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THE MOTIONS OF THE SATELLITES OF MARS

A. T. Sinclair

(Received 1971 August 16)

SUMMARY

In the first part of the paper, analytical expressions for the secular and periodic
variations in the orbital elements of the satellites of Mars due to the combined
action of the oblateness of Mars and the attraction of the Sun are developed.
The periodic variations are kept as small as possible by referring the elements to
the appropriate Laplacian planes. In the second part of the paper, improved values
of the arbitrary parameters of the theory are determined by an analysis of all
available observations of the positions of the satellites during the period 1877-~1969.
1t is concluded that the observational data are not sufficiently accurate to determine
the secular accelerations, if any, of the mean longitudes of the satellites.

I. INTRODUCTION

The aim of this investigation is to develop a new theory of the orbital motions
of Phobos and Deimos, the satellites of Mars, and to make a new analysis of all
available observations of their positions in order to provide:

(a) an improved basis for ephemerides of the satellites for use in, for example,
future space-probe missions to Mars; and

(b) more reliable data about Mars and about the controversial secular accelera-
tions of the satellites.

The development of the theory is given in Part I of this paper (Sections 2-8),
while the method and results of the analysis are given in Part II (Sections 9-15).

Earlier work on the orbits of these satellites has been reviewed by Wilkins
(1967, 1968, 1969, 1970), who made a preliminary analysis of the observational
data for the period 1877-1929 to re-determine the orbital elements and who then
used later data in an attempt to determine the secular acceleration of Phobos. He
concluded that the secular acceleration was much smaller than the value that had
been deduced by Sharpless (1945). The character of the residuals that he obtained
suggested, however, that neglected periodic perturbations might be significant.
Further, he made independent solutions for each satellite even though it was
realized that this introduced more unknowns than was necessary, and it did not
permit the direct use of relative measures of the satellites. The elements obtained
did not, in fact, satisfy the consistency relations deduced by Woolard (1944). The
theory developed here does not suffer from these disadvantages.

Phobos and Deimos move in close, nearly circular orbits that are inclined at
small angles to the equator of Mars. The principal perturbations are due to the
oblateness of Mars, but it is necessary to take into account the smaller perturbations
due to the Sun. The masses of the satellites are believed to be very small, and so
their mutual perturbations have been ignored. Non-gravitational forces are not
considered except in so far as the expressions for the mean longitudes may contain
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arbitrary secular terms. Perturbations from other planets are considered to be
negligible.

The sizes of the largest periodic perturbations are estimated in Section 3. It
is apparent that these terms are likely to be very small, but perhaps just detectable
in the geocentric observations. Hence these terms were calculated to remove a
source of possible error. In fact they were subsequently found to be somewhat
smaller than the estimates, and their inclusion in the theory of the motion of the
satellites had an insignificant effect on the mean residuals and standard errors of
the solution.

At first, we used the equator of Mars as the reference plane so that we could use
Brouwer’s Earth-satellite solution (1959) for computing the perturbations due to
the oblateness of Mars. We then found, however, large periodic perturbations due
to the Sun in the inclinations and longitudes of the nodes of the satellites’ orbits.
(The amplitudes are about 0°:5 in inclination and 30° in longitude of the node,
and the periods are about g4 years, for Deimos; these perturbations are con-
siderably smaller for Phobos since it is much closer to Mars.) We therefore found
that it was desirable to follow the more usual procedure and refer the orbital ele-
ments to the so-called Laplacian planes (Tisserand 1896), since by so doing large
periodic perturbations are avoided—the orbital planes precess almost uniformly
on the Laplacian planes since the positions of the latter are chosen so that the
periodic variations due to the oblateness and the Sun just cancel each other. The
precession of Mars itself under the action of the Sun causes the Laplacian planes
to precess; the corresponding additional perturbations have been computed. It
was found that it is sufficiently accurate to treat the orbit of the Sun with respect
to Mars as an ellipse.

The development of the theory has been carried out in quite a general fashion
except in so far as we have normally limited the expansion of the disturbing
function to terms that are larger than about o-0o01, since this is of ample accuracy.
The equations for the variations of the elements were derived from the expansion
of the disturbing function and then integrated to first order to give analytical
series for the perturbations of the elements.

The resulting expressions then formed the basis of a computer program for the
evaluation of the apparent positions of the satellites for any given time of observa-
tion from initial values of the orbital elements and of the parameters defining the
gravitational potential of Mars. These parameters depended on the orientation
of the equator of Mars with respect to the plane of the mean orbit of Mars, the mass
of Mars relative to the Sun, and the coeflicients J2, J3, J4 in the usual notation
in the expression for the potential. (Other terms in the potential are ignored.)

The program also includes the evaluation of the derivatives of the positions
with respect to the arbitrary parameters and the least-squares solution for the
corrections to any chosen set of parameters from the observational data. The
program was used in an iterative fashion for various selections of data in order
that the reliability of the results could be established.

PART I—CONSTRUCTION OF THEORY OF MOTION OF SATELLITES
2. FORMULATION OF THE PROBLEM

The theory of the motion of each satellite is to be developed with respect to an
arbitrary reference plane that passes through the intersection of the planes of the
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equator and orbit of Mars. Later, as explained in the introduction, we shall choose
this plane in such a way as to minimize the periodic perturbations in the orbital
elements. We refer to the reference plane as the Laplacian plane. The relative
positions of the various planes on the celestial sphere at some time ¢ are shown in
Fig. 1. The quantities shown there, and some other quantities which will subse-
quently be required, are defined as follows: '

A is the longitude of the node of the satellite orbit on the Laplacian plane,
from an arbitrary origin; .

g is the argument of the pericentre of the satellite orbit;

f is the true anomaly of the satellite;

I is the inclination of the satellite orbit to the Laplacian plane;

a is the semi-major axis of the satellite orbit;

e is the eccentricity of the satellite orbit;

[ is the mean anomaly of the satellite;

n is the mean motion of the satellite about Mars.

K,g,f,I',a, e, and n' are similar quantities for the orbit of the Sun about
Mars.

x is the angle subtended at Mars between the satellite and the Sun;

y is the latitude of the satellite above the equator of Mars;

g* is the argument of the pericentre of the satellite orbit measured from the
ascending node of the satellite orbit on the equator;

7 is the inclination of the Laplacian plane to the equatorial plane of Mars.

«, B, v, 8, n and 7" are auxiliary angles which will be used only in the derivation of
the expansion of the disturbing function. (After the expansion has been obtained
some of these symbols will be used to represent other quantities.) We see that

y=8-PB 8=¢g~-a
We shall also use the following quantities:

A = [+g+h, the mean longitude of the satellite;

@& = g+h, the longitude of the pericentre of the satellite;

0 =sinl;

O = i+1I’, the inclination of the equator of Mars to the orbital plane of Mars.

The inclination Q is about 25°, but its precise value is to be determined from
the observations of the satellites. The position of the Laplacian plane is determined
by the theoretical relationship between 7 and I’ that is deduced later, subject to the
restraint i+ 1’ = Q. The angles 7 are small, approximately o°-o1 for Phobos and
1° for Deimos.

We assume Mars to be moving in a fixed elliptical orbit. An investigation showed
that the neglected variations in the orbit of Mars have no significant effects on the
motions of the satellites. The Sun moves in a similar elliptical orbit relative to
Mars.

We assume the equator of Mars to be at a constant inclination Q to the orbit of
Mars, and to be precessing around it at a constant rate. Let the longitude (measured
from some suitable origin) of the ascending node of the equator of Mars on the
orbital plane of Mars be P, so that P = P+ Pt, where Py and P are constants to be
determined from the satellite observations.
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Equator of Mars

O Laplacian plane
t g

Orbit of Satellite £

Orbit of Sun

Fi1c. 1. Planetocentric view of reference planes.
S and S’ are the positions of the satellite and the Sun. P and P’ are the pericentres of the satellite
and the Sun. O is the origin of longitude.

