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ABSTRACT -

///

-

_ The stability of a dual-spin satellite systém‘during the momentum
—xheel spin-up manuever is treated both analytically and numerically.
The dual-spin system consists of: a élewly rotating or despun main-
body; a momentum wheel (or rotor) which is accelerated by a torque
motor to change its initiallangular velocity relative to the méin part
to some hign terminal value; and a nutation damper. A closed form
éolution for the case of a symmetrical satellite indicates.that when
‘the nutation damper is physically constrained from movement (i.e. by
use of a mechanical clamp) the magnitude of the vector sum of tne
transverse angular velocity coliponents reﬁains bounded during the
wheel spin-up under the influence of a constant motor ;quu;f%&The
analysis is extended to consider such effects as: the motion of the
nutation damper during spin-upj; a non-uniform motor torque; and'the
effect of a non-symmetrical mass distribution in the main spacecraft
and the rotor. An approximate analytical solution using perturbation
teghniques is developed for the case of a slightly asymmetric main
spacecraft. From the numerical results for the case of small mass
asymmetry the system behaves similarly to the case of a symmetrical
satellite; whereas for large asymmetry one component of the transverse
angular velocity has an amplitude much greater tﬁan the. initial value.

For the case of an asymmetrical spacecraft when the nutation damping-



is aétivated auringspin-up, a decay of the amplitude of the transverse
angular velocity vector is noted. When the effect of the misalignment
of ﬁhe main spacecraft (spin) principal axis from the geometrical

(polar) axis of symmetry is considered, a problem of stability could

" arise due to the large initial amplification of the system nutation angle.

—
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NOMENCLATURE

-
-
-

moments of inertia about X;Y;Z axes,drespecti¥ely; for the
main body

composite moments of inertia sbout X,Y,Z axes, respectively,
including main body and rotor

composite moments of inertia about X,Y,Z axes, respectively,
including'main body, rotor; and damper

coefficients occuring in the solution of the differential
equations

Boehmer integral appearing in approximate perturbation
solution

spacecraft cenfé} of mégé offset

centrifugal force

Coriolis force

A

fuhétions appearing in the pérticular part of the approxi-
mate perturbation solution

moment of inertia tensor of satellite main body i, = x,y,2
moment of inertia of rotor about X,Y ,Z axes, respectively
(i = x,7,2)

moment of  inertia of the pendhlous damper(s) about X, Y,2

axes, respectively
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restoring spring constant of the torsion wire support

constants appearing in solution for the case of a symmetrical

spacecraft and rotor without damping

damping rate constant

height of damper plane above X,Z plane

appi;;d external torque about the quasi-poordinate axes of
symmetry

the motor torque

rotor torque

the masé of the main satellite
the total system mass = M +A§ m,

the pendulum end mass

the inertia (applied) torque action on the rotor

torque due to centrifugal force about the damper hinge
point
torque due to coriolis force about the-damper hinge point
(A'-B') [wy(O) B' + I s(0)] /B’
(B'-A") Ip /B' - I Y .

Y y \
the generalized forces occuring in the by equation .

the reaction of rotor on main body

the reaction of main body on rotor

-iv -



r = the distance from the nominal spin (Y)Aaiis to the pendulum

o

‘hinge point T

r, = the length of the pendulum

s(x,b) = Boehmer integral appearing in approximate pertuibation
solution

s = spin rate of rotor relative to main body

’ TM- = kinetic energy of main body and damper
TR = kinetic energy of rotor

T = kinetic energy of the system

t = time

VM/cnm = velocity of main part relative to the center of mass

zgygiﬁﬁiaﬁ‘ﬁ?;,ﬁ}]cm = velocity of ith mass relative to the center of mass

v = potential energy associated with restoring toréue effect

X,Y,Z = principal axes of main satellite

x = |Qe/A'| (t+a)?/2

@ "Iy = ks

B = IRYZ

r'(b,ix) = incomplete Gamma function with complex argunment

. ‘ ) Ixz .

$5i. - = damper displacement angle

wy | = angular velocities about the X;Y,Z, axes, respectively
(i = x,y,2) -
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I. INTRODUCTION -

Haseltinel, Likins2, and Bainum et al3 have 'invészigéted the motion
of spinnin;\satellites with nutgﬁion aamping together with attitude
stability criferia. A dual-spin spacecraft may be considefed to
consist of two parts constrained so that the relative motion between
them is restricted to a common direcfion fixed. in both bodies. Such a
system can resist the effects of external torques because of the com-
bined resultant momentum of the system, even though oﬁe of the parfs
méy be rotating very slowly (or even with zero inertial angular
veiécity). A basic result of dual-spin attitude sfabilization studies

is that the inertial attitude of the spin axis of a freely spinning

IR L
-

;'passive dual-spin vehicle may be stable, in the presence of a properly
positioned internal damper, regardless df the mass distribution of the
spacecraft. This means that a dual-spin system, depending on the spin
rate and the amount and location of the dampers, may be stable in spin
about an axis of hinimum moment of inertia.>

‘Since 1962, when the feasibility of a dual-spin satellite system
was demonstrated with the Orbiting Solar Observatory I (650-1), the

'dual—spin coneept has been applied to other satellite systems including

- the Small Astronomy.Satellite ; A (SAs-A), the TIROS-M Meterological

Satellite, the TACSAf.Satellite as well as the advanced versions of the

0SO-series. The stability theory and design of dual-spin satellites

with various types of nutation damping systems was described at a

VR
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- symposium on the attitude stabilization and control of dual-spin

satellites4. Considerable attention has also been made in the recent

-

-

literature ﬁo the dynamicé and'sﬁability-of various‘iypes of dual-spin
systems with énd without energy dissipation on both the high spiﬁning
part (fotor o? momentum wheel) and the despun portion (or main bedy).
The application to dual-spin systems' of heurigtic or "energy sink"
arguments has indicated thaé, even in the éresence of energy |
dissipation, spacecraft of this type can be stable in spin about a
déntroidal principal axis‘of eithg; maximum or minimum momgnt of
inextia.?

In the paper of Mingoris, an élternate procedure for analyzing
the motion of dual-spin satellites is presented. Thisiprocgdh;e,‘whicb
involves Floquet theory, furnishes a means of obtaininé prec;éé and
accurate stability information for a broad class of dual-spin systems,
provided that‘energy dissipating mechanisms and internal moviné parts
are specifically included in the mathematical model.

In all of these prévious analyses of duai-spin systems it was
assﬁmed that the rotor spins a£ a constant relative angular rate with
respect to the main part. Of interest in this investigation is to in-
élude the effects of a yariable rate of relative rotation‘such as may
be encountered during the deiibe:ate spin-up maneuver of the momentum
wheel. This can be accémpiished by an on-board torque motor which
accelerates the wheel until the desired relative spin rate is obtained,

at .the same time the main part is decelerated as the momentum is trans-

ferred between the main part and the wheel.

-2 =



A‘aual—spin Small Astronomy Sateilite (SAS-A) wasﬂéesigned and
‘developed for NASA Goddard Space Flight Center by the‘ébplied Physics
Labofatqry and was launched in December 1270. The satellite was
designed to scan the entire celestial sphere to determine the location’
of X-ray émitting sources relative to~the fixed positioﬁ of the stars.
No serious attitude staﬁility problems were encountered during the
relatively short time required for wheel spin-l.lp.6 Because of the
experience already gained with this operationa} system, it was B .~§
selected as a representative dual;spin sys£em modei for tﬁe presenf

analysis.



II. ANALYSIS

—

—

:The elements of the éAS-A atfitude control sygtem are éhown in
Fig. la. The sétellite is comprised of three parts: (1) the primary
part of the satellite, assumed to be essentially é right_circular
cylinder'where the nominal spin axis-is fhe bod& Y axis, (2)>the
smaller rotor or momentum wheel which is assumed to be connected near
the cenﬁer of mass of the primary part, and whose spin axis is also
pafallel to the body Y axis, and (3) the pendﬁlous type nutation
dampers which are connectéd to theAprimary bart énd.are constrained

_to move in a plane that is perpendicular to the nominal spin axis and

_at a distance £, above the transverse inertial plane. It is assumed
TN g AT : .

the . dampers are hinged or pivoted about a torsion wire support which
offers a restoring (spring) torque in addition to the dissipative
7

torque.

A, Equations of Motion for the Case of a Constant Speed Rotor .

The system to be studied is shown schematically in Fig. lb. .The
orthogonal coordinate axes X,Y (spin axis), 2 are fixed in the parent
body with the origin at its equilibrium position center of gravity.

The main body has mass.M, polar moment of inertia B, and transverse
moments of inertia A and C. Four small pendulous damperé each having
mass, m, are attached to the main bedy, and are free to move in-a plane
'y = Z; perpendicular to the polar axis. (The position of two of these

are shown in Fig. 1b, The other pair would be aligned, in equilibrium,



e

along the + X axes). The angles-swépt out by. the pendulous dampers are

¢i" The analysis shall initially be undertaken with all four end masses

-

beiﬁg able to move, n = 1,2,3 or 4. Later we shall simplify our

analysis by assuming h =Yor ¢ =¢ = ¢ =.0 for the actual case 6f
2 3 4 -

SAS—A. Labelling the weights with subscripts, 1-4, the coordinates of

the end masses can be expressed:

z, = xr, + r; cos $1s 23 = - (ro + r; cos ¢2), 23 = - r sin ¢3,

z4 xry sin ¢4, %x; = ry sin $;, Xy = = ry sin ¢,, X3 = x, + ?1 cos 93

x4 = = (r_ + r]) cos ¢4, y= 2. .}. SEEREREEE e e @)
Ali external forces except gravity are negleéted and eéen with tﬁat we
shall ﬁegléct the effects of the inhomogeneity of the earth's field.
.Thé motion of the center of g;avity g% the sfstem and motion about thé
center of gravity can then be separated.

If Wy, wy, and w, are the angular velocities of the‘main bédy about
the X;Y, z axes.respectively, and rj is the position vector of the ith
weight, the kinetic energ? of the main bodv and the damper .can be
1,3 '

expressed as:

L:

Sla2 +X L2+ X L2 ln? 13
= — — = — QY R m
TM 2 Amx S Bwy 5 sz > M/cm > i . v

From the definition of the system center of mass:

- mX. _ rs o
= i=1%1i/0 :
r /o R L (3)
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where point o is the center of the.coo:dinate system. The velocity
of the various components relative to the system centef of mass may

be e#panded:

v =v 2R O3
o
mi/cm ®i/o /om '

VM/Cm=vM/o+Vo/cmf""“"‘""“"~" (5)
The components appearing in Egs. (4) and (5) can further be expressed

as:

v = ;. e e e e e e e e e e e n erie e e e e e e (6)

 v°/M'= I A R v

m2Ts G UL )
M+ Im

1
N e
il
!

Vo/em = T Vem/o T cm/o

Upon substitution of Egs. (6) - (8) into Eq. (é), the kinetic energy

of the main body may be expressed as:

27T

y = BwZ + BuZ + Cw? + m (2 T. . 1) -
X

y z 1 h e

vhere ﬁ =M+ Im,
i i

The kinetic energy of the rotor is given by:

TRotor*=

N =

[’r, w2+ IR, (w + )2 4 IRz.mi J e e e (10)

where IR , 1 = x,y,2 are the rotor principal moments of inertia and

1



the rotor is assumed to be spinning about the Y-axis with a relative

angular velocity s, with respect to.the main spacecraft.

