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The motion of a non-isolated vortex on the
beta-plane
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(Received 20 October 1995 and in revised form 23 April 1997)

The trajectory of a non-isolated monopole on the beta-plane is calculated as an
asymptotic expansion in the ratio of the strength of the vortex to the beta-effect. The
method of matched asymptotic expansions is used to solve the equations of motion
in two regions of the flow: a near field where the beta-effect enters as a first-order
forcing in relative vorticity, and a wave field in which the dominant balance is a linear
one between the beta-effect and the rate of change of relative vorticity. The resulting
trajectory is computed for Gaussian and Rankine vortices.

1. Introduction
The Earth’s atmosphere and oceans contain an array of strongly swirling coherent

structures. The winter polar vortex, tropical cyclones, and tornadoes are examples of
vortices in the atmosphere. The large-scale ocean circulation contains a large number
of eddies: Gulf Stream rings, Kuroshio rings, meddies (Mediterranean eddies), and
many others (Wunsch 1981). Many of these structures are generated in frontal regions,
and are potentially of great importance in the horizontal transport of quantities such
as heat and momentum, as well as biota.

One strand of the meteorological literature has naturally concentrated on the for-
mation of tropical cyclones and their subsequent motion. Starting with Rossby (1949)
and Adem (1956), this line of work has concentrated in particular on the division
between the cyclone and the environment (see e.g. Kasahara & Platzman 1963). More
recently, Chan & Williams (1987) showed very clearly how an intense vortex in a
quiescent environment on the beta-plane will decay into Rossby waves in the absence
of nonlinearity, whereas it will propagate coherently and to the northwest because of
nonlinearity. Willoughby (1988), Smith & Ulrich (1990), Ross & Kurihara (1992) and
Smith & Weber (1993) have also examined the partition of the flow into background
and cyclone contributions. One feature that has emerged from this work is the impor-
tance of the difference in magnitude between the vorticity gradient across a cyclone
and the background vorticity gradient beta. The ratio of the latter to the former is
small, and expansions in this parameter ε are considered in the last two of these papers.

The study of these structures in oceanography dates back to the MODE (Mid-
Ocean Dynamics Experiment) programme (MODE Group 1978). Theoretical work
since has followed a great number of directions. An interesting overview of some of
these lines of research is the review of Flierl (1987), which concentrates on isolated
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Figure 1. Trajectories of sink and stirred vortices on an inclined plane. Symbols represent the
results of laboratory experiments: stirred vortices are indicated by squares, sink vortices by circles.
The solid (dashed) lines correspond to viscous (inviscid) one-layer, quasi-geostrophic, numerical
simulations. Adapted from Carnevale et al. (1991).

structures with weak far fields. Previously, Flierl, Stern & Whitehead (1993) had
shown that steadily propagating isolated structures on the beta-plane cannot be
simple, monopolar vortices with non-zero angular momentum. The evolution of non-
isolated structures, they argued, generates long barotropic Rossby waves that alter
the momentum balance.

The motion of a monopolar vortex on a beta-plane has been studied in rotating
tank experiments since Firing & Beardsley (1976). Carnevale, Kloosterziel & van
Heijst (1991) provide a good overview of such work. Figure 1, adapted from the
latter paper, shows the difference between the trajectory of a sink vortex and the
trajectory of a stirred vortex. The former has non-zero circulation; the latter has zero
circulation. The trajectories appear noticeably different.

More recently, Sutyrin & Flierl (1994) examined the evolution of small disturbances
to localized step-profile vorticity distributions in the presence of a weak beta-effect.
The far field is not treated separately, although it is recognized that in the non-
divergent case the solution will break down in the far field when the basic-state
circulation is non-zero. Thus the Rankine vortex falls outside the remit of their paper.
Reznik & Dewar (1994, hereafter referred to as RD94) looked at the evolution of
isolated vortices in strictly two-dimensional flows. A variety of profiles were studied,
all having zero circulation and some with non-localized vorticity. The asymptotic
expansion was recognized to become invalid in the far field at second order, and
a non-rigorous patching was outlined. The evolution of a vortex with Gaussian
streamfunction (and hence zero circulation) was considered by Korotaev & Fedotov
(1994) who sought a quasi-equilibrium regime. While an asymptotic expansion was
used, the scalings used were not very clearly motivated. Indeed, as the authors
admitted, ‘. . . this mathematical formulation does not provide an exact (even in a
strict asymptotic sense) solution of the initial-value problem [. . . ]; some fine-scale
features of the solution are ignored’.

Given the differences in trajectory presented in figure 1, which are presumably due
to strong far-field effects, the breakdown of the asymptotic theories of Smith & Weber
(1993), Sutyrin & Flierl (1994) and RD94 in the far field, and the presumed importance
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of the mechanism of barotropic wave radiation to adjust to isolated conditions (Flierl
et al. 1983), this paper attempts to address these issues by examining the evolution of
non-isolated vortices on the beta-plane, concentrating on the far-field response and its
influence on the vortex motion. This is carried out via an expansion in the parameter
ε of the barotropic vorticity equation, which results in separate near- and far-field
solutions. The presence of this non-dimensional parameter is a major difference from
the point vortex case which was studied by Reznik (1992). The present approach
has obvious limitations, not least in the simplified equations adopted, but should be
capable of giving some insight into the physical mechanisms underlying the evolution
of strong vortical structures in the presence of an anisotropic dispersion mechanism
such as the beta-effect.

The mathematical problem is posed in §2, where the expansions adopted and the
assumptions made are presented. The linear beta-plane equation governing the far-
field evolution is solved in §3, and the asymptotic properties of the relevant Green’s
function are calculated. These results are necessary for §4, where the zeroth-order
equations are solved in the near and far fields. The first-order solution is calculated
in §5. Some ways of following the motion of the vortex are discussed in §6, and two
examples are treated in §7: the Gaussian and Rankine vortices. Finally, the results
are discussed in §8.

2. Statement of the problem
For the kind of phenomena under consideration, the barotropic vorticity equation

on the beta-plane is appropriate (as may be shown by scale analysis for rapidly
rotating shallow stuctures, for example a hurricane of radius 500 km and 10 km in
depth; cf. Pedlosky 1987). Then the governing dynamic principle is the conservation
of absolute vorticity:

Dq

Dt
= 0, (2.1)

where q = ζ + βy, ζ being the relative vorticity of the flow, and y the meridional
coordinate. This equation is relatively amenable to analytical treatment, and should
help provide insight into the dynamical processes in operation. In particular, it
conserves absolute vorticity and also supports Rossby waves.

The equation of motion (2.1) will be non-dimensionalized using the physical scales
appropriate to the vortex: length L (corresponding to the radius of the vortex, say)
and velocity V (for example the velocity at r = L).† The result is

∂

∂t
∇2ψ + J(ψ,∇2ψ) + ε

∂ψ

∂x
= 0, (2.2)

where ψ(x, y) is the streamfunction. The relative vorticity is given by ζ = ∇2ψ. The
parameter

ε ≡ βL2

V
(2.3)

is a measure of the weakness of the planetary vorticity gradient compared to the
relative vorticity gradient across the vortex, or equivalently of the strength of the
vortex. It is a small parameter for strong vortices, and will serve as the expansion
parameter in the asymptotic scheme used to solve the equation of motion.

† The presence of two independent physical scales shows that the present analysis must differ
from that for the point vortex case.
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The equation of motion and streamfunction will be expanded as asymptotic series
in ε, yielding

ψ = ψ0 + εψ1 + · · · , (2.4)

and the hierarchy of equations

∂

∂t
∇2ψ0 + J(ψ0,∇2ψ0) = 0, (2.5a)

∂

∂t
∇2ψ1 + J(ψ0,∇2ψ1) + J(ψ1,∇2ψ0) +

∂ψ0

∂x
= 0, (2.5b)

and so forth. The first of these equations is the Euler equation on an f-plane. The
second is the linearized Euler equation (or Rayleigh equation) for the perturbation
streamfunction ψ1 about a swirling basic state ψ0, forced by the beta-effect.

However, the size of the terms in (2.2) will change at very large distances from the
origin, where L is no longer an appropriate length scale. A search for a distinguished
scaling gives a new variable R = εr, with the resulting governing equation for
φ(R, t; ε) ≡ ψ(r = R/ε, t; ε)

∂

∂t
∇2
Rφ+ ε2JR(φ,∇2

Rφ) +
∂φ

∂X
= 0. (2.6)

This equation holds in the far field of the vortex. Again, the streamfunction φ is
expanded in ε, and the resulting equations solved to give an asymptotic representation
of φ. The governing equation at zeroth order is linear, and corresponds to the problem
of linear wave propagation on the beta-plane. RD94 mentions the change of balance
in the far field, but does not carry out a matching procedure between the expansions
in the two regions. The two equations (2.2) and (2.6) are valid in different parts
of the flow domain, and so their solutions must be matched onto each other in an
appropriate manner.