OA=h OC =h' SS' =« CD =« DP’ = 3§
AP =g CP =g’ SE=y AD = B DP =y
PS=f P'S =f

BP = g*

The disturbing function for perturbations on the satellite due to the Sun, the

figure of Mars, and the effects of the precession of the equator of Mars is given by

R = Rs+Rp+Rp
where

Rg
Ry

R2S(1/A—r.x'[r'3)
_kM M Z Jn(rofr)® Py(sin y)

Rp = na2(1 —e2)1/2 (—sin I cos kA sin I’ +cos I cos I') P

and &2 is the constant of gravitation;

S is the mass of the Sun;
M is the mass of Mars;
A is the distance between the satellite and the Sun;
r is the position vector of the satellite relative to Mars;
r’ is the position vector of the Sun relative to Mars;
- 7o is the equatorial radius of Mars;
Jn (n = 2, ©) are the zonal coefficients in the harmonic expansion of the
potential of Mars;
Py (n = 2, ©) are the Legendre polynomlals

The mean motions of the satellite and the Sun about Mars, # and 7’ respectively,
are defined by

n2a3 = R2M, n'2q'3 = E2S.

The term Rp is a correction to R to allow for the fact that our reference plane, the
Laplacian plane, is not inertial, due to the precession of the equator of Mars. The
expression for Rp is obtained from expressions given by Goldreich (1965).
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3. EXPANSION OF THE DISTURBING FUNCTION

We now expand the disturbing function in powers of e, 6 = sin I, and ¢'.
For Phobos and Deimos e and 6 are O(10~2) or smaller, and ¢ = 0-09. The
observed distances of the satellites from Mars are always less than 100", and the
observations are given at most to an accuracy of 0”-o1, so we aim to obtain an
accuracy in the computed positions of the satellites of 1 part in 104, This is equiva-
lent to about 20” in the orbital longitude of the satellites.

The part of the disturbing function due to solar perturbations has a factor
(n'[n)2. As n’[n is of order 1073, we see that the only significant perturbations due
to the Sun are those of long period (i.e. those whose arguments are independent
of ), as these terms appear with small divisors. Their arguments depend on g,
h,l', g and %', and their periods are typically of the order of the period of Mars.
Hence their small divisors will be of order »’/n, and so the perturbations in the
elements due to these terms will be of order #’/n, or 1073. So to obtain an accuracy
of 1 part in 104, it will be sufficient to calculate the long-period perturbations to the
first power of ¢, 6 and ¢, and to achieve this it will be necessary to expand the solar
part of the disturbing function to the second power of these quantities, although
terms in e'2 can be neglected as no differentiation with respect to €’ occurs.

For the perturbations due to the oblateness of Mars, we shall calculate terms
due to the first three harmonics, J2, J3 and Js. The perturbations due to Js
appear with a factor Ja(ro/a)?, which is of order 104 for Phobos and smaller for
Deimos. Hence, for these perturbations, we only need calculate terms independent
of e, 8 and ¢’, for which we shall require an expansion of the oblateness part of the
disturbing function to the first power of e and 6.

For the Earth, J3 and J4 are of the order of J22, and we shall assume that the
values for Mars are similar, so the only terms in J3 and J4 we need consider are
the long-period ones, which will have a small divisor of order /5.

The above remarks apply for the perturbations in a, ¢, § and A. The quantities
@ and % occur in the expressions for the positions of the satellites with factors of
e and 0 respectively, and so perturbations in these quantities can be evaluated to
one power less.

We shall evaluate the secular rates of change of the elements to higher accuracy
than that for the periodic terms; to the second power of e, 6 and e’ for A, and to the
first power for & and A.

We propose only to make a solution to first order in Ja. Brouwer (1959)
has shown that long-period terms arise in the second-order solution, and these
terms have a small divisor of order J2, thus becoming terms of first order. How-
ever, it can be seen from Brouwer’s solution that the largest of these terms, in J,
has a factor 62, and is thus negligible for our purposes.

4. THE SOLAR PART OF THE DISTURBING FUNCTION

The solar part of R is
Rg = R2S(1/A—r.1'[r'3)
where ‘
A% = y24+7'2—2r cosx and r.r’ = rr’ cosx.
Hence by expanding 7’/A we obtain

k2S r2 r\3
Rg = — [1 +r—,§(—%+% cos? x)+0(;,) ]
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Now r/r" = O(1077), so the terms of order (/r’)3 are negligible. The term k2S/r’
is independent of the coordinates of the satellite and hence can be ignored. Thus,
putting k2S = n'24'3, we have

2 (g/\3
Rg = n'2q2 (f) (Z,) (—%+3 cos? x).

al \r
From the spherical triangle DSS” in Fig. 1 we obtain

cos? x = cos? (f'+8) cos? (f+y)+sin? (f' +8) sin2 (f+y) cos? 5
+2 cos (f'+8) cos (f+v) sin (f' +8) sin (f+7) cos 7,

where
y=g—B 8=g—oq

and we have the following expansions in elliptic motion (obtained from Cayley’s

tables (1861)):

= c+3¢ cos I'+O(e'2)

—
RS
S —
[}

I

——
&\
S——"
(/)

[«

Q

[/

N

%
i

— %€’ cos I' 4+ cos 21’ + Ze' cos 31’ + O(e'?)
a'\3 . r . : ’ ol ’ ’
(—,) sin 2f" = —4e’ sin I’ +sin 2/’ + Je¢’ sin 31’ + O(e'?)

I+ §e?+ short-period terms

A
QN
v
[2]
l

0 _

(Z) cos 2f = §e?+short-period terms
a
r\2 . .

(—) sin 2f = o+ short-period terms
a

where ¢ = (1—¢'2)73/2, This quantity is not expanded in powers of ¢’ so that a
greater accuracy can be obtained in the secular terms. The neglected short-period
terms bave arguments depending on I.

Hence,

Rs = 3n'2a?[(c+ 3¢’ cos I')(— 4 — 4e2+ (1 + £¢?) cos? )+ §e? cos 2y sin2 x)
+{— %€’ cos (I'+28) + cos (20’ +28) + ¢’ cos (31’ + 28)}
x {(1 +$€?) sin? n+ §e2 cos 2y(1 + cos? 1)} + 5e? sin 2y cos 7
x {— ¢’ sin (I’ +28) +sin (21 + 28) + Ze’ sin (31’ +28)}].
From the spherical triangle ACD in Fig. 1 we obtain
sin 7 sin B = sin I’ sin (b’ — A)
sin7 cos § = —cos I’ sin I+sin I’ cos I cos (' —h)
cos = cos I’ cos I+sin I’ sin I cos (A’ — k)
sin7 cos « = sin I’ cos I—cos I’ sin I cos (k' — k)
sin 7 sin o = sin I sin (A’ —A).
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Putting sin I = 6 and cos I = (1 — 62)1/2 and expanding in powers of 6, we obtain:

cos 2(g— B) = cos (2g+2h—2k") + O(6)
sin 2(g— B) = sin (2g+2h—2A")+ O(0)
cos 2(g' —a) = cos 2g"+O(6)
sin 2(g’— ) = sin 2g"+ O(6)
cos =cos I +0'(0)
cosn = cos? I'+ 0 sin 21" cos (h—H’)
+02[— 1+ sin2 I’ + 1 sin? I’ cos (2h— 2h")] + O(63)
cos 2(g— B) sin2 5 = sin2 I’ cos (2g + 2h—2A")+ O(0)
cos 2(g' —a) sin2 9 = sin2 I’ cos 2’ — O sin I'(1 +cos I") cos (2g' —h+h')
+0sin I'(x —cos I') cos (2g' +h—h')
+ 02[— 2 sin2 I’ cos 2¢’ + }(x + cos I')2 cos (2g' —2h+2k')
+ 3(1 —cos I')2 cos (2¢' +2h—2h")] + O(63)
sin 2(g' — ) sin2 9 = sin2 I’ sin 2¢'— 0 sin I'(1 +cos I") sin (28" —h+ /')
+6sin I'(1—cos I") sin (2g'+h—h')
+ 62[— § sin2 I’ sin 2g" + }(1 + cos I")? sin (2g" — 2h+ 2h')
+ (1 —cos I')2 sin (2g" + 2k —2h")] + O(63).

