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Abstract—We present the Motion Grammar: an approach to
represent and verify robot control policies based on Context-Free
Grammars. The production rules of the grammar represent a
top-down task decomposition of robot behavior. The terminal
symbols of this language represent sensor readings that are
parsed in real-time. Efficient algorithms for context-free parsing
guarantee that online parsing is computationally tractable. We
analyze verification properties and language constraints of this
linguistic modeling approach, show a linguistic basis that unifies
several existing methods, and demonstrate effectiveness through
experiments on a 14-DOF manipulator interacting with 32 objects
(chess pieces) and an unpredictable human adversary. We provide
many of the algorithms discussed as Open Source, permissively
licensed software. 1

Index Terms—Hybrid Control, Control Architectures and Pro-
gramming, Formal Methods, Manipulation Planning

I. INTRODUCTION

Safety is important for physical robots where failures im-

pose physical costs. Model-based verification helps improve

safety. Hybrid systems models present robots with both contin-

uous and discrete dynamics. Continuous dynamics use differ-

ential equations. Using software to handle discrete dynamics,

however, presents challenges for safety due to the general-

case inability to guarantee software performance. We can

address this difficulty using Formal Language models [28]

to syntactically define the system [41]. While prior linguistic

methods have focused on finite-state Regular languages, we

can describe a broader class of system behavior using the

Context-Free language class. Synthesizing results from Dis-

crete Event Systems and Compiler Design [1], we analyze

the discrete syntax of hybrid controllers and introduce a new

model for discrete dynamics, the Motion Grammar, which

provides advantages in representative power and hierarchical

design while still maintaining verifiability and efficient online

operation.

Linguistic control methods describe the set of discrete paths

a system may take. Each path, or language string, is a sequence

of abstract symbols representing relevant events, predicates,

states, or actions. Explicitly defining this system language lets

us algorithmically verify system performance [3, 27]. When

this system language is parsed online, it defines a control

policy enabling response to unpredictable events. The typically

used Regular language class is limited to finite discrete state.

The Context-Free set provides more descriptive power while

This work was supported by NSF grants CNS1146352 and CNS1059362.
The authors are with the Robotics and Intelligent Machines Center in
the Department of Interactive Computing, Georgia Institute of Technology,
Atlanta, GA 30332, USA. email: ntd@gatech.edu, mstilman@cc.gatech.edu

1Many algorithms discussed in this paper implemented in our Motion
Grammar Kit: http://www.golems.org/node/1224

maintaining the efficiency and verifiability of Regular lan-

guages. In addition, Context-Free Grammars provide a natural

representation for hierarchies in the system. Thus, we extend

the linguistic control approach to Context-Free Grammars.
This paper analyzes the discrete components of a hybrid

robotic system through Formal Language. Our model, the

Motion Grammar (Sect. IV), uses Context-Free Grammars to

represent and verify discrete dynamics (Sect. V). We demon-

strate this approach in the domain of physical human-robot

chess (Sect. VI). The linguistic formalization also shows a

unifying basis for several alternative representations of discrete

dynamics (Sect. VII). The Motion Grammar integrates robotic

perception and control, providing theoretical and practical

benefits.
There are several advantages to the Context-Free language

model used in the Motion Grammar. As with Regular Lan-

guages, and unlike other typical language classes (sect. IV-E),

we retain verifiability (sect. V-F) and fast reactive response

(sect. VI-A). In addition, the grammar representation of a lan-

guage makes it convenient to specify hierarchies (sect. VI-B),

which simplified the construction of our grammar for chess.

Fundamentally, a Context-Free language can represent sce-

narios which a Regular Language cannot (sect. VI-C). This

combination of benefits make the Context-Free set a useful

model for robot control policies.

II. RELATED WORK

Hybrid Control is a quickly advancing research area describ-

ing systems with both discrete, event-driven, dynamics and

continuous, time-driven, dynamics. Ramadge and Wonham

[41] first applied Language and Automata Theory [28] to

Discrete Event Systems. Hybrid Automata generally combine

a Finite Automaton (FA) with differential equations associated

with each FA control state. This is a widely studied and

utilized model [2, 5, 26, 30, 37]. Maneuver Automata use

a Finite Automaton to define a set of maneuvers that transi-

tion between trim trajectories [20]. In this paper, we model

hybrid systems using the Motion Grammar which represents

continuous dynamics with differential equations and discrete

dynamics using a Context-Free Grammar (CFG) [8], providing

benefits in computational power and hierarchical specification

while still allowing offline verification and efficient online

control [10]. Thus we provide a hybrid systems model which

builds on existing approaches in useful ways.
The Motion Description Language (MDL) is another ap-

proach that describes a hybrid system switching though a

sequence of continuously-valued input functions [4, 29]. This

string of controllers is a plan whereas the Motion Grammar

is a policy representing the robot’s response to any event.
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Model Checking is a technique for verifying discrete

and hybrid systems by systematically testing whether the

model satisfies a specified property [3, 27]. Typically, model-

checking uses a finite state model of the system. However,

there are algorithms to check Context-Free systems as well

[17, 19]. We describe the specific language classes for which

this is possible in sect. V-F. Approaches such as [18, 34,

36] use Linear Temporal Logic (LTL) to formally describe

uncertain multi-agent robotics by a finite state partitioning

of the 2D environment. We adopt a discrete representation

more suitable to high dimensional spaces; our manipulation

task uses a 14-DOF robot and 32 movable objects making

complete discretization computationally infeasible.

There is a large body of literature on grammars from

the Linguistic and Computer Science communities, with a

number of applications related to robotics. Fu did some early

work in syntactic pattern recognition [21]. Han, et al. use

attribute graph grammars to parse images of indoor scenes by

describing the relationships of planes in the scene according

to production rules [25]. Koutsourakis, et al. use grammars

for single view reconstruction by modeling the basic shapes

in architectural styles and their relations using syntactic rules

[35]. Toshev, et al. use grammars to recognize buildings in

3D point clouds [44] by syntactically modeling the points as

planes and volumes. B. Stilman’s Linguistic Geometry applies

a syntactic approach to deliberative planning and search in

adversarial games [43]. Rawal, et al. use a class of Sub-

Regular Languages to describe robotic systems [42]. These

works show that grammars are useful beyond their traditional

role in the Linguistic, Theoretical, and Programming Language

communities. Our approach applies grammars to online control

of robotic systems.

In the context of safe human-robot interaction, [13] demon-

strates safe response of a knife-wielding robot based on

collision detection when a human enters the workspace. Other

approaches to safe physical interaction between humans and

robots are surveyed by [14], and [23] suggests specific meth-

ods for different types of safety. The Motion Grammar builds

on such methods by providing both task-level guarantees and

a common structure to combine these existing techniques.

Other studies have developed implementations for our ex-

perimental domain of robot chess. [32] describes a specially

designed robot arm and board. [45] developed a robot chess

player using a specialized analytical inverse kinematics. [38]

describes a new robot arm and perception algorithms to play

chess on an unmodified board. Instead of focusing on chess

play, we use the context of this physical human-robot game

to demonstrate the Motion Grammar. We present a general

approach implemented on a existing robot arm using general

kinematics methods. Furthermore, we provide features and

safeties beyond game-play and manipulation.

III. BACKGROUND

The Motion Grammar (MG) is a formalism for designing

and analyzing robot controllers. It is a computational analogue

to formal grammars for computer programming languages.

Theoretical results for programming languages are directly

applicable to MG making it possible to prove correctness. This

paper introduces an implementation of MG and analyzes these

guarantees. First, we briefly review formal grammars. For a

thorough coverage of language and automata theory, see [28].

A. Review of Grammars and Automata

Grammars define languages. For instance, C and LISP are

computer programming languages, and English is a human

language for communication. A formal grammar defines a

formal language, a set of strings or sequences of discrete

tokens.

Definition 1 (Context-Free Grammar, CFG):

G = (Z,V,P,S) where Z is a finite alphabet of symbols

called tokens, V is a finite set of symbols called nonterminals,

P is a finite set of mappings V 7→ (Z∪V )∗ called productions,

and S ∈V is the start symbol.

The productions of a CFG are conventionally written in

Backus-Naur form. This follows the form A → X1X2 . . .Xn,

where A is some nonterminal and X1 . . .Xn is a sequence of

tokens and nonterminals. This indicates that A may expand to

all strings represented by the right-hand side of the produc-

tions. The symbol ε is used to denote an empty string. For

additional clarity, nonterminals may be represented between

angle brackets 〈〉 and tokens between square brackets [].
Grammars have equivalent representations as automata

which recognize the language of the grammar. In the case

of a Regular Grammar – where all productions are of the

form 〈A〉 → [a]〈B〉, 〈A〉 → [a], or 〈A〉 → ε – the equivalent

automaton is a Finite Automaton (FA), similar to a Transition

System with finite state. A CFG is equivalent to a Pushdown

Automaton, which is an FA augmented with a stack; the

addition of a stack provides the automaton with memory and

can be intuitively understood as allowing it to count.