The initial condition will be a radially symmetric vortex with streamfunction Ψ (r),
monotonic vorticity Q ≡ ∇2Ψ and monotonic angular velocity Ω ≡ Ψ ′/r. The vortex
will be taken to be localized, i.e. its vorticity will decay faster than any power of r at
infinity, but non-isolated, so that its circulation Γ is non-zero. These two conditions
imply the following results for large r:

Q = O

(
1

r∞

)
, (2.7a)

Ψ =
Γ

2π
ln r + O

(
1

r∞

)
. (2.7b)

The order-infinity notation represents a contribution that decays faster than any
power of r. A derivation of these results is given by Llewellyn Smith (1995). The
vorticity must be bounded everywhere, but may have discontinuities, as in the case
of the Rankine vortex. Without loss of generality, Γ will be taken positive, which
corresponds to a cyclone, and Q′ will be taken to be zero at the origin. Then the
angular velocity near the origin becomes

Ω(r) = Ω0 + 1
2
r2Ω′′0 + · · · . (2.8)

The two asymptotic expansions in the near and far fields will be matched by the
method of matched asymptotic expansions. Van Dyke’s (1975) rule gives

ψ(n,m) = φ(m,n), (2.9)
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where ψ(n,m) is the inner solution truncated to order n in the inner variable, sub-
sequently re-expressed in the outer variable and then truncated to order m in that
variable. For this rule to give correct results, terms of logarithmic order must be
included in the expansion truncated at algebraic order.

The motion of the vortex will be calculated in a moving coordinate frame, where
the centre of the frame is fixed by some prescription corresponding to a possible
definition of the centre of the vortex, for example the vorticity maximum.

The expansion in ε will not in general be uniform in time. For long times, the
structure of the velocity field becomes very complicated with the formation of a wake
behind the vortex (e.g. Sutyrin et al. 1994). Formally, the presence of terms such as
εt will upset the relative order of terms in the expansion. The asymptotic solution
can be expected to hold for times up to and including O(1), and also for larger times
up to some unknown breakdown order to be determined later from the form of the
solution.

3. Linear solution
The solution to the linear initial value problem

∂

∂t
∇2ψ + ε

∂ψ

∂x
= 0, (3.1)

with ψ = Ψ at time t = 0, may be obtained using a Green’s function approach. The
Green’s function for this problem is derived in Kamenkovich (1989). It is the solution
to

∂

∂t
∇2L+ ε

∂L

∂x
= δ(r)δ(t). (3.2)

There is no elementary expression for L, but its Laplace transform L̄(p) is found to
be

L̄ = − 1

2πp
exp

(
−εx

2p

)
K0

(
εr

2p

)
, (3.3)

where r is the usual plane polar distance.
The large-|p| behaviour of L̄ exp (pt) governs the causal behaviour of the Green’s

function through the inverse Laplace transform. For large |p|, the appropriate
behaviour is

L̄ept = − 1

2πp
exp

(
−εx

2p
+ pt

)
[ln p+ O(1)], (3.4)

where γ is Euler’s constant. Writing p = pr + ipi gives

Re

(
−εx

2p
+ pt

)
= pr

(
t− εx

2|p|2

)
. (3.5)

For t < 0, the contour may be closed in the right half-plane and L is zero. Accordingly
L has the appropriate causal behaviour. For t > 0, the contour must be closed in
the left half-plane, and L is not zero. Hence there is an instantaneous response over
all space. This is due to the fact that the velocity of Rossby waves increases without
bound with wavelength.

A variety of representations exists for L in the original time variable. One integral
representation for K0 leads to the formula

L = − 1

π

∫ ∞
0

J0(2[εrt(u2 + c2)]1/2)

(u2 + 1)1/2
du, (3.6)
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where c = cos (θ/2), θ being the usual polar angle. Use of the convolution theorem
leads to other expressions for L; explicit results may also be derived for L on the
x-axis (see Appendix A).

The behaviour of the Green’s function near the origin is needed for later use.
Expanding L̄ in r gives

L̄ =− 1

2πp

[
ln p− ln

εr

4
− γ
]

+
εx

4πp2

[
ln p− ln

εr

4
− γ
]

− ε2x2

16πp3

[
ln p− ln

εr

4
− γ
]
− ε2r2

32πp3

[
ln p− ln

εr

4
− γ + 1

]
+ O(ε3r3/p4). (3.7)

This series may be inverted term by term to give

L =
1

2π

[
ln
εrt

4
+ 2γ

]
− εxt

4π

[
ln
εrt

4
+ 2γ − 1

]
+
ε2t2

128π

[
(2x2 + r2)

(
2 ln

εrt

4
+ 4γ − 3

)
− 2r2

]
+ O(ε3r3t3). (3.8)

It is clear that the natural expansion variables in the above expressions are εr/p and
εrt. The second expression is clearly non-uniform in time and space. When εrt = O(1),
the asymptotic ordering breaks down.

Laplace transforming the governing equation (3.1) in time gives

p∇2ψ̄ + ε
∂ψ̄

∂x
= Qi, (3.9)

where Qi = ∇2Ψ is the initial vorticity. This may be solved using the previously
derived Green’s function, leading to

ψ̄ = L̄ ∗ Qi, (3.10)

where ∗ is the spatial convolution operator. The inverse Laplace transform of this
equation gives

ψ = L ∗ Qi (3.11)

as the solution to the linear initial value problem.

4. Zeroth-order solution
4.1. Inner solution

4.1.1. Derivation

The zeroth-order equation in the near field is

∂

∂t
∇2ψ0 + J(ψ0,∇2ψ0) = 0, (4.1)

with initial condition ψ0 = Ψ at t = 0. The boundary conditions at infinity come
from the matching with the outer solution.

However, ψ0 = Ψ is clearly a steady solution to the equation, ignoring the boundary
condition. The eigenfunctions of the Laplace operator are also solutions of the
equation which do not necessarily satisfy any boundary conditions; they correspond
to irrotational flow. A simple form for the inner field, regular at r = 0, is then

ψ0 = Ψ (r) +

∞∑
n=0

an(t)r
neinθ, (4.2)
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where the an are all initially zero for n > 0. The constant function of space a0(t) is
physically irrelevant but will be included for completeness. Complex notation will
be used for this type of trigonometric sum; the real part is to be understood. This
sum includes all the necessary terms for a complete zeroth-order solution to the inner
problem, as will be shown by the matching.

4.1.2. Far-field behaviour

The form (2.7) holds for the far field of the initial streamfunction, and so the inner
solution may be rewritten as

ψ(0,.) =
Γ

2π
ln

(
R

ε

)
+

∞∑
n=0

an

(
R

ε

)n
einθ + O

(
ε∞

R∞

)
(4.3)

in the far-field coordinate.
The order term cannot appear at any stage in the matching procedure. In addition,

there can be no terms in the above sum with n greater than zero, since these would
have to match onto terms of the far-field solution containing negative powers of ε,
whereas the perturbation expansion in the outer field cannot be large as ε becomes
very small. Hence all the an are zero except for n = 0, and the appropriate truncation
for Van Dyke’s rule is

ψ(0,0) =
Γ

2π
(lnR − ln ε) + a0(t). (4.4)

This shows that there must be terms of the form ψ′0(r) ln ε in the inner expansion.
However, such terms cannot be dynamically significant since the dominant motion is
at zeroth-order (i.e. smaller than ln ε), and hence the only possible term is constant
in space. This corresponds to a streamfunction of the form

ψ′0 = a′(t). (4.5)

Therefore the correct truncated expansion to use, which includes logarithmic terms,
is

ψ(0,0) =
Γ

2π
(lnR − ln ε) + a0(t) + a′(t) ln ε. (4.6)

Primes will be used to denote functions of logarithmic order in ε.

4.2. Outer solution

4.2.1. Derivation

The zeroth-order equation in the far field is

∂

∂t
∇2
Rφ0 +

∂φ0

∂X
= 0. (4.7)

The boundary condition at the origin comes from the matching. The initial condition
may be written as φ0 = Φ(R), where Φ(R) is the zeroth-order term in the expansion
of Ψ (R/ε). However, the vorticity q(r) is assumed to be localized, and hence decays
faster than any power of 1/r in the far field. Expanding its counterpart Q(R) in ε
gives nothing, since all the terms decay too fast. Hence the initial condition for the
vorticity is Q0(R) = 0, and the solution to (4.7) can be taken from §3 as

φ0 =

∞∑
n=0

Ai...j
∂n

∂Xi . . . ∂Xj

L(R, t). (4.8)
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Tensorial notation is used for the multipole sum, and the number of indices on A is
equal to n. This sum corresponds to a homogeneous solution of (4.7) with unknown
forcing at the origin.

