of the resulting schedule from Lj to

Lj(1 + 1/aj+1) + aj , and increases the congestion on the relevant interval from i(1 + 4/ak) to

i(1 + 4/ak)
k−1
∏

j=0

(1 + 4/aj)(
1

1− (aj/aj+1)3
)

(We use the Chernoff bound to estimate the binomial tail in Lemma 6.2.)
For C + D ≥ a3.5k , it is a simple calculation to see that the increase in length is from C + D

(after the original refinement) to at most 1.004(C +D). In the final step of this analysis, we are
bounding the congestion of intervals of length a30 = 224, and the congestion on such an interval is
at most 17040600.

Furthermore, since all of these steps use the LLL, one can form all such schedules in polynomial
time.

See [29] for a much more thorough explanation of this process. �

Now that we have reduced to constant-sized intervals, we are no longer interested in asymptotic
arguments, and come down to specific numbers.
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Lemma 6.4. There is a feasible schedule of length at most 10.92(C+D), which can be constructed
in polynomial time.

Proof. For simplicity, we assume C +D ≥ 2896.
By Lemma 6.3, we form a schedule S1, of length L1 ≤ 1.004(C +D), in which each interval of

length 224 has congestion at most 17040600.
Now apply Lemma 6.2 to S1, with m = 64, i′ = 1024, C ′ = 1385 to obtain a schedule S2, of

length L2 ≤ 1.0157L1 + 224, in which each interval of length 1024 has congestion at most 1385.
Now apply Lemma 6.2 to S2 with m = 64, i′ = 2, C ′ = 20, to obtain a schedule S3 of length

L3 ≤ 1.0157L2 + 1024, in which each frame of length 2 has congestion at most 20.
Now apply Proposition 6.1 to S3, expanding each 2-frame to a feasible schedule of length 21.

The total length of the resulting schedule is at most 21
2 L3 ≤ 10.92(C +D). �

6.3. Better scheduling of the final 2-frame. Let us examine the last stage in the construction
more closely. In this phase, we are dividing the schedule into intervals of length 2, and we want to
control the congestion of each edge in each 2-frame.

For a given edge f and time t, we let ct(f) denote the number of packets scheduled to cross that
edge in the four time steps of the original (infeasible) schedule.

Suppose we have two consecutive 2-frames starting at time t. The reason for the high value of
C ′ in the final step of the above construction is that it is quite likely that ct+ct+1 or ct+2+ct+3 are
much larger than their mean. However, it would be quite rare for both these bad events to happen
simultaneously. We will construct a schedule in which we insert an “overflow” time between the
2-frames. This overflow handles cases in which either ct + ct+1 is too large or ct+2 + ct+3 is too
large.

Our goal will be to modify either of the 2-frames so as to ensure that the congestion is at most
T . In order to describe our modification strategy, we first fix, for every packet and frame, a “first
edge” and “second edge” in this frame. Some packets may only transit a single edge, which we will
arbitrarily label as first or second. As we modify the schedule, some packets that initially had two
transits scheduled will be left with only one; in this case, we retain the label for that edge. So, we
may assume that every edge is marked as first or second and this label does not change.

We do this by shifting transits into the overflow time. For each 2-frame, there are two overflow
times, respectively earlier and later. If we want to shift an edge to the later overflow time, we
choose any packet that uses that edge as a second edge (if any), and reschedule the second transit
to the later overflow time; similarly if we shift an edge to the earlier overflow time. See Figure 1.

S 1    2      3     4     5     6     7      8  

S'   1    2             3     4            5      6           7     8 

Figure 1. The packets in the original schedule S are shifted into overflow times in
the schedule S′.

Note that in the analysis of [26], the only thing that matters is the total congestion of an edge
in each 2-frame. In deciding how to shift packets into the overflow times, we need to be careful to
account for how often the edge appears as the first or second transit. If an edge appears exclusively
as a “first edge”, we will only be able to shift it into the earlier overflow, and similarly if an edge
appears exclusively as a “second edge”.

Keeping this constraint in mind, our goal is to equalize as far as possible the distribution of edges
into earlier and later overflows. We do this by the following scheme:
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1. For each edge f and every odd integer t = 1, 3, 5, . . . , L, repeat while ct(f) + ct+1(f) > T :
2. If ct(f) = 0, ct+1(f) > T , then shift one packet into the later overflow time.
3. Else if ct(f) > T, ct+1(f) = 0, then shift one packet into the earlier overflow time.
4 Else if ct(f)+ ct+1(f) > T, ct(f) > 0, ct+1(f) > 0, ct(f)+ ct+1(f) = odd, then shift one
packet into the earlier overflow time.