Definition 2 (Finite Automata, FA): M = (Q,Z,δ ,q0,F),
where Q is a finite set of states, Z is a finite alphabet of

tokens, δ : Q×Z 7→ Q is the transition function, q0 ∈ Q is the

start state, F ∈ Q is the set of accept states.

Definition 3 (Acceptance and Recognition): An automaton

M accepts some string σ if M is in an accept state after reading

the final element of σ . The set of all strings that M accepts is

the language of M, L(M), and M is said to recognize L(M).
Regular Expressions [28] and Linear Temporal Logic (LTL)

[3] are two alternative notations for finite state languages.

The basic Regular Expression operators are concatenation

αβ , union α|β , and Kleene-closure α∗. Some additional

common Regular Expression notation includes α which is

the complement of α , the dot (.) which matches any token,

and α? which is equivalent to α|ε . Regular Expressions are

equivalent to Finite Automata and Regular Grammars. LTL

extends propositional logic with the binary operator until ∪
and unary prefix operators eventually ♦ and always �. LTL

formula are equivalent to Büchi automata, which represent infi-

nite length strings, termed ω-Regular languages. We can also

write ω-Regular Expressions by extending classical Regular

expressions with infinite repetition for some α given as αω .

These additional notations are convenient representations for

finite state languages.
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✓
✒

✏
✑

〈T〉 → [load]〈T〉 [unload] (1)

| [full] (2)

(a) Grammar

〈T〉

[load] 〈T〉

[load] [full] [unload]

[unload]

(b) Parse Tree

Fig. 1. Example Context-Free Grammar for a load/unload task and parse
tree for string “[load] [load] [full] [unload] [unload]”

Any string in a formal language can be represented as a

parse tree. The root of the tree is the start symbol of the

grammar. As the start symbol is recursively broken down into

tokens and nonterminals according to the grammar syntax, the

tree is built up according to the productions that are expanded.

The production A → X1 . . .Xn will produce a piece of the parse

tree with parent A and children X1 . . .Xn. The children of each

node in the parse tree indicate which nonterminals or tokens

that node expands to in a given string. Internal tree nodes

are nonterminals, and tree leaves are tokens. The parse tree

conveys the full syntactic structure of the string.

An example CFG and parse tree are given in Fig. 1 for

a loading and unloading task. In production (1), the system

will repeatedly perform [load] operations until receiving a

[full] token from production (2). Then the system will perform

[unload] operations of the same number as the prior [load] op-

erations. This simple use of memory is possible with Context-

Free systems. Regular systems are not powerful enough.

While grammars and automata describe the structure or

syntax of strings in the language, something more is needed

to describe the meaning or semantics of those strings. One

approach for defining semantics is to extend a CFG with

additional semantic rules that describe operations or actions to

take at certain points within each production. Additional values

computed by a semantic rule may be stored as attributes,

which are parameters associated with each nonterminal or

token, and then reused in other semantic rules. The resulting

combination of a CFG with additional semantic rules is called

a Syntax-Directed Definition (SDD) [1, p.52].

B. Hybrid Dynamical Systems

Hybrid Dynamical Systems combine discrete and continu-

ous dynamics; this is a useful model for digitally controlled

mechanisms such as robots. The discrete dynamics of a hybrid

system evolve as discrete state changes in response to events.

The continuous dynamics evolve as continuous state varies

over time. We define a hybrid system as,

Definition 4: A hybrid system is a tuple

F = (X ,Z ,U ,Q,Z,δ ,ρ) where,

X ⊆ ℜm continuous state

Z ⊆ ℜn continuous observation

U ⊆ ℜp continuous input

Q set of discrete state

Z set of discrete events

δ : Q×X ×U 7→ X ×Z continuous dynamics

ρ : Q×Z 7→ Q discrete dynamics

Motion Parser

ζ0 ζ1 . . . ζk−1
︸ ︷︷ ︸

history

ζk ζk+1 . . . ζn
︸ ︷︷ ︸

future

input tape

Robot

η(z)ζ

u

Fig. 2. Operation of the Motion Grammar.

IV. THE MOTION GRAMMAR

A. Motion Grammar Definition

The Motion Grammar (MG) is a Syntax-Directed Definition

expressing the language of interaction between agents and

real-world uncertain environments. In this paper, the agent is

a robot and the example language represents physical human-

robot chess (Sect. VI).

MG tokens are system states or discretized sensor readings.

MG strings are histories of these states and readings over the

system execution. Like SDDs for programming languages, the

MG must have two components: syntax and semantics. The

syntax represents the ordering in which system events and

states may occur. The semantics defines the response to those

events. The MG uses its syntax to decide from the set of

system behavior and semantics to interpret the state and select

continuous control decisions. This paper focuses on the syntax

of MG, its expressivity, and formal analysis of MG languages.

The Motion Grammar represents the operation of a robotic

system as a Context-Free language. The grammar is used to

generate the Motion Parser which drives the robot as shown

in Fig. 2.

Definition 5 (Motion Grammar): The tuple GM =
(Z,V,P,S,X ,Z ,U ,η ,K) where,

Z set of events, or tokens

V set of nonterminals

P ⊂V × (Z ∪V ∪K)∗ set of productions

S ∈V start symbol

X ⊆ ℜm continuous state space

Z ⊆ ℜn continuous observation space

U ⊆ ℜp continuous input space

η : Z ×P×N 7→ Z tokenizing function

K ⊂ X ×U ×Z 7→ X ×U ×Z set of semantic rules

Definition 6 (Motion Parser): The Motion Parser is a pro-

gram that recognizes the language specified by the Motion

Grammar and executes the corresponding semantic rules for

each production. It is the control program for the robot.

From Def. 5, the Motion Grammar is a CFG augmented

with additional variables to handle the continuous dynamics.

Variables Z, V , P, and S are the CFG component. Spaces

X , Z , and U are for the continuous state, measurement,

and input. The tokenizing function η produces the next input

symbol for the parser according to the sensor reading and the

position within the currently active production. The semantic

rules K describe the continuous dynamics of the system and

are contained with the productions P of the CFG. Using

these discrete and continuous elements, the combined Motion

Grammar GM explicitly defines the Hybrid System Path.
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Definition 7 (Hybrid System Path): The path of a system

defined by Motion Grammar GM is the tuple Ψ= (x,σ) where,

x : t 7→ X continuous trajectory through X

σ ∈ L{GM} discrete string over Z

Though the focus of this paper is on the discrete portion

of this hybrid system, we include the continuous components

in the definition for three reasons. First, we want to define

discrete events based on continuous variables (sect. V-B).

Second, we can define functions for the continuous input U

at appropriate positions as semantic rules within grammar

(sect. V-D). Third, we provide conditions on the grammar

and continuous system path (sect. V-E) that permit discrete

reasoning about correctness (sect. V-F).

B. Application of the Motion Grammar

There are two phases where we apply the Motion Grammar

to a robotic system: first as a model for offline reasoning

and second for online parsing. The properties of Context-

Free languages provide guarantees for each of these phases.

Offline, we can always verify correctness of the language

(sect. V-F) and there are numerous algorithms [1, 16, 39,

39] for automatically transforming the grammar into a parser

for online control. Online, the parser controls the robot. The

structure of CFLs guarantees that online parsing is O(n3) in

the length of the string [16], and with some restrictions on the

grammar [1, p.222], parsing is O(n) – constant at each time

step, a useful property for real-time control.

Online parsing is illustrated in Fig. 2. The output of the

robot z is discretized into a stream of tokens ζ for the parser

to read. The history of tokens is represented in the parser’s

internal state, i.e. the stack and control state of a PDA. Based

on this internal state and the next token seen, the parser

decides upon a control action u to send to the robot. The

token type ζ is used to pick the correct production to expand

at that particular step, and the semantic rule for that production

uses the continuous value z to generate the input u. Thus,

the Motion Grammar represents the language of robot sensor

readings and translates this into the language of controllers or

actuator inputs.

C. Time and Semantics

Next we describe the linguistic properties of the Motion

Grammar that arise from the online parsing of the system

language. While a translating parser such as a compiler is

typically given its input as a file, a Motion Parser must act

token-by-token continually driving the system. This tempo-

ral constraint restricts the ability of the Motion Parser to

lookahead and backtrack. Thus, we cannot apply an arbitrary

Syntax-Directed Definition to an online system but are instead

restricted on the type of parser we may use and the allowable

ordering of attribute semantics. We now consider the issues of

discrete vs. continuous time, selection of productions during

parsing, and computation of attributes.