4.2.2. Near-field behaviour

The behaviour of the Green’s function and its derivatives near the origin can be
obtained from (3.8), using the appropriate far-field variable:

L =
1

2π

[
ln
Rt

4
+ 2γ

]
− Xt

4π

[
ln
Rt

4
+ 2γ − 1

]
+ O(R2t2). (4.9)

Hence

∇RL =
1

2π

R

R2
− t

4π

[
ln
Rt

4
+ 2γ − 1

]
i − Xt

4π

R

R2
+ O(Rt). (4.10)

As expected, each differentiation raises the degree of singularity of L. Changing to
the inner variable by

∂

∂Xi

=
1

ε

∂

∂xi
(4.11)

leads to a new expression for the sum:

∞∑
n=0

Ai...j
∂n

∂Xi . . . ∂Xj

L(R, t) = A0

{
1

2π

[
ln
εrt

4
+ 2γ

]
− εxt

4π

[
ln
εrt

4
+ 2γ − 1

]
+ O(ε2)

}
+ A1O(ε−1) + · · · , (4.12)

where A1 is a vector representation of Ai. This shows that all the Ai...j must be zero
for n > 1, since any higher A would have to match onto terms of negative order in
ε in the inner expansion, and the leading-order behaviour of the inner solution is of
order zero.

4.3. Matching

The truncated expansions for the inner and outer solutions are

ψ(0,0) =
Γ

2π
lnR + a0 + ln ε

(
a′ − Γ

2π

)
(4.13)

and

φ(0,0) =
A0

2π

[
ln
εrt

4
+ 2γ

]
(4.14)

respectively. Van Dyke’s rule then leads to the the following three relations:

A0 = Γ , a0 =
Γ

2π

[
ln
t

4
+ 2γ

]
, a′ =

Γ

2π
. (4.15a–c)

If there had been a logarithmic term in the far field (φ′0 say), it would have had to
satisfy (4.7), and hence been proportional to L. The three equations of (4.15a–c) could
then have been satisfied only with φ′0 identically zero.

The complete zeroth-order solution, including logarithmic terms, is

ψ0 = Ψ (r) +
Γ

2π

[
ln
t

4
+ 2γ

]
(4.16a)
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and

ψ′0 =
Γ

2π
(4.16b)

for the near field, and

φ0 = ΓL(R, t) (4.16c)

for the far field. In the Laplace coordinate, these expressions become

ψ0 =
Ψ (r)

p
− Γ

2π

[
ln p− ln 1

4
− γ
]

(4.17a)

and

ψ′0 =
Γ

2πp
, (4.17b)

and

φ0 = ΓL̄(R, p) (4.17c)

for the two regions respectively.
The only dynamically significant part of the inner solution is the initial streamfunc-

tion. The other terms are just functions of time that match onto the outer solution.
The Green’s function term corresponds to the response to a vortex of circulation Γ
at the origin. To the far field, the only ‘visible’ property of the vortex, at zeroth
order, is its circulation. This illustrates the important difference between isolated and
non-isolated vortices.

5. First-order solution
5.1. Inner solution

5.1.1. Derivation

The governing equation for the first-order solution in the inner field is the linearized
inhomogeneous Euler equation(

∂

∂t
+ Ω

∂

∂θ

)
∇2ψ1 −

Q′

r

∂ψ1

∂θ
+ Ωr cos θ = 0, (5.1)

with zero initial condition. The forcing term comes from the beta-effect acting on
the radial order-zero streamfunction. Laplace transforming in time, and decomposing
into radial modes, leads to

(p+ ilΩ)

[
1

r

d

dr
r

d

dr
− l2

r2

]
ψl1 −

Q′

r
ilψl1 = −Ωrδ1l

p
, (5.2)

where the real part of this equation is to be understood, and where

ψ1 =
∑
l

ψl1e
ilθ. (5.3)

Each mode ψl1 has zero initial condition, and (5.2) is homogeneous for all modes
except l = 1, which is therefore the only non-zero solution. Dropping the subscript l,
the governing equation for mode one may be rewritten as

− d

dr

(
r
dψ1

dr

)
+

[
1

r
+

iQ′

p+ iΩ

]
ψ1 =

1

p+ iΩ

Ωr2

p
. (5.4)
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The change of variable ψ1 = r(p+ iΩ)f leads to the equation

− 1

r(p+ iΩ)

d

dr

[
r3(p+ iΩ)2 df

dr

]
=

1

p+ iΩ

Ωr2

p
. (5.5)

The solution to this equation is

ψ1 = −r(p+ iΩ(r))

p

∫ r

B(p)

h(v)− h(A(p))

v3(p+ iΩ(v))2
dv, (5.6)

where h is defined by

h(v) =

∫ v

0

Ω(u)u3 du (5.7)

and A and B are undetermined functions of p. Changing A and B corresponds
to adding multiples of the homogeneous solutions. This is essentially the solution
presented in RD94, although the derivation has followed Smith & Rosenbluth (1990).
However, the far field behaviour of (5.6) is quite different here.

The function h(v) is the basic-state relative angular momentum within a disc of
radius v. The behaviour of the function h(v) is given by

h(v) = 1
4
Ω0v

4 + O(v6) (5.8)

for small v, and by

h(v) =
Γv2

4π
+H + O(v−∞) (5.9)

for large v, where

H =

∫ ∞
0

[
Ω(u)− Γ

4πu2

]
u3 du. (5.10)

This quantity will in general be non-zero, even for vortices with zero circulation,
although there will be vortices for which it vanishes. For vortices with zero circulation,
it has been called the Relative Angular Momentum (RAM) in the tropical cyclone
literature (Willoughby 1988).

Denoting by fl the mode-l solution to (5.2) that is well-behaved at the origin, a
complete solution to the inner problem is given by

ψ1 = −r(p+ iΩ(r))

p
eiθ

∫ r

0

h(v)

v3(p+ iΩ(v))2
dv +

∑
l

bl(p)fl(r, p)e
ilθ. (5.11)

The homogeneous solutions are multiplied by functions of p which remain to be
determined. The functions A and B have been fixed to ensure convergence of the
integral. This freedom is due to the presence of the unspecified function b1. The
solutions for the lowest two modes can be written down explicitly as

f0 = 1 (5.12a)

and

f1 = r(p+ iΩ). (5.12b)

5.1.2. Far-field behaviour

Truncating the complete inner solution to first order gives

ψ(1,.) = ψ0 −
εr(p+ iΩ(r))

p
eiθ

∫ r

0

h(v)

v3(p+ iΩ(v))2
dv +

∑
l

bl(p)fl(r, p)e
ilθ. (5.13)
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The leading-order behaviour of the integral for small ε and R = O(1) is given by
Γ ln (R/ε)/4πp2. The order-zero and order-one portions of the integral are calculated
in Appendix B. The contribution of the integral term in the far-field variable is

− ΓX

4πp2
ln
R

ε
− Reiθ

p2

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv+

ΓX

8πp2
+
XΨ0

2p2
+O(ε2), (5.14)

using (B 9) and the far-field behaviour of Ω. The expression Reiθ can be replaced by
X when it is multiplying a real quantity.

The asymptotic form of the integral term suggests that mode-zero and mode-one
homogeneous terms will be needed in the solution. In the far-field variable, the
appropriate mode-zero solution is

f0 = 1, (5.15)

while the mode-one solution is

f1 = r(p+ iΩ) =
Rp

ε
+ O(ε). (5.16)

Owing to the factor ε multiplying it in (5.13), the mode-zero term is of first order in
the far-field variable expansion. Discarding all modes other than zero and one gives
the contribution

b1Reiθp+ εb0 + O(ε2) (5.17)

to (5.13) from the homogeneous terms.

5.1.3. The O(ε ln ε) terms

The form of the integral term shows that a logarithmic term will also be required
in the expansion. The inner solution at O(ln ε) was found in (4.5) and is dynamically
insignificant. The governing equation for the O(ε ln ε) term is(

∂

∂t
+ Ω

∂

∂θ

)
∇2ψ′1 −

Q′

r

∂ψ′1
∂θ

= 0, (5.18)

which is the homogeneous counterpart of (5.1). This has the solution

ψ′1 =
∑
l

b′l(p)fl(r, p)e
iθ, (5.19)

analogous to the homogeneous term of (5.11). The form of the logarithmic term
in (5.14) shows that the only term actually required is the mode-one response. Its
far-field behaviour is given by (5.16).

Putting these results together leads to

ψ(1,.) = ψ(0,1) − ΓX

4πp2
ln
R

ε
− Reiθ

p2

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv

+
ΓX

8πp2
+
XΨ0

2p2
+ b1Reiθp+ εb0 + b′1Reiθp ln ε+ O(ε2). (5.20)

The zeroth- and first-order truncations may now be easily computed.