If it is remembered that, e.g. the X-component of ;i is

ii + WyZi = WY, and use is made of Egs. (1) and (2), ?he kinetic

energy takes the rather involved form given in Appendix A. The
equations of motion for this case can thus be expressed in terms of the

quasi~coordinates (wx,w ,wz) and the angle swept out (¢i) by the

y

“pendulous dampers according to:

a. (29T w_ 3T w 9T -
— .__._._) bad z —_— 4 y —_— = lx
at wa Bmy sz
;_Iz.,f'
i ( aT - w aT + [A) aT - I-'Y . . . . - . . - - (11)
at ow w zZ W J
y z
d 9T . oT w T
— ( =) - —_— X — =1
. Z
dat ow y wa Bwy
and ! ' RS
. o
g?:' ( ——?T ) - -——aiT + a——lf' = - ——gz =9 1=1%mn
I i 35 i

where Lgy i = x,y,z are the applied torgues and n, represents the total

number of the dampers; the viscous forces on the pendulous end masses,

which vaiy linearly with the angular velocity, ¢i, can be derived from the
Rayleigh dissipation function, F; in this case, 3,9

. n ' . .
R S Y TR 6 /)
2 i'i A _

i=1

-7 -



The restoring torque on each damper provided by the tofsion wire suppdrt
is represented by Q; '= - ' 3dV_ where the potential'éhérgy,'v, is
proportional to. the square of the angular displacement from the

equilibrium position,
e ¢ )

Egs. (11) may be expanded and simplified with small angle assumptions
made rélative go the magnitudes of the ¢;, and with further assumptions
that Wy /Wy, Wz /Wy and éi/wy are small in order to obtain first oxder
: dampinq contfibutioﬁs, fof'the casé of y = 2 dampers and for the case

3
of a constant speed rotor:

g&x + (E - B) wymz.- w, IRys - 2mrl£ wy(&l - &2) = Lgl- < . (14)

Bwy + (& - C) w?wx + mr; (ro + ry) (¢l_+ ¢2) = Ly e e e e (15)
_. - _ - _ - e _ .0 o _ 2
Cu, + (B = Ay, mrl£(¢l ¢,) + mryl(9) = ¢5) vy
+ TRows=L ........ (6
»0 y x z .
2 - 5 -
1 =% —_ mr,fw  + mr) (rg + 73)u,
+ mr, (r + 1 2 m?r{ + 2
1%o )0 vy - e s A R '
M M
s - k¢1 K¢1 ' « & e e e o e+ e (17)



2,2 ' -

- 2 . m ° A b . . - .
1-= + + +
mrl ( = )¢, M] ¢l mrlng mrl(ro + rl)my
M _ ‘ .
. - mry 2 _ 2 2 _ .7
+ mrl}ro + 2l 2¢ w mrlkwywx

-
u 2y m ! 1y

=j-k¢2-'K¢2......-'.. (18)
where the total inertia terms have main body, rotor and damper components:

A

i
»
+
=
+
]

which can be expanded to yield:

= : 2 ‘ 2
A=A+ IR.x + 4m€ + 2m(ro + rq)
ﬁ =B + I- + 4dm(xr_ + r )2
- F 7 "R o) 1
y .
- 2 ' 2
c=C+ I + anl” + 2m{r  + r.)
. ) 1’
. g
and 2

= 1|8

"k is the damping rate constant

K is the restoring spring constant of the torsion wire support



B. Eulerian Approach of the Formulation ‘of "the Equations of Motion

I
‘for Variable Speed Rotor . L —

" The Eulerian approach is considered here so that it will be
possible to distinguish between reaction torques, acplied torques,

damping torgques and external torques. The angular momentum of the

main body can be expressed as:

LM = (A + Idx) wx;_+ B + Idylwy 3 + (C + Idz)wzk e ¢ o o o (19)

whereas for the rotor:

L =1I w, 1 + I.

R R "R R R j+ IR wR“k et e s e e e e e e e (20)
XX y Y z 2 :
. " Using the familiar relationship, s
9‘2 = 4L + wXL = IN

dt !space at Body

the main body eqﬁations can be developed as:

)Aw ooty (c + Idz} - wyw, (B + Idy) =N y + R, . .« (21)

(B+Id)my+wzwx(A+Id)-wzmx(C+Id)=Nd +Ry+Lm (22)
Y . x 4 Y Y
(Cc + Id ) wz'+ wxwy (B + Id } - wxwy (A + Id )} = Nd + R . . (23)
z ' x z
: ‘and the rotor equations, similarly:
I = 4+ T —
‘R_®OR Wy R R ~Igp wsz—NR + e
X x z z 'y Y xRRx...,.......A..' (24)

- 10 -



IR wR + wsz IR - wwa IR =‘NR + R * ® ¢ & o e s @ (25)
Yy vy X X

IR wR + wwa IR - wwa IR = NR + % e ® 6 o & o e e @ (26)
z 'z vy X % z 2z :

where Iy , are thg principal moments.of inertia of rotor, (i = x,y,2)
I. , are the moments/of inertia of dampers about X,Y,Z

N. , are the damping tprques on the main body

R. , aré the reactions.(torﬁue) of rotor on hain body

are the (applied) torques acting on the rotor

RR , are the reactions'(torque) of main body ogirot;;mfp

L, is the motor torque

In Egs. (21) - (26) the effect of all ex£ernal torques (e.g. aero-
dynamic, solar pressure, gravity-gradient) have been neglected.
Substituting first order expressions for Nd. préviously derived,
Egs. (21) - (235 can be written as: :

(a + Idx) o wywz( C+1I z) - wywz (B +1I y) = 2mr1£(¢l - ¢2)wy

TE R e e e e et e s e e e e e e e e 2D

--1] -~



B + Ig Joy + w0y (A + Ig) = ww (C+ Ig) -
b4 ) X ) '_z

ot

/ - - -

=-mny(rg b T) (B F @) HRy FIg . . (28)
y

(C + Id ) w, + wxwy(B + I4 ) - wxwy(A + Ig )
z Y x

_ P _ .e _ - - _ 2 : . ) .
= mr1£(¢l ¢,) mr1£(¢l ¢2)wy *Ro. . (29)
The assumptions are, that reaction torques are equal and opposite,
R, = - Rp s and the inertia (motor) torques about axes other than the

i .

spin axis are zero, i.e. Ng = NR = .0, but ideally, Ng = - Lm
. X oz Y Y
i.e. the inertia torque about the spin axis is equal and opposite to

" the motor torque. . . : Froo o
Noﬁ combining, (24) with (27), (25) with (28) and (26) with (29) and .

noting that,

i
€
e
1]
€

~

Y ‘y =wz, and Wp = Wy ’
b4 2 X

we .obtain,

=omr £y - duy - e e e e . . (30)

Aw, + (C - B)wywZ wyIp s =
: Y
Bmy+ (A-C)wzwx+IRs=-mrl(ro+r1) (¢1+¢2) e o« o« (31)
y
E(I) +(;—I-;)ww +(;)I s=mr£(¢_¢)_mr£(¢_¢)w2.(32)
~Yz x>y X Ry 1771 2% 1"t 2"y
where X = A + Id + IR « and similarly for 5 and E.
b4 X

-12 -
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In additioh, the geneial torque equation for the symmetrical

]

-
-~

rotor, (i.e. IR ’

IR )} is obtained from Egq. (25}, -
x z , -

e I T I € )

Y - Y
whére.the.following app;oximatién has been made:
Lm x LR >> Ry
y b4
When § = 0, then Eqs. (30) - (32] are identical to Egs. (14) - (16).

»

C. Stability Analysis for the Special Case of'an.Undamped Symmetrical

Satellite

We will consider the systeh without damping, and a spacecraft

spspIsesss visgymmetrical about the nominal spin axis, i.e. Ig =0, C=A, and
IR = IR - Under these assumptions Egs. (30) - (32} take the follow-
x z :

ing form:

', ' _nt CoL - - o ‘ 4
.A W, + (A‘. B )mywz - szRys O ¢ ¢ ¢ ¢ ¢ o o o o o - (34)

B'w + I =o..........@...'....... ..~(35)

s
y R
Yy

', N ] -‘__ ] . & = » ’
A w,, + wxwy(B A') + waR s‘ 0 S N I IR (36)
y
The general torgque equation, Eg. (33) is again:
IR (wy + 8) = LR
4 _ Yy

It should be noted that Egs. (34) - (36) are exact with no restrictions

-13 -



on the magnitudes of W and W, .
After multiplying Eq. (34) by w, and Eq. (36) by w, and adding then

a first integral results as:

"w2 + w2 =K =Constant . . . 4 ee 4 4 e o . (37)
X z 1l ‘ : .

Eq. (37) indicates that the amplitude of the vector sum of the trans-
verse angular velocity components is bounded during spin-up.
Eg. (35) can be integrated directly, to yield:

-IRs+By 0 + IR s(0) A | :
w, = X 4 Y ' (38)
Yy B! .- LRI IRV ‘

Upon substitution of éy from Eg. (35) into Eq. (33), -

§ = Y = ¢ = constant

S £ T}

Iz T1-_vy1

Upon integration of (39),

SECtE 4 S (0) v o e e e e

which states that the relative angular velocity of the rotor, for the

case of a symmetrical satellite increases uniformly during spin-up.

Substitutipg the values of w, and s into Egs. (34)<and (36) we

y

can get,

- 14 -



e .

" ] ; ' Ign -
(A' - B ),[wy(O)B + "RY

s(0)])

X . B L] .

w -3 TR
Bl

+ [

z

. ' ', . .,'. I .
A'w. + -(B' = A") [wy(O)B + Ry

Wg

-

e
- L . -

TRyJ Lot + s(0)1, =0

s(0)]

Bl

- Rt _I'
L @ -E Ry

BI

1 p= ' =B 0,00 B + TR;5(0)]
. B B 1

and, Q= (A' -B') (- IRy) I
B! '

R~
b4
then Egs. (41) and (42) can be written:

Ata, + w [P + olct + s(0)}] = 0

A'éz - w [P + olct + s(0)}]

fl
o

Ly

- TRy) et +5(0))uy = O

From Eq. (44) and after differentiation with respect to time,

A'[P + Q{ct + s(O)}]wz - &ZA'CQ

“x = [P + oflct + s(0)} J°

After substituting Eq. (45) into Eq. (4

=15 -

ooooooooo

3), there results

(41

.'(42)

(43)

(44)

(45)



Q

P49 et + s}
+ s(Olllv-mz f 1 A'

_ c
wz o IP + Q {ct z

—

2
] w, =0 (46)

Similarly by expressing w, = f(é#) and differentiating,

ax - cQ : O, 4 R L Q”féﬁt;‘s(O)lew =0 (47)
IP+Qf{ct + s(0) }] G x

——

Egs. (46) and (47) are second order differential equations with
variable coefficients and have a regular singularity at time t = t,, where

tép;;_av=- Is(O) O+ P ] - The solution of this type of differential
2 “——E;;""
equation can be represented by a power series expanded around the

10 :
regular singular point. At least one of the solutions te Eq.

(47) can be represented as:

IRERRLEIA T g

_ 2 r +k ‘ " - o
lﬂx - ak(t + a) R . . . 3 . . . . . . . - . . -. . - (48)

w ™8

=0
where 'a' is the regular singular point at time,

Qc

. ® . k- v
Then, wy = L a (r +k) (£ +a) * ! e e e e e e e (49)
k=0 . » -
and w =12 a, (x+% (r+k-=-1) w+af k"2 (50
k=0 '

Now Eq. (47) can be written as:

- dx 22 2
w = —— + < t + w = O e o ® e 8 e e & e o o 51
Xt + a) QZTT ¢ al oy , Gn

Substituting Eqgqs. (48) - (50) into Eq. (51), there results,

- 16 - ' IR



L a(r+kl r+k-1) (&£ +a)f tE-2
k B
k=20 - e
o . . r +k -2
_ z ak (r + k} (£ + a)
k=0
‘ 2.2 o . )
+chi ak(t+a)r+k+2=0... (52)
T A'" x =0 :

The indicial equation is obtained by equating to zero the coefficiencts
of the terms in the smallest power in (t + a)J and assuming ao # 0.
In this case the smallest power of (t + a), obtained by setting

k =0 is (t + a)f ~ 2.

Then,
ao.Ir(r- 1) = xr)] =0 % .. . . . e e e e e e e (53)
Since it has already been assumed that ao % 0, then the roots of the
indicial equation are:
r ; 0, and r = 2
Equating the coefficiént of (t + a)r -1 to zero, we obtain:

al (r + 1)r -ial(r +1}) =0 . « .« . ? e e e e s e s e s e o (59

From consideration of Eq. (54) it éan be cgncluded that a; = 0 for
both r = 0 and r = 2.

By equating the coefficients of (t + a)T té zero it-is seen that
a, is arbitrary for r = 0 and a, is zero for r = 2. Similarly by

r+ 1

equating the coefficients of (t + a) to zero we get ag = 0

for both the values r = 0 and r = 2.

el 17‘ -



. Now by equating the coefficient of (t + a)r +k to zero, the

following relation is obtained: e -

CIN 2(r + k + g) (r +kx +1) - ak + 2‘r + k + 2)

'chz o .
+T'-z- ak_2=0...»..'.....,-...(55)

.From Eq. (55), the general recurrence relation between the coefficients

can be derived:

_ - 03c?. a - 2 : L se)
ay 2 A'2 (r+k) (x+k+2) "
For a selected arbitrarily (ao # 0) and for the root, r = 0, the
other coefficients may be expressed as follows:
a, =0; a, = 6- a_ = Ofﬁ a, = ‘: 02021 g ; Ia = 0;
’ 2 ' 1 4 b3 ’ ’
1 3 A2 2.4 5
L 22 a . 4.4 a -
a, = - Q% 2 i a3 =0; ag_Q% o i ag = 0;
6 a'Z 4.6 - A'4 2.4.6.8 ‘
4 4 a o 6
ajp = Q¢ 2 i a3 =0 2., = 058 3o oo
A'" 4.6.8.10 ~ A'®  2,4.6.8.10.12

etc.
After substituting Agr 8317837 « . o . . oy Ay into Eg. (48) the solution

corresponding to the root, r = 0, takes the following form:

= 2 ) 4
w = ao + a,(t +a)° _ Q202 a, (£t + a)
-1 A2 2.4
2 2

- 18 - -



odc o 8 _ Q¢ 2_ (t+a)lo
* AW 3des (£t AT . 4.6.8.10 ,
'QG 6 a 12 N
oS A
- F% 34E8.10.13 ‘traT- .. 067

Similarly, for r = 2 and selecting ao-# 0, with the aid of Eq.

