
International Journal of Automation and Computing 04(1), January 2007, 100-106

DOI: 10.1007/s10453-004-5872-7

The Motif Tracking Algorithm

William Wilson, Phil Birkin and Uwe Aickelin

School of Computer Science, University of Nottingham, UK (wow,pab,uxa)@cs.nott.ac.uk

Abstract: The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers.
In this paper we introduce the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify
unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it
uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest
lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three
separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases the algorithm identifies
the presence of a motif population in a fast and efficient manner due to the utilisation of an intuitive symbolic representation. The
resulting population of motifs is shown to have considerable potential value for other applications such as forecasting and algorithm
seeding.

Keywords: Motif detection, repeating patterns, time series analysis, artificial immune systems, immune memory.

1 Introduction

The investigation and analysis of time series data is a
popular and well studied area of research. Common goals
of time series analysis include the desire to identify known
patterns in a time series, to predict future trends given his-
torical information and the ability to classify data into sim-
ilar clusters. Historically, statistical techniques have been
applied to this problem domain. However, in recent years,
the use of heuristic algorithms have seen significant growth
in this field. Neural networks[1, 2] genetic programming[3]

and genetic algorithms[4] are all examples of methods that
have been so far applied to time series evaluation and pre-
diction.

The use of immune inspired (IS) techniques in this field
has remained fairly limited[5]. However, IS algorithms have
been used with success in other fields, such as pattern
recognition[6], optimisation[7], and data mining[8]. In this
paper we introduce the Motif Tracking Algorithm (MTA),
a novel IS approach to identify repeating patterns in time
series data that takes advantage of the associative learning
properties exhibited by the natural immune system.

Considerable research has already been performed on
identifying patterns that are seen to repeat in time series,
as highlighted by Keogh[9]. Such repeating patterns are de-
fined as motifs. Traditional time series techniques are only
able to search for known motifs. They are defined as known
motifs as they relate to patterns that are similar to a query
pattern of interest. Prior knowledge of what to look for is
assumed. In contrast little research has been performed on
looking for unknown motifs in time series. A distinguishing
feature of the MTA is that it can search for unknown mo-
tifs in the time series without prior knowledge of what to
search for. The MTA searches in a fast and efficient man-
ner, enabling it to handle large data sets, and the flexibility
incorporated in its generic approach allows the MTA to be
applied across a diverse range of problems[10].

The MTA takes inspiration from the behaviour noted in
the human immune system and in particular the immune
memory theory of Eric Bell[11]. His theory indicates the ex-

istence and evolution of two separately identifiable memory
populations, which are ideally suited to recognise long and
short term patterns prevalent in time series data. We pro-
vide a discussion of some of the related work in Section 2
and in Section 3 we discuss the immune memory theory and
introduce other immune mechanisms which form part of our
algorithm. Section 4 provides a definition of the key compo-
nents used in the MTA and this then leads on to a detailed
explanation of the MTA in Section 5. Section 6 presents
the results of the MTA from testing on three separate data
sets, one of which relates to an oil data set. Future work
associated with the MTA is discussed in Section 7 before
we conclude in Section 8.

2 Related work

The search for patterns in data is relevant to a diverse
range of fields including biology, business, finance and sta-
tistics. In each field a wide variety of techniques have
been developed to search for patterns. Algorithms by
Guan[12] and Benson[13] address DNA pattern matching,
using lookup table techniques that exhaustively search the
dataset to find recurring patterns. These approaches con-
trast to the MTA because they make assumptions about the
patterns sought, including the start locations of the pattern
and the pattern length. A more flexible approach is seen
in the TEIRESIAS algorithm[14], another algorithm able
to identify patterns in biological sequences. TEIRESIAS
finds patterns of an arbitrary length by isolating individual
building blocks that comprise the subsets of the pattern,
these are then combined into larger patterns. The method-
ology of building up motifs by finding and combining their
component parts is at the heart of the MTA.

Most current research on finding patterns involves the
examination of a time series given some query pattern of
interest. Investigations using a piecewise linear segmenta-
tion scheme[15] and discrete Fourier transforms[16] provide
examples of mechanisms to search a time series for a partic-
ular motif of interest. Work by Singh[17] searches for pat-
terns in financial time series as a means to forecast future

2 International Journal of Automation and Computing 04(1), January 2007

price movements. It takes a sequence of the most recent
data from the series and looks for re-occurrences of this
pattern in the historical data. An underlying assumption
in all these approaches is that the pattern to be found is
known in advance. The matching task is therefore much
simpler as the algorithm just has to find re-occurrences of
that particular pattern. The MTA makes no such assump-
tions and aims to find all unknown motifs it can from the
data set.

The search for unknown motifs is at the heart of the
work conducted by Keogh et al[18, 19, 20, 9]. Given the em-
phasis on unknown patterns Keogh states “to the best of
our knowledge, the problem of finding repeated patterns in
time series has not been addressed (or even formulated) in
the literature”[9]. Keogh’s probabilistic algorithm[18], used
as a comparison to the MTA in Section 6.2, extracts subse-
quences from the time series using the Symbolic Aggregate
Approximation (SAX) technique. It then hashes the sub-
sequences into buckets. Buckets with multiple entries rep-
resent potential motif candidates. The sections of the time
series corresponding to these subsequences are examined to
identify genuine motifs.

Keogh’s Viztree algorithm[19] uses the SAX technique to
generate a set of symbol strings corresponding to sequences
from the time series. These symbol strings are filtered into
a suffix tree, where branches correspond to the symbol al-
ternative. The suffix tree provides a visual illustration of
the motifs present as the frequency of a motif is shown by
the width of the tree branch.

The probabilistic and Viztree algorithms are fast and ef-
fective but they assume prior knowledge of the size of the
motif to be found. Motifs longer and potentially shorter
than this pre defined length would remain undetected. One
could argue that these algorithms could be re-run multi-
ple times using varying motif lengths, however this would
reduce their efficiency. The MTA takes a more generic ap-
proach evolving a population of trackers that is able to de-
tect motifs of an arbitrary length by making fewer assump-
tions about the data set and the potential motifs.

3 Long and short term memory

The flexible learning approach of the human immune sys-
tem is attractive as an inspiration, but without an adequate
memory mechanism knowledge gained from the learning
process would be lost. Memory represents a key factor in
the success of the immune system. A difficulty arises in im-
plementing a computational immune memory mechanism
however, because very little is known about the biological
mechanisms underpinning memory development[21]. The-
ories such as antigen persistence and long lived memory
cells[22], idiotypic networks[23], and homeostatic turnover
of memory cells[24] have all attempted to explain the de-
velopment and maintenance of immune memory. However,
all have been contested. In contrast the attraction of the
immune memory theory proposed by Eric Bell is that it
provides a simple, clear and logical explanation of memory
cell development. This theory highlights the evolution of
two separate memory pools, ‘memory primed’ and ‘mem-
ory revertant’[11].

The human immune system represents a successful recog-

nition tool. It must be able to quickly identify such things
as bacteria or viruses present in the system so that it can
react accordingly and retain knowledge of those encounters
for future reference. The presence of such a bacterial threat
causes naive immune cells to become activated. This acti-
vation causes a rapid increase in cell numbers, termed pro-
liferation. The rapidly expanding population of activated
cells forms the short lived memory primed pool. The pur-
pose of this growing pool is to increase the repertoire of the
population. New cells created undergo mutation in order
to diversify from their parents. The cell population evolves
in order to match potential variations in the bacteria that
stimulated their parents. A form of pattern matching is be-
ing anticipated by the system. The activated cells circulate
throughout the system and eliminate any bacteria that they
interact with.