5.2. Outer solution

5.2.1. Derivation

The governing equation is again (4.7), since nonlinearity only enters at second order
in the far field. The solution with zero initial condition, and unspecified behaviour at
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the origin, is

φ1 =

∞∑
n=0

Bi...j
∂n

∂Xi . . . ∂Xj

L(R, t). (5.21)

It is not necessary to compute terms of logarithmic order in the far field at this order.
If this were done, they would be identically zero through the matching process. At
higher orders, however, such terms will be required.

5.2.2. Near-field behaviour

The limiting behaviour of such a sum has already been investigated in §4.2.2.
Working in the Laplace coordinate, the first-order truncation of the outer solution is

φ
(1,.)
1 = ΓL̄(R, p) + ε

∑
n

Bi...j
∂n

∂Xi . . . ∂Xj

L̄(R, p)

= Γ

{
− 1

2πp

[
ln p− ln

εr

4
− γ
]

+
εx

4πp2

[
ln p− ln

εr

4
− γ
]

+ O(ε2)

}
+ε
∑
n

Bi...j
∂n

εn∂xi . . . ∂xj

{
− 1

2πp

[
ln p− ln

εr

4
− γ
]

+
εx

4πp2

[
ln p− ln

εr

4
− γ
]

+ O(ε2)

}
, (5.22)

when rewritten in the inner coordinate. As before, the B must be zero, except for B0

and Bi, since there is no ε−1 term in the inner expansion. Hence, truncating to the
appropriate order gives

φ
(1,1)
1 = − Γ

2πp

[
ln p− ln

εr

4
− γ
]

+
B1

2πp
· r
r2

+ε

{
1

π

(
Γx

4p2
− B0

2p

)[
ln p− ln

εr

4
− γ
]

+
B1

4πp2
·
(
i
[
ln p− ln

εr

4
− γ
]
− x r

r2

)}
,

(5.23)

where B1 is the vector form of Bi. The truncation of φ(1,.) to zeroth order may be
written down immediately from the previous line as

φ
(1,0)
1 = − Γ

2πp

[
ln p− ln

εr

4
− γ
]

+
B1

2πp
· r
r2
. (5.24)

The ‘off-diagonal’ element ψ(1,0) = φ(0,1) of Van Dyke’s rule requires the first-order
truncation of the zeroth-order outer field. This is

φ(0,1) = φ(0,0) +
εΓx

4πp2

[
ln p− ln

εr

4
− γ
]
. (5.25)

5.3. Matching

5.3.1. ψ(0,1) = φ(1,0)

All Van Dyke truncations of the zeroth-order inner solution are the same, since the
only powers of ε present when expressed in the far field coordinate are zero (including
the logarithmic term) and infinity. Hence

ψ(0,1) = ψ(0,0) (5.26)
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and no further calculation is required. The off-diagonal element of Van Dyke’s rule
gives

φ(1,0) = φ(0,0) +
B1

2πp
· R
εR2

= ψ(0,1). (5.27)

Using the result of the zeroth-order matching gives B1 = 0.

5.3.2. ψ(1,0) = φ(0,1)

Truncating (5.20) at zeroth order, and equating the result with (5.25) leads to the
equation

ψ(0,1) − ΓX

4πp2
ln
R

ε
− Reiθ

p2

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv

+
ΓX

8πp2
+
XΨ0

2p2
+ b1Reiθp+ b′1(p)Reiθp ln ε = φ(0,0) +

ΓX

4πp2

[
ln p− ln

R

4
− γ
]
,

(5.28)

written in the far-field variable. Again, the two terms formally truncated at zeroth
order cancel from the zeroth-order matching (using the preceding paragraph). The
logarithmic terms in R cancel also, and the equation decouples into two, since the
ln ε terms must be taken into account separately. The two resulting equations are

−Reiθ

p2

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv +

ΓX

8πp2
+
XΨ0

2p2
+ b1Reiθp

=
ΓX

4πp2

[
ln p− ln 1

4
− γ
]
, (5.29a)

and
ΓX

4πp2
+ b′1(p)Reiθp = 0. (5.29b)

The real part of both equations is understood. However, both decouple into an
equation in X and an equation in Y , and solving these is equivalent to solving the
original complex equations for b1 and b′1, replacing X by its complex counterpart
Reiθ . This leads to

b1 =
Γ

4πp3

[
ln p− ln 1

4
− γ − 1

2

]
− Ψ0

2p3
+

1

p3

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)−2ip) dv (5.30a)

and

b′1 = − Γ

4πp3
. (5.30b)

5.3.3. ψ(1,1) = φ(1,1)

Truncating (5.20) at first order now gives

ψ(1,1) = ψ(1,0) + εb0(p), (5.31)

since the integral does not contribute an order-one term to the expansion. The
necessary truncation of the outer expansion has already been calculated, and may be
rewritten as

φ(1,1) = φ(0,1) − εB0

2p

[
ln p− ln

R

4
+ γ

]
. (5.32)
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Van Dyke’s rule gives

b0 = −B0

2p

[
ln p− ln

R

4
+ γ

]
. (5.33)

The only possible solution to this equation is b0 = B0 = 0; any other choice leaves a
logarithmic term that cannot be matched. Hence there is no first-order disturbance
in the far field.

The complete solution to the first-order problem is thus given by the outer solution

φ1 = 0 (5.34a)

and the inner solution

ψ1 = − r(p+ iΩ(r))eiθ

p

∫ r

0

h(v)

v3(p+ iΩ(v))2
dv

+
r(p+ iΩ(r))

p3
eiθ

{
Γ

4π

[
ln p− ln 1

4
− γ − 1

2

]
− Ψ0

2

+

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv

}
, (5.34b)

with the logarithmic term

ψ′1 = −Γr(p+ iΩ(r))eiθ

4πp3
. (5.34c)

An equivalent expression for the O(ε) solution, which highlights its behaviour in the
matching region, is

ψ1 =
r(p+ iΩ(r))eiθ

p3

{
−Ψ (r)

2
+
h(r)

2r2
+
Γ

4π

[
ln p− ln 1

4
− γ − 1

2

]
+

∫ ∞
r

h(v)Ω(v)

v3

Ω(v)− 2ip

(p+ iΩ(v))2
dv.

}
. (5.35)

In the time variable, the inner solution is

ψ1 = −reiθ

(
∂

∂t
+ iΩ(r)

)∫ r

0

h(v)

v3

[
ite−iΩ(v)t

Ω(v)
+

1− e−iΩ(v)t

Ω(v)2

]
dv

+reiθ

(
∂

∂t
+ iΩ(r)

){
Γt2

8π

[
− ln

t

4
− 2γ + 1

]
− Ψ0t

2

4

+

∫ ∞
0

h(v)

v3

[
− t

2

2
+

ite−iΩ(v)t

Ω(v)
+

e−iΩ(v)t − 1

Ω(v)2

]
dv

}
, (5.36a)

ψ′1 = −Γre
iθ

4π

[
t+ iΩ(r)

t2

2

]
. (5.36b)

While the last expression seems to suggest that the asymptotic expansion must lose
validity for t = O(ε−1/2), when ψ′1 will be of order ε−1 and hence become a zeroth-
order term (actually an O(ln ε) term), this is erroneous. In fact, the spatial dependence
of the solution must be taken into account as well. This will be returned to later.
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6. Vortex trajectory
6.1. Moving coordinate system

Working in a coordinate system moving with the vortex will be advantageous in this
asymptotic framework. Assuming that the velocity of this new frame with respect to
the old is (U,V ), the equation of motion becomes

∂

∂t
∇2ψ + J(ψ,∇2ψ) + ε

∂ψ

∂x
−
(
U
∂

∂x
+ V

∂

∂y

)
∇2ψ = 0, (6.1)

in the inner region, and

∂

∂t
∇2
Rφ+

∂φ

∂X
+ ε2JR(φ,∇2

Rφ)− ε
(
U

∂

∂X
+ V

∂

∂Y

)
∇2
Rφ = 0 (6.2)

in the outer region. However, the relative velocity between the frames is of order ε
(or ε ln ε), since it cannot appear in the absence of the beta-effect. Hence the previous
analysis is valid to order zero in the near field, and order one in the far field. The full
new equations have to be solved at higher orders to find a solution to the equation
of motion in the new frame.

In the inner region, the first-order equation for ψ1 becomes

∂

∂t
∇2ψ1 + J(ψ0,∇2ψ1) + J(ψ1,∇2ψ0) = −∂ψ0

∂x
+

(
U1

∂

∂x
+ V1

∂

∂y

)
∇2ψ0, (6.3)

where U = εU1 + ε ln εU ′1 + · · ·, and similarly for V . This is just equation (5.1) with
an extra forcing term due to the relative motion of the frame. Since this is a linear
equation, the solution can be decomposed into a part due to the beta-effect, which
has already been calculated, and a part due to the new forcing term, provided both
satisfy appropriate boundary and initial conditions.