1) Discrete vs. Continuous Time: The continuous dynam-

ics of a system may be modeled and controlled in either

continuous or discrete time. For the purpose of modeling,

✓
✒

✏
✑

〈A〉 → [a]{u = 1}〈B〉

| [a]{u = 1}〈C〉

(a) Semantically LL(1)

✓
✒

✏
✑

〈A〉 → [a]{u = 1}〈B〉

| [a]{u = 2}〈C〉

(b) Not Semantically LL(1)

Fig. 3. Examples grammar fragments that are and are not Semantically LL(1)

these representations are functionally equivalent. Discrete time

models can approximate continuous time by using a suffi-

ciently short timestep, and continuous time models can repre-

sent discrete time using timeout events. For implementation

on a microprocesser, we must ultimately adopt a discrete

time representation; however, this can be obtained by simply

discretizing the continuous-time model. The Syntax-Directed

Definition of the Motion Grammar can thus be written in either

continuous or discrete time as is convenient.

2) Selecting Productions and Semantic Rules: We next

compare the Motion Grammar to the LL(1) class of grammars.

LL(1) grammars can be parsed by recursively descending

through productions, picking the next production to expand

using only a single token of lookahead and without backtrack-

ing [1, p.222]. While we could satisfy the Motion Grammar’s

temporal constraint by restricting to an LL(1) grammar, we can

relax this restriction slightly. The actual requirement is not that

the Motion Parser must immediately know which production

it is expanding. Instead, the parser must immediately provide

some input to the robot. Thus the parser may use additional

lookahead, but only if all productions it is deciding between

have identical semantic rules. This way, the parser can im-

mediately execute the semantic rule, and use some additional

lookahead to figure which production it is really expanding.

We describe this property as Semantically LL(1).

Definition 8: A Syntax-Directed Definition is Semantically

LL(1) if for all strings in its language, the correct semantic

rule to execute can be determined using a single token of

lookahead and without backtracking.

Claim 9: A Motion Grammar must be Semantically LL(1).

Proof: The Motion Parser derived from the Motion Gram-

mar, GM , must be able to immediately provide the system

with an input u ∈ U in response to each token, and it cannot

change the value of inputs already sent. Suppose that GM

were not Semantically LL(1). This would mean it could use

multiple tokens of lookahead or backtrack before deciding on

a semantic rule to calculate u. Since u must be known before

more tokens are accepted and previous u values cannot be

changed, this a contradiction. Thus GM must be Semantically

LL(1).

The Semantically LL(1) property is useful because it allows

grammars to be parsed in real-time. Examples of grammars

that do and do not satisfy this property are given in Fig. 3.

In addition, Fig. 7 is an example of a grammar that is not

LL(1) but is Semantically LL(1). This property also permits

ambiguous grammars – where multiple parse trees may exist

for a given string. This is acceptable because the output of

the parser, u sent to the robot, will be the same regardless of

which parse tree is selected, and thus the particular resolution

of the ambiguity is irrelevant.
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When designing our Motion Grammar, we must ensure

LL(1) semantics. This is possible with any strictly LL(1)

grammar. Non-LL(1) grammars will contain conflicts where

two alternative productions may begin with the same token

[1, p.222]. If for any conflict, all productions contain the

same semantic rules, then the grammar is Semantically LL(1).

Generation of efficient parsers for LL(k) and LL(*) grammars

is discussed in [39]. If the intended Motion Grammar is not

Semantically LL(1), we must either rework the grammar or

instruct the parser as to the appropriate precedence levels so

that it can resolve any conflicting productions.

3) Attribute Inheritance and Synthesis: Now we consider

the structure of the attribute semantics in the Motion Grammar.

Attributes are the additional values attached to tokens and

nonterminals in an SDD. For the Motion Grammar, these

represent the continuous domain values x, z, and u. In our

SDD, the attributes of some given nonterminal are calculated

from the attributes of other tokens and nonterminals; this

introduces a dependency graph into the syntax tree. We must

ensure that the dependency graph has no cycles or we will not

be able to evaluate the SDD [1, p.310]. The temporal nature

of the Motion Grammar constrains the attribute dependencies

even further; during parsing, we only have access to informa-

tion from the past because the future has not happened yet.

Attributes can be described as either synthesized or inherited

based on their dependencies. Synthesized attributes depend

on the children of the nonterminal while inherited attributes

depend on the nonterminal’s parent, siblings, and other at-

tributes of the nonterminal itself. The temporal constraint of

the Motion Grammar corresponds to a particular class of SDDs

called L-attributed definitions for the left-to-right dependency

chain. A nonterminal X in an L-attributed definition may

only have attributes that are synthesized or are inherited with

dependencies on inherited attributes of X’s parent, attributes

of X’s siblings that precede it in the production, or on X itself

in ways that do not result in a cycle [1, p.313].

Claim 10: A Motion Grammar must have L-attributed se-

mantics.

Proof: We must determine the attributes in a single pass

because parsing is online, so the past cannot be changed,

and the future is unknown. Let the inherited attributes of

nonterminal V be V.h, and let its synthesized attributes be

V.s. For all productions p = A → X1X2 . . .Xn, consider the

attributes of Xi. While expanding Xi, A.h are known. All

X j, j < i in this production have already been expanded

because they represent past action, so X j.h and X j.s are also

known. However, Xk, k > i represent future actions, so Xk.h

and Xk.s are unknown. This also means that A.s is unknown

because its value may depend on Xk.h and Xk.s. Consequently,

Xi.h may only depend on A.h, X j.h, and X j.s. Xi.s may depend

on attributes from its children because they will be known after

Xi has been expanded. These constraints on attributes synthesis

and inheritance correspond to L-attributed definitions.

D. Languages, Systems, and Specifications

The Motion Grammar models and controls a robotic system.

Often during controller design, there is a rigid distinction

between what is the plant and what is the controller, and

analogously, Fig. 2 shows the Robot and the Motion Parser

as separate blocks. However, these are arbitrary distinctions.

Consider the case of feedback linearization where we intro-

duce some additional computed dynamics so that we can

apply a linear controller. While these additional dynamics may

physically exist as software on a CPU, for the purpose of

designing the linear controller, they are part of the plant. With

the Motion Grammar, we have the same freedom to designate

components between the plant and controller in whatever way

is most convenient to the design of the overall system.

For linguistic control approaches, there is one critical dis-

tinction to make between the language of the system and the

language for the model. The system is the physical entity

with which we are concerned: the controller and the robot.

The model is the description of how the controller and robot

respond; it is a set of mathematical symbols on paper or in

a computer program. Both the system and the model can be

described by formal languages.

Definition 11: The System Language, Lg, is the set of

strings generated by the robot and parsed by the controller

during operation.

Definition 12: The Modeling Language, Ls, is the set of

strings that describe the operation of controllers and robots.

These languages are related. Each string in the modeling

language describes a particular system: a robot and controller.

This specification is parsed offline to generate the control

program. The system language is parsed online by the control

program. The Motion Grammar is a modeling language that

describes a Context-Free system.

We emphasize that the Motion Grammar is not simply a

Domain Specific Language or Robot Programming Language

[6, p.339] but rather the direct application of linguistic theory

to robot control in order to formally verify performance. The

language described by the Motion Grammar is that of the

robotic system itself.

E. The “Goldilocks”2 Set

For the problem of robot control, where guarantees on

performance and verifiability are necessary, the Context-Free

Set used in the Motion Grammar is a convenient rank in

the Chomsky Hierarchy of formal language classes. First,

Context-Free is strictly more powerful model than the Regular

languages. Second and more radically, we propose that it

is appropriate to sacrifice Turing-complete computation in

exchange for certain guarantees. We are willing to make this

exchange because failures in physical robotic systems can

impose severe physical costs; thus, guaranteed safety and

reliability are critically important. These benefits and tradeoffs

of the Motion Grammar make it an appropriate model for

online robot control.
1) Regular Languages: Context-Free languages offer ad-

vantages over Regular languages for robot control. The Regu-

lar Languages are the simplest of the commonly-used formal

languages classes. Regular languages permit strong guarantees

on performance and are often used to model reactive control

2English idiom for moderation, i.e. die goldene mitte
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systems. A major benefit of these models is the ability to ver-

ify system behavior. Context-Free languages extend Regular

languages with memory in the form of a pushdown stack. In

sect. VI-C, we use this memory to implement a limited planner

within the purely reactive controller. Even with this additional

power, Context-Free models still permit formal verification as

we show in sect. V-F. Thus, Context-Free languages are more

powerful than regular languages, and still permit guarantees

on performance.

2) Turing-Recognizable Languages: The demand that a

programmer give up Turing-complete computation for a

Context-Free Motion Grammar is a drastic one, but it comes

with important guarantees. Turing-recognizable or Recursively

Enumerable languages are the most powerful class in the

Chomsky hierarchy. A Turing-complete computational model

is nearly universal among computer programming languages.

Even this paper was typeset in the Turing-complete LATEX

language. However, the Turing-complete model, with all its

power and generality, has a severe cost: the Halting Problem

and Rice’s Theorem mean that any nontrivial property of

a Turing Machine is unprovable [28, p.188]. For a general,

Turing-recognizable language we can guarantee nothing.