The high death rate of memory primed cells means most
will die during circulation, however a small minority do sur-
vive and return to reach a memory revertant state. These
cells reduce their excessive activation levels, becoming more
stable, thereby lengthening their lifespan. These unique
cells are able to produce clones naturally to sustain knowl-
edge of a bacterial experience over the long term. These two
distinct memory pools and the transfer mechanism between
them, represent a key difference to other memory theories.
This methodology provides the inspiration for memory de-
velopment in our algorithm.

Through this approach one can see the immune system
represents an ideal mechanism to address motif matching
problems. It evolves a population of solution candidates
to match part of a motif, it then mutates the successful
population members so that improved motif solutions can
be found.

In our novel algorithm the equivalent of the short term
memory pool is generated using a derivative of the popular
clonal selection algorithm[7], which proliferates all success-
fully matched candidates. The short term memory pool
evolves through a process of directed proliferation and mu-
tation, regulated through a process of controlled cell death.
This rapidly expanding population provides a search mech-
anism that is able to investigate all solution alternatives
quickly and effectively. Successful candidates from the short
term memory pool transfer to the long term memory pool.
This long term memory pool is then used to permanently
store records of the solutions found.

Having briefly introduced the inspiration for the MTA a
number of key terms and definitions used within the algo-
rithm are defined in the following section.

4 Motif detection: terms and defini-

tions

Whilst immunology provides the inspiration for the the-
ory behind the MTA, the work of Keogh et al.[20, 9] is the
inspiration for the initial implementation of the MTA. In
particular, Keogh’s SAX technique for representing a time
series was a contributing factor in the success of the MTA.
Many of the following definitions used by the MTA are
adapted from the work of Keogh[18] as summarised below.

Definition 1. Time series. A time series T = t1,...,tm
is a time ordered set of m real or integer valued variables.

F. A. AUTHOR et al./ Preparation of Papers for International Journal of Automation and Computing 3

In order to identify patterns in T in a fast and efficient
manner we break T up into subsequences.

Definition 2. Subsequence. “Given a time series T of
length m, a subsequence C of T consists of a sampling of
length n ≤ m of contiguous positions from T.”[18]

Subsequences are extracted from T using a sliding win-
dow technique.

Definition 3. Sliding window. Given a time series T of
length m, and a subsequence C of length n, a symbol ma-
trix S of all possible subsequences can be built by sliding a
window of size n across T, one point at a time, placing each
subsequence into S. After all sliding windows are assessed
S will contain (m - n + 1) subsequences.

Each subsequence generated could represent a potential
match to any of the other subsequences within S. If two
subsequences match, we have found a pattern in the time
series that is repeated. This pattern is defined as a motif.

Definition 4. Motif. A subsequence from T that is seen
to repeat at least once throughout T is defined as a motif.
The re-occurrence of the subsequence need not be exact for
it to be considered as a motif.

The relationship between two subsequences C1 and C2

is assessed using a match threshold r. We use the most
common distance measure (Euclidean distance) to examine
the match between two subsequences C1 and C2, ED(C1,
C2). If ED(C1, C2) ≤ r the subsequences C1 and C2 are
deemed to match and thus are saved as a motif.

The motifs prevalent in a time series are detected by the
MTA through the evolution of a population of trackers.

Definition 5. Tracker. A tracker represents a signature
for a motif sequence that is seen to repeat. It has within
it a sequence of 1 to w symbols that are used to represent
a dimensionally reduced equivalent of a subsequence. The
subsequences generated from the time series are converted
into a discrete symbol string using an intuitive technique
described in Section 5.1. The trackers are then used as a fast
and efficient tool to identify which of these symbol strings
represent a recurring motif. The trackers also include a
match count variable to indicate the level of stimulation
received during the matching process.

5 The Motif Tracking Algorithm

The pseudo code for the MTA is detailed in Program 1.
Each of the significant operations in the MTA is described
in the subsequent sections. The parameters required in the
MTA include the length of a symbol s, the match threshold
r, and the alphabet size a.

5.1 Convert Time Series T to symbolic

representation

In common with the majority of other techniques[20], in
order for the MTA to more easily identify motifs it is nec-
essary to pre-process the time series. This pre-processing
comes in three stages, differencing, normalisation, and sym-
bolisation.

Differencing. The approach used in the MTA is not to
study the actual data values from T at each point in time
but to look at the movement between each point in time.
By taking the first order differential of the time series T, the
MTA can identify patterns that occur in sections of the time

Program 1 . MTA Pseudo Code

Initiate MTA (s, r, a)
Convert Time series T to symbolic representation
Generate Symbol Matrix S
Initialise Tracker population to size a
While (Tracker population > 0)
{

Generate symbol stage matrix from S
Match trackers to symbol stage matrix
Eliminate unmatched trackers
Examine T to confirm genuine motif status
Eliminate unsuccessful trackers
Identify and store motifs found
Proliferate matched trackers
Mutate matched trackers

}
Memory motif streamlining

series that have different amplitudes. Differencing the time
series T eliminates discrepancies caused by the amplitude
of the actual data points and hence aids comparability of
the various subsequences.

Normalisation. The differenced time series T is nor-
malised with a mean of 0 and a standard deviation of 1.
Keogh highlights the fact that “it is well understood that it
is meaningless to compare time series with different offsets
and amplitudes”[20]. Normalising T in this way eliminates
these issues and allows comparisons across T.

Symbolisation. We use the Keogh’s SAX technique[20]

to discretise the time series under consideration. SAX rep-
resents a powerful compression tool that uses a discrete, fi-
nite symbol set to generate a dimensionally reduced version
of a time series consisting of symbol strings. The ability to
compare time series subsequences as simple strings, com-
bined with the dimensionally reduced set of data to inves-
tigate, contribute to a fast and effective search mechanism.
This representation is simple and intuitive and research by
Keogh et al. has shown it to rival more sophisticated reduc-
tion methods such as Fourier transforms and wavelets[20].
Here we describe Keogh’s SAX approach, as it has been
applied to the MTA.

In the first stage of the SAX method the user is required
to specify the symbol alphabet size a used to represent the
time series T. For example, if we use the English alphabet
as our symbol set and a=3, the alphabet for the MTA would
be [a,b,c].

Motifs in T consist of subsequences of lengths from 1
to n. A subsequence will be represented by a symbol string
containing w symbols. By specifying the length of a symbol
s, we can reduce the subsequence from size n to size w,
where w=n/s.

This simplification is achieved by a Piecewise Aggregate
Approximation (PAA)[9]. The n consecutive data points
representing the motif are divided into w equal sized frames
where w = n/s. The mean value of the data within each
frame is calculated and represents the PAA of that frame.
The motif now consists of a sequence of w averages corre-
sponding to each frame. These averages are converted into
the symbol alphabet as part of the second stage of the SAX.

During the second stage, the MTA calculates the break
points it will apply to the averages to determine the symbol

4 International Journal of Automation and Computing 04(1), January 2007

applicable for that average. Given an alphabet size a the
MTA requires a-1 breakpoints to classify the averages cor-
rectly. Since T has been normalised we know T will follow
a Gaussian distribution[20]. Given a symbol alphabet of size
a we can use the Gaussian distribution to identify a equal
sized areas under the curve. The boundary points for each
equal sized area will then map directly to the break points
applied to each frame average to establish which symbol
corresponds to that average.