5. Else if ct(f) + ct+1(f) > T, ct(f) > 0, ct+1(f) > 0, ct(f) + ct+1(f) = even, then shift
one packet into the later overflow time.

Suppose we fix t to be some odd integer. If we let c′ denote the congestions at the end of this
overflow-shifting process, then we have c′t(f)+ c′t+1(f) ≤ T , and the number of packets shifted into
the earlier (respectively later) overflow time can be viewed as a function of the original values of the
congestions ct, ct+1. We denote these functions by O−(ct, ct+1;T ) and O+(ct, ct+1;T ) respectively.

Specifically we get the following condition:

Proposition 6.5. Suppose that we have a schedule of even length L, and let ct(f) for t = 1, . . . , L
denote the number of times f is scheduled as the tth edge of a packet. Suppose that for all edges
f ∈ E and all t = 1, 3, 5, . . . we satisfy the constraint

O+(ct(f), ct+1(f);T ) +O−(ct+2(f), ct+3(f);T ) ≤ T ′

as well as the boundary constraints

O−(c1(f), c2(f)) ≤ T ′ O+(cL−1(f), cL(f)) ≤ T ′

Then there is a schedule for the graph of makespan L × T+T ′+2
2 + T ′, which can be constructed in

polynomial time.

Proof. After the modification, each 2-frame has congestion at most T , while each overflow time
has congestion at T ′. Each overflow time has delay at most 2, since for any packet x, there may
be at most two edges scheduled into that overflow time, namely the edge that had been originally
marked as the second edge of the earlier 2-frame, and the edge that had been originally marked as
the first edge of the latter 2-frame. Hence each 2-frame can be scheduled in time T + 1 and each
overflow can be scheduled in time T ′ +1. As there are L/2 2-frames in the original schedule, there

are L/2 + 1 overflow periods. Hence the total cost is at most LT+T ′+2
2 + T ′. �

Note that the conditions required by this Proposition 6.5 are local, in the sense that any violation
is any event which affects an individual edge and a 4-interval which starts at an odd time t. We
refer to such an interval for simplicity as an aligned 4-interval. We refer to the conditions required
by this Proposition as the 4-conditions; these conditions can be viewed as either pertaining to
an entire schedule, or to an individual aligned 4-interval. We also note that the 4-conditions are
monotone, in the sense that if a configuration violates them, then it will continue to do so if the
congestion of any edge at any time is increased.

We can use this to improve our bound:

Theorem 6.6. There is a schedule of length 8.84(C +D), which can be found in polynomial time.

Proof. We assume C +D ≥ 2896 for simplicity.
As in the proof of Lemma 6.4, one obtains a schedule S of length L = 1.0158×1.004×1.004(C+D)

in which the congestion on any interval of length i = 1024 is at most C = 1385.
We divide S into frames of length F = 1024m where m = 64, and add a random delay of

length up to 1020 to each packet separately. This increases the length of the schedule up to
L′ ≤ 1.0157L+ 1024. We will first show that each frame individually satisfies the 4-conditions. So
we may concentrate on a single such frame.

We associate a bad event to each aligned 4-interval I and edge f , that it violates the 4-conditions.
It is not hard to see that the dependence of each such bad event is at most Cmi2/2.
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Now consider the probability of a bad event, that a given edge and interval has O+(ct, ct+1;T )+
O−(ct+2, ct+3, T ) > T ′. (The boundary cases are similar and are omitted). There are up to C
packets which could affect the given f, I. For each such packet and each position within the
interval, there is a probability of at most 1/(i − 4) that the packet x is scheduled at that time
(conditional on any allocation to the other 4 positions). As the bad event is an increasing event,
it suffices to suppose that the distribution of each ct, . . . , ct+3 is iid Binomial with C trials and
probability 1/(i− 4).

Now, one can simply enumerate over all possible values and count the total probability of sat-
isfying Proposition 6.5. This is possible because we are dealing with a fixed, finite and relatively
small choice of C. A computer program calculates this probability to be 3.9× 10−12 for the choice
T = 8, T ′ = 7.

One can verify that these parameters satisfy the LLL condition. In particular, such a schedule
S′ exists and can be found in polynomial time.