3) Context-Sensitive: Context-Sensitive languages, which

fall between the Context-Free and the Turing-Recognizable

sets, are not generally suitable for Real-Time control. The gen-

eral Context-Sensitive decision problem is PSPACE-Complete,

a challenge when online response is needed. Thus, we consider

the Context-Sensitive Language class to be an unsuitable

model for real-time robotic systems.

4) Context-Free: The Context-Free Language class is an

especially useful model for online control of robotics sys-

tems. Among the Regular, Context-Free, Context-Sensitive,

and Recursively-Enumerable sets, the Context-Free languages

provide a balance between power and provability for this

problem domain. Online robot control requires an immediate

response, and Context-Free languages are always parsable

in polynomial time [16]. Physical robots require safety and

reliability guarantees to prevent damage or injury, and a

Context-Free model can always be verified as we prove in

sect. V-F. For these reasons, the Context-Free set provides

appropriate benefits with acceptable costs compared these

other language classes for representing the discrete dynamics

of robotic systems.

V. GRAMMARS FOR ROBOTS

The Motion Grammar is a useful model for controlling

physical robots. In this section, we discuss how to apply

grammars to robots and illustrate the points with our sample

application of human-robot chess. First, we describe the setup

for the chess application. Then we explain tokenization and

parsing for robot grammars using this example. Finally, we

show the guarantees that are possible with the Motion Gram-

mar.

A. Experimental Setup

To demonstrate the concepts and utility of the Motion

Grammar, we developed a sample application of physical,

Fig. 4. Our experimental setup for human-robot chess and a partial parse-tree
indicating the robot’s plan to perform a chess move.

human-robot chess. This application ran on a Schunk LWA3

7-DOF robot arm with a Schunk SDH 7-DOF, 3-fingered hand

as shown in Fig. 4. A wrist mounted 6-axis force-torque sensor

and finger-tip pressure distribution sensors provided force

control feedback. The robot manipulated pieces in a standard

chess set, and a Mesa SwissRanger 4000 mounted overhead

allowed it to locate the individual pieces. Domain-specific

planning of chess moves was done with the Crafty chess

engine [31]. The perception, motion planning, and control

software was implemented primarily in C/C++ and Common

Lisp using message-passing IPC [12] via shared memory and

TCP running on Ubuntu Linux 10.04. The lowest-levels of our

grammatical controller operate at a 1kHz rate.

B. Tokenization

Tokens are the terminal symbols of the language, which

we use to model discrete elements of the system. Tokens

may be produced either synchronously or asynchronously.

Synchronous tokens can represent a purely discrete predicate.

For example, there is a token to indicate a winning position on

the chessboard. Asynchronous tokens can represent entering a

region within the continuous state space. These may be regions

in which the underlying dynamics of the system change,

for example a position where contact is made with another

object. They may also be regions where we want our input

to the system to abruptly change, for example a mobile robot

reaching a waypoint and switching to a different trajectory. A

new token is then generated when the robot enters into that

region. This way, we only need a number of tokens equal

to the number of events that cause a discrete change in the

system. Such a minimalist approach avoids the exponential

number of states produced by a grid-like discretization of high-

dimensional spaces.

The tokens in our example Motion Grammar for chess

are based on both the sensor readings and chessboard state.

A summary of token types is given in Table I. Regions of

interest are identified based on different thresholds. Position

thresholds, velocity thresholds, and timeouts indicate when the

robot has reached the end of a trajectory. Force thresholds

and position thresholds indicate when the robot is in a safe

operating range.
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TABLE I
CHESS GRAMMAR TOKENS

Sensor Tokens

Token η(z) Description

[ta < t ≤ tb] ta < t ≤ tb Trajectory Region
[limit] ‖F‖> Fmax Force Limit
[grasped]

∫
ρdA > ε∫ ρ Pressure sum limit

[ungrasped] ¬ [grasped] Pressure sum limit

Perception Tokens

Token η(z) Description

[obstacle] w(C)< wk Robot workspace occupied
[occupied(x)] w(x)> wmin Piece is present in x
[clear(x)] ¬ [occupied(x)] No piece in x
[fallen(x)] height(x)< hmin Piece is fallen
[offset(x)] mean(x)−pos(x)> ε Piece is not centered
[moved] Cr 6=Cc Boardstate is different
[misplaced(x)] Cr(x) 6=Cc(x) Piece is missing

Chessboard Tokens

Token Description

[set] board is properly set
[moved] opponent has completed move
[checkmate] checkmate on board
[resign] a player has resigned
[draw] players have agreed to draw
[cycle(x)] x is in a cycle of misplaced pieces

We can define general regions via level sets M , where M =
{x : s(x) = 0} for scalar function s(x). Then when the system

crosses this boundary M for some region ζ , the tokenizer η
generates ζ and passes it to the parser which expands the

appropriate productions of the grammar.

C. Parsing

The Motion Parser reads in tokens and chooses the appro-

priate production from the grammar to expand and execute.

This parser is derived from the Motion Grammar. Note that

while the Context-Free model specifies an infinite-depth stack,

physical computers are limited by available memory. This

will restrict the maximum depth of the parse tree, though

not the size of the input [1, p.226]. For our proof-of-concept

application, we used a hand-written recursive descent parser,

an approach also employed by GCC [22]. A recursive descent

parser is written as a set of mutually-recursive procedures, one

for each nonterminal in the grammar. An example of one of

these procedures is shown in Algorithm 1, based on [1, p.219].

Each procedure will fully expand its nonterminals via a top-

down, left-to-right derivation. This approach is a good match

for the Motion Grammar’s top-down task decomposition and

its left-to-right temporal progression. In addition, there are a

variety of algorithms for translation of grammars into parsers

[1, 39] which may also be applied to Motion Grammars.

D. Syntax and Semantics

The syntax of the Motion Grammar represents the discrete

system dynamics while the semantic rules in the grammar

compute the continuous dynamics and control inputs. Within

the Motion Parser, semantic rules are procedures that are

executed when the parser expands a production. For our ap-

plication, these rules store updated sensor readings, determine

new targets for the controller, and send control inputs. These

values are stored in the attributes of tokens and nonterminals.

Algorithm 1: parse-recursive-descent-A

1 Choose a production for A, A → X1 . . .Xn;

2 for i = 1 . . .n do

3 if nonterminal? Xi then

4 call Xi;

5 else if Xi = η (z(t)) then

6 continue;

7 else

8 syntax error

9 Execute semantic rule for A → X1 . . .Xn;

PRODUCTION SEMANTIC RULES

〈T〉 →〈T1〉〈T2〉
〈T1〉→〈A1〉〈A2〉
〈T2〉→〈A3〉〈A4〉
〈A1〉→[0 ≤ t < t1] xr = x0 +

1
2 ẍmt2, ẋr = tẍm

〈A2〉→[t1 ≤ t < t2] xr = x0 +
1
2 ẍmt2

1 + ẋm(t − t1), ẋr = ẋm

〈A3〉→[t2 ≤ t < t3] xr = xn −
1
2 ẍm(t3 − t)2, ẋr = ẋm + ẍm(t2 − t)

〈A4〉→[t3 ≤ t] u = 0

Fig. 5. Syntax-Directed Definition that encodes impedance control over
trapezoidal velocity profiles. For each Ai, the input is computed according to
u = ẋr −Kp(x− xr)−K f ( f − fr).

Attributes for a nonterminal node in the parse tree are syn-

thesized from child nodes and inherited from both the parent

nodes and the left-siblings of that nonterminal. Here, we give

a key example of robot control through semantic rules.

1) Example SDD: The Syntax-Directed Definition pre-

sented in Fig. 5 illustrates a simple grammar for imple-

menting trapezoidal velocity profiles. Expanding 〈Ai〉 will

carry the system through the phases of the trajectory. While

[0 ≤ t < t1], the system will constantly accelerate according to

〈A1〉. While [t1 ≤ t < t2], the system will move with constant

velocity according to 〈A2〉. While [t2 ≤ t < t3], the system will

constantly decelerate according to 〈A3〉. Finally, the system

will stop according to 〈A4〉. Each segment of the piecewise

smooth trajectory is given by the semantic rule of one of the

productions. This is an example of how the continuous domain

control of physical systems can be encoded in the semantics

of a discrete grammar.

2) Ordering of Syntax and Semantics: The online execution

of the Motion Grammar also imposes constraints on the order-

ing of tokens and semantic rules. First, to move between two

regions, represented as tokens, there must be some semantic

rule to define this transition. Second, we cannot have two

semantic rules without some other token to transition between

them. Third, we need to define the continuous-domain initial

conditions with some region token before any semantic rules.