The neglected terms in the expansions of sin 2(g’—«) and cos 2(¢’ —«) are in fact
of order 8/sin I'. These expansions are only valid because I’ is fairly large, with
sin [’ = o4.

Hence we obtain the following expression for the solar part of the disturbing
function.

Rs = 3n'%a2c[— % — Le2+ (1 + $€2) (cos? I’ + §62 sin2 I’ — 62)]
+ 3n"2a2[c(1 + 2e2) 0 sin 21’ cos (h— h')+ §c62 sin2 I’ cos (2h—2h")
+$e2 sin2 I’ cos (2g+2h—2h')—¢€' cos I’ + 3¢’ cos? I’ cos I’
+2e'8 sin 2I'(cos (I'—h+ k') +cos (I' +h—F"))
— e’ sin2 I’ cos (I + 2g")
+3e'0sin I'(1+cos I') cos (I' +2¢ —h+H')
—1e'0sin I'(1—cos ') cos (I'+2g" +h—H)
+(1+3€2—£62) sin2 I’ cos (21" +2¢')
—0@sin I'(1+cos I') cos (21" +2¢' —h+ 1)
4 6sin I'(1—cos I') cos (21’ +2¢' +h—h')+ 3 sin? I’ cos (31’ +2¢')
—1e'0sin I'(1+cos I") cos (31" +2g —h+H)
+2e'0sin I'(x—cos I") cos (31" +2¢"+h—H)
+302(x +cos I')2 cos (20" + 2g" — 2h +2h")
+ 362(1 —cos I")2 cos (21’ +2g' +2h—2h')
+ 2e2(1 +cos I')? cos (21’ + 2" —2g— 2h+ 21')
+$€2(1 —cos I')2 cos (20’ + 2¢" +2g+2h—2h')].
The first part of Rg gives rise to the secular changes in the elements, and is given
exactly.
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5. THE PART OF THE DISTURBING FUNCTION DUE TO THE
OBLATENESS OF MARS

We shall only consider perturbations due to the J3, J3 and J4 harmonics in
the potential of Mars. Substituting the expressions for the Legendre polynomials,
and putting k2M = n2a3, we obtain the following expression for the oblateness part
of the disturbing function.

2,3
Ry = - [%J ( ) (3 sin2y —I)+1J3( ) (5 sin3 y—3 sin y)
+gJ4( ) (35 sinty— 3osm2y+3)]

From the spherical triangle BES in Fig. 1 we see that siny = sin %’ sin (f+g£%).

As was stated earlier, we need to calculate periodic terms in Ry to the first
power of e and 6, and secular terms to the second power. Also we can neglect any
short-period terms with a factor of J3 or J4 (i.e. terms whose arguments depend
on /). We shall subsequently see that " is a small angle of the same order as I, and
as we are neglecting terms of order sin3/ we may neglect the terms in sin3 y
and sin? y.

Hence we require expressions for

(6)3 sin2 ((1)3 (§)4 sin (‘—1)5 sin2 and (9)5
r Y\7) 7 ¥y y r] ’

sin y = sin %’ (sin f cos g* + cos f sin g¥)

Now

and
sin? y = % sin2 5'(1 — cos 2f cos 2g* +sin 2f sin 2g%)

and we obtain the following expansions from Cayley’s tables (1861):

3

(‘j) = (1—e2)73/24 3e cos I+ periodic terms of order €2
4

(;) cos f = e+ O(e3) + short-period terms
5

(9) = 1+ 562+ O(e?) +short-period terms

5
(%) cos 2f = €2+ O(e?)+ short-period terms

(o o (3t (3w (o

contain only short-period terms.
Hence we obtain

Ry = — in2Jaro?[(1+ $€2) (£ sin n"— 1) — 3e cos l]+ n2J3ro3 e sin 7’ sin g*

an 41‘()

S [3+1562—15 sin2 %].
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From the spherical triangle ABC in Fig. 1 we obtain
cos )’ = cos i cos I—sin ¢sin I cos (A’ — k)
sin 7’ cos (g—g*) = cos i sin I+sin 7 cos I cos (k' —h)
sin %’ sin (g—g*) = sin ¢ sin (A’ —h).
Hence putting sin / = 0 and cos I = (1 — 62)1/2 and expanding in powers of 6 we
obtain
sinn’ sin g* = Osin g+sinésin (g+h—A")+ O(6?, sin? 7)
sin2 7’ = 62+sin2 i+ 0 sin 27 cos (h— A")+ O(63, sin3 7)
giving
Ry = In2Joro?[2+ 32— 302 — 3 sin2 i — 3(1 + $e2) 0 sin 27 cos (h— A")+ 6e cos !]
+53£i n2J%o3ef sin g+ e sin i sin (g +h—1')]
n2J gro’
8a?
The largest periodic terms in J4 have a factor €262J, and have been neglected.

The terms in J3 are very small but have been included as they are the largest ones
occurring.

[3+15¢2—1502—15 sin27].

6. THE PART OF THE DISTURBING FUNCTION DUE TO THE
PRECESSION OF THE EQUATOR OF MARS

We shall put P, the precession rate of the equator of Mars, equal to pn’, so that
p is a dimensionless number. Then expanding Rp in powers of ¢ and # we obtain

Rp = pn'na®(— 0 cos hsin I' +cos I' — }e? cos I' — 162 cos I').

Ultimately we shall attempt to determine p from the satellite observations. How-
ever, an estimate ot its value can be obtained as follows.
The precessional rate is given in terms of the principal moments of inertia of
Mars by
o = _ 3w} (C—4)cos O
2wC(1—e'2)3/2

where w is the angular speed of rotation of Mars.
The moments of inertia can be calculated from

Cc-4
]‘41’02 -

o1

where o is the ratio of the centrifugal acceleration to the apparent acceleration
at the equator of Mars, and f is the flattening of Mars. The flattening is calculated
from

f = $Jo+ 0.
These equations can be found in Kaula (1968).
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Taking the values of J3 and f given by Wilkins (1967) these equations give
p = —108x 1075, corresponding to a period of precession of 173 ooo years. The
effects are therefore unlikely to be significant.

7. CHOICE OF REFERENCE PLANE

The above expansion of the disturbing function is for an arbitrary small value
of . By appropriate choice of 7 we can almost completely eliminate the largest
terms in the disturbing function. The corresponding reference plane is the
Laplacian plane.

In Rs we have the term

$n'2a2(1 — €'2)73/2(1 + $e2) O sin 21" cos (h—H')
and in Ry we have the term
— 3n2J oro%(1 + $€2) 0 sin 24 cos (h— 7).

These terms are of long period and produce large periodic perturbations in the
orbital elements of the satellites (considerably larger, in fact, than any of the other
perturbations). However, they can be almost completely eliminated if we choose
7 so that

2
2n92J 2 (g—g) sin 27 = n'%(1—€'2)~3/2 sin 2(Q —7)

using

I'' = Q—i.
O is the inclination of the orbit of Mars to the equator of Mars, and ag and ng are
the constant parts of @ and # in the final solution. Then the above two terms will

cancel, apart from very small parts due to the perturbations in @ and n which
we shall neglect.