(56), the coeffiCiéEis can be related as:

= H = H o= 0; = - Q C ao
a; 0 a2 (4] a3, a4' =7 1.6 ;
4.4 a, .
as = 0' a6 = 0; a7 = O' a8 = Q C o ;

A'" 4.6.8.10

Q6c6 o) e
A'®  4.6.8.10.12.14

Again after substitution of the above values of agr 37 831+ e o . . .

a 1into Eq. (48), the solution corresponding to r = 2, becomes:
m

L e 4 a2 2.2 a ‘ '
w, =a, (t+a) - 0 qz o (t + a)6
2 . Al 4.6
4 4 a 6 6 a .o
0 c™. (o) £+ 10 Q°c (o) + 14
AT 76810 (tta A6 1.6.8.10.12.14 &t @
+... : (58)

The complete solution of Eq. (47) is, in general, an arbitrary
linear combination of Egs. (57) and (58):

Wy = Coly. F Cald 4 e e e e o o e e e e ee e e (59

- 19 - ’ L " -



Eg. (59) can be expressed, using Egs. (57) and (58), as:

) ’ .22 a ./’.'/."2 2 6
- 2. _ 0% o 4 7 0%~ a2 .
P a 8 4 4 a
c (o) - 2 10
+ 2_1.‘ — = (t + a) Q¢ +
At 2,4.6.8 A'Y 4.6.8.10 (¢ a)
46 6 a .
- Q¢ ° (t + a)lz-. . o o]
A'® 2.4.6.8.10.12
2 22 a 4 4‘ a 10
-+ C,.fa (t.+ a)” - Q¢ _o_ + 6+ Qc o +
20 aZ 3.6 (Fta A% 76830 T
6 6 " a )
. 9% o e+ L. (60)

A'® 4.6.8.10.12.14

for -~ @ < t <

It should be noticed that the solution converges for all finite
values of time since there is no other singular point of the differential
Eq. (47).

Egqg. (60) can also be represented as:

- o,
wy =KCos [ 8 &+ py L (e

Al 2 ) 2
where
K = G120 - and K. = Tan~t (C' + C'y)
1l cCcosk 2 [_&____2_ 24')
2
1
c' = 22  ana CcC = Eg
1 ag C1

- 20 -



It can also be seen that Eq. (61) can also be fepresenged as:

el
—

Kl Cos f D'i'dt « o o o s s e o o. e e _ 6 e o e _8 o e

w,_ = -
X o
where
R ’
W= R + 2o ot + 5(0)]

Now if we assume that the solution of Eg. (46) has the form:

e
!
= ™8

bk(t_,_a)r+k
=0

then by applying the method of Frobenius as before we obtain the

complete solution to Eg. (46) as:

. 2
Wz = K Sin Q¢ (t + a) .

e« o o . - o e

where the constants can again be related by:

Ky Cos K, 9C - ¢ + ¢ 22" tan K, = C.b
1 2 2A' 3 4' Qc 2 30
where b c
ct= %2 anacr= &
3 b 4 C., -
o 3

Eq; (63) can further be reduced as before to the form:

. . . | _
W =K Sin/ M'At . v ¢ ¢ ¢ 4 o o o o o o o o o o o
z 1 o .

From consideration of Egs. (62) and (64) it is appafent that:

2 2 _ 2 C
Lo + wy = Kl R A R I B IR B

which compares directly with the first integral, (37).

- 21 -
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When the nutation daméer is physically constrained from movement,
the magnitude of vector sum of the transverse angular velocity components
‘remain constant during wheel gpin up under the influence of a constant
motor'torque. The stability criteria for this system is based on the
magnitude of the éransverse components of the'angular velocity. If the

transverse components of the angular velocity do not exceed the initial

values, then it is assumed that no serious stability éroblems would be
encountered, The implication of Eq. (65) is the boundedness of this

motion during spin-up.

D. Analysis for Asymmetrical Main Body

Assuming the system is undamped and has a symmetrical rotor, i.e.

I, =0and I, =TI, ,butwitha# C, Egs. (30) - (32) can be
i X z : :
expressed as follows:

] | . t _. - ) .
A o + (C B )wywz w, Ip s 0 . oo eie oo .. (66)

. L] " - - =

B wy + (A C')wzwx + IR s L (Y2
Yy

+wx IRyS = o [ L} L] L] L ) L] - L d . L2 - . - (68)

and the torque equation for the symmetrical rotor is the same as before:

e t _ at
C w, + (B A )wxwy

‘I I + §) =
R (wy s) Lp
4 y

After multiplying Eg. (66) by w

« and Eq. (68) by_wz and adding there

results:

- 22 -



o (- ovy = Ml ¥ Cllegun) (69)
Xz w /{

y -

Substituting Eqg. (69) into Eq.'(67) and after simplifying we obtain the

result as: _ _ R ' S
A' (wguy) + Bllywy) + C'(wywy) + Ly Wy =0 . .. ... (70)
If the torque control law during spin-up is as: Bwy + LR = 0, then
Y

Eq. (70) becomes:
TR (i) FCT(0,0,) T 0 4 e e e e e e ae e e e .. (71).
which results.in:

A'w? + C'wZ =c=Constant « « v v v ¢ o o o v 0 o o (72)
ané the motion is bounded as in the case of a symmefrical main body.
In general, the integration of (70) yields the following first
infegral: |

1 ) .
= E-sz + Lcvw? + ft L_ w _{u)du = Constant - : . . (73)
2 X 2 y 2 Z o R 'Y

b4

E. Effects of the Nutation Damper

Under the assmumptioné of a symmetrical spacecraft and only one
damper free to move, the equations of motion, (30) - (32), aré as

follows:

b, + (A = Blugw, ~w,Tp s =2my8d 6 v u i e e e ... (74)

Yy
Y

FIgs=-mry (2 +r)é) oo (75)



A e - -

- -— —- -— - e _ - 2—" ’ .
aw, + (B - Aoy, + waRys mrl£¢l. mrlZQlwy e e e (76)

and from Eq. (33), the torque equation is written:

R (77)

((I)y+é)'.'=L .-oo--n‘-'o.ooo.oltoooco.
Y p4 :

IIR
In addition the damper equation, from (17) is: -

2 . . -
mr - + + -
1 (@ ) 4 mry (r_ + 1)) wy. mrlﬂwz

=213

+mr (r + ™1 2
170 — ) $uy
M
=-k¢y - Ky o o oo ... (78)

+ mr lo_w
RN

T

~ - Eq. (75) can be inteérated directly, to yield:

' Iz s mr, (r . + . 1,.,5(0)
W, - W - y 1Yo T I) - R
y = “y(0) - =4 -
B B ' B
mry { + r . )
‘ 1o " b0 e 9
B

- Upon substitutién of éy from Eq. (75) into Eq. (77), there results:

' mry (rg + ry) -
s - LRy ‘ . 1'To 1 b . . .. (80)
. Ix . Iy, 1
B B
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The first term on the right hand side is constant, say, ¢, under the

assumption that LRY is constant. o - o

Upon integration of Eq. (80)

mrl(r0 + 1) ° '

S=Ct+ ¢l+s(0)..‘lo‘|'§l.-(81)

—— - ' I
T

It is seen from Eq. (80) that compared to the symmetrical case, the
relative spin rate of the rotor in this case does not increase uni-
formly; also that if the damper mass is zero (effect of damping neg-~

lected) Eq. (40) would follow directly.

QR

F. Anélysis for the Case of a Variable Torque Law
| In this section an analysis is made assuming a variable rotor
torque instead of a constant torque as describéd in the previdug cases.
Thé rotor torque is assumed to be a lineap function of time and reaches
tuwice ghe value of the Eonstant.torque case during spin-up. It is
clear that tﬁé average torque for the variablé torque case is the same
as thgt for the conséant'torque case previously treated. If we assume
a symmetrical satellite without the effect of the damping, the equa-
tions of motion can be obtained from Egs. (34) - (36) as:

A'&)x + (A" - B") wgu, = w1

z z Ry

S =0 v v v oo v e e e e e (82)



A'éz.+ (B' - A') wywy + waR S =0 v v o o o o o o o e e (84)
. : v . .

and from Eq. (33), the general torque equation:

IR(J;y+é):-LR N 1)
Y Y '

In addition, for the variable torque law:

LR = Ct e e o o ov e o ® e ® e e ¢ & o & e *© * & @ & °o o (86)

After mpltiplying Eq. (81) by W, and Eq.»(83) by w_, and adding,

there again results the first integral as:

w? + w? = Constant N 172
X z : .

ﬁf@@ﬁg:¢(87) indicates that the amplitude of the vector sum of the transverse

angular velocity components is.bounded during spin-up, as obtained before.

Upon substitution of &

v from Eq. (83) into Eq. (B5) and using Eq. (86),

S = C ' 4 vt e e e e e e e e e et et eeeee. (88)

where c¢' is a constant equal to c
' . - TRoa-Tr )
Yy Y
Bt
Upon integration of Eq. (88),
) S g2 )
vs=-‘iz‘—t+s(0)...-................. (89)

from which it can be concluded that the relative angular velocity of

the rotor increases parabolically with time.



.G. Effects of the Misalignment of 'the Principal Axes from

—

e

the Geometrical Axes

It is noted that the rotor will be displaced froh the
system center of mass and that the rotor spin axis will
nominal}y be parallel to the desired main body spin axis.
In the event that a perfect stafic mass balance is not
achieved, the center of mass of the system will not be at
the geometrical center of symmetry when the system is in
equilibrium. For this situation there may be a misalign-
ment of the principal main body axes from the geométrical

(x,y,2) axes. 1In addition, if the rotor is not perfectly

N ST

nass balanced there may also be a misalignment of the rotor

principal axes from the geometrical axes.

To consider these possibilities the first order non-
linear equations of motion were developed for both the main
body and rotor, as before, but now including all the cross
products of inertia terms for both the main body and rotor
as'referencea to the x,y,2 system. The main body and rotor
equations may be combined as in Section B and expanded to
include first-order small amplitude nutation damping
effects. The following first order nonlinear equations
result in the coordinates: w Wy, ® s, and $q.

X ?* Z’



+ 4meZ + Zm(ro + rl)?]&x - [I + 1 + m2r1¢i]éy

XX R X

; XX y ny

1 . —
- I + I Jo, - Iz s = |1 + 1 + mr, (r +1,)¢_Ju, w

Xz R y4 ' Xz
X2z ny sz 1 o 1 1 X7y

- : 2 _ - . ‘ 2

[Izz + 4mf IR . .Iyy + IR 2m(r + rl) ]mymz

"2 z2z

+{1 2 : X o ) '
[ + I ]wy + [1R w + Ig wy]s - [1 + I Jw?2
yz yy yz yz

L,

- \ ;2 74
_~[Ixy + Ip ]mzwx + @2r1¢1+ 2mr12¢1my

+ ; ' :
2mrl(ro + r1)¢lwz B 1))

: DS x M 2 "
- [z + I + mgrl¢l]wx + [Iyy + IR + 4m(ro+r1) ]wy
Xy . A yy

- [1,, + I, Jo, + Ip 3 + mr (ro+r )¢,
Y2 yy '

]
-~
H
+
H

+ mir_¢_ Jw w, - [Ty + I
Ryy 1717 ¥V z Ryx

2z = IR ]wzwx '»[Iyz + Ip ]mxwy

+. erorl¢l$lwy . . . . . . . . . . . 3 . ‘- - . . . . . . (91)



RRE g KA I

_.[1
+ (I

- mro ¢, = [I

Xz .

Z2Z

Torque Equation

mrl(ro+r1)¢l]mymz

S TR 1
mr4 ¢l my - IR w_ + I w is
xy vy

(92)

(93)

A



Damper Equation :
2

. N\ . e . m oy -
mrl(roﬂ-rl)wy - mryfd,+ mry (1 - :')¢l
_ : nr 2 - - :
= - mr;(ro t ZL 6y wy” - mrpRoyuy - ki) - Key. . (9%)

M

Eqs. (90)-(9%) for thé'géneral case where all (or
most) of the cross product terms appéar can not be readily
~ solved analytically.and must be evaluated by numerical
integration. Howevef, these equations will be considered
for three special cases which are representative of numerical

cases studied in Part III for the SAS-A and 0SO spacecraft.
Case 1

The system will be considered for the case where _

= = . = = t = ! =
Tz = Ipx = 75 Iyy Iyz 0, C AY, Ip I and all
z2 XX

~effects of rotor axes misalignment will beAneglected. When

it is also assumed that w,/wy<<l, _wz/my <<1, y<<A', and

Y<<B', the equations can be written, for the case of no
damping, as:
Athy + (A'=Bugw, = w, Ty s = y(u, + v

w. ) « . . (95)
yy Y

X

B'wy + To 8 2 0. v v v v v v v e v e e e e e . (96)



4
.
[
+
—~
td
1
fo =g
S
€
™
€
+
€
[
w
H

y X 'R~ Y(C\)x - u}y-mz .. . '(97)

It should be recalled that A' = A + Ix and similarly for
Y XX

B'. Case»l'is dyﬁamicaily similar to .that of a spacécraft

having no misalignment in its priﬁcipal axes but a small

difference between each qf its moments of inertia about

the two transverse priﬁcipal axes. (see Case D, p. 22).
ConsiderAthe matrix whose elements are the principal

and cross products of inertia, for this case,

RS

[ T ] = | A 0 Y
Xyz ‘ <
0 B! 0
Y 0 Al

i XYz
It can be verified that the eigenvalues of this matrix are
B', A' + v respectivély aﬁd that the y (or bp) axis still
remains é principal axis but that the new principal axes
in.the transverse plane are now misaligned from the x,z

~geometrical axes.

An approximate solution to Eqgs. (95)-(98) has been

obtained using pertubation techniques and will be developed

later in this section.