We can express these constraints linguistically by reconsider-

ing the language of the Motion Grammar L
{
GM

†
}

as having

three kinds of tokens: region tokens r, semantic rule tokens k,

and other tokens p. That is, to produce GM
†, we translate the
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productions of GM as follows,

P
†
i j =







k Pi j ∈ K
r Pi j ∈ Z, region token
p Pi j ∈ Z, non-region token

V
†
i Pi j ∈V, Pi j =Vi

(3)

where Vi,V
†
i are the ith nonterminals of GM and GM

† and

Pi j, P
†
i j are the jth elements of the ith productions of GM and

GM
†. Then, we compare GM

† to the ordering constraints ex-

pressed as the intersection of the following regular expressions,

L

{

GM
†
}

⊆ L
{
.∗r (¬k)∗ r.∗

}
∩L{.∗kk.∗}∩L{(¬k)∗ (r.∗)?} (4)

E. Completeness

For a robot to be reliable, it must respond to any feasible

situation. This requires a policy. For a Motion Grammar model

GM of system F to represent a policy, it must include the set

of all paths that the system can take. This property is given

by the simulation F � GM , “GM simulates F .” The concrete

definition of a path depends on type of system we are dealing

with. For discrete systems, a path is the sequence of states and

transitions the system takes. For continuous systems, a path

is the trajectory though its state space [24]. For the hybrid

systems we consider here, paths and simulation have both

continuous and discrete components. Using Def. 7 for path

Ψ, we define simulation as follows,

Definition 13: Given GM and system F with

x(t),x′(t),u(t),u′(t) ∈ XF ,XGM
,UF ,UGM

for time

t and initial conditions x0,x
′
0 ∈ XF ,XGM

. Then

F �c GM ≡ (x0 = x0
′∧u(t) = u′(t) =⇒ x(t) = x′(t)).

Definition 14: Given GM and system F then F �d GM ≡
L(F)⊆ L(GM)

Relation F �c GM shows that F and GM follow the same

continuous trajectories. We match these trajectories exactly

because a Motion Grammar must represent a policy and have

LL(1) semantics – at each point along the path, GM must

specify a unique input u. Thus, Def. 13 precludes grammars

which specify infeasible trajectories of the physical system,

such as moving to unreachable configurations, because such a

grammar would not contain the true system trajectory. When

the system F’s x(t) does not match the grammar GM’s x(t) for

the specified input u, this does not satisfy �c.

Relation F �d GM shows that the language of the system

is a subset of the language of Motion Grammar. Note that

for events which represent region entry, F �d GM is implied

by F �c GM . We define �d separately in order to model

some events as purely discrete with no continuous-domain

component.

Definition 15: Given GM and system F then

complete{GM} ≡ F � GM ≡ F �c GM ∧F �d GM

Relation F � GM means that GM is a faithful model of F

which captures relevant system behavior, that all feasible paths

are represented by GM . Proving simulation between arbitrary

systems is a difficult problem. In the purely discrete Context-

Free case, it is undecidable [28, p.203]. However, we can

always disprove completeness with a counterexample: for x

and y, a path of x not defined by y would prove x 6� y. Our

main concern, though, is not simulation between any two

systems but that our model GM simulate the physical system

we wish to control. In this work, we approach simulation

and completeness as a modeling problem. We match the

productions of the model GM to the operating modes and

events of F , though we do have the freedom to specify input

u and define new regions or switching points as is convenient.

For our chess application (Sect. VI), we manually designed

the grammar based on the robot arm dynamics, the rules of

chess game-play, and the interactions with the human. At this

time, proving completeness or probabilistic completeness for

general system models remains the subject of future work.

However, in ongoing work, we are exploring some methods

to automate construction of Motion Grammars [7, 9, 11].
When the system can be hierarchically decomposed, model-

ing events with a CFG provides a more compact representation

than finite state models due the ability to reuse some pro-

ductions in the CFG which would otherwise be duplicated in

finite state models (e.g. sect. VI-B). However, naı̈ve grid-based

discretization of continuous spaces will produce a number

of region tokens exponential in the number of dimensions

(sect. V-B). In our sample implementation, we avoid this issue

by considering region tokens only for the destination of a

trajectory (sect. V-D).
In addition to providing a policy for the robot, a complete

Motion Grammar has another important use: the grammar

serves as an abstraction for the entire system. We can use

this abstraction to prove that the modeled system is correct.

F. Correctness

Given a policy for the robot, it is crucial to evaluate the

correctness of that policy. We define the correctness of a

language specified as a Motion Grammar, L(GM), by relating

it to a constraint language, Lr. While L(GM) for a given

problem integrates all problem subtasks, as shown in Sect. VI,

the constraint language targets correctness with respect to

a specific criterion. Criteria can be formulated for general

tasks, including safe operation, target acquisition, and the

maintenance of desirable system attributes. By judiciously

choosing the complexity of these languages, we can evaluate

whether or not all strings generated by our model GM are also

part of language Lr.
Definition 16: A Motion Grammar GM is correct with re-

spect to some constraint language Lr when all strings in the

language of GM are also in Lr: correct{GM,Lr}≡L(GM)⊆Lr.
This approach to verifying correctness provides a model-

based guarantee on behavior, ensuring proper operation of the

discrete abstraction represented by GM . This verification of

the model GM ensures correctness of the underlying physical

system F to the extent that GM is complete, Def. 15. If

we suppose system F contains some hybrid path ψbad with

discrete component σbad and that ψbad is not in GM – that

is, GM is not complete – then checking L(GM) ⊆ Lr gives

no information about whether σbad ∈ Lr. On the other hand,

when GM does contain the set of all feasible system paths,

verifying GM ⊆Lr ensures correctness of all these paths. Thus,

a complete model is necessary in order to meaningfully verify

correctness.
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The question of correct{GM,Lr} is only decidable for

certain language classes of L(GM) and Lr. Hence, the for-

mal guarantee on correctness is restricted to a limited range

of complexity for both systems and constraints. We show

decidability and undecidability for combinations of Regular,

Deterministic Context-Free, and Context-Free Languages.

Lemma 17: Let LR, LD, and LC be the Regular, Determin-

istic Context-Free, and Context-Free sets, respectively, and let

R ∈ LR, D,D′ ∈ LD, and C,C′ ∈ LC. Then,

1) C ⊆C′ is undecidable. [28, p.203]

2) R ⊆C is undecidable. [28, p.203]

3) C ⊆ R is decidable. [28, p.204]

4) R ⊆ D is decidable. [28, p.246]

5) D ⊆ D′ is undecidable. [28, p.247]

Corollary 18: Based on LR ⊂ LD ⊂ LC, the results from

[28] extend to the following statements on decidability:

1) D ⊆ R and R ⊆ R are decidable.

2) D ⊆C is undecidable.

3) C ⊆ D is undecidable.

Combining these facts about language classes, the system

designer can determine which types of languages can be used

to define both the grammars for specific problems and general

constraints.

Theorem 19: The decidability of correct{GM,Lr} for Reg-

ular, Deterministic Context-Free, and Context-Free Languages

is specified by Fig. 6.

Lr ∈ LR Lr ∈ LD Lr ∈ LC

L(GM) ∈ LR yes yes no
L(GM) ∈ LD yes no no
L(GM) ∈ LC yes no no

Fig. 6. Decidability of correct{GM ,Lr} by language class.

Proof: Each entry in Fig. 6 combines a result from

Lemma 17 or Corollary 18 with Definition 16.

Theorem 19 ensures that we can prove the correctness of

a Motion Grammar with regard to any constraint languages

in the permitted classes. We are limited to Regular constraint

languages except in the case of a Regular system language

which allows a Deterministic Context-Free constraint. Regular

constraint languages may be specified as Finite Automata,

Regular Grammars, or Regular Expressions since all are equiv-

alent. We can also use Linear Temporal Logic as described in

sect. VII-E.

To evaluate correct{GM,Lr}, consider L(GM) ⊆ Lr as,

“Does L(GM) contain any string not in Lr?” which gives

equation (5) [3, p.163].

L(GM)∩Lr
?
= /0 (5)

We can explicitly evaluate (5)

by computing the Regular Lr [28,

p.59], intersecting this with L(GM)
[28, p.135], then testing the Context-

Free result for emptiness [19]. These algorithms are imple-

mented in the Motion Grammar Kit.

G. Uncertainty

Robotic systems contain many sources of uncertainty. Lin-

guistic approaches such as the Motion Grammar are well

✛

✚

✘

✙
〈G〉 → 〈T〉 | 〈L1〉

〈L1〉 → [0 < t ≤ t1]〈L2〉 | [0 < t ≤ t1] [limit]

〈L2〉 → [t1 < t ≤ t2]〈L3〉 | [t1 < t ≤ t2] [limit]

〈L3〉 → [t2 < t ≤ t3] [limit]

Fig. 7. Grammar fragment for guarded moves. 〈T〉 is defined in Fig. 5

suited for addressing unpredictable events within the discrete

dynamics. This occurs when at some point in time, the next

token or discrete event is unknown. Other common sources of

uncertainty include sensor noise, model error, and classifica-

tion error.