8. SOLUTION OF THE EQUATION OF MOTION

The equations of motion are the usual differential equations for the osculating
elements a, e, I, A, @ and % (see Brouwer & Clemence (1961), p. 284). We change
the equation for 7 into one for 6, and expand the right-hand sides of the equations
in powers of e and 0, retaining only sufficient terms to give the desired accuracy
in the solution. The equations become

da 2 OR

& naon (1)
de _ _ 1 OR (2)
dt  ena? 9%

49 _ _ 1 oR ()
dt  Ona2 oh 3
dA 2 OR 1 oR oR

7 ”Taa*'zn—az("“a;*"‘éa) (4)
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da 1 OR
G ona e )
dh 1 OR
@ = Gnd 36 ©)

where R is to be considered a function of a, e, 6, A, & and A, and # is given by
n2a3 = k2M.

To obtain a first-order solution of these equations we first consider only the
secular part of R (i.e. the part independent of A, & and A). The right-hand sides
of equations (1), (2) and (3) are then zero, giving a solution of the equation of the
form a = aop, e = eg, 0 = 0y, where ag, eg and 0y are constants. We shall define ng
by the equation no2a® = k2M. Substituting this solution in equations (4), (5)
and (6), the right-hand sides become constants, and the equations can be inte-
grated to give a solution of the form

A= o+ (no+on') t

@ = G’)o+ﬂn't

k= h0+yn't
where X, @o and kg are constants, and the dimensionless coefficients «, B and y
are given by

o= F2N0(3—%sin2 1+ 2lep2— 2L 902)

+——(—-1+3s1n21)-—-5F4No pcosl’ (7)

B = gF2N0+§6 (3— 3 sin® I')— 45F4No—p cos I’ (8)
y = -ngNO—K% (3-8 sin? I')+ 35 F4No—p cos I’ (9)

where Fy = Ja(ro/ao)?, F3 = J3(rofao)®, Fy = J4(ro/a0)4 and No = no/n’. It is
found that for Phobos « == 1+, and for Deimos a = 0-066. For both satellites,
B=ajzand y = —B.

We now consider the remaining part of R. Inserting the above solution in the
right-hand sides of equations (1), (2) and (3) the equations become the differential
equations for the periodic perturbations in a, e and 6. They can be easily integrated
to give the following expressions for a, ¢ and 6 (N.B., we have put [ = A— &,
g = a&—h).

a = ao(1+ 3Fze0 cos [) (10)

e = eg+$F5 cos l—§F3No ('Beysmg+ : s1n(g+7i k))

_5eosin? I’
2

5e0(1 +cos I')2

[ A T
4—48

__5eo(1—cos I')?
4+48

4.3

SN cos (28 +2h—2h’)

cos (20’ +2g' — 25— 2h +2k)

cos (2l'+2g’+2g+2fz—2h’)] (11)

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 91 uo 1senb Aq 9G0£092/672/2/SS |/o101HE/SEIUW/ WO dNO DlWSpEoE//:SA)Y WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1972MNRAS.155..249S

FI972NRAS. 1557 “Z495!

260 A. T. Sinclair Vol. 1535
F3Nyey - ps inI’

0 = Op+332V00 ) cos it o
2B—y) T 8No

o [_Hosm I

cos (2h—2h')+ 3 sinal’ o (I'=h +£)
2y 2—2y

_ 3¢’ sin2l cos (l'+5—h’)+e sin I'(1 +cos I")
2+2y 2—2y

cos (I’ +2¢' —h+H)

+e’ sin I'(1 —cos I")
2+2y

_sin I'(14cos I')
2=y

_sinI'(1—cos I')
2+y

_ 7€’ sinI'(1+cos I')
6—2y

cos (I’ +2¢' +h—1')

cos (20’ +2¢' —h+ 1)

cos (20’ +2g' +h—1)

cos (30" +2¢' —h+ 1)

_ 7€' sinI'(1—cos I')
6+2y
+ Bo(1 + cos I")2
4—
__Bo(1—cos I')?
4+4y

cos (30’ +2g' +h—1)

cos (20’ +2g' — 2k +2k')
cos (2l’+2g’+27z-2h’)]. (12)

The perturbation in 4 is below the rejection limit decided upon, but it has been
retained as it is the largest term occurring in a. The periodic terms in equations (4),
(5) and (6) are integrated in a similar manner to give the periodic perturbations
in A, & and 4. The periodic term in a causes a perturbation — 4-579F2eq cos [ in n.
This must be taken into account on the right-hand side of equation (4) but it
produces a perturbation of order egJs in A which is below our rejection limit.
The expressions for A, @ and 4 are found to be

A = do+(no+an') t

.3l _etanl v oo gt ey 300%sin2 17 . ol
16N0[ 8¢’ sin I’ +24¢’ cos? I’ sin [ +—————2y sin (2h —2Ak')

+ 1502 sin2 I’
2
—4¢’ sin? I' sin (I' + 2g") + 4 sin? I" sin (20’ + 2¢")

sin (2§ + 2k —2h')

_7% Slnlz(—I:COSI)sin (' +2g ~h+ 1)
4 20sin I'(1~cos I') (2’ +2¢' +h—F)
2+y

+?3§ ¢ sin2 I’ sin (3l'+2g’)]. (13)
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sin ¢
B

3sin?

& = &O+Bn’t+£~z- sin 2—3—@ No (——0—0— cos £+
2€9 2€0 B—vy

sin (2§ + 2h—2h')+

cos (g'+7i—k'))

’

o1
3 [5 sin® [ sin (21’ +2g")

8Nol 28
+5(1 +cos I')2
4—4B
5(x—cos I')?
+._ SE—
4+48

sin (20’ +2¢’ — 2§ — 2k + 2h')

sin (20’ +2g'+28+2h— zh’)] . (14)

3e0F'3No sg'-—P sin I’
0

sin /

3 [51222;{_ sin (25— 2" — § sin? I sin (2l' +2¢")
3¢’ sin 21’
200(1 )
e sin I'(1+cos I')
290(1 —'y)
_€esinl'(1—cosI’)
200(1+y)
sin I'(1+4cos I")
)
sin I'(1—cos I")
Bo(2+7)
_7e' sinI'(1+cos I')
260(3—7)
e’ sin I'(1 —cos I")
200(3+7)
+ (1 +cos I')?
4—4Y
(1—cos I')2
4+4y

3€’ sin 21’

Sin (l —E+h )+m

sin (I’ + 5 &)

+

sin (I' +2¢' ki + 1)

sin (I'+2¢'+h—h')

sin (20’ +2g'~h+ k)

sin (20’ +2¢' +h—h)

sin (30 +2¢' —h+ 1)

sin (30" +2¢' +h—Fh)

sin (20’ +2¢' — 2k + 2k')

sin (20’ +2¢"+2h— 2h’)] . (15)

PART II—CoMPARISON OF THEORY WITH OBSERVATIONS
9. REFERENCE SYSTEM ADOPTED

In Part I we specified the orbit of Mars by a set of orbital elements. We now
take these elements to be Newcomb’s mean elements of Mars at the epoch 1950-0
referred to the ecliptic and equinox of 1950-0. A test solution for the elements of
the satellites using Newcomb’s elements of Mars at the epoch 1900-0 gave results
insignificantly different from those obtained using the epoch 1950-0. The adopted
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elements of Mars are:

Mean anomaly I’ = 204°5069 +n't

Argument of perihelion w' = 285°9667

Longitude of ascending node Q' = 49°1719

Inclination to ecliptic i = 1°8500

Eccentricity e = 009336

Mean motion n' = 0°52402 07666/day

Mean distance a = 1-5237151 A.U.

n’ and a’ have been given to a large number of figures as in the numerical work 7
and a were measured in terms of these quantities. They satisfy the equation
n'2a’3 = k2S. The time ¢ is measured in days from FED 241 4800-5. We take this
date as our osculating epoch as it is that used by Wilkins (1968) in his solution for
Deimos, and it is close to the centre of the time span covered by the observations.