Case 2

‘The following are the approximate equations of motion

vhere T =T = = = a. = 0. C'=A" ‘ =
wvhere Lo Tox ?IyzA Izy a, I,, =0, C'=A', Iy _IR )

_ z2z XX
no misalignment of rotor principal axes, and no damping as

before:
'n "‘\ _ ! - 2
Aoy + (A'-B)ogw, - w,Ig s = aloy + w2l . . . . (99)
Yy
B'my + Ip s = a[d)x +&Z + wy(wzl- wed)l o o o . . (100)
Yy
' ‘ 1_pt : = oI - 2
A w, + (B'-A )wxwy + owy IR s Aa[wy wy] . o (101)
. . yY X :
I (0, + S) = Lo v v o v v o o o ee o v v v . f102)
R Yy R
Yy y
Case 3

If no misalignment of the main body principal axes from

the geometrical axes is assumed, but that I = B and also
. NE

C'=A"', IR = IR and IR = IR = 0, the approximate un-
27 XX Xy Xz

damped equations become:

Alw,  + (A'-B')wywz - w,Ip s
Yy
‘ = 2 o w2
B[wy + wys S Y & X))
v & e * . .
B wy + IR s = Blw, - Wy = wxs] S e« o v o o (10L)
yY
A?wz + (B'-A") Wxwy + W IR s = B[Ny + Wyly + s]. (105)
» yy
I, (wy +8) =Ly + 8lu_ - wguy - wygs] . . . . . (106)
yy y
In all three cases above IR is the same as IR as before
Yy y
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It shbuld'be.noted that Cases 2 and 3 reflect situations
whefe the polar axis of symmetry for the'ma;gfbody and
rotor, respeetiveiy, are nc ‘lenger pr-ncipél‘axés. These
thrée cases cofreépond to cases considered in the next-
section using numerical integration techniques.

An approx{ﬁate analytic solution can-be developed for
Case 1 using pertubation techniques. Egs. (96) and (98) in
the variables w, and s correspond to Egs. (33) and (35)

developed in the stability analysis of an undamped symmetrical

satellite. The sqlutions can be represented as before:
s =c¢t + s(0) . . . . . . e e e e e v e e o (107)
where ¢ = Ly /Ip [1 -~ I, /B'l.
y yy yy
and
wy=m‘y(0)—.c1t......\......‘.... (108)
and
- 1
cy = IR c/B
yy

After substituting the solutions of Egs. (107) and (108) into

Eqs. (95) and (97) for the case where s{0) = 0, there results:

Ao, + (P o+ Qetdo, = ylu, + uylo (0) - cyt)] . . .(109)
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x - wz(wy(O).— clt)] e e . (110)

g

A'h, - (P+Qet)w, = ylo

where P and Q have been previously defined after Eq. (b2).

For the case where y << A' and y << |B'-A'| a solution

using perturbation techniques may be developed by substituting

the zeroth order solutions for w, and o

X 5> Eas. (61) and

(63), (previously obtained for the homogeneous form of Egs.
(109) and (110) into the'right hand side of Egs. (109) and

(110). The zeroth order solutions can be represented by

Wy = Kl cos(x + K2) S G D
o
w, = Kl sin (x + Kg) I (112)
° 1 C . : : .
5
- - Qc lizizl
where x = x(t) A >

Eq. (109) may be differenti@ted term by term with respect to
time and &z appearing on the left side eliminated by using

Eq. (110) to yielad:

Ao+ [P+§?t]{wx[P+Qct] + %7 [w*o~— wzd(wy(o) - ?1t)]}
+Qeu, = yld, o+ Lug(0) - eytlb, = cjug} . . . . (113)
[¢] o] o -
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After elimination of w, by using Eq. (109) and algebraic

simiplification of all terms appearing with the coefficient

-hat

"Y", noting £ £ s
x tchkt+a)/A', &x = - wz'i, &z = w, X
o o o )
and a = P/Qc, there results:
W, - 25_'+( gﬁ)z(t+a)2m = - 1% wY(O) + ¢12 ] (114)
X t+a A’ X A t+a

Following the analogous procedure beginning with Eq. (110)
and eliminating ®, and wy terms on the left side, a second

order differential equation in w, may be obtained:

Z

YW

e w_ o 2 2 a
e, - 22y (92) (eea)® ey - 2o [ 9y(0) v ©1® . (115)

t+a Al t+a

3

Eqs. (114) and (115) are nonhomogeneous differential
equations with variable coefficients. It is clear that the

solutions to the homogeneous parts of (11k4) and (115) are

the same as developed previously, namely Egqs. (61) and (63).

The particular solution can be obtained by using the method
of the variation of parameteré. It is convenient to write

the complementary solutions as

Wy =K' cos x + K' sin x . . . .+ o . i 00 . (116)
“h 1 2
w, = - K' cos x + K' 8in x . . . . . N ¢ 5 % O
h - 2 1
where K' = K cos K , K' = - K sin X
1 1 2 2 1 2



The particular solution for w is assumed to have the form:

w_ = u,(t) K' cos x + u (t) K" sin x . . . ... . (118)
xp. 1 1 2 2 -

subject to the constraint that

U; K' cos x + 0, K' sin x=0. . . .. . . . . . (119).
1 2;2 : .

After differentiating Eq. (118) term by term with respect
to time the two equations may be solved simulitaneously for

a and-ﬁ2 with the result:

1
. 1 )
a = K3 sin 2x K3Kp sin®x e e e e v e e e (120)
1 L x 2K' X : :
1 2 !'_ .- ;.': - X
G 0= - ¥3¥1 cosx _ X3 sinox ... . .. (121)
2 2Ké X hx

The integration of these equations may be facilitated by
noting that, :
o 1/2 .-1/2 . , -

at = [A'/2acf] «x X v v v e e e e e e e e (122)
and performing the integration of the right side with respect
to x instead of t.

The integration of these functions is accomplished by
using relationships in Section 2.632 of‘Ref.'ll (see Appendix

D) which are valid for x>0 and a = P/Qc>0. These integrals

involve products of exponential functions with incomplete
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gamma functions. A comprehensive discussion of the incomplete

~gamma function is given in the text by the Bateman manuscript

. 12 . .. . Lo . -
project where it can be noted that the incomplete gamma
function with a complex argument, I'(b,ix), can be related

to the Boehmer integrals C(x,b) and S(x, b) according to:

T

CMb,ix) = 172 [c(x,b) = i8(x,0)) + . .« . . . . . (123)
and
CNb,-ix) = e ™ Rl0(x,b) + 18(x,0)] . . . . . . . (124)
where |
c(x,b) = f P71 cost at (125)
x .
e B(x,D) = f: R £ Y3
A-(for the real part of b<l) and the Boehmer integrals may
be evaluated by the following series:12 |
c(x,b) = Kb) cos (El ) - §. é-l)m ML C P
> m=0 (2m)! (2m+b) :
S(x,b) = H(b) sin (b1 ) - (1)® x2m+ 1+ b (128)
2 m=o (2m + 1)1 (2m + 1 + b)

It can be verified that for the integrals appearing in Egs.

(120) and (121), b = = L1 and no imaginary terms will
2 .
appear in the final answer. After some algebra'and

simplification, utilizing Ref. 11, Eq. (123) and Eq. (12L),

it can be shown that:



PR !

[
~~
ct
S
H

,(Kh/K')'{I(l)cos K, + I(2) sin Ky - I

sin K2} (129)

u {t) = (K),/K"¥{1{1) sin XK, - I{(2) cos K. - I{3) cos Ko}{130)
2 )-l 2" 2 2 2
where
= ' . = ' !
K), K3K1/A /2|ch/2,_K3 y[wy(O),+ c,al/a : (131)
1(1) = - 2 [s(ex, - Ly* . ... (132)
I/2 2 x = 0
: t
, X _
1(2) = - 1 [c(2x, - 1 (133)
Ve .2 xt=0 )
-1/2 x
1(3) = - L x | .o . . (13L)
L x,=0
t & ,
The complete approximate solution for wy, can then be
represented by:
= ' ' 3
w, = K, cos(x + K,) + Kl ul(t)lcos x + K2 u2(t) sin x . (135)
Following the same procedure as explained above the
complete approximate solution for w, may be developed as:
= i " - XK' s x + K! t i .(136
w, Kl sin (x K2) K2 P3(t) cos x 1 uh( ) sin x .(136)
where
= - vy : -
u3(t) . (Kh/Kg){ I1(1) sin K, + I(2) cos K, I1(3) cos Ky}
.. (137)
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uy (t) = (Kh/Ki)—?I.(l) cos Ky + I(2) sin Ko + I(3) sin Kz}'

The constants Kl and K_ can be related to the initial conditions

2

-

_'“/' o

on Wy, Wy, Wx, and w, .

‘Attempts to obtain complete approximate solutions using
perturbation techniques for the equations of Cases 2 and . 3

have not been sﬁgéessful. For these cases the form of the

"wy" equation and/or the torque equations are more complicated

than those appearing in Case 1. Approximate solutions for
rotor spin rate, s, can be obtained again in terms of the
imcomplete gamms functions. When this solution is substi-

tuted back into the left side of the w, and w, equations

X

fprther integration or differentiation of this complicated

RS A S g -
SRESFEwaL Eo0

form would be implied.



P

IIT. NUMERICAL RESULTS

Since the SAS-A dual-spin spacecraft system was used as the basis

for the mathematical model in the previous analyses,

SAS-A spacecraft design parameters were used in the numerical calcu-

lations:

Rotor spin rate ' s 2000 r.p.m, or 209 rad/sec
Main body spin rate wy 0.5 rad/sec
Satellite mass = M 132,33 kg
Polar moment of inertia B 28,54 kg—ﬁz‘

of main body
Transverse moment of inertia

of main body - A.f;C 2T.OO kg-m2
The motor torquelh Lp ‘0.8 oz-in.

Yy

A.1l Calculations of Spin Rate of Rotor During S»in-Up for the

Symmetrical Satellite

From Eq. (39),

Ly
é: v = ¢
I, in
y (1- L)

8 x 2.45 x 9.8066
16 x 2.2 x 11,519 (1 - 11.55159 )
28.55159

0.49171863 rad/sec2
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and the time for spin-up,

{ '
: ©'s ="5(0) -
t =T T -
= 209 -0 = 425 sec or 7.08 min.
.49171863

The total time of spin up is 7.08 min. which is compared to an orbital

period of approximately 90 minutes.

During spin-up for the symmetrical sétellite without damping,
_ Eq. (38) can be used to calculate the change of main body angulér

velocity about the spin axis,

IRy [s - s(0)]

LW, — w,(0)
Yy Y. Y

%

Substituting the values of Iz , B', and s we obtain,
A . y .

- 011519
28.551519

W,

y ~ 4, (0 x 2000

0.8068922 r.p.m.

In the actual SAS-A Satellite, its spin rate was observed to be 5 r.p.m.
jmmediately after launch. The wheel was then uncaged and accelerated.
This resulteé in a decrease in satellite spin rate to about 4 r;ﬁ.m.6
This change in observed spin rate during spig—up compares.with the

0.8068922 r.p.m. in this calculation.

C- )41—



A2

Humerical Results for 0SO — Spacecraft
In connection with the computer studies discussed later numerical
results are calculated using the following 0SO spacecraft design

- parasmeters:

Rotor spin rate s 6 r.p.m, or 0.628 rad/sec.
Satellite mass M 6L,25465 1b
The motor torque LRy 2 ft - 1b.

Polar moment of inertia of

2

B 34 slug - £t
main body -

131 slug =~ ft2
2

Transverse moments of inertia A
C 136 slug - ft

Polar moment of inertia of IR

378 slug - ft°
rotor JY e

Calculation of Main Body Spin Rate:

If the main body spin rate of 0S0 is zero after the spin-up, Eq.

(38) can be written as:

I
Qy(O) = -é;?ﬁ

- 378 x 6 x2 x 3.1416 _
R 0.5761 rad/sec.

Calculation for Spin Rate of Rotor During Spin-up:

Since the transverse moments of inertia of the 050 spacecraft only

differ by 4%, the spin rate equation for the symmetrical satellite
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(Eq. 39) cah be used for approximating the spin rate of the rotor
for this case. A

From Eq. (39),

-~

L
s = Y =cC
- R
- IR_y_y(lA X )
= 2 ‘8 = 0.064113 rad/sec.2
378 (1 - 3L
12

The time for spin-up,

t = ‘S S(O)

BRERILEEA G2 gl

= 6~gég§§§— = 9.8 seconds
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'B. Results of Numerical Integration’

In this section the results of numerical integrétion‘of the non-

-

linear differentiél equations of motion for the most genef?l case,
i.e. theiasymmetrical main part and the symﬁetrical rotor and also the .
~effect of damping are presented. The purposes of the nﬁmeficalfinvesti—,
gation are twofold:  first, to verify some of the previous analytic
results'and,‘secondly, to compare the motion fdr different caées
considered. The numerical integration was carried out usiﬁg the IBM
1130 and IBM 360/50 electronic computer#.- The RKGS and SIMQ sub—»
rqutines are used to integrate five nonlinear equations, i.e. Eqs.:
(25), (30)~(32), and (78). It should be noted that Eg. (25) is the

more general form of the rotor torque equation. The subroutine RXGS

SRS s

uées"the fourth order kunge—Kutta method for the solution of‘initial
value problems. The purpose of the Runge-Kutta method is to obtain

. an approximate solution of a system of first order differential
équations with given iﬁitial values. It is a fourth-order integration
procedure which is stable and self—startiﬁg; tha£ is, only the
functional values ag a single previous point are required to obtain
the functional values ahead. For this reason it is easy to change

- the step siée at any step in the calculations. The entire input of

5

the procedure is: (a) lower and upper bound of the integration
interval, initial increment of the independent variable, upper bound

of the local truncation error; (b) initial values of the dependent

variables and weights for the local truncation errors in each



component of the depehdent variables; (c¢) the nﬁmber of differential
equafions in the system; (d) as external subroutine subprograms, the
computatioﬁ of the right ﬁand side of ﬁhe system of’éi;fergntial
équations; for the flexibility ih output, an.: outpﬁt éubroutine. The
SIMQ subroutine is used to solve the simultaneous system equationé,
for the accelerations: ;x'éy';z' ; and ;lin terms of the angulaf
velocity and position coo;dinates.' A complete'Fortran listing of the
compufer program is given in.Apﬁendix B.