For example given a = 3, we split the area under the
N(0,1) Gaussian distribution curve into three equally sized
parts. One third of the distribution lies below z=-0.43, one
third lies between z=-0.43 and z=0.43 and the final third
exists above 0.43. We use the two breakpoints of -0.43 and
0.43 to classify our PAA values for each frame into symbols.
PAA values less than -0.43 would correspond to the symbol
a, those between -0.43 and 0.43 would represent symbol b,
and those above 0.43 c. In this way each symbol has an
equi-probable chance of occurring.

Figure 1: Generation of the SAX representation of a time

series using PAA[18]. The X axis is time, the Y axis is the
differenced, normalised time series value

This process is illustrated in Fig. 1, as taken from[18],
where we have a subsequence of length 128, a = 3 and
s = 16. Using the averages generated by the PAA, SAX
represents the subsequence by the symbol string cbccbaab.
The motif has been reduced in dimension from 128 data
points to just 8 whilst still maintaining the characteristics
of the original data.

The string of symbols representing a subsequence is de-
fined as a word. The MTA examines the time series T us-
ing such words and not the original data points to speed up
the search process. Symbol string comparisons can be per-
formed efficiently to filter out bad motif candidates, ensur-
ing the computationally expensive Euclidean distance cal-
culation is only performed on those motif candidates that
are potentially genuine.

5.2 Generating symbol matrix S

Thus far we have differenced and normalised the time
series T and established the alphabet of symbols to be used
to represent T. The next step is to identify all the actual
individual symbols that occur across T.

The MTA begins by considering subsequences of length
s. A sliding window of length s is used on the normalised
time series to establish the PAA value for that subsequence.
A symbol is allocated to that subsequence and entered into
the symbol matrix S as a word. Given there will be (m-
s+1) sliding windows across T the matrix S will comprise
a list of (m-s+1) words containing just one symbol.

The MTA uses the SAX approach to generate the ma-
trix of words, but this represents only the first stage of the
MTA’s operation. The SAX technique is only used to pre-
process the data set. Having generated this symbol matrix
the novelty of the MTA comes from the way in which it
takes the information from the symbol matrix and intu-
itively presents it to the tracker population for matching.
The way in which the tracker population evolves based on
the results of the matching process is also key to the MTA’s
success.

The matrix S provides a vital resource to the MTA as
it is used to build the data that is presented to the tracker
population. Each generation, a selection of words from S,
corresponding to the length of the motif under investiga-
tion, are extracted in an intuitive manner and presented
to the tracker population during the matching process. Be-
fore describing this matching process we now expand on the
concept of a tracker.

5.3 Initialise tracker population to size a

The trackers are the primary tool used to identify motif
candidates in the time series. A tracker comprises a se-
quence of 1 to w symbols. The symbol string contained
within the tracker represents a sequence of symbols that
are seen to repeat throughout T. The level of stimulation
of a tracker is indicated by the match count variable which
is set to zero on initialisation.

Tracker initialisation and evolution is deterministic in na-
ture to avoid proliferation of ineffective motif candidates.
Given the user defined alphabet size a, the initial tracker
population is constructed of size a to contain one of each
of the viable alphabet symbols. Each tracker is unique, to
avoid unnecessary duplication of solution candidates and
wasted search time.

Trackers are created of a length of one symbol, but
must evolve each generation to match motifs represented by
longer symbol strings. The trackers are matched to motifs
via the words extracted from the symbol matrix. Track-
ers that match a word are stimulated by incrementing their
match counts by one; trackers that attain a match count ≥

2 indicate repeated words from T and become candidates
for proliferation. Given a motif and a tracker that matches
part of that motif, proliferation enables the tracker to ex-
tend its length by one symbol each generation until it their
lengths are equal, in order for it to attempt a match to the
whole motif.

5.4 Generate symbol stage matrix from S

Initially the tracker population contains trackers that are
one symbol long. The symbol matrix S contains a time
ordered list of all symbols present in the time series T. We
could now match the trackers to the words in S to identify
potential motif candidates.

However, S contains a considerable amount of redundant
information. Keogh defines such redundant data as trivial
matches. Given a time series T, containing a subsequence
C beginning at p and a matching subsequence M beginning
at q, M is considered a trivial match to C if either p = q or
there does not exist a subsequence M’ beginning at q’ such
that ED(C,M’)>r, and either q<q’<p or p<q’<q [18].

F. A. AUTHOR et al./ Preparation of Papers for International Journal of Automation and Computing 5

Trivial matches are sequences that are located in consec-
utive locations within S and so match each other. Such triv-
ial matches should be eliminated from the search to avoid
processing of unnecessary information. Given the similar-
ity of neighbouring sliding windows we only wish to ex-
amine data from those windows that generate non trivial
sequences.

A stage matrix is created from S each generation and its
primary purpose is to eliminate such trivial matches. The
MTA considers each symbol in S and only transfers it to
the stage matrix if that symbol differs from the previous
symbol entered.

The risk of trivial match elimination is that if the symbol
set size a used to represent the time series is too small, we
will get excessive elimination of consecutive sequences that
are not trivial. Non trivially matching sequences may be
represented by the same symbol, given the limited set avail-
able, leading to inappropriate eliminations taking place. To
prevent this occurring the maximum number of consecutive
trivial match eliminations must be less than s. In this way a
subsequence can eliminate as trivial all subsequences gener-
ated from sliding windows that start in locations contained
within that subsequence but no others. This prevents ex-
cessive symbol amalgamation and the loss of data.

For example, if the symbol size was s = 3 and the sym-
bol matrix contained the words [c,c,c,c,d] full trivial match
elimination would generate the stage matrix [c,d]. Restrict-
ing the trivial match elimination to s = 3, only the second
and third words are removed as trivial to leave [c,c,d]. This
is important as the first and fourth words may indicate se-
quences that are a true match for each other and correspond
to a motif.

This reduction does not mean a loss in data quality if
done carefully. The start location of each subsequence is
stored within the word corresponding to the subsequence
so that the range of trivial matches can be recalled. For
example, if two consecutive words within the stage matrix
were (a, 100) and (c, 106), the first entry corresponding
to the subsequence symbol string and the second to the
location, the MTA could identify the subsequences starting
from 101 to 105 as all having the symbol a. Trivial match
elimination in this case ensures that the five subsequences
from points 100 to 105 are not compared against each other
as they reflect potential trivial matches.

The stage matrix is then presented to the tracker popu-
lation for matching.

5.5 Match trackers to the symbol stage

matrix

During an iteration each tracker in the tracker population
is taken in turn and compared to each word within the stage
matrix. Matching is assessed by extracting and comparing
the symbol strings from the tracker and the word. We define
a match to occur if the comparison function returns a value
of 0, indicating a perfect match exists between those symbol
strings.

Each time the tracker is found to match a word in the
stage matrix the tracker is stimulated by incrementing its
match counter by one. Trackers with a match count ≥ 2
indicate words that have reoccurred throughout the time

series, allowing the MTA to narrow the search to these po-
tential motif candidates.

5.6 Eliminate unmatched trackers

During this step the MTA eliminates all trackers that
have a match count of zero or one as they do not satisfy
the definition of a motif per Section 4. They correspond to
symbol combinations that either only occurred once in the
time series or that did not occur at all. Match counts for
each tracker are then reset for the next matching stage.