We have not yet specified our origin of longitude in the Laplacian plane, nor
our origin in the orbital plane of Mars from which the angle P is measured. We
shall take as our origin of longitude in the Laplacian plane the ascending node of
this plane on the orbital plane of Mars (as defined by the elements above). We shall
measure P from the ascending node of the orbital plane of Mars on the ecliptic of
1950-0. The positions of these planes are shown in Fig. 2.

As a consequence of these definitions we find

¢ =w—P, I =180°

Origin of longltude

Equator of ~ Orbital. plane Lp ;gc;lan “Equator of

Earth 1950-0 of Mars Mars Ecliptic
1950-0

Fi1G. 2. Reference planes referred to the ecliptic and the equator of the Earth.

10. EXPRESSIONS FOR THE COORDINATES OF THE SATELLITES

In order to compare the theory of Part I with the observational data it is first
of all necessary to calculate for each time of observation the apparent position
of the satellite relative to Mars as seen from the Earth. It is therefore necessary
to calculate the perturbed values of the elements, then to calculate rectangular
coordinates of the satellite in the reference frame used in the theory. These are
transformed to a geocentric equatorial reference frame, and then the apparent
position of the satellite relative to Mars on the geocentric celestial sphere is calcu-
lated.

As e and 0 are small for both satellites, @ and 7 will be poorly determined, so
we shall use the quantities , v, r and s instead, where # = e cos @, v = esin @,
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r=~0cosh, s=0sinh. Also we shall put up = egcos @9, vo = egsin &y,
ro = B cos hg, so = 0 sin hy.

Now in Part I we put No = ng/n’. We shall also put Ag = ao/a’, and 4 = a/a’.
We shall make no use of the quantity n/n’. If we measure the mass of Mars M in
units of the Sun’s mass, we have No24¢3 = M. Now Ny can be determined from
the observations to a considerably greater accuracy than Ao, so we shall solve for
No and M from the observations, and calculate Ay from the above equation.

We shall put Kz = Ja(ro/a’)?, Kz = Ja(ro/a’)3, Kis = Ja(ro/a’)t. These
quantities are independent of the orbital elements of the satellites, and can thus
be determined from the observations of both satellites.

In view of the interest in the possible secular accelerations of the satellites, we
add an empirical term 722 to the mean longitude of each satellite.

We add a reminder that the angle P in Fig. 2 is given by P = Py+pn’t, and Q
is the inclination of the equator of Mars to the orbital plane of Mars.

So we take as our fundamental constants to be determined from the observa-
tions the following 21 quantities:

No, Ao, uo, vo, ¥o, So, M for each satellite,
M) PO) pa Q, KZ) K3; K4-

We now give a series of formulae to be used to compute positions of the satellites
corresponding to the observed positions, assuming that a set of values of the above
constants is known at the epoch ¥ED 241 4800-5. We assume that all angular
quantities are in radians, so #'t and mf2 must be in radians also.

n't = 0:0091458 87716 (JD — 241 4800-5), where JD is the Julian ephemeris
date of the observation, antedated for light time (see Section 10, page 267).

P = P0+pn’t

I" = 356093+n't, g = 4.9911—P, ¢ = 009336

Ao = MV3Ny—2/3

e0? = up2+v¢2, 02 = ro2 4592, tan &g = voluo, tan Ay = So/ro

Fy = K5[/Ae?, F3 = K3/Ao®, Fy= KisfAe*
¢ = (1—e'?)-32

2N¢?Fz sin 27 = ¢ sin 2(Q—7) (to be solved iteratively for 7)

I'=0-1

o, B and y are now obtained from equations (7), (8) and (9) of Part I.

A = do-+(No+ o) n't+ me2

& = @o+pn't, h = hot+yn't

l=2+&, §=&-

A = Ao(1+3F3ep cos 1)

~ . . 0o2sin2 I’ .
= A — 3 _Qu ' 2 7 +, 300

A N, [ 8¢’ sin I+ 24¢’ cos? I'sin [ +-——~——r sin 2/

2 sin I’
+ Iﬁ’%“i sin (25+ 2F) — 4¢' sin® I’ sin (I’ + 2¢')

+ 4 sin2 I’ sin (21’ + 2¢")
+700 sin I'(1+4cos I")
2=y

sin (20’ +2¢'—h)
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_7bosin I'(x—cos I') .
2+y

+ %8¢’ sin2 [’ sin (30" + 2g')] .

sin (20’ +2¢' + k)

We convert the expressmns for e, 6, & and 4 given by equations (11), (12), (14)
and (15) to expressions for %, v, r and s, giving

u = ug cos Pn't— vos1nﬁnt+7FgcosX+3 3Nogosm}i

2(B-v)
3 | _seosin®l’ =
+8No [ 28 cos &
5eo(1+cosI) 2 [ I 423z
1—2B —4$egsin? I’ cos (21’ + 25— &)
— 2
+ ( %S—I—)— o sin? I’) cos (20’ +2¢' + Z,)] .
v = vg cos 't +ug sin fn't+ §F; sin X— §F3N, (/3 ,, €08 ﬁ—i%l)
3 |seosin2l’ . _
+8No [ 2B sin &
4 (5eolitcos I’ 2 )
W+ 2ep sin sin (20’ +2¢"— &)
(Siq%:f;—ll +3eo sin? I" ) sin (21’ +2¢’ +w)]
r = 79 cos yn't —sp sin yn’t+3 ;NO 04 P sin /
3 | _Gosin2 I’ _ 3y€ sin 21’ ,
A [ 2 cos B cos [
_e sinl gl__"'y'}’ cos I') (' +2¢")
2sin I'(2+y cos I') .,
+ pp cos (20’ +2g")
LGyl g
"2
+ (go(ldr;f:;—l)—+%ﬂo sin? I') cos (21’ +2¢' — k)
- "2
= (M—I4$§;—I)*+%Ho sin2 I’) cos (21'+2g’+ﬁ)],
' 1, 3F3Noeo -
= t f—2 2T
§ = SpCos yn't+rgsinyn 22y cos &
3 [Gosin?I” 3¢ sin2l’ .
+8No [ 2y in k- 1—y2 sin [
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e sinl'(y+cosI’) . ., ,
- - sin (I’ +2g')
+2 sin ('y+: cos I') sin (20’ + 2¢)
4=y
4.7¢ sin I (y+23 cos I') sin (30 + 2¢')
9—¥
"2
+ (M — 30 sin? I’) sin (20’ +2¢'— F)
4—4y
Bo(x — cos 1')2 . ,) . , , ]
+ (———-——————50 sin2 I’ ) sin (20’ +2¢'+A
4+ 4y 200 ( g +h)

Let (X, Y, Z) be the rectangular coordinates of the satellite relative to Mars in
a system in which the X Y-plane lies in the Laplacian plane, and the X-axis points
towards the ascending node of this plane on the orbit of Mars. Let R be the distance
of the satellite from the centre of Mars. Then

X/R = cos (f+g) cos h—sin (f+g) sin k cos I
Y/R = cos (f+g) sin h+sin (f+g) cos & cos I
Z[R = sin (f+g)sin L.