In order to ensure that the entire schedule satisfies the 4-frame conditions, one may insert a
delay of length 2 between consecutive frames. This ensure that the overflow at the boundaries of
the separate frames do not interfere with each other. Doing this inflates the schedule from length
L′ to length L′(1 + 2/F ) + 2 ≤ 1.0158L+ 1027.

By Proposition 6.5, this schedule S′ can be scheduled in makespan 8.5L′ + 7 ≤ 8.84(C + D).
Note that all the constructions used here can be implemented in polynomial time. �

6.4. The PRA applied to packet routing. So far, all of the improvements we have made to
the packet routing problem used nothing more than the conventional LLL. We now show how to
modify this construction to use the PRA in the appropriate places.

Let us examine more closely the process used to refine a schedule in which each interval of length
C has congestion at most i. We break the schedule S into frames of length F = mi, and refine
each separately. Within each frame, we add a random delay of length b = i − i′ to each packet
separately. Let us fix an F -frame for the moment.

This is an assignment problem, in which we must assign a delay to each packet. Our bad events
here correspond to an edge receiving an excessive congestion in some time interval. The precise
meaning of an excessive congestion depends on which stage of the construction we are at. In the
intermediate stages, all we care about is the total number of packets passing through that interval.
In the final stage, we must satisfy the 4-conditions, which is a more delicate condition depending
on the exact location of the packets within 4-intervals. In either case, these are local and increasing
constraints.

We can modify Lemma 6.4 and Theorem 6.6 to use Theorem 2.5 instead of the LLL.

Proposition 6.7. Let i′ < i, let m,C ′, k be non-negative integers. Suppose there is a schedule S
of length L such that every interval of length i has congestion at most C for some C.

For a given choice of d ≤ C ′, ~λ ∈ [0, 1] define

µ = Ci′~λ

and

p =
µd

d!
(

C′+1
d

)

Suppose we have p < 1 and

(i− i′)~λ−mi2i′~λ(d/µ)
p

1− p
≥ 1

Then there is a schedule S′ of length L′ = L(1 + 1/m) + i, in which every interval of length i′

has congestion ≤ C ′. Furthermore, such a schedule can be found in polynomial time.
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Proof. Suppose we add delays in the range b = i − i′ uniformly to each packet within each frame
of length F = mi. In this case, the categories correspond to each packet x, and for each delay

t we assign ~λx,t = ~λ. For each edge f and i′-interval I, we introduce a bad event Bf,I that the
congestion in the interval exceeds C ′. For this bad event we use a fractional hitting-set of width d
as described in Theorem 5.1.

Fix a bad event Bf,I . This is an upper-tail event. There are at most C packets which could be
scheduled to pass through the given edge, and there are i′ possible delays which would contribute
to the congestion of the given edge-interval. So, in all, the mean number of packets passing through

the edge-interval is µ = Ci′~λ. The bad event is that this exceeds C ′, so we have here δ = C′+1

Ci′~λ
− 1.

This gives Gf,I ≤ ( µd

d!(C
′+1
d )

)

Now consider a fixed packet x. This packet x may pass through up to mi edges in the F -frame,
and each of these can affect at most i intevals. Hence the packet x affects at most mi2 of these bad
events. For each such bad event f, I, there are at most i′ possible delays that could be assigned
to the given packet x to contribute to congestion of f, I. Hence, for each bad event Bf,I , we have

µx = i′~λ and hence Gf,I
x ≤ i′~λd/µ( µd

d!(C
′+1
d )

).

By Theorem 2.11, this suffices to show a good configuration exists. �

Using this, we can replace all but the last step of the construction.

Theorem 6.8. Suppose C + D ≥ 2896. Then there is a schedule of length ≤ 1.0157(C + D), in
which every interval of length 1024 has congestion at most 1312.

Proof. By Lemma 6.3, we form a schedule S1, of length L1 ≤ 1.004(C +D), in which each interval
of length 224 has congestion at most 17040600.

Apply Proposition 6.7 with ~λ = 5.985 × 10−8, C ′ = 1312, d = 247,m = 64 to obtain a schedule
S2 of length L2 ≤ 1.0157L1 + 224, in which each interval of length 1024 has congestion at most
1312. �

The final schedule is the most difficult to bound.

Proposition 6.9. Let m = 64, C = 1312, i = 1024, T = 5, T ′ = 4 be given. Suppose there is a
schedule S of length L such that every interval of length i has congestion at most C. There is a
schedule of length L′ ≤ (1 + 1/m)L+ i, which satisfies the 4-conditions with respect to T, T ′. This
schedule can be produced in polynomial time.