In all numerical results to be preéehted'here, the main body is
assumed to spin with an initial component of 0.5 rad/sec. and one of
the components of the traﬁsverse angular velocity, i.e. wx(O) is
chosen initially to be 0.000159 rad/sec. All other ihitial variables .
aré chosen zero. N A |
In the first case coﬁsidered, the spin-up for the satellite with
}symmetrical main part without damping is shown. Fié. 2a shows the
.linearity of the rﬁtor'spin rate with respect to time. It also shows

the rotor reaches its nominal spin rate of 209 rad/sec after a tiﬁe.
intérval of 425 seco;ds as previously calculated. Fig. 2b illustrates
the time history of the transverse components of the main body angular
velocity. it is seen that these components havé a constant amplitude
of 0.000159 rad/éec., the iﬂitial value of w,. Therefore the'first

integral expression, Eq. (37) has been verified. It should be noted that

the time response of these components is that of a compressed
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.-siné wave with increasing frequency. This is explaine@ from Egs. (61)

and (63), which show that the frequency increases direqtly with the

square of the timg. Sinée the éomponents of the~trénsversé angular
velocity never éxceed the initial value, from the Eanept of stabiiity
_previously explained, no serious.stability problem would be encountered
‘here. It should be noted fhat at the completion of the wheel spin-up
manuever, the transverse a;gular velocity magnitude of 0.000159 rad/sec
.could be removed by acﬁivating fhe'nutation daﬁper as described
iareviously.3 It can be seén from Fig. 2c that the main bpdy spin rate
decreasés linearly with respeét to time, which verifies Eg. (38).

In the actual ofbital configuration of the spacecraft a small
asymmeﬁry in the main body exists. Fig. 3 shows thevmotiop.Pf the N
transverse components of the angulaf_velocity for the“case ;é‘a small
mass asymmetry in the main body without the effect of the damping.

The moment of inertia parameters coorespond to SAS-A early degign
paraﬁeters. A ;mall increase in amplituées pf both the transverse
components of angular velocity is noted from the figure. No signifi-
caﬁt nonlinearity of the rotor spin rate nor the main body spin rate
is observed from the data obtained by the computer simulation; there-
fore these graphs are not shown. *

The total computer time for runﬁing the symmetrical case and for

the case of small asymmetry varies from 20 to 25 minutes with the

IBM 1130 computer. When large mass asymmetry in the main part was

included a significant increase of IBM 1130 computer time was noted
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due to the excessive iterations required in the RKGS subroutines to
ma{ntain the same accuracy as in ;he previous two‘qases. vSolfor
better performance the numerical integration fof_this case was per-
formed using the IBM 360/50 computer insfead of thé IBM 1130.

Figs. 4 1llustrate the effect of large mass asymmetry in the
satellite main pa££ without the effect of the damping. From Fig. 4a
which shows the time history of the transvefse components of the main
‘body angular velocity,'during the first 20 seconds, it is seen that one
component of the transverse angular velocity has an amplitude almost
twice the initial value. Since the stability criteria is based on the
boundedness of the transverse components of the angular velocity, a
problem of stability could beﬁencountgred in this case, espeqially
'ig the presence of external torques which are continuously acting on
the main spacecraft.‘ A significant phase change in the time response
~of the t?ansve?se components of anguiar velocity when compared to the
symmetrical case is aléo noted for the casé of large asymmetry. Along
with the phase change a significant increase in the frequency of the
transVerse'component; of the main body angﬁlar velocity is also noted.
For the above two reasons'the,response is shown-only in the intervais
from 0 to Zb seconds, and from 400 to 420 seconds (Fig. 4b), compared
to the total interval from 0 to 450 second; for the case-of symmetrical
satellite. .For the rest of the time interval (not shown) the time
respénse does not show any significant change in amplitude variation

. from that shown.
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The effect of the nutation damper for the case of spin-up with
a symmetrical main body is shown in Figs. 5. Eig; sa,is thgrrepre— )
sentation of the time history of the‘transvérse components-of the
main body angular velocity. A small increase in the initial value
Qf.the amplitude is noted for botﬁ the components. No significant
reduction in theséninitial amplitudes is noted due to the action of
the nutation damper. Fig. 5b is the response of the nutation damper
during spin-up. The figure‘shows a bias around the value 0;006 rad. .
The reason for the bias can be explained by the fact that during the
derivation of the equations of motion the lateral center of mass

d.l6 When one'daméer

shift due to the damper motion was not include
is free to move, this shift could be more noticable than whenga paix:-
‘ df‘dampers, diametrically opposed in equilibrium,is used. In the
actual SASFA post-launch performance a small damper bias angie,wasA
actually observed.6r16 One of the causes for this phenomenon was
the actual lateral shift in the spacecraft center of‘mass due to
sma}l errors in the final mass baléncing prior to 1aunch.g5A It is
also seen from Fig. ;b. that the nutation damper reaches a value of
1.0168° at.425 seconds.

Figs.'G illusﬁrate the damping effect considered for the case
of sﬁall mass asymmetry in the main body. A small decay in amplitude
of one of the transverse angular velocity components (w,) is observed

‘from Fig. 6a. If the initial rate of decay were extrapolated linearly

the time constant for the decay would have been 31.79 min. (where the

L8 -
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" time constant is the time requiéed to réach 1/e of thg_initial
amplitude). When compared with Fig. 5a, a small phase shift is
observed. Fig. 6b, which is the damper response fég this Ease;zshows
a noticable growth of damper angle amplitudé during the time of spin=-
up. It can be concludeé that the activation of the nutation damper
during spin-up for-this case results in an imprerment in the system
stability.

When the effect qf the nutation damper is included for the

‘ spacecraft with'large asymmetry, it is'seen from the Figs. 7a and 7b,

that a small average decay of the.amplitude of one of the transverse‘

components (wx component) of main body angular velocity results. The

amplitude of the w, component never exceeds the amplitude during the

BEEEILEAA G DA e

fi;st cycle of w, motion. If the initial rate of decay were extra-
polated linearly the time constant for the decay would have been
41.06 min, This result could be compared w;th the time constant of
SAS-A during nominal performance, which is 22,3 mins.lY Comparing
the two cases, i.e. cases of large asymmetry with damping and without
Aaaﬁping, it is observed from the Figs. 4a and 4b, that the maximum
value of w, is slightly higher than the vglue of w, in Figs. 7a and
7b. So-it .can be hypothesized that, for the case of large asymmetry
without damping the energy is Eeing transferred into the transverse
motion from another mode. It is ocbserved from the Fig. 7c¢, that the

damper reaches a maximum value of 0.713° at 15.6 secs. The results

presented in the Figs. 4 and 7 were obtained using the IBM 360

- 49 -



'computer, requiring about 130 minutes of running time for each spin-up

case.’ P

"’ ——

All the numerical célculafions in the above cases are based on
fhe assumption of a constaﬁt rotor torque of 0.8 oz-in. Two cases
are considered where the torque is assumed to be a linear function of
time and reaches a ‘terminal value of twice the average value of the.
constant torque, (i.é. 1.6 oz-in) during spin-up. Figs. 8 and 9 show
the effect of this variable torque law during spin-up. From Fig. 8a,
thch is the time hiétory of the transverse components of the main
body éngular veiocity for the casewﬁf a symmetrical satellite without'
dampiﬁg, it could be concluded that the vector sum of the transverse
,componenté of the anqular velocity maintains the same_gmpli;%gyde through-
out the motion as previously shown.analytically, i.e. ﬁq, (875.
Fig. 8b shows that the rotor spin rate is a parabolic function of
time and reaches the nominal spin r;ﬁe of 209 rad/sec after a time
interval 425 seconds as before. fhe main body spin rate also exhibits
a parabolié variation as éeen from the Fig. éc. Under the consideration
of the variable torque law applied for the.case of a symmetrical satel-
lite including the effect of the damping, a small decay in amplitude
of one of the transverse compongnts (wx) of angulaf velocity is noted
from Fig. %a. The time constant for the decay is calculated to be
27.82 minutes. In addition a phase shift is noted when compared with
Fig. 8a. In the casé represented by Figs. 95 énd 9c a small departure

from the parabolic variation shown in Figs. 8b and 8c is noted from

. =50 =
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consideration of thé‘pfiﬂt&ut. 'Bécaﬁsé of the'éméll'magﬁituaés of this
depagturé; differences between Figs. 8b and 95'and alsb'%étwéén Pigs.

8¢ and 9c aré not apparéntlwithin thé plotting accuracy: For this.casé,
the nutation dampér reachés a ma&imum valﬁe of 1.356° at L25 sécs.,.
which is slightly highér than thé‘maximum anglé attainéa by the nutation
damper for the ease of thé symmetrical satellité with damping under the
influence of a constant motor torqué (Fié-.Sbj-

B.1l. DNumerical Integration Results with SAS-A Spacecraft and Principal

Axes Misalignment

In 211 numerical résults présénted_abové; thé éfféct of the mis-
alignment of the principal axés~from thé'géométrical axes of symmetry
is neglected. A féw casés aré éonsidéréd hére including the above
mentioned effects. All the numerical intégration of thesé cases were
performed using_thé IBM 360/50 éléctronic computér;

In 811 of thé numérical résults»to bé présentéd for the SAS-A
Satellite with principal akes misalignmént the main body is assuméd to
- spin with an initial component of 0.5 rad/séc.; and résults are obtained
varying oné of thé componéntsAof transversé éngﬁlar velocity i.é.
qi(O); also all othér.initiél variablés~aré chosen zéro as béforé. A1l
the moments of inertia (including thé Cross;products) paraméters are

. . . 13
based on the Small Astronomy Satellite (SAS~A) orbital configuration.
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Tn the first casé- COnsid-er.éad.,. w, (0] 1s chosen 0.000159 rad/sec.
Fig.!loa; shows the time history of the'transvérse copponént; of thé
main body angular velocity; It is~séén from thé fiéure that aﬁring thé
first 100 séconds thé amplitude of both_thé'transversé componénts of main
body angular velocity incréaSes-to‘approiimately T timés thé initial value.
After the first cyéi; of motion; both the'componénts of transvérsé angular
velocity show a decay in their amplitﬁdé. Sincé the stability criteria is
based on the boundédnéss of thé transverSé componénts of angular velocity,
a problém of stability could he éncoﬁnteréd héré, éspecially in thé
presence of eﬁtérnal torqués which aré initially and continuously acting
on the main spacecraft. From Fig. 10b aﬁd 10c which show thé time
résponse of the main body and rgtor sp%n ratelrespéctively; it is séen
that no significant nonlinéarit& of both of thésé motions is oﬁsérved within
the plétting accuracy.

The effécf of thé nutation dampér for thé casé of Fig. 10 is shown
in Fig. 11. From Fig. lla; it is obsérvéd that during thé first cycle
of the’motibn, thé'amplitudés-of both,transversé componénts of main body
qngularlvelocity~incréasé much\gréater'than the initial value.- After the
first cycle of motion of thé’trapsversé component;, significant reduction
in thésé amplitudes is obsérved due to thé action of the nutation damper.
The time constants for the'décay are 1.45 and 5.407 minutés.for W,
and w, respéctively; A small phaSé change 1in thé timé résponsé of the

transverse components of angular velocity when compared to the undamped
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case is also noted. TFTig. 1llb is the response of the nutation damper
durihg spin-up. The figure shows a bias around the-y@lue 0592 rad.
which is greater than the bias observed when the effect of the inertia
cross products. are neglected (Fig. 5b). It is also seen that the
nutation damper reaches a maximum value of 3.3§l° at 426 seconds.

Figs. 12 illustrate the motion of the satellite with the initial
transverse component increased by a factor of ten. Other input conditions
are kept as before. From this figure a small percentage increase in the
amplitudes of both the transverse components of angular velocity is
noted. After the first cycle of motion a deéay in amplitude of both
the components is also observed, but tbé rate of decay is less than
that for the case of Fig. lOa.ﬁ The ef{ect of Qamping in this case is
illustrated in Figs. 13. Aniin;rease in ampli£ude of both the'trans-
verse components of main body angular velocity is observed froﬁ Fig, 1l3a
similér to thaf shown in Fig. 12, A decay in amplitude of both the
components of the transverse angular velocity vector is noted with a pro-
jected time constant of 12.27 and 50.97 minutes for Wy and'wy
respecfively. A phase shift in the time response of the transverse
components of angular velocity when compared to the undémped case (Tig.
12) is also observed. It is seen from Fig. 13b that the nutation damper
shows a steady growth in amplitude after a few inifial cyCLes of
motion and reaches a maximum value of 6.87° at 425 seconds which is

sbout twice the value obtained compared to the case where mx(o) is
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chosen to bé 1/10 thé valué for this casé.