The part of the streamfunction ψf1 due to the change of frame may be written as

ψ
f
1 =

∫ t

0

(
U1(τ)

∂Ψ

∂x
+ V1(τ)

∂Ψ

∂y

)
dτ (6.4)

= X1(t)
∂Ψ

∂x
+ Y1(t)

∂Ψ

∂y
(6.5)

= (X1(t) cos θ + Y1(t) sin θ)Ψ ′, (6.6)

where Ψ (r) is the original streamfunction and X (t) = εX 1 + · · · is the location of the
origin in the new frame, as seen from the old one. This solution may be written in
complex form as

ψ
f
1 = Z∗1 (t)eiθrΩ, (6.7)

where the asterisk denotes complex conjugation, and the real part is again to be
understood. The function Ψ may be taken instead of ψ0, since the two differ only
by a constant function of space. The function rΩeiθ is actually a steady mode-one
solution to the linearized Euler equation in the absence of beta (cf. Michalke &
Timme 1967; Llewellyn Smith 1995). The corresponding vorticity is easily calculated
to be

∇2ψ
f
1 = X1

∂Q

∂x
+ Y1

∂Q

∂y
= Z∗1 eiθQ′. (6.8)
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Hence (6.3) is satisfied. This part of the streamfunction decays at infinity, and clearly
vanishes at t = 0. Its Laplace transform is simply obtained by replacing Z1 by
Z1. Expressed in terms of the far-field space variable and of the Laplace transform
variable, ψf1 takes the form

ψf(1,.) = εZ∗1 eiθ

[
Γε

2πR
+ O

(
ε∞

R∞

)]
. (6.9)

This is formally a second-order quantity, so the contribution to the streamfunction
from the change of frame does not affect the far-field expansion to zeroth and first
order through matching.

The governing equation at O(ε ln ε) is

∂

∂t
∇2ψ′1 + J(ψ0,∇2ψ′1) + J(ψ′1,∇2ψ0) = −

(
U ′1

∂

∂x
+ V ′1

∂

∂y

)
∇2ψ0. (6.10)

There is no forcing due to the beta-effect; nor is there advection of O(ln ε) vorticity.
The solution to the homogeneous problem was found in (5.34c), while the solution to
the drift problem is clearly formally the same as above, i.e.

ψ
f
1
′ = Z∗1

′(t)eiθrΩ. (6.11)

The analysis of the previous paragraph shows that this term does not require matching
in the far field until second order in the logarithmic terms.

6.2. Origin of the coordinate system

It is logical to centre the moving coordinate system in the middle of the vortex. This
condition will determine X1 and Y1 and hence close the set of equations. This is easier
than solving an implicit set of equations in the original frame. However, the centre
of the vortex must be specified somehow. A number of possibilities for identifying
the centre of an initially monopolar distribution exist. Four are presented here: the
vorticity maximum, the streamfunction maximum, and the location of the particle
initially at the origin, all of which are described in RD94, and also a pseudo-secularity
condition.

6.2.1. Relative vorticity maximum

One way of defining the centre of the vortex is to look at the maximum in relative
vorticity. Presumably, this approach will not work if there is no such point (e.g. for
the Rankine vortex). The position of the origin is then determined by the condition

∇
(
∇2ψ

)
|O = 0. (6.12)

Clearly, the inner solution is the relevant one to employ here. Working in plane polars
and expanding in ε, this corresponds to

∂

∂r
∇2(ψ0 + ln εψ′0 + εψ1 + εψ

f
1 + ε ln εψ′1 + ε ln εψf1

′ + · · ·)
∣∣∣∣
r=0

= 0. (6.13)

The O(1) term of (6.13) vanishes at the origin, since Ψ has a maximum there, and the
O(ln ε) term is dynamically insignificant. As for the other terms, it may be seen that

∇2r(p+ iΩ(r)) = i(3Ω′(r) + rΩ′′(r)), (6.14)
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with the obvious special case p = 0. In addition

− r(p+ iΩ(r))

p3
eiθ

∫ r

0

h(v)

v3(p+ iΩ(v))2
dv

=

[
−r(p+ iΩ0)

p
+ O(r2)

] ∫ r

0

[
Ω0v

4
+ O(1)

] [
1

(p+ iΩ0)2
+ O(v)

]
dv

= − Ω0r
3eiθ

8p(p+ iΩ0)
+ O(r4eiθ), (6.15)

for small r, which leads to

∇2

[
−r(p+ iΩ(r))

p3
eiθ

∫ r

0

h(v)

v3(p+ iΩ(v))2
dv

]
= − Ω0re

iθ

p(p+ iΩ0)
+ O(r2eiθ). (6.16)

Hence (6.13) becomes the two equations

4Ω′′0 (Z∗1 + ib1)−
Ω0

p(p+ iΩ0)
= 0 (6.17)

and

4Ω′′0 (Z∗1 + ib′1) = 0. (6.18)

Clearly, if Ω′′0 = 0, the first equation is inconsistent and the second one useless. This
happens for vorticity profiles with an inflection point at the origin. In this special
case, taking the r-derivative of (6.12) at the origin will lead to an answer. A higher
number of derivatives may need to be taken for profiles that are very flat at the
origin. However, if the vorticity profile is actually constant about the origin, as is the
case for the Rankine vortex, the technique will not work at all.

When Ω′′0 6= 0, the resulting equations for the motion of the vortex are

Z∗1 = − i

p3

{
Γ

4π

[
ln p− ln 1

4
− γ − 1

2

]
− Ψ0

2
+

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv

}
+

Ω0

4Ω′′0p(p+ iΩ0)
, (6.19)

and

Z∗1
′ =

iΓ

4πp3
. (6.20)

Inverse Laplace transforming these expressions and taking their complex conjugates
gives

Zrv
1 =

iΓt2

8π

[
− ln

t

4
− 2γ + 1

]
− iΨ0t

2

4

+i

∫ ∞
0

h(v)

v3

[
− t

2

2
− iteiΩ(v)t

Ω(v)
+

eiΩ(v)t − 1

Ω(v)2

]
dv +

i

4Ω′′0
(1− eiΩ0t) (6.21)

and

Zrv
1
′ = − iΓt2

8π
. (6.22)

It is interesting to note that the first-order trajectory has an oscillatory component,
forced at what might be termed the vortex frequency Ω0. This oscillatory term is
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governed by the local behaviour of the basic state near the origin, while the other
terms depend on the circulation and other global properties of the vortex.

The small-time behaviour of the displacement of the centre is given by

Zrv
1 =

Ω0t

4Ω′′0
+

iΓt2

8π

[
− ln

t

4
− 2γ + 1

]
− iΨ0t

2

4
+ O(t3) (6.23)

and by (6.22). The initial displacement of the vortex is zonal and to the west, since
Ω0 > 0 and Ω′′0 < 0. It comes from the oscillatory component of the displacement,
and hence depends on the local behaviour of the basic-state vorticity near the
origin. The next-order term, which depends on the global properties of the vortex,
is meridional and to the north; it contains a logarithmic contribution. These results
agree qualitatively with experimental observations of the motion of cyclones on the
beta-plane (cf. Carnevale et al. 1991).

The large-time behaviour of the trajectory can also be derived. For large t, the
result is, from Appendix C,

Zrv
1 =

iΓt2

8π

[
− ln

t

4
− 2γ + 1

]
+

iΓt2

16π

[
− ln

Γt

2π
− γ +

3

2
+

iπ

2

]
+ O(t). (6.24)

This result is unphysical, as can be seen by comparing it to computed vortex trajec-
tories. It predicts a displacement to the south, which is clearly erroneous. However,
the asymptotic expansion used breaks down for asymptotically large time. Either the
current expansion must match onto some other expansion valid for these larger times,
or there is no expansion possible for large times.