A complete Motion Grammar (Def. 15) addresses unpre-

dictable events by representing a linguistic policy over all

feasible events. For example, in the human-robot chess match,

the robot safely responds to the uncertain event of the human

entering the workspace (sect. VI-A). Such a complete grammar

defines a language which contains all strings of events which

may occur, thus representing a policy to respond to those

events.

Uncertainty due to sensor noise was an issue present in

our human-robot chess implementation. To address this, we

incorporated a Kalman Filter into the semantic rules K.

This effectively attenuated the noise due to electromagnetic

interference for the strain gauges in the wrist force-torque

sensor. While Kalman Filters often operate well in practice,

they do not guarantee robustness [15]. Additionally, error

in state estimation may result in an event triggering due to

estimated state which would not trigger due to actual state.

When this is possible, additional grammar productions to

handle the erroneous triggering are necessary. Thus, while our

implementation was tolerant of the noise present in the system,

further work is needed to formally address sensor noise.

One issue which we do not currently address in the Motion

Grammar is multiple hypothesis state estimation such as that

performed by a particle filter. This is important for applications

such as visual tracking of humans. Extensions to the Motion

Grammar such as stochastic or parallel parsing could address

multiple hypothesis estimation. In addition, one could also

preprocess the sensor data, though this will exist outside of

the guaranteed model that the Motion Grammar provides. This

type of uncertainty requiring multiple hypothesis estimation

remains as another area for improvement.

VI. HUMAN-ROBOT GAME APPLICATION

A. Guarded Moves

Our implementation of guarded moves using the Motion

Grammar allows the human and robot to safely operate in the

same workspace. A [limit] token is generated when the wrist

force-torque sensor encounters forces above a preset limit.

The limit is large enough so that the robot can perform its

task and small enough to not injure the human or damage

itself. When the parser detects [limit], it stops and backs off,

preventing damage or injury. The plot in 8(a) shows the forces

encountered by the robot in this situation. The large spike at

4.7s occurs when the robot’s end-effector makes contact with
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Fig. 8. Grammatical guarded moves safely protecting the human player.

the human’s hand pictured in 8(b). The grammar in Fig. 7

guarantees that when this situation occurs, the robot will stop.

After the human removes his hand from the piece, the robot

can then safely reattempt its move

This example shows the importance of both response to

uncertain events – the human entering the workspace – and

fast online control possible with the Motion Grammar. The

robot must respond immediately to the dangerous situation of

impact with the human. The polynomial runtime performance

of Context-Free parsers means that the grammatical controller

can respond quickly enough, and the syntax of Fig. 7 guaran-

tees that the robot will stop moving according to the kinematic

model. For guarded moves with a dynamic model, the method

from [13] could be incorporated in place of the kinematic

model here.

1) Guarded Move Verification: We use a regular expression

to verify the guarded move grammar fragment from Fig. 7,

showing that the system will not continue after a force limit.

This can be defined as,

LG ⊆ L
{
(¬ [limit])∗ [limit]?

}
(6)

The regular expression is equivalent to the FA in 9(a), where

we see some arbitrary number of tokens that are not [limit]
followed optionally by at most one [limit].

Claim 20: The grammar fragment in Fig. 7, G , is correct

with respect to (6).

Proof: We apply (5) to mechanically perform the veri-

fication. Each step is shown in Fig. 9. Since L(GM)∩Lr is

empty (no accept states in 9(d)), L(GM)⊆ Lr.

B. Fallen Pieces

The grammar to set fallen pieces upright has a fairly simple

structure but builds upon the previous grammars to perform

a more complicated task, demonstrating the advantages of a

hierarchical decomposition for manipulation. This grammar

is shown in Fig. 10, and Fig. 11 shows a plot of the fin-

ger tip forces and pictures for this process. The production

〈recover : x,z〉 will pick up fallen piece z at location x.

The nonterminal 〈T : x〉 moves the arm to location x. The

production 〈pinch〉 will grasp the piece by squeezing tighter

until the fingertip pressure sensors indicate a sufficient force.

The production 〈T : x+h(z)k̂, π
6 〉 will lift the piece sufficiently

high above the ground and rotate it so that it can be replaced

upright. Finally the nonterminal 〈release〉 will release the grasp

on the piece setting it upright.

q1 q2

¬ [limit]

[limit]

(a) Lr = L
(
(¬ [limit])∗ [limit]?

)

c1 c2 c3

¬ [limit]

[limit] .

.

(b) Lr

g1 g2 g3

g4g5

[0 < t < t1] [t1 < t < t2]

[t2 < t < t3]

[t3 < t]

[limit] [limit]

[limit]

(c) L(GM)

g1c1 g2c1 g3c1

g4c1g5c2

g5c1

[0 < t < t1] [t1 < t < t2]

[t2 < t < t3]

[t3 < t]

[limit] [limit]
[limit]

(d) L(GM)∩Lr

Fig. 9. Verification of Claim 20. Robot stops after single [limit] token.

✓
✒

✏
✑

〈recover : x,z〉 → 〈T : x〉〈pinch〉〈T : x+h(z)k̂,
π

6
〉〈release〉

〈pinch〉 → [grasped] | [ungrasped]〈pinch〉

Fig. 10. Grammar fragment for recovering fallen pieces
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✛

✚

✘

✙
〈reset board〉 → [set] | [misplaced(x)]〈reset : x,home(x)〉〈reset board〉

〈reset : x0,x1〉 → [clear(x1)]〈move : x0,x1〉

| [occupied(x1)]〈reset : x1,home(x1)〉〈move : x0,x1〉

| [cycle(x1)]〈move : x1, rand()〉

Fig. 12. Grammar fragment to reset chessboard

8srmbjqan
h g f e d c b a

8snaklbmr
h g f e d c b a

(a) Board position - Initial (b) Board position - Final

〈reset bd〉

[mispl(Rg8)]

〈reset : Rg8a8〉

[occupied(a8)] 〈reset : Na8b8〉

[occupied(b8)] 〈reset : Bb8c8〉

[occupied(c8)] 〈reset : Qc8d8〉

[occupied(d8)] 〈reset : Kd8e8〉

[occupied(e8)] 〈reset : Be8f8〉

[occupied(f8)] 〈reset : Nf8g8〉

[cycle(g8)] 〈move : Nf8χ〉

〈move : Be8f8〉

〈move : Kd8e8〉

〈move : Qc8d8〉

〈move : Bb8c8〉

〈move : Na8b8〉

〈move : Rg8a8〉

〈reset bd〉

[mispl(Nχ)] 〈reset : Nχg8〉

[clear(g8)] 〈move : Nχg8〉

〈reset bd〉

[set]

PLAN

1.Nf8χ

2.Be8f8

3.Kd8e8

4.Qc8d8

5.Bb8c8

6.Na8b8

7.Rg8a8

8.Nχg8

(c) Motion grammar parse tree and plan for resetting the board.

Fig. 13. Example of board resetting

C. Board Resetting

The problem of resetting the chess board presents an in-

teresting grammatical structure. If the home square of some

piece is occupied, that square must first be cleared before the

piece can be reset. Additionally, if a cycle is discovered among

the home squares of several pieces, the cycle must be broken

before any piece can be properly placed. The grammatical

productions to perform these actions are given in Fig. 12.

An example of this problem is shown in 13(a) where all of

Blacks’s Row 8 pieces have been shifted right by one square.

The parse tree for this example is shown in 13(c), rooted at

〈reset board〉. As the robot recurses through the grammar in

Fig. 12, chaining an additional 〈reset〉 for each occupied cell,

it eventually discovers that a cycle exists between the pieces

to move. To break the cycle, one piece, Nf8, is moved to a

random free square, χ . With the cycle broken, all the other

pieces can be moved to their home squares. Finally, Nχ can

be moved back to its home square. This sequence of board

state tokens and 〈move〉 actions can be seen by tracing the

leaves of the parse tree as shown beginning from PLAN in

13(c).

Observe that as the parser searches through the chain of

pieces that occupy each other’s home squares, it is effectively

building up a stack of the moves to make. This demonstrates

the benefits of the increased power of Context Free Languages

over the Regular languages commonly used in other hybrid

control systems. Regular languages, equivalent to finite state

machines, lack the power to represent this arbitrary depth

search.

Claim 21: Let n be the number of misplaced pieces on the

board. The grammar in Fig. 12 will reset the board with at

most 1.5n moves.

Proof: Every misplaced piece not in a cycle takes one

move to reset to its proper square. Every cycle causes one

additional move in order to break the cycle. A cycle requires

two or more pieces, so there can be at most 0.5n cycles. Thus

one move for every piece and one move for 0.5n cycles give

a maximum of 1.5n moves.

q1 q2

¬ [set] .

[set]

Fig. 14. Automata for Correct-
ness Specification ♦ [set].

1) Board Resetting Verifica-

tion: We use a Linear Temporal

Logic (LTL) formula to verify the

board resetting grammar fragment

from Fig. 12, showing that even-

tually, the board will be set. This

can be defined as,

LG ⊆ L(♦ [set]) (7)

The LTL formula is equivalent to the automaton in Fig. 14,

where we see that the token [set] must at some point occur.