These formulae are not suitable for the calculation of X, Y and Z as they involve
the quantities g and & which are not well determined. If we expand R and f in
terms of the elliptic elements, and ignore powers of e and 6 greater than the second,
we obtain the following formulae used to calculate X*, Y* and Z¥*, where
X* = Xla, Y* = Y/a, Z* = Z]a.
X* = cos A— Zu+u cos 2A+ 4o sin 2A— (42 + §o2 + §52) cos A
+ ($uv + 47s) sin A+ §(u2 — 02) cos 3A+ uw sin 3A.

Y* = sin A— $v+ }u sin 22— }ov cos 22+ (Juv+ 37s) cos A

—(8u2+ 92+ 3r2) sin A— $uv cos 3A+ §(u2—v2) sin 3A.
Z* = rsin A—s cos A— §or + Jus— 3(vr +us) cos 2A+ §(ur — vs) sin 2.
Let (X1, Y1, Z1) be the transformation of (X*, Y*, Z*) to a system in which the
X1Yi1-plane lies in the plane of the orbit of Mars and the X;-axis points towards

the ascending node of this plane on the plane of the ecliptic of 1950-0.
Then

X1 = X*cos P—(Y*cosI'—Z*sin I')sin P
Y1 = X*sin P+(Y* cos I'— Z*sin I') cos P
Zy = Y*sinI'+Z*cosI'.
Let (¢1, m1, 1) be the components of (X3, Y3, Zi) in a system in which the &ym1-

plane lies in the plane of the Earth’s equator of 1950-0, and the £;-axis points
towards the equinox of 1950-0. So we have

&= CN.Xi— SN.CI. Y+ SN.SI.Z,
m = CE.SN.Xy+(CE.CN.CI- SE.SI).Y,+(~CE.CN.SI- SE.CI). Z
¢y = SE.SN.X,+(SE.CN.CI+CE.SI). Y1+(— SE.CN.SI+CE.CI). Zy,

18
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where CE = cose, SE =sine, CN = cos Q', SN =sinQ’, CI = cosi’,
SI = sini’ and € = 23°:44579, the obliquity of the ecliptic at 1950-0.

Most of the observations of the satellites are referred to the true equator and
equinox of date, so for these we apply precession (from 1950-0 to the date of the
observation) and nutation to (¢, 71, {1) to obtain (¢, 3, {).

Some of the photographic observations are referred to the mean equator and
equinox of 19oo-o, so for these we apply precession from 1950-0 to 19o0-0 to
obtain (¢, 7, {).

Other photographic observations are referred to the mean equator and equinox
of 1950-0, so for these we can use (&1, 91, 1) directly.

The transformation from (X, Y1, Z1) to (&, %, {) depends only on known
quantities, so we can compute the transformation matrix for the time of each
observation and store it on a magnetic tape with the details of the observation.

The observed quantities are either the position angle p and distance s of the
satellite relative to the centre of Mars, or ¥ = Aa cos 8 and y = AS, where

Aa = difference between right ascensions of satellite and Mars
Ad = difference between declinations of satellite and Mars
0 = declination of Mars.

We put

o = right ascension of Mars,

p = distance of Mars from the Earth in A4.U.
Then

x = A(a’[p) (n cos a— € sin o)

y = A(a'[p) ({ cos 8 — ¢ sin & cos o—7 sin & sin «)
where

a = 15237151 A.U.
and x, y are measured in radians.

These expressions neglect terms of order (affr)?, etc. Now (affr) is about
4 x 1074 at most, so these expressions give at least four-figure accuracy in x and y
which is sufficient for our purposes.

Then p and s are calculated from

tanp = xfy, 2 = x2+y2,

We convert x, y and s to seconds of arc and p to degrees to correspond to the observa-
tional data. However, when computing the root-mean-square residual of the
observations compared with the theory, we convert the residuals in position angle
to seconds of arc by multiplying by s/57-29578.

The observations of Deimos relative to Phobos are all in terms of x and y.
Let (xpp, ypp) be the coordinates of Deimos relative to Phobos, and (xp, yp)
and (xp, yp) be the coordinates of Deimos and Phobos respectively relative to
Mars. Then

XDP = ¥D—XP, JDP = YyD—YP.

The apparent coordinates of the satellites and Mars relative to the Earth at
time ¢ are given approximately by their geometric positions at time #— 7 relative
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to the position of the Earth at time ¢— 7, where = is the light-time from Mars to
the Earth. This approximation assumes the motion of the Earth to be rectilinear
and uniform during the light-time. Hence we antedate all observation times by
the light-time for that instant, and evaluate the position of the satellite at this ante-
dated time. We obtain the apparent position of Mars at this time by interpolating
a geometric geocentric ephemeris to the antedated time.

We make no parallax corrections for the position of the observer, as the effect -
of parallax on the apparent position of the satellites relative to Mars is negligible.

II. OBSERVATIONAL DATA

G. A. Wilkins has collected all available observations of the satellites of Mars,
and has had most of them punched on cards, with the time of observation ante-
dated for light-time and converted to ephemeris time. The remaining observations
were punched in a similar manner, and all of them were copied on to a magnetic
tape, together with the transformation matrix mentioned in Section 10 and the
coordinates of Mars. It is hoped to publish a list of these observations in some
form in the near future.

The total number of observations on the magnetic tape is 3143, covering a
time span from 1877 to 1969. The observations were regarded as being of equal
weight, and those with residuals greater than 2” were rejected, so in fact 3107
were used, made up as follows:

Deimos relative to Phobos 106
Deimos relative to Mars 1508
Phobos relative to Mars 1493.

Table IV gives the root-mean-square residual for the observations of each observer
at each opposition.

12. METHOD OF CALCULATION

A computer program was written which, for a given set of approximate values
of the 21 arbitrary constants, will compute the position of the satellite from the
formulae in Section 10 at the time of each observation. Hence the residuals O-C
~ are calculated. The derivatives of x, y, p and s with respect to the arbitrary constants
were calculated by differentiating analytically the expressions in Section 10.
The differentiation was done in the following stages.

Derivatives of Ny, A, %, v, 7, s, P, O, Ka, M w.r.t. No, Ao, %9, v, 70, o, Po, p,
Qa KZa K3’ K4, M’ m.

Derivatives of X*, Y* Z* P, I' wr.t. No, A, 4, v, 1, 5, P, O, Ko, M.

Derivatives of £, n, { w.r.t. X* Y* Z* P I'.

Derivatives of x, y w.r.t. £, , { and w.r.t. Ny, M (the latter due to the depen-
dence of x, y on A4).

Derivatives of p, s w.r.t. x, y (if necessary).

Each set of derivatives was expressed as the elements of a matrix, and the
derivatives of x, y (or p, s) with respect to the arbitrary constants were calculated
by multiplying together these matrices. The derivatives are not required to great
accuracy so most of the periodic perturbations were neglected in calculating them.
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The computer program uses these derivatives to make a least-squares solution
for corrections to the arbitrary constants. It can deal with observations of Phobos
relative to Mars, Deimos relative to Mars, and Deimos relative to Phobos, and it
makes a simultaneous solution for the corrections to the elements of both satellites.

Having obtained a corrected set of constants, the program was run again using
this set as the initial values. This process was repeated until successive sets of
constants agreed to within their standard errors, and no further reduction of the
root-mean-square residual was obtained. This convergence generally occurred in
one or two iterations.

Initial values of the constants were obtained from the values of the elements
given by Wilkins (1968). His elements, converted to the reference system used in
this paper, are given in Table III.

13. RESULTS

It was found that the J3 and J4 coefficients of the potential of Mars, and p, the
precession rate of Mars, could not be determined significantly from the observa-
tions. So in the final solution J3 and J4 were taken as zero, and p was given the
value —1°08 x 1075, corresponding to a period of precession of 173 oo years.