6.2.2. Streamfunction maximum

The position of the streamfunction maximum is determined by the condition

∇ψ|O = 0. (6.25)

The working is as above, replacing ∇2ψ by ψ. Rewriting the two first-order equations
leads to

b1(p+ iΩ0)e
iθ + Z∗1 eiθΩ0 = 0 (6.26a)

and

b′1(p+ iΩ0)e
iθ + Z∗1

′eiθΩ0 = 0. (6.26b)

Substituting the appropriate expressions gives

Z∗1 = −p+ iΩ0

Ω0p3

{
Γ

4π

[
ln p− ln 1

4
− γ − 1

2

]
− Ψ0

2

+

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv

}
, (6.27a)

and

Z∗1
′ =

Γ (p+ iΩ0)

4πΩ0p3
. (6.27b)

In the time variable, these expressions become

Z
sf
1 =

(
1 +

i

Ω0

d

dt

)[
Zrv

1 −
i

4Ω′′0
(1− eiΩ0t)

]
(6.28a)
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or

Z
sf
1 =

(
it2 − 2t

Ω0

){
Γ

8π

[
ln
t

4
− 2γ + 1

]
− Ψ0

4

}
+

Γt

8πΩ0

− Ψ0t
2

4

+

∫ ∞
0

h(v)

v3

[
− it2

2
+

(
t

Ω0

− i

Ω(v)2

)(
1− eiΩ(v)t

)
+
teiΩ(v)t

Ω(v)

]
dv, (6.28b)

and

Z
sf
1
′ =

(
1 +

i

Ω0

d

dt

)
Zrv

1
′ =

Γ

4π

[
t

Ω0

− it2

2

]
. (6.28c)

There is now no dependence on Ω′′0 .
The small-time behaviour of the trajectory can be obtained from (6.23):

Z
sf
1 = − Γt

4πΩ0

[
ln t/4− 2γ + 1

2

]
+
Ψ0t

2Ω0

+
iΓt2

8π

[
− ln t− ln 1

4
− 2γ + 1

]
− iΨ0t

2

4
− it2

Ω0

∫ ∞
0

h(v)Ω(v)2

v3
dv + O(t3). (6.29)

The initial displacement is again to the west thanks to the t ln t term. The large time
behaviour can similarly be obtained, and is given by

Z
sf
1 =

iΓt2

8π

[
− ln

t

4
− 2γ + 1

]
+

iΓt2

16π

[
− ln

Γt

2π
− γ + 3

2
+

iπ

2

]
+ O(t ln t). (6.30)

This is almost the same as (6.24).

6.2.3. Motion of the origin

The particle initially at the origin of space moves with the flow, and its motion is
described by the equations

∂ψ

∂y

∣∣∣∣
r=0

= −U and
∂ψ

∂x

∣∣∣∣
r=0

= V . (6.31a, b)

Transforming to the Laplace variable, and working in polar coordinates, these two
equations together correspond to

∂ψ

∂r

∣∣∣∣
r=0

= ieiθ(U − iV ) = ipeiθZ∗. (6.32)

This expression may be expanded in powers of ε, which corresponds to adding the
appropriate truncations of the right-hand side of (6.32) to (6.26a) and (6.26b). This
leads to

b1(p+ iΩ0)e
iθ + Z∗1 eiθΩ0 = ipeiθZ∗1 . (6.33a)

and

b′1(p+ iΩ0)e
iθ + Z∗1

′eiθΩ0 = ipeiθZ∗1
′. (6.33b)

These equations are almost the same as for the relative vorticity maximum technique.
The only difference is the term i(1 − e−iΩ0t)/4Ω′′0 . The large-time behaviour of this
technique will thus be given by (6.24), while the small-time behaviour will be given by

Zo
1 =

iΓt2

8π

[
− ln

t

4
− 2γ + 1

]
− iΨ0t

2

4
− t3

3

∫ ∞
0

h(v)Ω(v)2

v3
dv + O(t4). (6.34)

With this technique, the vortex initially moves to the north, which is different from
the previous methods. It also moves more slowly initially.
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6.2.4. Pseudo-secularity condition

The three conditions derived above make crucial use of the fact that the extremum
of a mode-one quantity has a natural expression in terms of the derivative of that
quantity near the origin. This was used to cancel off the mode-one component Z∗1 rΩ
which corresponds, to first order, to a change of frame. In fact, higher-mode terms in
the inner solution ψ1 do not play any part in the matching.

The effect of a change in origin on a function of space, however, suggests another
way of picking the centre of the frame, namely to choose Z such that the stream-
function has no rΩ term.† This is a well-defined criterion, and corresponds to picking
the reference frame in which the dynamical contribution to the streamfunction does
not contain any contribution from the special change-of-frame solution.

This condition is easy to apply in the Laplace variable; it leads to

Z∗1 + ib1 = 0 (6.35)

and

Z∗1
′ + ib′1 = 0. (6.36)

Thus

Z∗1 = − i

p3

{
Γ

4π

[
ln p− ln 1

4
− γ − 1

2

]
− Ψ0

2
+

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv

}
,

(6.37)
which becomes

Zs
1 =

iΓt2

8π

[
− ln

t

4
− 2γ + 1

]
− iΨ0t

2

4

+i

∫ ∞
0

h(v)

v3

[
− t

2

2
+

iteiΩ(v)t

Ω(v)
+

eiΩ(v)t − 1

Ω(v)2

]
dv. (6.38)

The expression for the logarithmic displacement is also very simple and takes the
form

Z∗1
′ =

iΓ

4πp3
, (6.39)

that is

Zs
1
′ = − iΓt2

8π
. (6.40)

Interestingly enough, this recovers the result of the displacement of the origin.
In a sense, this is because this technique is concerned with minimizing the first-
order difference between frames, and the Lagrangian technique of tracking the origin
corresponds very naturally to picking a frame. However, this technique will behave
very differently for higher orders. It may be called a ‘pseudo-secularity’ condition,
since it does not really remove the ultimate breakdown in the asymptotic expansion.
Nevertheless, it fully removes all extraneous order-one contributions that may be
ascribed merely to a change of frame. In effect, it corresponds to the transformation
that most fully keeps the vortex symmetric. The overall physical effect is not just a
change of frame though, since such a transformation would have higher-order terms
too. For higher-order terms, this technique may also be used, although it cannot
remove asymmetries in modes other than mode one.

† I am grateful to Peter Haynes for suggesting this approach.
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The behaviour of the trajectory is already known from previous results. It is clear
that while this technique removes unwanted changes of frame, the predicted trajectory
will eventually reverse to the south. Hence the expansion cannot remain valid longer
than with any other technique.

7. Examples
7.1. Rankine vortex

The Rankine profile is a distribution with vorticity 2Ω0 within a radius d say, and
zero vorticity outside. Then

Ω(r) = Ω0 (7.1)

inside the disc, and

Ω(r) =
Ω0d

2

r2
(7.2)

outside it. The corresponding streamfunction is

Ψ (r) = 1
2
Ω0(r

2 − d2) + Ω0d
2 ln d (7.3)

inside the disc, and

Ψ (r) = Ω0d
2 ln r (7.4)

outside it. This corresponds to a circulation of 2πΩ0d
2, and a value of the stream-

function of Ψ0 = Ω0d
2
(
ln d− 1

2

)
at the origin. For the numerical calculations of this

section, the values Ω0 = 1
2

and d = 1 have been chosen, leading to Γ = π.
The integral in (6.21) can be evaluated analytically. The position of the centre of

the vortex is given by

Zrv
1 =

iΩ0t
2

4

[
− ln t− ln 1

4
− 2γ + 1

]
− iΩ0d

2t2(ln d− 12)

4

+
iΩ0d

2t2

8

[
− lnΩ0t− γ +

iπ

2
+ 1

2
− E1(iΩ0t)

]
+
d2t

8
+

id2

8Ω0

(
eiΩ0t − 1

)
. (7.5)

However, the large-time asymptotic behaviour of the vortex is not given by (6.24).
This is due to the assumption about the strict monotonicity of Ω used in Appendix C
to derive the large-time behaviour, which is not appropriate in the case of the Rankine
vortex. The oscillatory behaviour of the trajectory comes from the exponential integral
term, which leads to a leading-order oscillatory term teiΩ0t/8 for large times. These
oscillations are hence of lower order than the actual displacement of the vortex, which
behaves like t2.

The trajectory of the streamfunction maximum may also be calculated. This results
in

Z
sf
1 =

(
t2 +

2it

Ω0

){
iΩ0d

2

4

[
− ln

t

4
− 2γ + 1

]
−

iΩ0d
2(ln d− 1

2
)

4

}

+

(
t2 +

2it

Ω0

)
iΩ0d

2

8

[
− lnΩ0t− γ +

iπ

2
− E1(−iΩ0t) + 1

2

]
−d

2t

8

(
eiΩ0t − 4

)
(7.6)
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Figure 2. Trajectory of a Rankine vortex stopping at the maximum y-position. Full lines correspond
to the position of the origin (v), dotted lines to the streamfunction maximum (s). For each technique,
there is a lower line, corresponding to ε = 0.5, with stars at unit time intervals and a maximum time
of 3.75 for v and 2 for s, a middle line with ε = 0.05, crosses at unit time intervals and maximum
time 16.625 for v and 16 for s, and an upper line, with ε = 0.005, crosses every 10 time units and
maximum time 78.75 for v and 79.5 for s.

and

Z
sf
1
′ =

d2t

2
− iΩ0d

2t2

4
. (7.7)

Figure 2 shows the trajectory of the vortex, identified by the two different techniques,
until the time at which the trajectory starts to curve back down to the south.
The motion of the centre of the vortex is oscillatory, but for the streamfunction
maximum, the oscillations are suppressed for this trajectory, since the −d2teiΩ0t/8
term cancels with the leading-order contribution from the exponential integral. There
are oscillations, but they are at a higher order, and hence cannot be seen on the plot.
The difference between the two methods is most marked for large ε.