For example, suppose a = 3, so the initial tracker popula-
tion is [a,b,c], and the stage matrix consisted of the words
[a,a,b,b,a,b]. After symbol matching the only trackers to
be stimulated will be a and b. The trackers identify the
sequences in the time series that are seen to repeat. c rep-
resented a potentially viable motif component but it was not
observed in the symbol matrix. The tracker corresponding
to c receives no stimulation and will be eliminated as re-
dundant. Knowledge of possible motif candidates from T
is therefore maintained and carried forward by the tracker
population. Eliminating non repeating trackers ensures the
MTA is only focused on investigating viable motif candi-
dates.

5.7 Examine T to confirm genuine motif

status

For each surviving tracker the MTA then scans through
the stage matrix looking for two subsequences X and Y
whose symbol strings correspond to the current tracker.
However, even if X and Y have the same symbol strings
they may not represent a true match when looking at the
time series data underlying those subsequences.

In order to confirm whether the two subsequences X and
Y correspond to genuine motifs in T we need to apply a
distance measure on the first order differential of the time
series associated with those subsequences and compare it to
the match threshold r. The MTA uses Euclidean distance
to measure the relationship between two motif candidates
ED(X,Y).

To ensure the subsequences are a close match across the
whole of their length, and represent genuine motifs, the sub-
sequences X and Y were separated into w subsets, x1..w and
y1..w. Here w = the number of symbols in the word, so each
subset corresponds to a symbol from the word representing
that subsequence.

For simplicity we define these subsets as the symbol sub-
sets of a subsequence, each of which has the length equal
to the symbol size s. The Euclidean distance calculation is
then applied on each of these symbol subsets in turn. As
soon as the ED(x1..w,y1..w) returns a value > r the subse-
quences X and Y are rejected as a potential motif candi-
date. This creates a strict match criteria.

If the Euclidean distance of all symbol subsets relating
to X and Y are ≤ r a motif has been found. A memory
motif is created to store the symbol string associated with
X and Y, in addition the start locations of X and Y from
T are also saved. The match count of the current tracker
is then incremented by one. The MTA then continues to
search for other words from the stage matrix which have
the same symbol string as that tracker to identify further

6 International Journal of Automation and Computing 04(1), January 2007

occurrences of that motif.
Having identified all occurrences associated with the cur-

rently found motif, the MTA recommences its search of the
stage matrix from subsequence X to identify the next sub-
sequence Z to match the current tracker. Once found the
MTA follows a similar search mechanism as described above
to identify all possible matches to Z.

Setting a correct value for r is essential to the operation
of the MTA. A static r would be unsuitable for the MTA
because during each generation the trackers and words from
the symbol matrix that are matched are lengthened by one
symbol. It is inappropriate to compare matches over longer
sequences with the a static Euclidean distance threshold.
The value of r has to dynamically adjust to be proportional
to the length of the motif under consideration to avoid the
premature dismissal of longer, still valid motifs.

To resolve this issue a distance threshold D is established
per time point, based on a percentage of the standard devi-
ation of the first order differential of T. Given the user de-
fined symbol length s, the MTA calculates a match thresh-
old r = D.s. This ensures a dynamic and flexible match
threshold is established that is applicable across alternative
time series.

5.8 Eliminate unsuccessful trackers

During step 2 of the tracker matching process, trackers
that identified genuine motifs in T had their stimulation
factors incremented. The MTA once again eliminates all
unstimulated trackers to allow the MTA to narrow down
motif solutions quickly and avoid processing unnecessary
search candidates.

5.9 Identify and store motifs found

The motifs identified during stage 5.7 are stored in the
memory pool for review. Comparisons are made to ensure
duplications are removed. This memory pool represents the
compressed representation of the time series, containing all
the re-occurring patterns present.

5.10 Proliferate matched trackers

After all elimination steps the tracker population con-
sists of symbols with underlying time series subsequences
that are seen to repeat throughout the time series. They
therefore correspond to parts of, or the whole of, the motifs
we wish to find. During early iterations of the MTA the
length of the trackers will be less than the complete motifs
they have to find, since trackers are initialised to a length
of one symbol. In order for the trackers to lengthen and
therefore capture more of the motif the MTA lengthens the
surviving trackers in a controlled manner through directed
proliferation and mutation.

At the end of the first generation the surviving trackers,
each consisting of a single symbol, represent all the symbols
that are applicable to the motifs in T. The full motifs in T
can only consist of combinations of these symbols. As such,
at the end of generation one, the surviving tracker popula-
tion is stored as the mutation template for the MTA. If we
are to undertake proliferation and mutation of the trackers
it makes sense that all mutations should only involve sym-
bols from the mutation template and not the full symbol

alphabet, as any other mutations would lead to unsuccess-
ful motif candidates.

The MTA takes each surviving tracker in turn and pro-
liferates it to generate a number of clones equal to the size
of the mutation template. These clones adopt the same
symbol string as their parent.

5.11 Mutate matched trackers

The clones generated from each parent are taken in turn
and extended by adding a symbol taken consecutively from
the mutation template. Once the clones are mutated they
are added back into the tracker pool. This results in a
unique population of trackers with maximal coverage of
all potential motif solutions and no duplication. This de-
terministic proliferation and mutation of the tracker pool
[a,c,d] is illustrated in Fig. 2.

Figure 2: A visual illustration of the proliferation and muta-
tion process applied to the tracker population [a, c, d]. Mut

= the mutation template and Tr = the tracker population.

Post proliferation and mutation, the tracker pool is fed
back into the MTA ready for the next generation. The sur-
viving trackers now include symbol strings of length two,
as well as one. In the second generation a new stage sym-
bol matrix must be formulated to present to these evolved
trackers, consisting of motif candidates of two symbols. In
this way the MTA builds up the representation of a motif
one symbol at a time each generation to eventually map to
the full motif.

Given the symbol length s we can generate a word con-
sisting of two consecutive symbols by taking the symbol
from matrix S at position i and adding to it the symbol
from position i+s. Repeating this across S the MTA ob-
tains a new stage matrix in generation 2, each entry of which
contains a word of two symbols, covering a subsequence of
length 2s.

Selection from the symbol matrix S into the new stage
matrix is performed with trivial match elimination as de-
scribed in Section 5.4 to reduce the set of alternative solu-
tion candidates. Given the symbol strings are now longer
and more specific trivial match elimination will remove
fewer subsequences. However, invalid subsequences from
amongst these alternatives are being quickly dismissed via
the symbol string matching mechanism as trackers evolve
to map to the longer motif candidates. The MTA is there-
fore elegantly narrowing down its search path as it hunts

F. A. AUTHOR et al./ Preparation of Papers for International Journal of Automation and Computing 7

for genuine motifs.
The MTA continues to prepare and present new stage

matrix data to the evolving tracker population generation
after generation until all trackers are finally eliminated as
non matching. Once the tracker population size falls to
zero the MTA stops. Any further extension to the current
tracker population will not improve their fit to any of the
underlying motifs in T.

5.12 Memory motif streamlining

The final stage of the MTA analyses the memory motif
population and eliminates those motifs that are found to be
completely encapsulated within other motifs. In addition
similar motifs are combined if upon investigation they are
found to separately represent parts of the same repeating
pattern. The MTA streamlines the memory pool to gen-
erate a list of individual motifs for T, with no duplication.
Each memory motif consists of the symbol string epitomis-
ing the general characteristics of the motif, the motif length
and the location of each occurrence of the motif.