; The initial valué of oné of the'trans#érse cpmpgpentS'of main
body angular‘velocity.(mx) was oncé again incréased, to 100,timés thé
value in Fig. 10a and numerical integration of the equations of motion
was again performed. From the time résponsés (Fig. 14) no significant
increase in amplitﬁdé nor of the'décay in amplitude in either of the
transverse components is obsérvéd. It is séén from all the time
response curves of the transverse components of main body angular velocity,
that the frequency of the motion incréases as w,(0) increases.

When the efféct of the nutation damper is considered in this
case, a small decay in amplitude of one'of the components of the trans-
verse angular velocity (mx) vegﬁor is'goted from Fig. 15a with a pro-
jected time constant of L8 minuies. Ffom Fig..le,vit is notea that
the maximum angular displacement of the nutation damper is 41° which
is a physical impossibility since in reality the damper would hit the
mechanical sﬁops at + 20° amplitude. As éxpected, the larger value
of initial transverse velocity (i.é. system nutation angle) results in
a highér amplitude nutation damper motion. .Because of the larger
amplitude damper motion, the damper bias angle previously referred to-
is not apparent from the scale used in Fig. 15b.

The average IBM 360/50 running time fdr the cases shown in

Figs. 10-15 was about 15 minutes.

B.2.. Numerical Results Using 0SO Spacecraft Parameters

All the numerical calculations in the above cases are based on
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SAS-A design parameters. The 0OSO series of dual-spin s%écecraft is of
current interest to maﬁy investigators., The numericalfintegration of
the general equations of motion is carried out with the 030 spacecraft
design parameters using theIBM 360/50 electronic computer.

In a11 numer?sal results to be presented ﬂere for the 050
spacecraft, the main body is assumed to spin with an initial component
of 0.5761 rad/sec as calculated previously, and results are obtained
varyiﬁg one of the components of the transverse éngular velocity, i.e.
wx(O). All other initial variables are chosen zero.

In the first case considered, wx(o) is chosen 0.003176 rad/sec,
which corresponds to an initial systen nutatioﬁ angle (the angle
between the total-angular momentum vector and -the nominal spin axis)
of 0.1 degree. From the time response curve (Fig. 16a) of the trans-
verse components of main body angular velocity, it is noted that both
the transve:se components complete about one-half cycle of their
motion during the total time of spin-up. A small increase in amplitude
of both the components during the first cycle of the motion is also
observed. Fig. 16b illustrates the motion of the main body spin rate.
It is seen from the figuré that the nain body is-essentially de-spun
inertially after the total time of syin-up of 9.8 seconds. It is
observed from Fig. 1l6c that the rotor reach;s its nominai spin rate of
0.628 rad/sec after a time interval of 9.8 seconds in an essentially

linear manner,
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Fig. 17 illustrates the effect of a greater initial nutation angle.
In this case the value of wx(O) is increased to 0.03172 rad/seg which
corresponds to a nutation engle of 1°. It is observed that Fig, 17 is
identically in phase with Fig. 16a except for the scale factor on the
ordinate. |

When the inigial system nutation angle is further increased by a
factor of ten (Fig. 18), the phasing of the response of wx and w, is
still identical to that shown in Figs. 16a and 17. The frequency
response of the 0SO main body components appears to be less sensitive
to changes in initial nutation angle than that for the SAS-A system,
pernaps because for the 0S0 system the>majority of the momentum as
well as inertia contribution ;; associated wiph the rotor.

In the previous 0SO cases considered (Figs. 16~18) the éeometrical
axes of the main part and rotor were assumed to be the princi?al a#es.
The effect of'the misalignment of the principal axes of both the rotor
and the main part frog the geometrical axes of symmetry is illustrated
in Fig. 19. In this case an initial nutation angle is chosen to be
the same as in the case of Fig. 17. Wo significant change in any of
the motion is observed as compared to Fig. 1T.

Some results are now obtained with an increased initial value of
main body spin rate and no misalignment of'principal‘axes. In all
cases mentioned below the main body is assumed to spin with an initial
component of 6.98543 rad/sec and results are obtained varying one of
the components of the transverse angular velocity, i.e. wx(O).
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All other initial conditions are chosen zero as before.--

In the first casé consideréd, wx(O) is chosgn Q,03172 rad/sec.,
vhich corresponds to .an initial systém nmutation anglé of 0.21°. From
Fig. 20a a small increase in amplitude of one of thé transverse
components of angular velocity (w,) is noted. After the first cycle
of the motion, a dééay in amplitude of w, is also obsérved from the
‘figure. The rotor spin rate curve (Fig. 20c) shows that the rotor
reaches its nominal spin rate of 0.628 rad/sec after time interval
of 9.8 seconds as previously calculated. No sévére nonlinearity of
main body spin nor of the rotor spin rate is observed from Figs. 20b
and 20c. The above mentioned results éould be. compared qualitatively
with the cases in Fig. 3, wheye initial amplification is observed
for both the transverse compogents of-main boéy angular velocity.
Fig. 21 illustrates the effect of a greater initial nutatioq
angle. In this case the value of wx(O).is increased by a factor of ten.
From Fig. 21 a small decay in amplitudé of one of the components-(wz)
is observed after the initial amplification of both the components.
It is‘also observed that the rate of decay is iess than for the case
in Fig. 20a. Figs. 21 and 20a are identically in-phase except for
the scale factor in the ordinate.
The nonlinearity of the main body spin rate aﬁd the rotor

relative spin rate (Figs. 22b and 22c) is observed when the initial

amplitude of W, is again increased by a factor of ten. This
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nonlinéarity (pfésent to some éitent in all 0OSO casés.but obsérvable
here due to the largé initial nﬁtation anglé) isEatﬁgi%uted.td'the
fact that for the 0SO spacecraft the rotor polar (principal) axis is
no longer an axis of rotor symmetry. WNo significant décay in
amplitude is observed from thé timé response curve of the transverse
components of main body angular velocity (Fig. 22a), though it
differs in phase and amplitude with Figs. 20 and 21.

The effect of the misalignment of the principal axes of the main
body as well as the rotor from the geometrical axes of symmetry is
illustrated in Fig. 23. The initial nutation angle is the same as in
Fig. 20, i.e. 0.2]1 degree. The amplitude of both the transverse
components of main body angulé} velocffy has increased by a factor
of almost 2. After the initial amplification a significant decay in
the amplitudes of both the transverse components is also noted. The
linearity of the main body and rotor spin rgte responses (figures not
shown) is not significantly affected by the inclusion of inertia
cross products terms in the general equations of motion. It appears
that the nonlinearity in wy and s responsesAis more sensitive to change
in the initial nutation anéle than to thé presence of small cross pro-

ducts of inertia terms.
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B,3 Comparison between the Numerical Integration and Approximate

Solution for the Special Case Considered s

In this section a comparison is made between the results of the
numerical integration and the approximate solution for the case which
is dynamically similar to that of a spacecraft having no misalignment in
its principal axeét.but a small difference between each of its moments
of inertia about the two transverse principal axes (Egs. 95-98). To
compare the approximate solutions (Egs. 135 and 136) with the exact
solutions (numerical integration), the numerical evaluation of the
approximate solution was carried ogt using the IBM .360/50 electronic
computer. The numerical evaluation of the approximate solution for

aﬁﬁiﬁ?ﬁﬁiﬁfriuyﬁhe-SAs'A spacecraft during spiﬁ-up was performed for a total time
interval of 450 seconds with a time step of one second. Two cases

are considered here varying the only inertia cross product cﬁnsidered

“i.e, Ixz' |

In the first case considered the value.of 14, is chosen
o;lous kg—m2. Fig, 24 illustrates the comparison between the épprbxi—
mate solution and the exact solution for this case. The solid line,
which is the result of the numerical intégration shows a small
initial amplification in amplitude of one of the transverse components
(wx)_of main body angular velocity. HNo initial amplificétion can be
observed froh the results of the approximate solution (shown by

dotted lines), but a small change in phase compared to the results
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of the numerical integration is observed from Fig. 2k, .

‘ The effect of the increased value of Ixz (0.5) is illustrated
in Fig; 25. The results of the numeriqal integration show a significant
initial amplification of both the transverse components of main |
body angular velocity. No decay in amplitude of any of the velocity
components is obsé;;ed within the specified time interval. In this
case the pnase difference between the results of the approximate
solution and the results of the numerical integration is more noticable
as compared to the casé considered in Fig. 24, A small increase in
initial amplification of both the velocity components is also observed
from the coumputer print-out of the appfoximate’solution which is not
noticable within the plotting}gccuraqa. It could be concluded at this
point that the larger is the difference between the moments of inertia
about the two transverse principal axes, the greater is the change in
rhase between .the approximate and the exact solutions. Of course the

approximate pertuvbation solution can no longer be expected to provide

d|s'-ar| .

reasonable convergence vaen ¢|I, |=

The case considered in Fig. 24 could be compared with the case in
Fig. 10a, wvhere an initial amplification in amplitude of a factor of
seven is observed for both the transverse components. By observing
the cases considered in Figs. 24 and 25, it could be conc¢luded that
when -the nominal spin axis (polar axis) is no longer a princibal axis
(_Ixy # 0, Iyz # 0) the large a;ount of initial amplification of the
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transverse componeﬁts df main body angular velocity is -the result. The
ampiificationlis more sensitive to a small misalignmgnt between the :
principgl axis of spin and the nominal spin (geometrical -yy) axis,
than to small differences between the two transverse moments of inertia.
The amplification can further be explained as, Wheﬁ the nominal spin
axis is no longer the principal axis, the motor torque has a component
perpendicular to the nominal spin vector. This perpendicular component
could cause an excitation in the motion about the transverse exis due
to the altering nature of the torgue component, depending on the
relative phasing.

The total time of eXecution of'the approximat¢ solution for
both the cases is less fhan phe running time of the numerical integration.
For example, the total time ofiexecutién of tge approxinate s&lution for
the cases when Ixz = 0,1048 and Ixz = 0;5 are 12.33 and 20.19'minutes
respectively compared to 32.83 and 26.31 minutes respectively“fbr the
numerical integration. By performing the ratio test of the series
(Egs. 127 and 128) associated with the approximate solution, for the
nﬁmeriéal case conéidered, it is observed that a minimum of 16 terms -
is required for the series to converge. By eva}uating the approximate
solﬁtion considering the number of terms in the series to be 16,20)
and 27T respectively, no éhanges within five decimal blaces are observed
from the computer print-out., It is interesting to mention further that,
the computer is unable to evaluate the factoriagl in the denominator
of the series when the number of terws in the series exceeds 27,
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because of its sensitivity towards generating a large real constant

(maximum magnitude ~ 1075). Stirling's approximation is the best

recommendedAmethod for evaeluating a large factorial, and could be used

in cases where series convergence is improved by increasing the

number of terms.
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IV. CONCLUSIONS T

C T

-As a result of the present analysis and numerical results the

following conclusions can be made:

(1)

@)

" (3)

(4)

For the caéé of a symmetrical satellite with no damping, the
magnitude of the vector sum of the transverse angular velécity
components reméins constant during wheel spin-up under the
influence of a cohstant motor torque.

With a small mass asymmetry in the main body, and without damp-

ing, behavior is similar to the symmetrical case, but a small

increase in amplitude of one of the transverse components of
angular velocity is noted in addition to a phase change.
For the case of large asymmetry in the main body? one component

of the transverse angular velocity has an amplitude approximately

twice that of the initial value. Stability problems‘couid

result for this case in the presencé of all the external torques

which are continuously acting on the main spacecraft.

The effect of the nutation damper during spin-up is'significant
oﬁly for the case of ;n asymmetry in the main spacecraft, where
a small decay in the amplitude'of the transverse angular
velocity vector is noted. There appears to be little advantage
(or disadvantage) in activating the nutation damper for the case

of no asyﬁmetry.
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'(s)

SoeoaE e

(6)

(7)

-

For the case where motor torque is proportional to time and the

spacecraft is symmetrical, the activation of the nutation damper

during spin-up results in a small decay in the applitude of the
transverse angular velocity vector. ﬂ

When the effect of the misalignment of the main spacecraft principal
axis from the geometrical (polar) axis of symmetry is considered,

a problem of stability could arise due to the large initial amplifi-
cation the system nutation angle.