Proof. For each edge f , and each aligned 4-interval I starting at time t, we introduce a bad event
Bf,I that

O+(ct, ct+1) +O−(ct+2, ct+3) > T ′

For this edge f, I, and any packet x with delay t, we say that 〈x, t〉 has type j, if that packet-
delay assignment would cause the given packet x to land at position t+ j within the bad event, for
j = 0, ..3. If that assignment x, t does not contribute to Bf,I , then 〈x, t〉 has no type. For each bad
event, there are at most C variables of each type.

For a bad event Bf,I and a fractional hitting-set B′, we define the score sj(f, I), for j = 0, 1, 2, 3
to be the maximum over all delays x, t of type j, of the quantity

∑

Y⊆B,〈x,t〉∈Y
B′(Y )~λY

Similarly, we define the overall-score to be s(f, I) = gf,I =
∑

Y⊆B B′(Y )~λY . For a collection of all

bad events Bf,I , we define the score sj to be the maximum sj(f, I) over all f, I.
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By Theorem 2.11, if we satisfy the condition

(i− 4)~λ− mi

2

s0 + s1 + s2 + s3
1− s

≥ 1

then there is a schedule of length L′ ≤ (1 + 1/m)L+ i, which satisfies the 4-conditions with T, T ′.
Hence it suffices to produce a series of hitting-sets, for each of the bad events Bf,I , whose score

is bounded.
Now let us fix a bad event Bf,I , and suppose that we have fixed ~λ = 1.23×10−3. We will describe

how to produce a good hitting-set. Although we have stated the proposition for a particular choice
of parameters, we will walk through the algorithm we use to construct and find such a hitting-set.

The bad event depends solely on the number of assigned variables of each type, of which there
are at most C. To simplify the notation, we suppose there are exactly C. Our hitting-set assigns
weights to any subset of the 4C variables involved in the bad event. We will also select a symmetric
hitting-set, in the sense that the weight assigned to any Y ⊆ [C]× [4] depends solely on the number
of variables of each type in Y . So, for any y0, y1, y2, y3 ≤ C, we will assign B′(Y ) = b(y0, y1, y2, y3)
for any Y ⊆ [C] × [4] which has |Y ∩ [C] × {j}| = yj , that is, for any subset Y which has exactly
yj variables of each type. In this case, we will have

s0 =
∑

y0,y1,y2,y3

(

C − 1

y0 − 1

)(

C

y1

)(

C

y2

)(

C

y3

)

b(y0, y1, y2, y3)~λ
y0+y1+y2+y3

and similarly for s1, s2, s3, s.
In order to be valid, we must have

∑

Y⊆AB′(Y ) ≥ 1 for any atomic bad event A. By symmetry,
this means that if we have k0, k1, k2, k3 minimal such that

O+(k0, k1) +O−(k2, k3) > T ′,

then we require
∑

y0,y1,y2,y3

(

k0
y0

)(

k1
y1

)(

k2
y2

)(

k3
y3

)

b(y0, y1, y2, y3) ≥ 1

We are trying to satisfy (s0 + s1 + s2 + s3)/(1 − s) ≤ t, where t is some target value; here
t = 2.803× 10−6. For a fixed value of t, this is equivalently to minimizing s0 + s1 + s2 + s3 + ts. If
we view the collection of all values b(y0, y1, y2, y3) as linear unknowns, then we can view both the
objective function and the constraints as linear. Hence this defines a linear program, which we can
solve using standard linear programming algorithms.

For any y0, y1, y2, y3, we will set b(y0, y1, y2, y3) = 0 unless there is some such minimal bad
k0, k1, k2, k3 ≥ y0, y1, y2, y3. This greatly reduces the number of variables we need to consider, to
something which is very large but tractable. For T = 5, T ′ = 4, for instance, the linear program
has 5990 variables and 156 constraints. This is too large to write explicitly, but we wrote computer
code which generates this system and solves it.

The resulting hitting-set achieves a bound of

s0 + s1 + s2 + s3
1− s

≤ 2.81× 10−6

which satisfies the conditions of Theorem 2.11. We have listed this hitting-set in full in Appendix A.
Note that this hitting-set gives a compact witness for Proposition 6.9; using it, one could verify the
proposition directly without any need to use the algorithm we have just described. �

We now apply this construction to replace the two final steps in the construction of Section 6.3.