The solution is expected to break down for large time (see the discussion in
§8) and the time at which the motion reversed towards the south is a natural
choice for truncating the trajectory (in fact, if the solution is not truncated at some
time, the displacement to the south becomes enormous and the initial behaviour is
completely hidden). In addition, previous numerical and laboratory experiments have
shown motion to the northwest, while the large-time displacement Z1 grows without
bound. The time of validity of the expansion may be evaluated from the maximum
y-position of the trajectory, for the particle-tracking and for the streamfunction-
maximum techniques. Figure 3 shows logarithmic plots of time against ε for both
methods. A straight line fit to this curve, using values of ε between 10−6 and 0.1 gives
a slope of −0.6642 for the particle technique, and −0.7092 for the streamfunction
method. This suggests that the expansion breaks down for times of order ε−2/3.
These values become −0.6064 and −0.6956, respectively, when ε is restricted to the
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Figure 3. Log-log plot of approximate time of breakdown of expansion versus ε for the Rankine
vortex; (a) corresponds to the motion-of-the-origin technique, (b) to the streamfunction maximum.
The slope of the line gives the power of ε for breakdown.

range 0.005 to 0.1, or slightly under two decades. This dependence on ε−2/3 may be
understood as follows. The maximum value of y must occur for large time (or else
the expansion is useless), and hence the dominant contribution to the time-derivative
of the imaginary part of Zsf

1 + ln εZsf
1
′ is

− Γt ln t

4π
− Γt ln t

8π
− Γt ln ε

4π
. (7.8)

This vanishes asymptotically for t = O(ε−N) when N+N/2−1 = 0, i.e. for t = O(ε−2/3).
The same argument holds for the streamfunction method, since the two behave
identically for large time.

7.2. Gaussian vortex

The vorticity profile for the Gaussian vortex will be taken to be

Q(r) = e−r
2

. (7.9)

This corresponds to angular velocity

Ω(r) =
1− e−r

2

2r2
(7.10)

and streamfunction

Ψ (r) = 1
2

ln r + 1
4
E1(r

2). (7.11)

The values of the streamfunction and angular velocity at the origin are given by
Ψ0 = −γ/4 and Ω0 = 1

2
. The circulation of the vortex is equal to π. The integrals

in the preceding section cannot be evaluated in closed form, but may be calculated
numerically. This was done using the NAG routine D01AMF.

Figure 4 shows the trajectory of the vortex, using the path of the origin and the
streamfunction-maximum techniques. Again, the trajectory is truncated when it turns
south. The path of the maximum in relative vorticity could be plotted, but it is almost
identical to figure 4 except for large ε, where high resolution is needed for small time.
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Figure 4. Trajectory of a Gaussian vortex stopping at the maximum y-position. Full lines
correspond to the particle at the origin (v), dotted lines to the streamfunction maximum (s). For
each technique, there is a lower line, corresponding to ε = 0.5, with stars at unit time intervals and
a maximum time of 3.875 for v and 2.25 for s, a middle line with ε = 0.05, crosses at unit time
intervals and maximum time 17.75 for v and 16.125 for s, and an upper line, with ε = 0.005, crosses
every 10 time units and maximum time 81 for v and 79.75 for s.

Again, the time of validity of the expansion may be estimated by considering the
y-position reached. Figure 5 shows the maximum time values as functions of ε.
The slopes of the lines are now −0.688 and −0.679. The same argument as in the
preceding section explains the − 2

3
slope for both methods.

8. Conclusions
The initial-value problem for the evolution of a circular vortex on the beta-plane

has been solved to first order in an expansion in ε, the non-dimensional beta-effect.
To zeroth order, the near-field response is just the initial condition: an intense vortex
is unaffected by the beta-induced perturbation. The far field zeroth-order response is
the Green’s function of the linear Rossby wave equation, with amplitude equal to the
circulation of the initial vortex. This response only exists therefore for non-isolated
vortices.

The first-order response in the near field is a time-dependent dipole, which cor-
responds to the beta-gyres (Sutyrin & Flierl 1994). There is an O(ε ln ε) response
proportional to the circulation; this means that the trajectory is different for different
values of ε. The first-order far-field response is identically zero. The solution (5.36a)
reduces to that of RD94 in the case of zero circulation, in which case the logarithmic
response vanishes.

The equation of motion may be solved in a reference frame centred in the vortex,
and the steady mode-one solution rΩ(r) to the radial Rayleigh equation may be
generalized by convolution to enable the problem to be solved in the new frame. The
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Figure 5. Log-log plot of approximate time of breakdown of expansion versus ε for the Gaussian
vortex; (a) corresponds to the motion-of-the-origin technique, (b) to the streamfunction maximum.
The slope of the line gives the power of ε for breakdown.

fundamental issue then becomes locating the centre of the vortex. Four possibilities
are set out (the first three following RD94): the maximum in relative vorticity, the
maximum in streamfunction, the position of the particle initially at the origin of
space, and a pseudo-secularity condition. The first of these techniques fails when the
basic-state vorticity is constant at the origin, as in the case of the Rankine vortex.
The second is not Galilean invariant. The third turns out to be almost identical with
the first. This is to be expected, since the difference between the relative vorticity of
the point initially at the origin and its relative vorticity at a later is essentially εy, y
being the meridional displacement, which is an asymptotically small quantity.

The final technique is probably the most interesting. Mathematically, it leads to
the same result as the Lagrangian origin-following approach to first order. However,
it is obtained by removing all terms of the form rΩ, or convolutions of the trajectory
with the steady mode-one solution.

The large-time behaviour of all these methods gives motion to the south, which
disagrees with experiments for non-isolated vortices (cf. Carnevale et al. 1991). In
addition, the time at which the paths curve back down to the south is O(ε−2/3), which
suggests that naive estimation of the breakdown of the expansion as occurring at
O(ε−1) is simplistic. This may be explained in a general way by considering a rescaling
of time and space given by r = εβr∗ and t = tαt∗. The governing equation of motion
is then

∂

∂t∗
∇2
∗ψ + εα−2βJ∗(ψ,∇2

∗ψ) + ε1+α+β ∂ψ

∂x∗
= 0. (8.1)

The streamfunction scales like ε−α+2β implicity. The dynamical evolution of the system
must be along the distinguished scalings α = 2β, which corresponds to vorticity
advection, and 1 +α+β = 0, where the rate-of-change and beta terms balance. In the
former case, the expansion parameter is ε1+3α/2, while in the latter, it is ε3α+2. When
α = − 2

3
, the expansion becomes disordered, and all terms are formally of the same

size.
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The profiles used here correspond to localized vortices, for which the far-field
angular velocity and vorticity have simple behaviour. The question of the relevance
of non-isolated vortices is worth addressing at this point. Numerical experiments,
such as two-dimensional turbulence, and rotating-tank experiments tend to create
vortices which appear to have non-zero circulation, although of course boundary
effects guarantee zero overall circulation. The infinite beta-plane approximation is
just an idealization in any case to try and understand the properties of these structures
without having to consider boundary effects.

In addition, as mentioned by RD94, isolated vortices will also generate a non-zero
response in the far field at second order (if they have non-zero RAM – cf. Llewellyn
Smith 1996). Hence it is important to understand the coupling processes between the
near and far fields. Using non-isolated vortices leads to results at O(1) which are
analytically simpler than the O(ε2) analysis required in the isolated case.

The question of how well these trajectory predictions correspond to experiment and
observation has not been addressed in this work. However, it is interesting to examine
the present results in the light of the work of Smith, Weber & Krause (1995), who
examined the evolution of the symmetric circulation of a hurricane using numerical
simulation and the theory of Smith & Weber (1993). In the present theory, the
symmetric circulation vanishes to O(ε2) for isolated vortices which corresponds to the
case of Smith et al. (1995), and the spontaneous appearance of circulation which is a
problem with the theory of Smith & Weber (1993) does not occur. For non-isolated
vortices, the O(1) symmetric circulation is unbounded for large R as a consequence
of the form of the far-field impulsive response, and hence it is hard to assign meaning
to its evolution.