Claim 22: The grammar fragment in Fig. 12, G , is correct

with respect to (7).

Proof: The mechanical verification uses (5) and follows

the proof of Claim 20. First, we convert Fig. 12 to Pushdown

Automaton P and specification ♦[set] to Büchi Automaton S.

Then, we compute L(P)∩L(S). The result is the empty set,

so the specification is satisfied.

Note that there is one potential caveat with the guarantees of

LTL formulas of the form ♦x. When this formula is satisfied,

it is allowable to have an arbitrary number of ¬x tokens before

any x is seen. A similar issue exists for the Kleene Closure (∗)

operator in Regular Expressions. Consider the LTL formula

and equivalent Büchi automaton is Fig. 14 to see how ♦

corresponds to automaton state transitions. Informally stated,

♦x and (¬x)∗x both mean that we will see an arbitrary number

of ¬x, but we will keep getting tokens until we do get that x.

If a specific finite limit of ¬x is desired, then this must either

be explicitly stated or addressed through fairness [3, p.126]

assumptions eliminating unrealistic infinite behavior.
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(a) Detecting fallen pieces. (b) Finding offsets for all pieces

Fig. 15. Perception with point cloud is discretized into tokens.✬

✫

✩

✪

〈game〉 → 〈act〉〈end〉 | 〈act〉〈game′〉

〈game′〉 → 〈wait〉〈end〉 | 〈wait〉〈game〉

〈end〉 → [checkmate] | [resign] | [draw]

〈act〉 → 〈fix〉〈turn〉〈fix〉

〈fix〉 → 〈end〉 | [fallen : x,z]〈recover : x,z〉〈fix〉 | ε

〈turn〉 → 〈move : x0,x1〉 | 〈capture : x0,x1〉

| 〈castle〉 | 〈castle queen〉 | 〈en passant〉

| 〈resign〉 | 〈draw〉

〈wait〉 → [moved] | 〈wait〉

〈move : x0,x1〉 → 〈grasp piece : x0〉〈place piece : x1〉

〈grasp piece : x〉 → 〈L : x〉〈grasp piece : x〉 | 〈T : x〉〈grip〉

〈place piece : x〉 → 〈L : x〉〈place piece : x〉 | 〈T : x〉〈ungrip〉

〈grip〉 → [grasped] | [ungrasped]〈grip〉

〈capture : x0,x1〉 → 〈take : x1〉〈move : x0,x1〉

〈take : x〉 → 〈move : x,offboard〉

〈castle〉 → 〈move : Ke1g1〉〈Rh1f1〉

〈castle queen〉 → 〈move : Ke1c1〉〈Ra1d1〉

〈en passant : x〉 → 〈take : x−1〉〈move : px〉

〈resign〉 → 〈L : K+1〉〈resign〉 | 〈T : K+1〉〈resign′〉

〈resign′〉 → 〈L : K−1〉〈resign′〉 | 〈T : K−1〉

Fig. 16. Grammar Productions for Chess Game

D. Perception and Board Tokens

To play chess, we combined our grammatical controller with

the Crafty [31] chess engine. The Crafty boardstate serves

as the model of the position of the chessboard. The MESA

SR4000 point cloud is tokenized into the perception symbols

in Table I. To find the pieces, [obstacle], we cluster the point

cloud, then weight each cluster C by the number of points

in the cluster, w(C). The height of each cluster is sufficient

to classify an upright piece. For pieces that have fallen, we

detect this case when the ratio of width and height exceeds a

threshold and use the principal axis in the horizontal plane

to find piece orientation. Fig. 15 shows these attributes in

the point cloud. A nearest neighbor search over the entire

chessboard determines all squares x with [occupied(x)]. Piece

offsets from square centers are computed and denoted by

[offset(x)]. The boardstate retrieved from perception Cr and the

one from the Crafty engine Cc are compared to see whether a

move has been made. If a move has been made, then [clear(x)]
and [misplaced(x)] are determined. All of these tokens are

input to the Motion Parser which then determines the next

motion action for the chess game.

E. Full Game

The entire motion planning and control policy is specified

in the grammar in Fig. 16. This grammar describes the game,

〈game〉, as consisting of an alternating sequence of the robot

moving, 〈act〉, followed by the human moving, 〈wait〉, until the

game has ended, 〈end〉, via checkmate, resignation, or draw.

When it is the robot’s turn, it will correct any fallen pieces,

〈fix〉, make its move, and then again correct any pieces that

may have fallen while it was making the move. Making a

move, 〈turn〉, can be either a simple move between squares,

a capture, a castle, en passant, or a draw or resignation. A

simple piece move, 〈move〉, requires first grasping the piece,

then placing it on the correct square. To grasp the piece, the

robot will move its hand around the piece then tighten its grip,

〈grip〉, until there is sufficient pressure registered on the touch

sensors. To capture a piece, the robot will remove the captured

piece from the board, 〈take〉, and then move the capturing

piece onto that square. A 〈castle〉 requires the robot to move

both the rook and the king. For 〈en passant〉, the robot will

〈take〉 the captured pawn and then move its own pawn to the

destination square. Finally, to resign – indicating a failure in

chess strategy, not motion planning – the robot moves its end-

effector through the square occupied by the king, knocking it

over. By following the rules of this grammar, our system will

play chess with the human opponent.

VII. RELATIONSHIP WITH EXISTING METHODS

The Motion Grammar builds on a number of advances in

linguistic control. This section relates our approach to several

similar methods: Petri Nets, Hybrid Automata, MDLe, Maneu-

ver Automata, Linear Temporal Logic, and the C Programming

Language.

A. Petri Nets

Petri Nets are a modeling technique for discrete event

systems based on a bipartite graph that represents the structure

and dependencies of event firing. They are often used to

model concurrent systems while CFGs generally represent a

sequential structure. The languages that can be represented by

a Petri Net are distinct from the Context-Free set. The language

of some string followed by its reverse,
{

wwR|w ∈ Z∗
}

, is

Context-Free, but it is not a Petri Net language. The language

of sequences of equal numbers of a, b, and c, {anbncn}, is not

Context-Free but can be represented by a Petri Net. However,

the Petri Net languages are a strict superset of the Regular

set and a strict subset of the Context-Sensitive set [40]. In

consequence, the syntactic class of systems which can be

modeled by a Petri Net is distinct from those modeled by

the Context-Free Motion Grammar.

B. Hybrid Automata

Hybrid Automata represent a system with both event and

time-driven dynamics. The system has a number of modes

q∈Q. Each mode qi is governed by some differential equation

fi. Transitions between modes occur in response to discrete

events. The modes Q are generally finite [2, 26], so we can
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q1

ẋ = f1(x)

q2

ẋ = f2(x)

q3

ẋ = f3(x)

x ∈ R2

x ∈ R1

x ∈ R3

(a) Hybrid Automaton

PRODUCTION SEMANTIC RULES

〈Q1〉→[x ∈ R2]Q2 ẋ = f1(x)
〈Q2〉→[x ∈ R1]Q1 ẋ = f2(x)

| [x ∈ R3]Q3 ẋ = f2(x)
〈Q3〉→ε ẋ = f3(x)

(b) Motion Grammar

Fig. 17. Example of Hybrid Automata to Motion Grammar Conversion

represent these transitions with a Finite Automaton. Many

descriptions of Hybrid Automata also define jump sets or reset

conditions which discontinuously change state x; this is not a

feature we consider in this analysis.

A Hybrid Automaton with finite control states or modes

Q can be transformed into an equivalent Motion Grammar.

This is possible because every Finite Automaton is equivalent

to a Regular Grammar, and Regular Grammars are a subset

of Context-Free Grammars. An example of this process for

a three-state system is shown in Fig. 17. The algorithm to

perform this transformation is given by Algorithm 2. Because

the Motion Grammar is Context-Free, the reverse is not always

possible, and there are Motion Grammars, such as Fig. 12, with

no equivalent finite mode Hybrid Automaton.

Algorithm 2: HA-to-GM(Q,Σ,E,F)

Input: Q : set of discrete states

Input: Σ : alphabet of tokens

Input: E : set of edges, Q×Q

Input: F : set of continuous dynamics functions

associated with each state in Q

1 foreach qi ∈ Q do

2 Create nonterminal 〈Qi〉;

3 foreach σi ∈ Σ do

4 Create token [σi];

5 foreach e j ∈ E, e j : qi ×σ j 7→ qk do

6 Create production Qi →
[
σj

]
Qk with semantic rule

ẋ = fi(x);

C. MDLe

The MDLe is a Modeling Language with a Context-Free

grammar [29]. Each string in the MDLe represents some

control program. While the modeling (sect. IV-D) language

MDLe is Context-Free, each of MDLe control programs can

parse only a Regular Language system language. This is in

contrast to the Motion Grammar which describes the System

Language for a Context-Free System.