Theorem 6.10. There is a feasible schedule of makespan at most 5.70(C + D), which can be
constructed in expected polynomial time.
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Proof. For simplicity, we assume C+D ≥ 2896. By Theorem 6.8, we obtain a schedule S1 of length
L1 ≤ 1.0157(C +D), in which each interval of length 1024 has congestion at most 1312.

Apply Proposition 6.9. This gives a schedule S2 of length L2 ≤ 1.0158L1 + 1024 satisfying the
4-conditions with T = 5, T ′ = 4. By Proposition 6.5, this yields a schedule whose makespan is
5.5L2 + 5 ≤ 5.70(C +D). �
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[13] P. Haxell and T. Szabó. Odd independent transversals are odd. Comb. Probab. Comput., 15(1-2):193–211, January

2006.
[14] P. E. Haxell. A note on vertex list colouring. Combinatorics, Probability, and Computing, 10:345–348, 2001.
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Appendix A. The fractional hitting-set for Proposition 6.9

The following table lists the fractional hitting-set used in Proposition 6.9. All sets which do not
appear in this list have b(y1, y2, y3, y4) = 0.
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y0, y1, y2, y3 b(y0, y1, y2, y3) y0, y1, y2, y3 b(y0, y1, y2, y3) y0, y1, y2, y3 b(y0, y1, y2, y3)
0 0 4 7 5.099206e-03 0 0 5 6 9.778912e-04 0 0 6 5 3.996599e-03
0 0 7 4 2.579365e-03 0 0 8 0 2.222222e-02 0 5 2 5 4.385269e-04
0 5 3 4 1.359760e-04 0 5 4 3 3.833186e-04 0 5 5 2 9.740495e-05
0 5 6 0 1.539957e-03 0 6 3 2 4.658320e-05 0 6 3 3 9.241610e-07
0 6 5 0 1.893794e-04 0 7 0 4 4.585073e-04 0 7 1 3 1.992969e-03
0 7 2 2 1.199898e-03 0 7 3 0 2.093047e-05 0 7 3 1 1.698355e-03
0 7 4 0 9.174968e-04 0 8 0 0 2.222222e-02 1 3 7 0 3.316187e-04
2 2 7 0 3.883201e-04 2 3 2 6 1.818870e-04 2 3 3 5 6.708826e-05
2 3 4 4 1.277478e-04 2 3 5 3 1.369389e-04 2 3 7 0 8.113415e-04
2 4 2 5 5.158908e-05 2 4 3 4 8.499152e-05 2 4 4 3 4.975736e-06
2 4 5 2 1.133274e-04 3 1 7 0 2.672980e-04 3 2 2 6 4.410280e-05
3 2 3 5 7.970540e-05 3 2 4 4 4.896451e-05 3 2 5 3 7.392384e-05
3 2 6 2 5.816254e-06 3 2 7 0 1.742220e-04 3 3 2 5 6.943956e-06
3 3 5 2 3.800255e-05 3 5 1 4 1.369777e-04 3 5 2 3 9.535644e-05
3 5 3 2 1.282475e-04 3 5 4 0 8.297563e-05 3 5 4 1 5.296674e-05
3 6 2 2 9.002473e-06 4 1 2 6 1.767087e-04 4 1 3 5 5.212549e-05
4 1 4 4 1.093016e-04 4 1 5 3 9.464293e-05 4 1 6 2 3.789534e-05
4 1 7 0 1.125084e-03 4 2 2 5 7.353027e-05 4 2 3 4 1.587323e-05
4 2 4 3 1.237762e-05 4 2 5 2 8.670195e-05 4 3 2 4 5.232234e-05
4 3 3 3 8.595063e-05 4 3 4 2 2.209769e-05 4 3 5 0 1.041270e-04
4 4 1 4 1.052873e-04 4 4 2 3 1.437882e-05 4 4 3 2 4.431716e-05
4 4 4 0 7.896302e-05 4 4 4 1 4.184396e-05 4 5 1 3 5.225282e-05
4 5 2 2 5.006599e-05 4 5 3 1 3.748908e-05 5 1 2 5 2.980766e-05
5 1 3 4 8.802145e-05 5 1 4 3 4.768986e-05 5 1 5 2 7.014272e-05
5 3 1 4 6.990688e-05 5 3 2 3 1.155525e-05 5 3 3 2 3.894932e-05
5 3 4 1 3.980330e-05 5 4 1 3 3.277361e-05 5 4 2 2 7.791839e-05
5 4 3 1 2.503639e-05 5 6 0 0 1.549509e-03 6 2 1 4 1.448414e-04
6 2 2 3 6.887231e-05 6 2 3 2 1.145665e-04 6 2 4 0 1.365900e-04
6 2 4 1 4.324878e-05 6 2 5 0 4.360905e-05 6 3 1 3 7.156338e-05
6 3 2 2 3.895600e-05 6 3 3 1 5.915442e-05 6 6 0 0 2.267574e-04
7 2 1 3 3.562315e-05 7 2 2 2 7.950298e-05 7 2 3 1 1.473170e-05
7 5 0 0 1.289683e-03 8 4 0 0 3.756614e-03