The current state of the theory of this paper is not yet at a stage to compare
with observations, which are in any case difficult to make. Previous rotating-tank
experiments give qualitative agreement, but detailed measurements are difficult, and
the experiments of course take place in bounded domains. Numerical calculations
would also seem to support the theory’s basic predictions, but exact comparisons
are difficult, due to the limitations of the calculations. In particular, the vast major-
ity of previous numerical simulations have enforced zero circulation by subtracting
out a constant value of background vorticity in doubly periodic domains. The
resulting initial condition has zero circulation but the relative vorticity does not
decay towards the boundaries. Consequently, any comparison must carefully ac-
count for the fact that the numerical simulation effectively has zero circulation.
Alternatively numerical techniques capable of simulating flows on unbounded do-
mains or of incorporating flows with circulation in doubly periodic domains (and
with the shear layers that would tend to develop near the boundaries as a re-
sult) need to be developed. At present, finite-difference simulations using radiation
conditions show sensitivity to resolution and initial conditions (G. F. Carnevale
1996, private communication). One aim of the current work is to try and develop
ways of validating such numerical codes in the future, since the problem consid-
ered is one of the simplest possible which combines vorticity conservation and wave
radiation.

This research was supported by NERC award GT4/93/125/P. Conversations with
Professor D. G. Crighton, Dr G. F. Carnevale and Dr M. T. Montgomery were useful.
The author is grateful to the last of these and to Dr P. H. Haynes for pointing out
the paper by Smith & Rosenbluth. The comments of an anonymous referee led to
significant improvements in the manuscript.
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Appendix A. Representations of L and values on the x-axis
The expression for L̄ may be written in the two following ways:

L̄ = − 1

2π

(
1

p1/2
exp

(
εr

2p

)
K0

(
εr

2p

))(
1

p1/2
exp

(
−εrc

2

p

))
(A 1)

= − 1

2π

{[
exp

(
−εrc

2

p

)
− 1

]
+ 1

}
1

p
exp

(
εr

2p

)
K0

(
εr

2p

)
. (A 2)

Use of the convolution theorem then gives

L = − 2

π2

∫ π/2

0

K0

(
2[εrt]1/2 sinφ

)
cos
(
2c[εrt]1/2 cosφ

)
dφ (A 3)

and

L =
2c

π
(εrt)1/2

∫ π/2

0

J1

(
2c[εrt]1/2 cosφ

)
I0

(
[εrt]1/2 cosφ

)
K0

(
[εrt]1/2 cosφ

)
sinφ dφ

− 1

π
I0

(
[εrt]1/2

)
K0

(
[εrt]1/2

)
(A 4)

respectively, where c = cos θ/2 is positive. These expressions are potentially compu-
tationally more efficient than (3.6) since they are integrals over a finite range.

On the positive x-axis,

L = 1
2
J0

(
[εrt]1/2

)
Y0

(
[εrt]1/2

)
, (A 5)

while on the negative x-axis,

L = − 1

π
I0

(
[εrt]1/2

)
K0

(
[εrt]1/2

)
. (A 6)

Using (A 3) leads to the same result on the positive x-axis, while the expression on
the negative x-axis may be simplified to give∫ π/2

0

K0(2z sin θ) dθ =
π

2
I0(z)K0(z). (A 7)

This is 6.681.4 of Gradshteyn & Ryzhik (1980). Proceeding analogously with (A 4)
leads to two definite integrals:∫ π/2

0

K0(2z sin θ) cos (2z cos θ) dθ = −π
2

4
J0(z)Y0(z) (A 8)

and∫ π/2

0

J1(2z cos θ)I0(z sin θ)K0(sin θ) sin θ dθ =
π

2z

(
1
2
J0(z)Y0(z) +

1

π
I0(z)K0(z)

)
.

(A 9)

These two integrals do not seem to appear in Gradshteyn & Ryzhik (1980) or in
Luke (1962).

Appendix B. Small-ε behaviour of the integral in (5.13)
The integral in (5.13) is

I =

∫ R/ε

0

h(v)

v3(p+ iΩ(v))2
dv. (B 1)
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It clearly behaves logarithmically for small ε, but it is the order-zero and order-one
terms that are of interest. The singular part of the integral may be subtracted off by
writing

I =

∫ R/ε

0

h(v)

v3

[
1

(p+ iΩ(v))2
− 1

p2

]
dv +

∫ R/ε

0

h(v)

p2v3
dv. (B 2)

The first integral in (B 2) exists for ε = 0 and may be expressed as a Taylor series
in ε. The far-field behaviour of the integrand is given by

− iΓ 2ε3

4πp3R3
+ O

(
ε5

R5

)
(B 3)

for large R/ε. Using the chain rule,

dI1

dε
= −R

ε2

[
− iΓ 2ε3

4πp3R3
+ O

(
ε5

R5

)]
. (B 4)

This leads to

I1 =
1

p2

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv + O

(
ε2

R2

)
. (B 5)

The second integral in (B 2) may be rewritten as

I2 =
1

p2

∫ R/ε

0

∫ v

0

u3Ω(u)

v3
du dv, (B 6)

which may be transformed into

I2 =
Ψ (R/ε)

2p2
− Ψ0

2p2
− ε2h(R/ε)

2p2R2
. (B 7)

The behaviour of this expression for small ε is

I2 =
Γ

4πp2
ln
R

ε
− Ψ0

2p2
− Γ

8πp2
+ O

(
ε2

R2

)
. (B 8)

The first term is exactly the logarithmic term required by the matching, while the
second and third are constants which may not be discarded. Their appearance is due
to the boundary condition at infinity which ensures that no constant term appears in
the expansion of Ψ for small ε.

Combining the two above expressions gives

I =
Γ

4πp2
ln
R

ε
+

1

p2

∫ ∞
0

h(v)Ω(v)

v3(p+ iΩ(v))2
(Ω(v)− 2ip) dv − Ψ0

2p2
− Γ

8πp2
+ O(ε2). (B 9)

Appendix C. Large-time behaviour for the vortex motion
The integral

I =

∫ ∞
0

h(v)

v3

[
− t

2

2
− iteiΩ(v)t

Ω(v)
+

eiΩ(v)t − 1

Ω(v)2

]
dv (C 1)
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governs the behaviour of the motion of the vortex. Differentiating in time gives

dI

dt
= tJ(t) = t

∫ ∞
0

h(v)

v3

(
eiΩ(v)t − 1

)
dv. (C 2)

The change of variable u = Ω(v) (a single-valued transformation since the angular
velocity is monotonic) leads to

J(t) =

∫ Ω0

0

g(u)
(
eiut − 1

)
du, (C 3)

where

g(u) = − h(v)

v3Ω′(v)
. (C 4)

The behaviour of g at the points 0 and Ω0 can be deduced from the behaviour of
Ω(v) and h(v) near v = 0 and v →∞, and is given by

g(u) =
Γ

8πu
+ O(1), g(u) = − Ω0

4Ω′′0
+ O

(
(Ω0 − u)1/2

)
, (C 5a,b)

for u near 0 and Ω0 respectively.
Applying the method of stationary phase to J shows that the dominant contribution

to the integral comes from the origin. This suggests subtracting off the singular
behaviour of g from the integrand, and hence rewriting J as

J =

∫ Ω0

0

[
g(u)− Γ

8πu

] (
eiut − 1

)
du+

Γ

8π

∫ Ω0

0

eiut − 1

u
du (C 6)

= J1(t) +
Γ

8π

[
− lnΩ0t− γ +

iπ

2
− E1(−iΩ0t)

]
. (C 7)

The behaviour of the derivative of J1 can be obtained by integration by parts, thanks
to the earlier change of variable. The result

dJ1

dt
= i

∫ Ω0

0

u

[
g(u)− Γ

8πu

]
eiut du (C 8)

leads to

dJ1

dt
=

[
Ω0g(Ω0)−

Γ

8π

]
eiΩ0t

t
+ O

(
1

t2

)
. (C 9)

If J1 is rewritten in the form

J1 =

∫ Ω0

0

[
g(u)− Γ

8πu

]
eiut du−

∫ Ω0

0

[
g(u)− Γ

8πu

]
du, (C 10)

the Riemann–Lebesgue lemma shows that the first integral must be o(1) for large t.
The actual behaviour of J1 is known up to a constant term (by integrating (C 9)), and
hence this term must come entirely from the second integral in (C 10). This integral
may be rewritten in the original variable as

− lim
R→∞

∫ R

0

[
h(v)

v3
+
Γ

8π
(lnΩ(v))′

]
dv; (C 11)
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this is equal to

− lim
R→∞
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(C 12)

(see Appendix B).
Combining the above results leads to

dI

dt
=
Γt

8π

[
− ln

Γt

2π
− γ + 1 +

iπ

2
− E1(−iΩ0t)

]
+
Ψ0t

2

+i

[
Γ

8π
− Ω0g(Ω0)

]
eiΩ0t + O

(
1

t

)
. (C 13)

Integrating once and using appropriate order relations gives

I =
Γt2

16π

[
− ln

Γt

2π
− γ +

3

2
+

iπ

2

]
+
Ψ0t

2

4
+ O(t). (C 14)
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