6 Results

Having introduced the MTA we now move provide some
initial results which examine the ability of the MTA to iden-
tify motifs.

6.1 Finding motifs embedded in a random

walk

To ensure the MTA works as intended two randomly gen-
erated motifs A and B were embedded into a random walk
data set of length 400. Motif A consists of a sequence of
length 40 embedded at time points 47 and 160. Motif B
consists of a sequence of length 40 embedded in T at time
points 100 and 230. A and B were chosen such that they
are realistic enough for validation. Fig. 3 illustrates the
time series T generated and the embedded motifs A and B.

Figure 3: Finding the known motifs A and B embedded in
a random walk time series

In this simple test scenario a = 6, s = 10, and r = 0.5 per
time point. These parameters were established as suitable
after numerous runs of the MTA. Sensitivity analysis on
these parameter settings is investigated in Section 6.3.

The MTA analysed T in 14 seconds and found evidence
of two motifs. The first motif, represented by the word

dcdd, was found located at points 47 and 160 and was of
length 41. This motif exceeded the 40 day length that was
originally embedded because the data from points 87 and
200, found immediately after the embedded motif, was also
very similar. The length of the motif found was therefore
appropriately extended by one day to include this matching
data. The second motif, dccc, was found located at days
100 and 230 and was of length 40. Both embedded mo-
tifs were found successfully while no other motifs from the
non embedded sections of the random walk were identified.
This simple test indicates the MTA is capable of identifying
motifs present in a time series.

6.2 Finding unknown motifs in real world

data

The previous example shows the MTA can uncover
motifs in a small random walk data set, but the aim of the
MTA is to find motifs in larger real world time series. The
dataset selected for investigation in this scenario is the
steamgen data set. This data was generated using fuzzy
models[25] applied to the model of a steam generator at the
Abbott Power Plant in Champaign[26] and is available from
http://homes.esat.kuleuven.be/∼tokka/daisydata.html.
The data output from the models consists of four measured
variables: drum pressure, excess oxygen levels, water
levels and steam flow. The steamgen data set consists
of every tenth observation taken from the steam flow
output information, starting with the first observation.
This specific selection criterion was used by Keogh and
has been followed here for the purposes of comparison.
The steamgen data set contains 960 items with significant
amplitude variation, a subset of 400 of which is illustrated
in Fig. 4.

Figure 4: A subset of 400 data items from the steamgen
data set, provided as a visual context for the motif detection
problem. The X axis refers to Time, whilst the Y axis refers
to steam flow.

From an initial scan by eye of the data it is unclear
whether any significant motifs exist, representing an ideal
challenge for the MTA. The three parameters s, a and r
need to be determined for the MTA. We will examine the
sensitivity of the MTA to changes in these parameters, but
for now we set s = 10, a = 6 and r = 0.5.

Using these parameters, the MTA identifies 104 motifs
of varying lengths between ten and 60. Some of the motifs
of length ten are seen to repeat up to 15 times throughout

8 International Journal of Automation and Computing 04(1), January 2007

the data, others of length 20 are noted to repeat up to four
times. However one significant motif of length 60, seen to
occur twice in the data, dominates the motif pool. The
subsequences comprising this motif, starting at location 75
and 883, are remarkable in their similarity as can seen in
Fig. 5.

Figure 5: The plot of a motif found in the steamgen data
by the MTA. It consists of the subsequences starting at
locations 75 and 883, both of length 60. The X axis refers
to the motif length, whilst the Y axis refers to steam flow.

This result implies that the MTA can identify unknown
motifs in this real world data. One could ask however how
do we know we have captured all of this motif? In order
to provide some grounding for the MTA, we compared the
MTA result to that of the probabilistic motif search algo-
rithm used by Keogh et al.[18]. Keogh was kind enough to
provide a teaching version of his algorithm which we ap-
plied to the steamgen data, using parameters established
by Keogh for this data set. Running the probabilistic algo-
rithm, specifying a search for motifs of length 80, results in
an obvious motif being found. The motif discovered con-
sisted of sequences starting at points 66 and 874, covering
a length of 80. This motif is illustrated in Fig. 6.

Figure 6: The plot of a motif found in the steamgen data
by Keoghs probabilistic algorithm. It consists of the sub-
sequences starting at locations 66 and 874, both of length
80. The X axis refers to the motif length, whilst the Y axis
refers to steam flow.

Comparing Figures 5 and 6 it appears that the MTA has
only detected a subset of the motif found by the probabilis-
tic algorithm, missing off the first and last ten data points

of the longer motif. The Euclidean distances for the first
and last ten days of the 80 day motif are 5.48 and 11.17
respectively. We know the MTA applies a Euclidean dis-
tance threshold across subsets of the motif corresponding
to each symbol, to ensure any variation in the sequences
under comparison is evenly distributed.

Remembering s = 10, and r = 0.5 per unit, we have a
match threshold for each ten unit period of 5.0. The Euclid-
ean distances of 5.48 and 11.17 both exceeded this match
threshold. Therefore the MTA considered these regions dur-
ing its investigation but dismissed them as not matching.
Comparing Figures 5 and 6 this is clearly evident. The
MTA is more stringent in its definition of a match and has
identified the same motif as the probabilistic algorithm but
only that part that represents the closer match.

Establishing that the MTA can find unknown motifs in
a real world data set, and having those motifs confirmed
through comparison to an alternative motif detection algo-
rithm provides a good grounding for the MTA. A further
important consideration however is to test the sensitivity of
the MTA to changes in the parameters s, r and a.

6.3 The MTA and parameter sensitivity

Using the steamgen dataset the MTA was run multiple
times with variations of the parameters s, r and a to exam-
ine the impact on the final motif population, and the ability
of the MTA to retain knowledge of the motif shown in Fig.
5. We define this motif M1. Values of s = 10, a = 6 and
r = 0.5 per unit were set as base line defaults for each ex-
periment. After each experiment the following information
was recorded in Table 1.

C1 The number of motifs.

C2 The number of repetitions of all motifs.

C3 The average motif length.

C4 The standard deviation of the motif length.

C5 The percentage of T covered by all motifs.

C6 The average euclidean distance of all motifs.

C7 The MTA execution time in milliseconds.

C8 The length of the version of motif M1 found .

Given this information we can determine a measure of the
quality of the motifs, MQ, found with the following formula.

MQ = (C2 ∗ C3)/C6 (1)

MQ provides a measure of the size and fitness of the motif
population that is found. A large MQ value is beneficial as
it indicates the MTA finds more occurrences of longer motifs
that are a closer match to each other.

In addition we can attain a measure of the efficiency of
the algorithm, ME, in terms of execution time, from the
formula

ME = (C5/C7) (2)

ME provides a measure of the performance of the MTA,
it assesses how long the algorithm takes to find additional

F. A. AUTHOR et al./ Preparation of Papers for International Journal of Automation and Computing 9

motifs that are of value. ME highlights the trade off that
exists between the size of the motif population found and
the execution time of the MTA, so we can ensure the solu-
tion is reached efficiently. A rise in ME implies it takes less
time to find the same motif coverage of T. The results of
the parameter testing are listed in Table 1.

Table 1 Sensitivity analysis of the MTA to changes in pa-
rameters s, r and a.