For the case of a dual-spin spacecraft with a large asymmetrical

'rotor, a nonlinearity of the main body and rotor spin time responses

can result, depending on the initial nutation angle. This could

cause an error in reaching the nominal terminal conditions.
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B. Fortran Listing of 66ﬁputer Programming:

.:J.O-.-- '.‘.!.#.-..,_ RN A RS ¥ R R R R SRR A S A RN S P S I G - _ . — g S e
* /! FORTRAN o o e
-¥ONE WORD INTEGERS R e e

C¥LIST SOURCE PROGRAM

SUBROUTINE SEN 1 (T,Y,0DY)

_DIMENSION Y(6)y DY(6)y C(5,5)y CXI[5,45)

COMMON WX, WY WZy Syl PHI,AIXXyAIYYSATZZ ,AIXY, Alxz ATYZ, ATRXX,
$¢ AIRYYLZAIRZZJAIRXY,AIRXZ, AIRYZ AL, AMyRO,R1yAKK,AK,ALBAR,ALRY,
$ RRYJAMBAR,N,M _ e

COMMON C,CPA, CPB'Alé Al? A18 A19 AllO Alll AllZv
$A113,A114,A115,A116,A27,A28,A29,A210,A211,
 $A212,A213,A214,A37,A38,439,A310,A311,4A312,A313,

$A314,A3154,A3164,A45,A464A4T7,A48,A49,A410,A411,

$A412,A544A55,A56,A57

e —

- C

. DO 11 I=1,M
e .DD 11 J=1,M4
11 CX(1,4)=C(1,J)
CX(1l,2)= CX{1l, 2)-CPA*PHI
o EX(241) =CX(241)~CPA%PHI
' CX{3,1) =CX{(3,1)-CPB*PHI
DY(1) = (Al6+ALT*PHE) *WXEWY- AlB*hY*wZ+A19*hY**2+(AllC*«Z+
CSALIYIXKY ) RS- AIIZ*VZ**Z All3%hZ= x+A114*n1 ¥2+AL15%6dl%nuY+
$SAlLIG®WLI%WZ
DY(2) = (A27+A28*PH1)»hY#wz A29%WZ 2YX~A210FWXEWY~
o SA2V Y XEH 2= W2 EE2) = (A212%WX—~A213%WZ ) *¥S+A214*PHI%n1%NWY
DY(3) =A37*¥nwX¥WZ+A3B¥WX%%2-A30%uX¥WY-{A3104A211%PE])*wY*WI-
${A3124A313%PHI)XWY*%2-(A314%HUY+A3LS%WX)%S—A3L16%PF[*AL¥AY
DY(4) = A4S~ Aéé*WZ*WX+A47*hY*kZ+A48 WZASH+ALIXW2 ¥ X2 ~AG 1O X% %2 -
SALLLEWXENY ~ALL2EWXES
- DY(5) =AS54%PHI*WY®%2=A55%UX%HY~ASE6XW]I~AST%PHI
e DY(6) =W1
CALL SIMC(CX.DY.M,KS)
IFEKS) 3,2,3

.2 . RETURN - S S
3 WRITE(5,4) .

4 FORMAT(//% SINGULAR EQUATIONS')

e . . RETURN e e e e
END

FEATURES SUPPCRTEC e . e

ONE WORD INTEGERS : - - . . -
..CORE REQUIREMENTS FCR SEN1 . ___,hw"wmmimu_u~;_“.m"mv__m

COMMON 194 VARIABLES . 78 PROGRAN 512

B-1
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B-2

(RELATIVE ENTRY POINT ADDRESS IS 005F (HEX) S |
END OF COMPILATION

i /7 Dup T

- #STORE WS _UA" SENI : S -

CART ID 0OCOA OB ADCR 5880 DB CNT 002A ' ;

i

| // EJECT ;

i

!

b

< L

- ]

:

e e e Tk
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6728/712

P&éﬁ'”“é" .

// FQRTRAN o o
*ONE wORD INTEGERS - ) :
#L IST SOURCE PROGRAM : B -

_ SUBROUTIMNE SEN 2 (T, Y, OY, IHLF, NDUMY, P) : ‘
T DIMENSICN Y(6), DY (6}, P (5) é
COMMON WX, ,WY,WZsSyWl,PHI,AIXX,ALIYY,AI22Z, AIXY AIXZ.AIYZ AIRXX, &

$ AIRYY,AIRZZ,AIRXY, AIRXZ,AIRYZ AL, AM,R0O,R1,AKK,AK, ALBAR,ALRY,?

$ RRY, Awadh“ﬁ’ﬂ“
DATA SY/0.0/
DATA WYL/0.O/

DATA TL/G.07

e aks)

SY=SY+0.5%(T=TL)*(WY+WYL)
TL =T

WYL =uY

TOUT = T+0.C0C5

CHECK =0.5% (AIXX+AIRXX)*WXHWX+0.5%AIYY*UY*WY+0.5%
$(AIZZ+AIRZZ)+WZ‘HZ+ALRY SY

WRITE (59%4) TOUT,Y,IHLF,CHECK
4 FORHAT (1X,F7.3,6E13.5,13,E13.5)
- P(S) = INBIT(O)
RETURN
END

FEATURES SUPPURTED
_ONE_WORD INTEGERS

CORE REQUIREMENTS FOR SENZ2

1

130

_commoN 58 VARIABLES 18  PROGRAM
RELATIVE ENTRY POINT ADORESS IS 0O01F (HEX)
“END OF COMPILATICN

// DUP

*STORE WS UA SEN2

_CART 10 _00CA DB ADDR 000C

58AA 0B CNT

// EJECT

B-3



e — e U O S P OO - ]

UPAGE 4 T Taj2eriz”

. [/ FORTRAN o . L L e
*0ONE WORD INTEGERS

#¥L JST SOURCE PROGRAM

_®*J0CS(1403 PRINTER)

EXTERNAL SEN1, SENZ2 o | , -
DIMENSION C(5,5), Y(6)s DY{6), AUX (8,6), VI6) . : {
DIMENSION P(5) !

v ¢ e e r— o 0 ..- pn e e e

TTTTTTTCOMMON T WX WY s WZ S M1 G PHIJATXX ATYY,ATZZAIXY,AIXZ,AIYZ AIRXX,
; $ AIRYY,AIRZZ,AIRXY,AIRXZ,AIRYZ, AL,AM RO4R1yAKK,AK,ALBAR,ALRY,
i _$ RRY,AMBAR,N,M , :
: COMMON C,CPA,CPB,A16,ALT7,ALB8,A19,A110,A111,A112,
$A113,A114,A115,A116,A27,A28,A29,A210,A211,.
_ $A212,A213,A214,A37,A38,A39,A310,A311,A212,A313,
T$A314, A315, A316, A4S, A46, A4T, A48, A49, ALIO, A411,
$A412, AS54, AS55, A56, AS7
EQUIVALENCE (P{1),T0)s (P(2)4TM)4~(P(3),0T), (P(4),ERR)
spasyneissivigs - EQUIVAUENCE (Y (L) WX)y (YU2)} WY )y (YTU3T,WZT,(Y(4),5)
[EAR EQUIVALENCE (Y(5),W1l)y (Y(6),PHI)
. _DATA DT/0.1/ L _ _
DATA T07400.007
DATA TM/420.00/
DATA V/0.1E-3,0.5,0.1€E-3,0.2E3,0.3E-3,0.3E-2/
i DATA TOL/1.0E-4/"
c
ic INITIALIZE 'cou 1ON ) )
iC
§ WX = 0.94519E-04 ‘
: WYy = i

0.41851E GO



WZ = 0.24974E-03 L e - T
S = 0.19691E03 : L i
SPHI =0.0 ettt
. Wl =0.0
AIXX =15.00
e ALYY: = 28,00 _ . _
A1zZ =2.00. o T
L AIXY = 0.0
e AIXZ = 0.0 -
; AIYZ = 0.0 -
P AIRXX = 5.575E-3
; AIRYY = 11.519E-3
: ATRIZ = 5.575€E-3
? AIRXY = 0.0
; AIRXZ = 0.0
; AIRYZ = 0.0
: AL = 0.35
. RO = 0,025
. RI =.203
: AM =0.0
E AK =0.0
3 AKK =0.0 . -
papIses s s AMBAR =132.33-
; . ALBAR = 0.3499
v ALRY = 0.567E-2
; RRY = 0.0
N="6
; M=5
c . o
i C COMPUTE COEFFECIENTS FOR SUBRCUTINE *SEN1!

- B-5
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.C. ) '

: Clly1) = AIXX+AIRXX+4 . O%AMKAL*%2+2, o*AN*(RO"TT' %2
C(1s2) = ~(AIXY+AIRXY)

C(1,3) = —(AIXZ + AIRXZ)
Clls4) = -AIRXY ~
C(l1,5) = 0.0
o cgglgl_; ~(AIXY+ AIRXY)
Cl2,2) =AIYY +AIRYY +4.0%AM%(RO +R1)**2
C(2,3) = -(AIYZ+AIRYZ) :
. C(2,4) = AIRYY
Cl(2,5) = AM¥RI*(RO+R1)
"C(3,1) = —(AIXZ+AIRXZ)

) C(342) = =(AIYZ+AIRYZ) _ ‘
C(3,3) = AIZZ +AIRZZ +4.0%AM®AL*%2 +2. O*AM*(RO+R1)**2
Cl3,4) = -AIRYZ

_ C(3,5) = -(AM#*R1¥ALBAR)

Cl4,1) = =AIRXY .

Cla,2) = AIRYY 4 g
. Clay3) = -AIRYZ '

Cla,4) = AIRYY )

Cl4,5) = 0.0

C(5,1) = 0.0

C(5,2) = AM®=RI*(RO+RY)

C(5,3) = ~(AM®R1#ALBAR)
 Ci5,4) = 0.0 '

T C(5,5) = AM*R1*%*2%(1.0- AN/ANBAR)

CPA = AMZAL®R]

CPB = A

MER1*(RO+R1)

- 'B_'5',,'




.
i
I
:
i
|

A 16 = AIXZ +AIRXZ IS
A 17 =AM#R1*(RO+RI)
"AT19 = AIYZ +AIRYZ

AIRYY '
AIRYZ

A 18 =A122 + AIRZ2Z-AIYY-AIRYY + 10 O*AM*AL**Z ~2.0% AN*(RO+R1)*"‘2

p-4
foy
o
@]
it u

A 111

- AIYZ +AIRYZ
AIXY +AIRXY
114 =AMF®AL*R]

113

Wit o Il

T8 = 2. GAMERITACBAR
116 =2.0 *AM¥R1%(RO+R1)
27 =AIXY + AIRXY

>z>>->x>>5

‘A28 = AM®=AL*R1
A 29 =AIXX +AIRXX =-AlZZ -AIRZZ
A 210 AlYZ + AIRYZ '

1]

[EUR———
LN

A 211 =AIXZ +AIRXZ
A 212 AIRYZ
_AIRXY

;Il ]

>
N
P‘t
S
i

= 2. 0%AMARO*R]
A 37 = AIYZ + AIRYZ
=AIXY +AIRXY

Sl ¥w o

A 39 =AIYY +AIRYY -AIXX —-AIRXX -4. O*AH*AL**Z
A 310 = AIXZ + AIRXZ
A 311 =AM%=R1%{RO4R1l)

\

AIXY +AIRXY
" AMXRL1I*ALBAR
AIRXY '

>
w
o
W
n 0oni

A" 315 =AIRYY
A 316 =2.0%AMEAL*R1
A 45 =ALRY tRRY

*

e e ma e e g e nt mivs = ammmme g taetmtrmrm e pmt . wim o nn e e = e mmasomm e g nt mem im A,y e e m—e
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A 46 =_AIRXX -AIR2Z2 e o
A 47 = AIRXY '
A 48 =AIRXY

A 49 = AIRXZ

, A 410 =AIRXZ
A 411 =AIRYZ
A 412 = AIRYZ.
A 54 = “AM®R1%* (RO+ AM%RL/AMBAR) -
A 55 = AM®RI%*ALBAR
A 56 = AK
T A 57 = AKK
NVAR = N

IF (AM) 105,104,105

b e e e e

10 NVAR = N-2
C(5,5) = 1.0
105 VT = 0.0

D0 11 I=1,NVAR
11 VT =VT +1.0/VI(I)
DO 12 I=1,NVAR

s 12 DY TIT =107TVTHV(TITT
17 TTUERR = (NVAR/(15.0%VT))#TOL
WRITE(S5,21) |

TTETTTTRORMAT (VITy TE; VTV, YIS, VXY, T38, VWYY, T4T, TWZ'y 1557 Sy
$ T67, 'Wl'y T80, 'PHI', T87, 'IHLF', T95, 'CHECK' / 1X) ;
__CALL RKGS (P, Y, DY, NVAR, IHLF, SENl, SEN2, AUX)

THRITE(5,40) THLF
40 FORMAT (/7' IHLF =*,13)
CALL EXIT

. END




THE FOLLOWING IS THE PROGRAM TO COMPARE
o THE NUMERICAL INTEGRATION AND APPROXIMATE

SOLUTIONS (EQS. (135) & (136))

ARIME & BRIME ARE THE TRANSVERSE AND _
POLAR_MOMENTS_OF_INERTIA _OF _THE MAIN BCDY RESPECTIVELY
AK1 & AK2 ARE THE CONSTANTS WHICH CAN BE RELATED
WITH THE INITIAL CONDITION

COOOO

ﬁﬁl!