TABLE I(a)
Data from solution using all available observations

Epoch JED 241 48005 = 1899 May 255

Phobos Deimos

No (in units of n’) 21525365 + 00009 544 *11497 1 000004
Ao (in radians) 3°242+0°002 4°2540+ 00010
uo —0-0163 +0-0007 —0°0014 + 00003
v —0°0086 + 0°0007 —0°'0014 + 00003
70 0°-0113+0'0010 0°0224 1+ 0°0004
So —0-0132+ 00010 —0°0221 1 0°0004
m (in radians day—2) (0:13+0-02) X 107° (—0'8+0:6)x 10711
Py (in radians) 0:6155+ 00010

(in radians) 0°4401 + 00004
J2 (ro/a’)? (0:4356 +0°0003) X 10712
M (in units of solar mass) (0:3228 +0°0003) x 10~6

TaBLE I(b)

Data from solution omitting observations of 18777, 1879 and 1881

Epoch JED 241 48005 = 1899 May 25-5

Phobos Deimos

Ny (in units of n’) 2152°53%73 +0°0009 544° 11509 + 000004
Ao (in radians) 3:237+0002 4°2510+0-0010
1o —0°-0161 1 0-0007 —0°0009 1 00003
Vo —0°0064 + 00007 —0°0013 + 00003
70 00106 +0°co10 00229 + 0°0004
S0 —0°0159+0°0010 —0°0229 +0°0004
m (in radians day—2) (—o-11to0-02)x 1079 (—5°2t0-7)x 10711
Py (in radians) 0°6168 + 00010

(in radians) 04399 % 0°0004
Ja (ro/a’)? (0+4354 > 0°0003) X 10712
M (in units of solar mass) (032271 0°0003) X 10~
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TasBLE 11
Quantities derived from solution given in Table I(a)

Epoch JED 24148005

Phobos Deimos
Semi-major axis (in 4.U.) (0:6270 +0-0002) X 1074 (1°5683 +0°0004) X 1074
Eccentricity 0'0184 +0-0007%7 00020 + 00003
Inclination to Laplacian 1°-00 +0°:07 1°-80+0°-03
plane (I)
Mean longitude at epoch (o) 185°-74+0° 1 243°+74+0°-06
Longitude of pericentre at 208°+2° 226°+8°
epoch (o)
Longitude of node at epoch 311°44° 315°-4+0°-8
(ko)
Inclination of Laplacian plane ©°-00938 +0°-ooo01 0°-895+0°-001
to equatorial plane of
Mars (7)
Daily mean motion in 1128°-8442 +0°-0010 285°:16192 + 0°- 00004
longitude (ng+ an’)
Daily mean motion of 0°-4345+0°-0004 0°-01814 +0° 00002
pericentre (fn’)
Daily mean motion of —0°-4354 + 0-0004 —0°-01813 +0°-00002
node (yn)
Longitude of node of equator of Mars 35°:27+0°-06
on orbital plane of Mars (Po)
Inclination of equator to Mars to 25°-22+0°+03
orbital plane of Mars (Q)
Ratio of solar mass to mass of Mars 3097000 F 3000
Jaro2 (in A.U.2) (1-0114 +0°0008) X 10712
TaBLE II1
Values of the elements given by Wilkins (1968) converted to the reference system used in this
paper
Epoch JED 24148005
Phobos Deimos
Semi-major axis (in 4.U.) (0-6259 +0°0005) X 1074 (1-5689 + 0-0005) X 1074
Eccentricity o-o18+o0-001 0*0+0°0003
Inclination to Laplacian 0°-9 +o0°-1 1°-80+0°-02
plane (I)
Mean longitude at epoch 186°:6+0°-1 243°-66+0°-05
Longitude of pericentre at 209°+3° 210°+20°
epoch
Longitude of node at epoch 305°+5° 311°°9+0°9g
Daily mean motion in 1128°-8443 + 0°- 0001 285°-16192 + 0°-00001
Iongitude

This value was calculated from the formulae of Section 6, using values given by
Wilkins (1967) for J3 and f. In fact, if the values of J2 and f obtained from our
final solution are used then p is only changed slightly, to —1:07 x 1075,

The solution finally adopted is given in Table I(a). It was obtained using all
observations with residuals less than 2", and gave a root-mean-square residual of
0”550. Formal standard errors are given throughout. The values of certain quanti-
ties derived from those in Table I(a) are given in Table II, together with some of
the quantities in Table I(a) expressed in more conventional units. It can be seen
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that the values obtained for the elements of the satellites are in substantial agree-
ment with those obtained by Wilkins (1968), which are given in Table III converted
to our reference system. In the present solution we have obtained a significant
value for the eccentricity of the orbit of Deimos.

The solution given in Table I(b) was obtained by omitting the observations
of 1877, 1879 and 1881, as it will be shown that these observations give residuals
in longitude that stand out from the general trend. An ephemeris computed using
the values of Table I(b) could well be more accurate at the present time than one
using Table I(a).

A solution was tried in which observations with residuals greater than 1”
were omitted. This caused about 9 per cent of the observations to be omitted,
and gave a root-mean-square residual of 0”-426. However, it produced no significant
changes in the values of the constants.

A solution was tried using the value of the mass of Mars (1/3098600) obtained
from the Mariner IV spacecraft observations (Null, Gordon & Tito 1967). It gave
a very small increase in the root-mean-square residual but gave no significant
changes in the values of the constants.

The periodic terms calculated in Part I were found to be very small, and
omitting them had an insignificant effect on the root-mean-square residual and the
values of the constants.

To calculate J3 and f, the flattening of Mars, from the data in Table I(a), we
need to know values for 7g, the equatorial radius of Mars, and k2. The Mariner IV
observations gave k2M = 42830+ 8 km3s~2, and O’Handley et al. (1970) give
ro = 3393 + 2 km, obtained from Earth-based radar ranging. Then, using the
formulae

f=3J2+4i0—58x%x 1076
(the constant being a correction for second-order terms in J3 and o)

_ 1'00)2
"~ E2Mro~2(1 + 3J2[2) — row?

where o is the ratio of the centrifugal acceleration to the apparent acceleration at
the equator of Mars, and w is the angular speed of rotation of Mars, we obtain

a

J2 = 0°001966 + 0°000003
f = 0°005238 + 0-000009
0 = 0°004590 + 0°000008.

Also we calculate the moment of inertia of Mars from the formula in Section 6,
giving
C|/Mr¢? = 0-376.

Values for the right ascension and declination of the pole of Mars relative to
the mean equator and equinox of date have been calculated from the values in
Table I(a). A period of precession of 173 0oo years was taken for the equator of
Mars. The standard errors given are calculated from the standard errors of Py
and Q.

At the epoch ¢,

o = 317°31+0°05+0°0068 (t—1950-0)
8 = 52°65+0°03+0°0035 (-—1950°0).
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The values of these quantities in current use in the Astronomical Ephemeris are
obtained from de Vaucouleurs (1964), and are

a = 316°55+40°006750 (-—1905-0)
8 = 52°-85+40°003479 (—1905-0).

Table VI gives the number of observations, their root-mean-square residual,
and the telescope used, for each observer at each opposition at which he has
observed the satellites.