6.3.1 Changes to symbol size s

Given the default values of a = 6, r = 0.5, s was examined
for the values 5, 10, 15, and 20.

With low s values the MTA finds a large number of short
motifs, which occur very frequently, all of which have a good
general fit. However the MTA is unable to find long motifs.
The average motif length is 5.5 days when s=5, and only
15 days of motif M1 could be found. With low s values
the MTA execution time is significantly longer, reaching a
maximum of 1,113 seconds (C7).

Increasing s raised the average Euclidean distance of the
motif solutions (C6). This is to be expected given the match
threshold (r.s) is proportional to s. The longer the symbol
size, the higher is the match threshold, leading to solutions
with a higher Euclidean distance being found. Effectively
the MTA is more lenient regarding the acceptance of motif
candidates.

Fewer motifs are found as s rises, but those found consti-
tute longer motifs. The average motif length rises from 5.5
to 27 days (C3), with a standard deviation rising from 1.8
to 13 days (C4). This indicates much more variety in the
length of motifs found. The loss in the number of motifs
detected occurs because some shorter motifs are combined
into larger motifs, whilst other are simply missed by the
MTA. The loss of motifs is shown by the slight fall in the
motif coverage percentage (C5) as s rose.

In contrast, the execution time of the MTA significantly
improves as s increases (C7), leading to an improvement in
the efficiency measure ME.

Once s rises above ten the full length of 60 days for the
motif M1 is found, further increases to s offer little improve-
ment or loss in the detection of this motif.

In summary, low s values result in excessive numbers
of short motifs being found and long motifs being omitted.
The short motifs are then either combined into longer motifs
or are lost as s rises. Excessively high s values improve
execution time but leaves the MTA unable to find some of
the shorter motifs. A rise in s over ten offers no real benefit
in the detection of the specific motif M1.

6.3.2 Changes to the match threshold r

Given the default values for a = 6, s = 10, r was exam-
ined for values 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8.

Low r values (0.3) provide an excessively strict match
condition, resulting in only 23 motifs being found. These
23 motifs represent high quality matches but they cover only
36.8% (C5) of T. A data point identified as belonging to a
motif is flagged. The percentage coverage is then calculated
as the number of data points flagged over the total time
series size. Given so few motifs are found the execution
time for the MTA is minimal, taking only 20 seconds to
complete.

High r values (0.8) result in an over-generous matching
condition which extends the MTA’s execution time to over
720 seconds, reducing the efficiency measure ME to 0.14.
A large number of less well fitting motifs are now found,
which cover 100% of T, indicating the match condition is
too lenient.

A rise in r has less of an impact on the average motif
length as that seen with s. Average motif lengths only rose
from 10 days to 15 days as r rose from 0.3 to 0.8. Once r
reaches 0.5 the MTA is able to identify all 60 days of motif
M1 and any further increases in r do not improve on this.

Once r rises to 0.7 a new motif M2 is found of length 63,
consisting of subsequences from points 118 and 774. This
new motif is illustrated in Fig. 7. One can immediately see
the subsequences in M2 are a poorer fit to each other than
those of M1, as seen in Fig. 5. This is confirmed by the fact
that M2 has a 39% higher Euclidean distance than M1.

Figure 7: Motif M2 found in the steamgen data set, consist-
ing of subsequences of length 80 starting at locations 118
and 774. The X axis refers to the motif length, whilst the
Y axis refers to steam flow.

From this analysis we conclude that increasing r causes a
significant deterioration in the efficiency of the MTA as the
overgenerous match threshold entails comparisons be made
across a larger number of poorer motif candidates. The
result is a poorly fitting motif pool. However, excessively
low r values exclude the detection of most motifs. An r

10 International Journal of Automation and Computing 04(1), January 2007

value in between these extremes is desirable, such as r =
0.5, where motifs, such as M1, are detected without loss and
any further increases offer no improvement to the solution.

6.3.3 Changes to the alphabet size a

Given the default values for s = 10, r = 0.5, a was ex-
amined for values 4, 6, 8, and 10.

From Table 1 it can be seen that changing a has little
impact on the average Euclidean distance (C6), the aver-
age motif length (C3), the standard deviation of the motif
length (C4), or the percentage of T covered by the motif
population (C5).

Increasing a from 4 to 10 triggers an increase in the num-
ber of motifs detected from 106 to 119, and the number of
motif repeats from 438 to 615, this in turn causes a 116%
rise in execution time, leading to a fall in the efficiency
measure ME to 0.45.

More motifs are found as a rises because of a decline in
the number of words eliminated during trivial match elim-
ination. With small a values T is represented by a smaller
alphabet set. There is less variety in the symbol alterna-
tives used to represent the motif subsequences, leading to
greater trivial match elimination. But as a rises the symbol
set increases, resulting in fewer potential trivial matches in
S. Looking at the size of the symbol stage matrix in gen-
eration one after trivial match elimination we see when s
= 4, the stage matrix is reduced from 960 data items to
176 through trivial match elimination, alternatively if s =
10 the data set is reduced to only 299. The larger degree
of trivial match elimination causes the MTA to miss some
motifs.

Unlike changes in s or r, changes to a have less of an
impact on the detection of motif M1. The MTA is always
able to identify a length for M1 of at least 40, regardless
of a. Looking at the graph of M1 in Fig. 5 one can see
the first 40 time periods indicate the closest match for the
subsequences comprising M1. Changing s never effects the
detection of this closely fitting region, it only changes the
detection of the less well fitting region in the rest of the
motif.

From all this information one can hypothesize that
changing a only has a limited impact on the quality and
quantity of the motif population, however further analysis
of a still needs to be performed to ensure the alphabet size
chosen does not significantly influence the MTA’s accuracy.

The analysis of parameter sensitivity shows that while
the MTA remains relatively insensitive to changes in a, it is
sensitive to changes in both r and s. This is understandable
given s and r have a direct effect on the matching criteria
applied to subsequences when testing to see if they form a
motif. As both parameters influence the match threshold, a
rise or fall in either would result in a respective relaxing or
tightening of the matching criteria. The choice of s and r
will therefore be influenced by the data set under examina-
tion. However the advantage of the MTA, when compared
to other algorithms, is that this dependency is just limited
to setting the parameters s and r. In future work we pro-
pose to normalise the subsequences used in the Euclidean
distance calculations so the sensitivity of r to different data
sets could be reduced. This leaves the user only having to
select an appropriate value for s, making the algorithm flex-
ible across different problem domains. Sensitivity analysis

of the MTA parameters in other problem domains has also
been investigated[10].

It would have been beneficial to compare the statistics
generated from the MTA to the equivalent of Keogh’s prob-
abilistic model. However this was difficult given the output
format generated by Keogh’s algorithm. The probabilistic
algorithm generates a collision matrix of all motifs in a sig-
nificantly quicker time frame than the MTA. This provides
a nice visual representation of the motifs found but it is
difficult to compile a comprehensive list of the exact num-
ber of motifs, their affinity and their frequency. In addition
the motif length has to be specified in advance by the user
making the probabilistic search very specific. However one
can gain comfort from the fact that the significant motifs
found by the MTA were also found by Keoghs algorithm
and vice versa.

6.4 Motifs in oil data

The previous sections indicate that the MTA is able to
identify unknown motifs in small data sets and real world
data.