O

X
|

_______DIMENSION DAT(451,3)
: WRITE(6,21) - |
21 FORMAT(1X,T6,'T',T15, WX*,T28,'WZ") S
TT. =0 ’ | : '
NDAT=0
9T =TT

C

coae L "LISTING OF DATA

B AK1 = 0.000159

___AK2 = 2.0303110
A = 143.07850
GAMMA=0.1048 ,
AIRYY = 0.011519 s
WY = 0-5 °

P -0.7654720
Q -_.»Q 1 09 O 14_

o 0.4916578

ARIME = 27.005575

BRIME = 28.551519

AK3. = (GANMA/ARIME)*(HY+(P*AIRYY)/(Q*BRINE))

ABS1 ((Q%C)/ARIME) /2.0 LT

ABS2 = DABS(ABS1)

AROOT = 0.5%(1/ABS2)%%0.5

AK4 = ((AK3%AK1)/2.0)*AR0OT

RIS Y

]
W

nwinw n

mn

e e —m —_—
AIl = =-1.0/(2.0%%0.5)
o CALL SERI{(T,SumMl) L _
SSUML = SUMIL S :
_ T = 0.0 AT
e CALL_SER1{(T,SUMY) -_ _ __ - S
. ALl = AIL*((2.506-SSUM1}—-(2.506~SUM1}) : .
Cc A o .
C ~ .
} . $+4 Al
3
B-9 ) ~

et AR DY ety T v -
M

O e b T

n

e

P



T =TT
Al2 = -1.0/(2.0%0.5)
CALL SERZ(T,SuUM2)

SSUM2 = SUMZ
T = 0.0
__CALL SER2(T,SumM2)

B E AIZ*(( 2.566-SSUNM2)~(=2.506-SUM2) )

- C
e
XX = -100/2-00
TA = (TT+A)%%2
TAA = A%%2 - 5
Al3 = -1.074. 0*((ABSZ*TA)**XX-(ABSZ*TAA)**XX)
C
C

TF1=AK4% ((DCOS(AK2)*AT1)-(DSIN(AK2)*ATI3)+(DSIN(AK2)%AI2))

F2=AK4* (-(DCOS(AK2)%A13)=(DCOS(AK2)*AT2)+(DSIN(AK2)*AI1))
F3=AK4%(~(DSIN(AKZ)*AI1)=(DCOS{AK2)*AI3)+(DCOS(AK2)*AT2))

Fa=AK4*( (DSIN{AK2)*ATI3)+(DSIN(AK2)*ATI2)+(DCOS(AK2)*AIl))
WX=AK1*DCOS((ABS1*TA)+AK2)+F1*DCOS(ABSL*TA)+F2%DSIN(ABS1*TA)

WRITE (64100) TT,yWXsWl
100 FORMAT(1X,F7.3,E13.5,E13.5)

_WZ=AKI#DSIN((ABS1*TA)+AK2)+F3%DCOS(ABSI*TA)+F4*DSIN(ABSI*TA)

S

— NDAT=NDAT+1

..

10

. END_

e N e 8Te e B (i oD Tane M e i Aty e

et

93

e’
.o

DAT(NDAT,1)=VT
DAT(NDAT,2) =X
_DAT(NDAT,3)=WZ

TT = TT+1.

IF(TT-450.5) 9,7,7

1 FORMAT(20A4)
CALL EXIT

WRITE(T7,101) ((DAT(I14J)4J=1,43),1=1,ND

-

-

Coneperis W el P VA Gn R0

L



SUBROUTINE SERL(T,SUML) o . T ;' :
_IMPLICIT REAL*8B(A-H,0-Z) " _ . - '
ARIME = 27.005575 ’ '

C = 0.4916578 : -
Q = .0109014 » : - i
FF = (Q%C)/ARIME oo
A = _143.07850 - Lo
YY =-1.0 ] ' . . P
DO 10 M = 1,27 ~ - B 3 , ‘ o oo

__FACY =_1.0
MM = M-1 .
IF (MML,EQ.O) GO TO 11 . )
_CAA = (YY) REMM :
GO0 TO 4
11 AA 1

4 _AJ (2%MM)+0.5

AJJ=MM+0.5
Y = FER{(T+A)%%2)
S1 = Y®®xAJY
YRk MM
AA%S]

I AR TR crgia e o il
SRER Hiosisig

S11
S2

¥

LI I R TR 1

S3 S2/A) - e Ca e i
MM (2%MM) +1 _ o S -
DO 1 J = 1,MM - ‘ ,
. FACT = FACT=J ; e
1 CONTINUE . '
S4=S3/FACT . -
. S55=54%S511 : '
SUM2=SUM2+S5
10 CONTINUE
RETURN
END

B- 11 . :



SUBROUTINE SER2(T,SUM2)
IMPLICIT REAL%8(A-H,0-~2
SUM2_=0.0 :

C = 0.4916578
ARIME = 27.005575
Q= _,.0109014

FF = (Q*C)/ARIME
A = 143.07850
YY = =1.0_

DO 10 M =
FACT = 1.0
MM = M=)

1,27

i

IF (MM.EQ.0) GO TO 11
AA= (YY) %%MM
GO _TO 4

11 AA =1
4 AJ= (2%MM)-.5
AJl=_MM-0.5

Y =
Si=
Sll= YxxMM

S2
S3
1F

FEX((T+A)%%2)
Y%%AJ1

= AA*S]
= S2/AJ
(MM.EQ.O) _—NM=1

ts

ARY

I 5 1

MM = MM%2,0
DO 1 J = 1,MM
FACT_= FACT*J

"1 CONTINUE
S4=S3/FACT
_.S$5=S4%S11

SUM1=SUM1+S5
10 CONTINUE
—RETURN

~e

END
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APPENDIX C .

Nutation Damper Bias Angle due to the Offset of the Space-

craft Mass Center in the Transverse Plane

During the despin'operation of the SAS-A spacecraft
the nutation damper was observed tb be biased by a small

9

amount off its expected equilibrium position. This
bias angle was observed to diminish as the main body spin
rate decreased. This phenomenon resulted from the actual
offs;tAof the spacecraft mass center in the transverse
plane due to small errors in the final mass balancing
prior to launch.

This same bias in dgmper_gngle has been observed in
the current numerical stuéy (e.gi Figs; 5b, 6b, 7c)'and can -
be explained by the fact that during the developmenf of the
equations of motion the lateral center of mass shift due to
the damper motion was not included. ' In this appendix, the
forces and moments acting on the demper mass in the trans-
verse plane will be examiﬁed togefher with the bias angle

from Fig. 5b and the center of mass offset displacement

then calculated.

Analysis

(a) Offset of Center of Mass Due to Centrifugal Force:

For static equilibrium of the damper pendulum, the

C-1
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torqué-caused by the centrifugal force is balanced by the
restoring spring action. Referring to Fig. C-1 and following

Ref. 16, the torque equation can be expressed:

2

IN = mroZ sin a ry; - Ké; =0 .. . ... ... (c.1)

where m mass of damper pendulum

K = torsion wire spring constant

r = displacement of damper mass from actual mass
center

ry= damper pendulum length

wy= spacecraft spin rate

(In Eq. (C-1), the effect of the Coriolis force has been

neglected; it will be considered subsequenfly.énd shown to
be a higher order effect for the SAS-A system).

From Fig. C-1, sin o = 4 ,.

T

so that Eq. (C.l) becomes:

— 2 - V
IN = mregr) (L4 ) - Kép =0 . o oo v (c.2)
r
1
From the geometry of the figure,

rZ = r#2 4 4%

1 1

r =% 4 r cos B+ f Sin B « « « « « o« v o« o « . (€.3)
. 1 0 -

B=¢l+a
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and

s ... (c.w)

f cos B =4 + ro sin B . . .« « o 7"

The exact solution for the spacecraft center of mass

_displacement f as a function of r , r;, ¢, and 9y,is compli-

cated for large ¢;. It is noted in Egq. (c.2) that ¢4

varies
in-the

angles

¥ N
1

directly as m§ for constant r. The solution for f
case-of -SAS-A-can -be-obtained-by using-small bias
in thg linearized equations.

The following assumptioqs can thus b¢ made:

d,f << r1

Ty
a, B, ¢l are small and B = ¢l

r ~r. +r
1 o

Thus from Egs. (C.2), (C.3) and (c.h)'

£ 2 K + ro]¢l .. ... e e e e ; (c.5)

2
;m(rl+ro)wy

Using the parameters given for the SAS-A satellite:

m = 0.2158 kg

K = 6.10 x 107 nt-m
: rad

T = 0.025 meter

ry = 0.203 meter



¢; =0.006 rad (obtained from Fig. 5D)

w, = wy(O) = 0.5 rad/sec

and substituting these values into Eq. (c.5),
f = 1.52 millimeter
For small angles Eq. (C.3) can be written:

r =r) +r  cos ¢ + £ sin ¢ - . . . . ... (c.6)

Substituting the values of r r o, f and ¢, into Eq. (c.6)

1°
r = 0.228 meter
From Egq. (C.h}
d = f cos ¢l'— r, sin ¢;
?ﬁéﬁﬁyﬁirﬁﬁi?;;r éubstituting the numerical values of f; ro and- ¢q ﬁhe
above eguation yields,
=.0.0013701 meter’

The magnitude of the torque due to the centrifugal force about

the damper hinge point is expressed:

N

2
mrwsd
C.F. y

0.2158 x 0.228x (.5)2 x 0.0013701
5 °

1.68 x 10 ° Newton-meter



(v) Calculation of the Coriolis Force and Torque:

reference can be expressed as:

r

fixed reference

= velocity of the particle

with angular velocity w relative to the fixed

plane

velocity of the particle relative to a space

in a rotating frame

The velocity of a particle relative to -a space fixed

V+Z,x§~.................'(0.7)

Again the acceleration of a particle relative to space can be

obtained from the foliowing equation,

avg
dt

av, _ -
= + wxV_ .
space a4t rot S

(c.8)

Substituting the expression for ﬁs from Eq. (C.T7) into

a - - -
= —— + .
I ©oodt (Vr wxr)rot
Space ’
= ar we obtain
—atc , ;
rot

C-5

+ Bx(vr + wxr) . .

(c.9)



av

dat

.ar,+.ax; +A2BXV£ + wx(wxr) ... . . (C.10)

space

where Vr is the velocity measured by an observer rotating
with this system: The.term |2aer[ is the magnitude of the

Coriolis acceleration.

From Fig. C-1
r=(r, +r cos¢l)I + (£ + fl sin¢l)£'. .« « « f(c.11)

Differentiating Eq. (C.11) yields:

d;_— . . . - . . -—
T V. = (-rysin¢j3¢3)i + (f + ry cos?}¢l)§ig . (Q.l2)

The total angular velocity-vector during despin can be

approximated by its largest component, w, as

y
® el ;4. . . (c.13)

where w, is the angular velocity of the main body.
The Coriolis acceleration may be represented:

a =z[5x\7r}........'......... (Cc.1L)

Substituting the values of w and v, into Eq. (C.1k)

;cor =‘2[{wy5} x'{(—rl sin¢l$l); + (f +r) cos¢l$1)k}]

(c.15)
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and. after expansion,

a0y =_[wy(f + rl_cos¢l$l)]z - [wy(—ri’éin¢l$l)]£ (c.16)

The magnitude of the Coriolis force

Foor = |Fcorr=_2m/E§TT}+ flcos¢lgi)2+ (—rl sin¢l¢l)2 (c.17)
For the static case f-and &l are both zero, so,
[Foorl =0
Differentiating Eq. (C.5), for wy“: constant
£ = oTF E Iy + ro]&;l e e e e e e e (c.18)
1 o’ Y. " .

. Substituting Eq. (C.18) into Eq. (C.17) we obtain the

result as,

K

2
m(r_ + rl)w;

1

Foop = 2m 7 w;(

] 232 s 02 :
o + r, +tory cos¢l) 97 * ry sin“¢;¢

(C.19)
From the time history of él for the case considered in Figs.

5 an approximate averdge value of él can-be obtained as

= |0.15 x 1073.rad/secl

|¢1 avel
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Substituting the SAS-A parameters and él ay into
) : Ve

Eq; (C-l9), yields - - -
- « -5 '
Foor = 7.54090 x 10~ Newton

The magnitude of the torque produced by Coriolis
force can be expressed by

Neor = Fogp COS @ « Ty « o v v o o v 0 o . (c.20)

Using SAS-A nominal parameters it can be shown that:

6

N = 1.53080 x 107" Newton-meter.

cor

The average torque produced by Coriolis forces is about an
order of magnitude less than fhe torque prdduced by the

centrifugal force, so the effect of Coriolis force can be

neglected in an approximate first order analysis.
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Centrifugal Force Vector
normal to pendulum

=mr w? sin «

(balanced by torsion
wire torque)

Torsion Wire
Axis
Pendulum
Length

Desired
Spacecraft
Mass Center:

\
Desired Equilibrium .
Axis for Nutation Damper
Pendulum

Actual Spacecraft
Mass Center

FIGURE C~l: Geometry of Nutation Damper Bias Analysis
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APPENDIX D

Integrals Involved in the Solution of Equa't—:‘ions (iZO) and

(121)11
i,
o Tleu-1
Cu-1 S 2(“ ) .
Tx sin .ax dx = - z—i {e P(py,-1iax)
. , - 2a )
Fi(1i-p)
+ e r(p, iax)} Rey
a
x.
-1 i om
Jx ¥ Tcos axdx = - ,..‘1 He : 2 T(u, -iax)
2a" '
—iuT ,
7 T(j,iax)}.

+ e
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