Appendix B. The Nostradamus Lemma

In the proof of Lemma 2.6, we use the following general “Nostradamus Lemma.” To justify this
somewhat cryptic name, consider the following analogy. In a dusty book of prophecy, one reads
that “sometime in the future, you will meet a man named John Doe. The first time you meet such
a man, he will flip a coin a hundred times, all of which come up heads. Also, you will eventually
meet a woman Jane Doe; the first such woman whom you meet will also flip a hundred coins, all of
which come up heads.” Now, you do not know when these meetings will come or which will come
first, if ever, but you can confidently say that the probability that this prophecy comes true is at
most 2−200.

This probabilistic principle seems fairly intuitive, but we note that there are two ways it can go
wrong. Suppose that we predict that John Doe will flip a hundred heads and also a red-haired man
will flip a hundred heads. This probability could be just 2−100, because the two men may be the
same person. Another possibility: suppose we predict that “sometime in the future you will meet
a man named John Doe who flips a hundred heads.” The probability of this event could be one, if
we encounter an infinite series of men with the same name.
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Lemma B.1 (Nostradamus Lemma). Suppose one has a stochastic process indexed 〈Xt | t ∈ N〉.
Let S denote the countably infinite set of possible histories for this process; for notational simplicity
we suppose that the states Xt themselves lie in S (i.e., that the state also includes the history thus
far). The process begins in state s0 ∈ S, which represents the null history. There are ℓ Boolean
functions Ai, Bi : S → {0, 1}, for some finite ℓ. Suppose that, for all t ∈ N and all s ∈ S, we have
that

P(Bi(Xt+1) = 1 | Xt = st) ≤ pi.

Now define the event E that the following conditions are all satisfied:

(1) For each i ∈ [l], there is exactly one time ti such that Ai(Xti) = 1;
(2) For all i 6= i′ we have ti 6= ti′;
(3) For all i ∈ [l] we have Bi(Xti+1) = 1.

Then the event E is measurable, and its probability is at most P(E) ≤ p1p2 . . . pℓ.

Proof. Define the event ET , which is that event E holds and also that t1, . . . , tℓ ≤ T . We will prove
that P(ET ) ≤ p1 . . . pℓ by induction on T . For a given value of T , the induction will apply across
all possible stochastic systems and all possible values of ℓ.

First, suppose T = 0. If ℓ > 0, then the event ET is impossible; if ℓ = 0, then event ET is
certain. Either way the inequality holds.

Next, suppose T > 0. Count how many values of i are there such that Ai(s0) = 1. If there is
more than one such value, then event ET is impossible, and the statement holds.

Suppose first that for all i we have Ai(s0) = 0. Then the event ET is equivalent to the event
E′

T−1, where E′ is an event similar to E except that it is defined on the stochastic process which
starts at state X1. By induction hypothesis, the event E′

T−1 has probability at most p1 . . . pℓ for
any X1. Integrating over X1, we have the ET has at most this probability as well.

Finally, suppose that there is exactly one value of i such that Ai(s0) = 1; without loss of
generality say it is i = ℓ. Then the event ET is equivalent to the event that Bℓ(X1) = 1 and that
the event E′

T−1 occurs, where E′ is an event similar to E except that it is defined on the stochastic
process which starts at state X1 and only includes Boolean functions A1, B1, . . . , Aℓ−1, Bℓ−1. The
probability of Bℓ(X1) = 1 is at most pℓ. By induction hypothesis, for any such X1, the probability
of the event E′ is at most p1 . . . pℓ−1. Hence, integrating over all X1, the probability of this event
is at most p1 . . . pℓ.

So we have shown that P(ET ) ≤ p1 . . . pℓ for all T ∈ N. Now note that E0 ⊆ E1 ⊆ E2 ⊆ . . .
and E = ∪T∈NET . Each set ET is cylindrical (it is determined by the first T coordinates), hence
measurable. This implies that E is measurable as well with P(E) ≤ p1 . . . pℓ. �
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