Theorem 23: The System Language recognized by an

MDLe string is Regular.

Proof: Given that an MDLe controller is represented by

a string in the MDLe language, we prove that the resulting

System Language is regular by providing an algorithm to

Σ = (u1,ξ1)(u2,ξ2)(u1,ξ1)

u1 ξ1 u2 ξ2 u1 ξ1
[ξ1 = 1] [ξ2 = 1] [ξ1 = 1]ε ε

Σ = ((u1,ξ1)(u2,ξ2),ξ3)

u1 ξ1 u2 ξ2 ξ3
[ξ1 = 1]

[ξ2 = 1]

[ξ3 = 1]

[ξ3 = 1]

ε ε

Fig. 18. Example Transform: MDLe to Finite Automata

transform any MDLe string, Σ, into a Finite Automaton,

A = (S,E,d) that accepts the System Language Lg. MDLe

string Σ is composed of tokens [(], [)], [,], controllers u ∈ U ,

and interrupts ξ ∈ B′. Algorithm 3 creates the automaton A

corresponding to Σ. Notice that any u or ξ which appears

multiple times in Σ results in multiple states in the FA.

The resulting Finite Automaton encodes the evaluation rules

for the MDLe string. Since we can transform Σ to a Finite

Automaton, Σ must recognize a Regular System Language.

Algorithm 3: MDLe-to-FA(Σ,U,B′)

Input: Σ : MDLe specification string

Input: U : set of controllers

Input: B′ : set of interrupts

/* Create States */

1 S = Σ−{[(] , [)] , [,]};

/* Create Transitions */

2 foreach s ∈ S do

3 if s ∈U then

4 foreach ξi enclosing s in Σ do

5 Create a transition

(

s
ξi=1
−−→ ξi

)

;

6 if s ∈ B′ then

7 Create a transition
(

s
ε
−→ r

)

, where r is the next

σi following s in Σ such that r ∈ S;

Two examples of this conversion procedure are shown in

Fig. 18, one simple case and one more complicated case.

Unlike the transformation to Hybrid Automata in [29], we

do not restrict repeated controllers in Σ to a single state in

our system language Finite Automata. Notice also that there

is ambiguity in the case of simultaneously active interrupt

functions. [29] specifies that this is resolved via precedence

among the different interrupts.

Corollary 24: Every MDLe string can be translated to a

Motion Grammar.

Proof: The Motion Grammar is a Context-Free grammar

for the System Language, and we can translate every MDLe

string to a Finite Automaton accepting the System Language.

Finite Automata are equivalent to Regular Grammars. Regular
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q1 q2

q3

σ1

σ2σ3

〈q1〉 → [σ1]〈q2〉

〈q2〉 → [σ2]〈q3〉

〈q3〉 → [σ3]〈q1〉

(a) Offline Grammar

〈q′1〉 → [x ∈ R1] | [x ∈ R1]〈σ
′
1〉

〈σ ′
1〉 → κ1〈q

′
2〉

〈q′2〉 → [x ∈ R2] | [x ∈ R2]〈σ
′
2〉

〈σ ′
2〉 → κ2〈q3〉

〈q′3〉 → [x ∈ R3] | [x ∈ R3]〈σ
′
3〉

〈σ ′
3〉 → κ3〈q

′
1〉

(b) Online Grammar

Fig. 19. Maneuver Automaton → Online Grammar.

Grammars are a subset of Context-Free Grammars.

From Corollary 24, we also observe that the Motion Gram-

mar can control a broader class of systems than the MDLe.

MDLe controllers accept only Regular Languages while the

Motion Grammar accepts Context-Free languages with LL(1)

semantics, which include all Regular Languages. Thus, the

Motion Grammar can describe systems that the MDLe cannot.

D. Maneuver Automata

There are some important similarities between the Ma-

neuver Automaton and the Motion Grammar. The Maneuver

Automaton represents a hybrid system moving between a set

of trim trajectories q ∈ Q using a motion library of maneuvers

σ ∈ Σ [20]. This system is represented as a Finite Automaton

with states Q and tokens Σ. It is possible to transform this

representation into a grammar suitable for online control of

the system. An example of this process is shown in Fig. 19.

First, the Maneuver Automaton, 19(a) is rewritten as a Regular

Grammar, Go in 19(a), with one production of the form 〈qi〉→[
σj

]
〈qk〉 to indicate each transition in the automaton. We then

transform this offline grammar into an online grammar Gn

according to Algorithm 4. Entry into a trim state is marked

by a region of the continuous state space x∈R. The controller

for some maneuver σ is given by a semantic rule κσ .

Algorithm 4: Go-to-Gn(Go)

/* Productions from states */

1 foreach 〈qi〉 in Go do

2 Create production 〈q′i〉 →
[
x ∈ Rqi

]
;

/* Productions from transitions */

3 foreach 〈qi〉 →
[
σj

]
〈qk〉 in Go do

4 Create production 〈q′i〉 →
[
x ∈ Rqi

]
〈σ ′

j 〉 ;

5 Create production 〈σ ′
j 〉 → κσj

〈q′k〉;

We also note that an arbitrary Maneuver Automaton cannot

be directly transformed into a Motion Grammar. The Maneu-

ver Automaton does not include information about how long

to hold in trim states q or when to begin maneuvers σ . Thus,

it does not represent a policy and it can be transformed only

to a grammar that is not Semantically LL(1). Thus, Claim 9

indicates that it cannot be a Motion Grammar.

Even though we cannot directly transform a Maneuver

Automaton to a Motion Grammar, this transformation is

possible by adding the additional information necessary for

LL(1) Semantics, such as by establishing precedence levels

between conflicting productions or extending the representa-

tion to include tokens such as timeouts for coasting times.

By augmenting the Maneuver Automaton with the additional

information to achieve a policy, we can then derive a corre-

sponding Motion Grammar.

E. Linear Temporal Logic

q1 q2

¬x x

x

¬x

Fig. 20. Example of equivalence
between Büchi Automata and Lin-
ear Temporal Logic formula �♦x.

Linear Temporal Logic

(LTL) is an extension to

propositional logic that

describes the behavior of

discrete systems over an

infinite time horizon. This is

an often convenient notation

to specify various system

properties. Every statement

in LTL can be represented

as a Büchi automaton; an

example is Fig. 20. Büchi automata are a variation on

Regular automata that describe infinite length strings [3].

We can restate classical automata over finite length strings

as a special case of automata over infinite length strings by

looping through the accept state of a classical automaton [27,

p.131].

Definition 25 (Stutter Extension): The stutter extension of

finite string σ accepted by automaton A which halts with

accept state qn is the ω-run σ ,(qn,ε,qn)
ω [27].

Alternatively, we can specify that some LTL property α holds

only until a particular terminating condition, $, by replacing

all �α with α∪$. Because of the correspondence between

LTL and formal language, we may also use LTL formulas to

describe correctness of the Motion Grammar. One algorithm

for checking Context-Free systems with LTL is given by [17].

F. The C Programming Language

The C programming language is a Turing-Complete com-

putational model while the Motion Grammar is Context-Free.

Rice’s theorem means that for an arbitrary C program, we

can guarantee nothing, not even that it halts! Because the

Motion Grammar is restricted to Context-Free computation,

the Earley parser [16] means online parsing will have worst

case polynomial runtime. Furthermore, Theorem 19 means that

for an arbitrary Motion Grammar, we can always verify it

against an arbitrary Regular specification. This makes clear

the trade-off we have made: sacrifice computational power to

guarantee runtime performance and verifiability. As a practical

matter, though, any Motion Grammar may be transformed into

a C program since all Context-Free languages are Turing-

Recognizable.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we analyzed the discrete dynamics of hybrid

systems from a Formal Language perspective. We presented a

new system representation based on Context-Free Grammars

which guarantees online computational efficiency and model-

based verifiability. We analyzed the linguistic properties of
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this Motion Grammar, showing the capabilities and limits

of these formal guarantees and explained some particular

constraints that arise in applying grammars to time-based

physical systems. By relating several existing hybrid control

techniques with the Motion Grammar, we showed the common

linguistic representation these methods share. Finally, we have

demonstrated the efficacy of this approach by developing a

robotic system to play physical chess against a human op-

ponent, showing both offline verification and computationally

efficient online control.

Our software which implements this verification and parser

generation approach is available at http://www.golems.org/

node/1224.

This work presents many possibilities for automating the

development and verification of controllers. In ongoing work,

we are automating the construction of Motion Grammars [7,

9, 11]. There are also some possibilities for enhancing the

power and guarantees of this method. Applying type theory

could provide for stricter definitions and guarantees. There

are restricted classes of Context-Sensitive languages that can

be efficiently parsed if the Context-Free model for the Motion

Grammar is insufficiently powerful for some problems [33].

We will continue exploring these approaches to improve the

capabilities and guarantees of the resulting system.
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