Of particular interest to us is the application of the MTA
to a financial time series. Stock market data is a popu-
lar selection for many pattern matching algorithms, given
the financial rewards of successfully forecasting future price
movements based on historical information. One of the
most important stock market commodities is that of oil,
given its influence on the rest of the market. For this rea-
son we have chosen to apply the MTA to the daily West
Texas Intermediate (WTI) crude oil price, a popular in-
dicator of general oil prices. This data spans the period
covering January 1986 to January 1990 and contains 1020
items, as plotted in Fig. 8 below.

Figure 8: The daily WTI crude oil spot price Jan ’86 to Jan
’90 measured in dollars per barrel

From an initial scan by eye of Fig. 8, one could hy-
pothesize that the oil data has characteristics similar to
that of a random walk. As a stock market commodity
this is unsurprising as ‘it is well known that random walk
data can perfectly model stock market data in terms of all
statistical properties, including variance, autocorrelation,
stationarity’[27]. One could argue therefore that it would be
difficult to extract any meaningful motifs from such data.

F. A. AUTHOR et al./ Preparation of Papers for International Journal of Automation and Computing 11

The MTA was initialised using the parameters a = 8, s
= 5 and r = 0.08. Section 6.3 indicated the MTA was rel-
atively insensitive to a so a high alphabet size of 8 should
avoid the issue of excessive trivial match elimination and
provide a good representation for the time series. The data
was evaluated in symbols of length 5 to provide a detailed
examination of the data and ensure the subsequences com-
prising the motifs were of a good match for each other. The
match threshold of 0.08 corresponds to 15% of the standard
deviation of the first order differential of the oil data time
series. The determination of 15% was carried forward from
the sensitivity analysis performed in Section 6.3 which re-
sulted in realistic results for the steamgen data set and this
oil data set.

Using these parameters the MTA was able to identify
250 motifs, three lasting 20 days, seven lasting 15 days,
59 lasting ten days, with the remainder lasting five days.
The ten day motifs were seen to repeat up to six times
throughout the time series, whilst some five day motifs were
seen to occur 25 times across the data set. The motifs found
covered 83.42 percent of the whole data set and it took the
MTA 683 seconds to identify them.

Two examples of the motifs found by the MTA are illus-
trated in Figures 9 and 10.

Figure 9: Motif Ma of length 15, consisting of three subse-
quences found in the WTI oil dataset

The first motif, represented by the word eee, was found
to be 15 days long and re-occurred three times in the time
series, starting at days 329, 349 and 436. The nominal price
change in dollars per barrel for the subsequence at day 329
is plotted against the average of the other two occurrences
in Fig. 9. An immediate similarity is evident between these
subsequences. This is confirmed by Euclidean distances be-
tween the subsequence 329 and those of 349 and 436 that
both lie below 0.5 representing a close match.

The second motif, represented by the word ed, was found
to be ten days long and re-occurred six times throughout the
data, at days 214, 225, 359, 591, 720 and 919. Fig. 10 plots
the subsequence starting at day 214 against the average
of the other five occurrences. The Euclidean distance of
each subsequence compared to 214 range from 0.34 to 0.46
indicating a close match once again.

From this simple analysis it is clear that motifs do exist in
the WTI oil data set, and these can be found by the MTA.
Having found these repeating patterns there is the potential
to use the motif population as an additional resource to

Figure 10: Motif Mb of length 10 days, consisting of six
subsequences found in the WTI oil dataset

support other forecasting tools to predict future oil price
movements.

6.5 The MTA and potential applications

The MTA represents a novel, abstract algorithm to iden-
tify unknowns motifs in a time series dataset in an intuitive
and efficient manner. The population of motifs generated
by the MTA is a potentially very useful resource that other
algorithms could easily take advantage of.

Clustering and wavelet algorithms are usually seeded
with random data upon initialisation. An alternative ap-
proach would be to seed these algorithms with the motif
population generated by the MTA. The motifs represent
known patterns that re-occur in the data set therefore giv-
ing the algorithms a head start in their analysis.

The motif generation process also represents a unique
compression mechanism. The original time series is com-
pressed to a reduced set representing the recurrent patterns
in the data. This reduced set may be sufficient to provide
a simple visual summary of the full data set.

Technical analysts working in the stock market use
known and accepted patterns when analysing stock market
performance. Such patterns include the ‘head and shoul-
ders’ and ‘cup and handle’ patterns. The MTA could be
applied to such stock market data and the motifs generated
compared to these well established patterns. This analysis
may be able to highlight other patterns that may also be of
interest alongside those that are generally accepted.

A key potential application of the MTA would be to
act as a support tool for forecasting. Executing the MTA
on historical data would generate a population of motifs.
When live data is received this information could represent
a partial motif. Using principles from natural language one
could compare the partial motif against the motif popula-
tion and hypothesise the future direction or value for the
partial motif. For example, suppose we took the oil data
set described in Section 6.4 and assumed the last five days
of live data translated to the word e. Review of all motifs
containing the symbol e could provide an indication of what
symbol is likely to reoccur next. The MTA found 77 mo-
tifs corresponding to the word e, these led on to 17 motifs
consisting of ed, 15 of ee, 2 of ef and 1 of ec. One could

12 International Journal of Automation and Computing 04(1), January 2007

therefore hypothesize that the next five days to come are
likely to follow a pattern characterised by the symbols d or
e.

7 Future work

A number of applications are listed in Section 6.5 and
these could be incorporated into the MTA as part of our
future work. The results presented in Section 6 are highly
encouraging given the MTA is still in a relatively early stage
of development. A number of modifications have been pro-
posed and will be investigated as part of our future work.
Having examined three separate data sets in this paper it
is important to extend our analysis to evaluate the perfor-
mance of the MTA across a wide range of diverse data sets.
In this way we can ensure the technique used is successful
and independence from the data set is maximised. Sensi-
tivity analysis should be extended across these data sets.
Performance measures need to be established for the MTA
so that the algorithm can be benchmarked against other
alternative approaches.

The incorporation of wild cards as an additional symbol
in the available alphabet would be of interest as this mech-
anism may enable us to identify relationships between some
of the motifs found. For example, consider we have a 10 day
motif M found to occur on days 50 and 100, and a 20 day
motif N was seen to occur on days 70 and 120. With a 10
day wildcard ‘* ’ one would immediately see there is a re-
lationship between motifs M and N as we could effectively
combine them into one motif ‘M*N ’.

In its current form the MTA makes no distinction of mo-
tif type during its search for motifs, it simply lists all those
it finds. However users may only be interested in particular
motif structures, for example financial analysts are likely
to be interested in significantly fluctuating motifs and not
stable, flat motifs. It would be of value to incorporate some
concept of ‘interestingness’ from the user so that the MTA
focuses its search on only this subset, reducing execution
time and providing more meaningful solutions. Classify-
ing motifs as ‘interesting’ has been applied with success by
Keogh[28].

Alternative matching techniques other than Euclidean
distance should also be investigated. Research by some
authors has found that Euclidean distance performs well
against other distance metrics on a wide variety of data
sets[27], however it is important for alternative distance
measures to be considered in the MTA to ensure its ap-
proach is valid and appropriate to the data.

8 Conclusions

The search for patterns or motifs in data represents a
generic problem area that is of great interest to a huge va-
riety of researchers. By extracting motifs that exist in data
we gain some understanding as to the nature and character-
istics of that data, so that we can benefit from that knowl-
edge. The motifs provide an obvious mechanism to cluster,
classify and summarise the data, in addition they can be
used to predict future information, placing great value on
these patterns.