TasLE IV
Analysts of observation residuals

No. of R.M.S.

observations residual

Opposition Observer Instrument used (” of arc)
1877 A. Hall (Snr.) Washington 26" 171 0-78
1879 A. Hall (Snr.) Washington 26" 168 0°53
1881 A. Hall (Snr.) Washington 26” 32 056
1888 J. E. Keeler Lick 36” 166 0°51
1890 A. Hall (Snr.) Washington 26” 19 0-81
J. E. Keeler Lick 36” 73 ©°53
1892 A. Hall (Sar.) Washington 26" 70 0-95
W. W. Campbell Lick 36” 179 0°51
1894 W. W. Campbell Lick 36” 734 0°42
S. J. Brown Washington 26” 112 o-65
1896 S. Kostinsky Pulkovo 12” 4 047
S. J. Brown Washington 26" 58 o0-56
W. J. Hussey Lick 36” 8o 0-68
J. M. Schaeberle Lick 36" 116 0°59
1907 H. L. Rice Washington 26” 52 0-57
1909 S. Kostinsky Pulkovo 13” 48 0-61
A. Hall (Jnr.) Washington 26” 220 0°53
1922 A. Hall (Jnr.) Washington 26” 28 065
1924 A. Hall (Jnr.) Washington 26” 137 041
E. C. Bower Washington 26” 85 0-63
1926 A. Hall (Jnr.) Washington 26" 75 0°37
H. E. Burton Washington 26” 107 030
1928 H. E. Burton Washington 26” 16 0°29
1041 H. E. Burton ‘Washington 26” 48 0°59
G. M. Raynsford Washington 26” 26 0°62
1056 R. S. Richardson Mt Wilson 60” 21 0+65
G. P. Kuiper McDonald 82” 44 0-38
Pulkovo ¢” 33 0-84
1963 Kiev 16” 22 077
1967 Pulkovo 9” 52 0-66
Pulkovo 26” 26 0°25
Kiev 16” 36 0°54
Kazan 16” 22 071
Kiev Astrograph 7 0-93
1969 D. Pascu Flagstaff 61” 20 021

I14. SECULAR ACCELERATIONS

The values given for the secular accelerations of Phobos and Deimos in Table
I(a) are greater than their standard errors. (N.B. The acceleration of Deimos is
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negative.) However, further investigation shows that these values cannot be afforded
much confidence.

A solution for the arbitrary constants was made in which the secular accelera-
tions of Phobos and Deimos were given zero values. Then, using this set of con-
stants as initial values, for each opposition a solution was made using only the
observations at that opposition, and the only quantities solved for were corrections
to the mean longitudes at epoch of Phobos and Deimos. The corrections obtained
are interpreted as corrections to be added to the computed longitude to give the
observed longitude, and are given in Figs 3 and 4 for Phobos and Deimos. (At
the opposition of 1963 all the observations were of Deimos, so no correction was
obtained for Phobos.) Any secular acceleration in longitude should show up as a
parabola in these residuals.

1

60

1 A A ) L
1880 i 1900 J 1920 1940 1960

F1G. 3. Residuals in longitude for Phobos.
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F1G. 4. Residuals in longitude for Deimos.
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It can be seen from Fig. 3 that the positive secular acceleration for Phobos
given in Table I(a) is due to the three large positive residuals at 1877, 1879 and
1881. Accordingly a solution was made omitting these observations and is given
in Table I(b). A negative acceleration is obtained for Phobos. Sharpless (1945)
obtained a positive acceleration for Phobos from an analysis of observations from
1877 to 1941. Accordingly a solution was made omitting observations later than
1941. The value obtained for the acceleration of Phobos was close to that of Sharp-
less. In all these solutions a negative acceleration was obtained for Deimos, but
its magnitude varied considerably. The results of all these solutions are given
below, with the secluar accelerations expressed in degrees year—2.

Phobos Deimos
Solution using all observations + 000096 + 0-00016 — 0°000063 + 0:000044
Solution omitting 1877, 1879, —0°00083 + 0°00019 — 0000396 + 0:000056
1881 observations
Solution omitting observations + 0°001%70 + 0°00029 — 0000182 + 0:000094
after 1941
Values obtained by Sharpless + 000188 + 000025 — 0000266 + 0-000243

From these results it would seem that the observations of the satellites are not
sufficiently accurate to show conclusively if the longitudes of the satellites are
affected by secular accelerations but a small negative acceleration is indicated for
Deimos.

Even if the large residuals in longitude of the early observations are believed,
the general trend of the residuals does not correspond particularly well to a parabola
that would be caused by a secular acceleration. The general trends of the residuals
are remarkably similar, which suggests that they could perhaps be due to systematic
timing errors. An error of 1 minute in time would cause a residual in longitude of
0°78 for Phobos and 0°-20 for Deimos. However, we cannot see how systematic
timing errors of the order of a few minutes necessary to explain the observed
residuals could arise.

In a recent paper (Shor, Glebova & Sorokina 1971) the observations of the
satellites are re-examined by a method similar to that used by Sharpless. Observa-
tions up to 1956 are used, and a value for the secular acceleration of Phobos of
(or101 * 0'011) X 1077 deg day—2 [or 0-00134 + 0-0001 5 deg year—2] is obtained.

I5. CONCLUSIONS

It is found that the periodic perturbations in the motions of the satellites are
very small, and have little noticeable effect on their positions as seen from the
Earth. Also, perturbations due to the J3 and J4 coefficients in the potential of
Mars, and due to the precession of the equator of Mars, are not large enough for
the determination of these quantities. The observations are not sufficiently accurate
to show conclusively if the longitudes of the satellites are affected by secular accelera-
tions. The values obtained for the orbital elements of the satellites are basically in
agreement with those obtained by previous investigators. However, the values
obtained, and in particular those determining the position of the equator of Mars,
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should be more accurate than previous values due to the longer time interval
covered and the use of a more complete theoretical model of the motions of the
satellites. Also the values derived for J3 and f should be superior to previous values
due to the use of more accurate values of 79 and k2M.

ACKNOWLEDGMENT

The author 1s very grateful to Dr G. A. Wilkins for suggesting this problem,
for many helpful suggestions and advice, and for the use of his collection of
observations of the satellites.

Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, Sussex

REFERENCES

Brouwer, D., 1959. Astr. ¥., 64, 378-397.

Brouwer, D. & Clemence, G. M., 1961. Methods of Celestial Mechanics, Academic Press,
London.

Cayley, A., 1861. Mem. R. astr. Soc., 29, 191—306,

Goldreich, P., 1965. Astr. ¥., 70, 5—-9.

Kaula, W. M., 1968. An introduction to planetary physics, John Wiley, New York and
London.

Null, G. W., Gordon, H. J. & Tito, D. A., 1967. Jet Propulsion Laboratory Technical Report,
No. 32-1108.

O’Handley, D. A., Melbourne, W. G., Goldstein, R. M., Morris, G. A. & Downs, G. S.,
1970. Bull. Am. astr. Soc., 2, 211-212.

Sharpless, B. P., 1945. Astr. ¥., 51, 185-6.

Shor, V. A., Glebova, N. I. & Sorokina, L. 1., 1971. Astr. Circulars No. 617, 3-6, Astr.
Council Academy Science, U.S.S.R.

Tisserand, F., 1896. Traité de Mécanique Céleste, 4, 91.

Vaucouleurs, G. de, 1964. Icarus, 3, 236—47.

Wilkins, G. A., 196%7. Mantles of the Earth and Terrestrial Planets, 77-84, ed. Runcorn, S. K.,
John Wlley, London.

Wilkins, G. A., 1968. Modern Questions of Celestial Mechanics, 221—40, ed. Colombo, G.,
Edizione Cremonese, Rome.

Wilkins, G. A., 1969. Nature, 224, 789.

Wilkins, G. A., 1970. Symposia Mathematica. Istituto Nazionale di Alta Matematica,
Vol. I11, 29—43. Academic Press, London.

Woolard, E. W., 1944. Astr. ., 51, 33-6.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snBny 9. uo 1senb Aq 9G0£092/672/2/SS |/o10IHE/SEIUW/WOD dNO DlWSpEsE//:SARY WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1972MNRAS.155..249S