Given the importance of finding motifs, considerable re-

search has been performed in identifying known patterns
in time series data. In contrast little research has been
performed on looking for unknown motifs of an unspecified
length that exist in time series. The MTA takes up this
challenge using a novel immune inspired approach to evolve
a population of trackers that seek out and match the motifs
present in a time series. A key advantage of the MTA is
that it uses a minimal number of parameters with minimal
assumptions about the data examined or the underlying
motifs when compared to alternatives approaches.

The MTA was evaluated using three data sets, one of
which included oil price data, and in all cases the algorithm
was able to identify the presence of a motif population. The
unique search process of the MTA was aided through the
utilisation of a simple and intuitive symbolic representa-
tion. Some of the motifs found were of considerable length
or repeated with significant frequency to be of interest to
a user of those time series. At present the MTA makes no
distinction of ‘interesting’ motifs, it finds and presents all
available motifs, but this could easily be addressed as part
of our future work. In this work we highlight that fact that
the MTA shows potential as a tool used for seeding other
algorithms with its motif population to enhance their effec-
tiveness, in addition the motif population could provide a
valuable resource to aid in the forecasting of future infor-
mation. The MTA is still at an early stage of development
but the initial results presented in this paper are encourag-
ing. We propose future work to improve and enhance this
algorithm but even in its current form we believe that the
MTA offers a valuable contribution to an area of research
that at present has received surprisingly little attention.

Acknowledgement

The authors would like to thank Eamonn Keogh from the
Department of Computer Science and Engineering, Univer-
sity of California Riverside for providing a teaching ver-
sion of his probabilistic motif determination algorithm, the
steamgen dataset, and his advice and feedback.

References

[1] M. Ghiassi, H. Saidane, and D. K. Zimbra. A Dynamic
Artificial Neural Network Model for Forecasting Time
Series Events. International Journal of Forecasting,
21:341–362, 2005.

[2] G. Zhang, D. E. Patuwo, and M. Y. Hu. Forecasting
with Artificial Neural Networks: The State of the Art.
International Journal of Forecasting, 14:35–62, 1998.

[3] C. Grosan, A. Abraham, S. Y. Han, and V. Ramos.
Stock Market Prediction Using Multi Expression Pro-
gramming, 2005. ALEA05, Workshop on Artificial Life
and Evolutionary Algorithms at EPIA05.

[4] S. H. Chen. Genetic Algorithms and Genetic Program-
ming in Computational Finance. Kluwer Academic
Publishers: Dordrecht, 2002.

[5] I. Nunn and T. White. The Application of Anti-
genic Search Techniques to Time Series Forecasting.
GECCO, pages 353–360, June 2005.

F. A. AUTHOR et al./ Preparation of Papers for International Journal of Automation and Computing 13

[6] J. H. Carter. The Immune System as a Model for
Pattern Recognition and Classification. Journal of
American Medical Informatics Association, pages 28–
41, January 2000.

[7] L. N. de Castro and F. J. Von Zuben. Learning and Op-
timization Using the Clonal Selection Principle. IEEE
Transactions on Evolutionary Computation, 6(3):239–
251, 2002.

[8] T. Knight and J. Timmis. AINE: An Immunologi-
cal Approach to Data Mining. In N. Cercone, T. Lin,
and X. Wu, editors, IEEE International Conference
on Data Mining, pages 297–304, San Jose, CA. USA,
2001.

[9] J. Lin, E. Keogh, S. Lonardi, and P. Patel. Finding Mo-
tifs in Time Series. In the 2nd Workshop on Temporal
Data Mining, at the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
July, 2002.

[10] W. O. Wilson, J. Feyereisl, and U. Aickelin. Detecting
Motifs in System Call Sequences. In Proceedings of the
8th International Workshop on Information Security
Applications (WISA 2007), to be published, 2007.

[11] E. B. Bell, S. M. Sparshott, and C. Bunce. CD4+
T-cell memory, CD45R Subsets and the Persistence
of Antigen - a Unifying Concept. Immunology Today,
19:60–64, February, 1998.

[12] X. Guan and E. C. Uberbacher. A Fast Look Up Al-
gorithm for Detecting Repetitive DNA Sequences. Pa-
cific Symposium on Biocomputing, Hawaii IEEE Tran.
Control Systems Tech., December 1996.

[13] G. Benson and M. S. Waterman. A Method for Fast
Database Search for all K-Nucleotide Repeats. Nucleic
Acids Res, 22(22):4828–4836, November 1994.

[14] I. Rigoutsos and A. Floratos. Combinatorial Pattern
Discovery in Biological Sequences: TEIRESIAS Algo-
rithm. Bioinformatics, 14 no. 1:55–67, 1998.

[15] E. Keogh and P. Smyth. A Probabilistic Approach to
Fast Pattern Matching in Time Series Databases. In
Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining, pages 20–24,
1997.

[16] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast Subsequence Matching in Time Series Databases.
In Proceedings of the SIGMOD Conference, pages 419–
429, 1994.

[17] S. Singh. Pattern Modelling in Time Series Forecast-
ing. Cybernetics and Systems - an International Jour-
nal, 31, issue 1, 2000.

[18] B. Chiu, E. Keogh, and S. Lonardi. Probabilistic Dis-
covery of Time Series Motifs. SIGKDD, August, 2003.

[19] J. Lin, E. Keogh, and S. Lonardi. Visualizing and
Discovering Non Trivial Patterns in Large Time Series
Databases. Information Visualization, 4, issue 2:61–82,
2005.

[20] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A Sym-
bolic Representation of Time Series, with Implications
for Streaming Algorithms. In Workshop on Research
Issues in Data Mining and Knowledge Discovery, San
Diego, CA, pages 2–11, June, 2003.

[21] W. Wilson and S. Garrett. Modelling Immune Memory
for Prediction and Computation. In 3rd International
Conference in Artificial Immune Systems (ICARIS-
2004), pages 386–399, Catania, Sicily, Italy, September
2004.

[22] A. S. Perelson and G. Weisbuch. Immunology for
Physicists. Rev. Modern Phys., 69:1219–1267, 1997.

[23] D. Chowdhury. Immune Networks: An Example of
Complex Adaptive Systems. In Artificial Immune Sys-
tems and their Applications, D. Dasgupta (ed), pages
89–104, 1999.

[24] A. Yates and R. Callard. Cell Death and the Mainte-
nance of Immunological Memory. Discrete and Con-
tinuous Dynamical Systems, 1:43–59, 2001.

[25] J. J. Espinosa and J. Vandewalle. Predictive Control
Using Fuzzy Models Applied to a Steam Generating
Unit. Submitted for publication FLINS 98 third inter-
national workshop on fuzzy logic and intelligent tech-
nologies for nuclear science and industry, April 1998.

[26] G. Pellegrinetti and J. Benstman. Nonlinear Control
Oriented Boiler Modeling, A Benchamrk Problem for
Controller Design. IEEE Tran. Control Systems Tech.,
4, No 1, January, 1996.

[27] E. Keogh and S. Kasetty. On the Need for Time Series
Data Mining Benchmarks: A Survey and Empirical
Demonstration. Data Mining and Knowledge Discov-
ery, Volume 7, Number 4 / October, 2003:102 – 111,
July 2002.

[28] E. Keogh, S. Lonardi, and B. Chui. Finding Suprising
Patterns in a Time Series Database in Linear Time
and Space. In the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 550–556, July 2002.

