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We revisit the issue of the Mott transition across the actinide series from the
perspective of the spectral density functional approach to realistic dynamical mean-
field theory. We stress both qualitative insights from the connection with models
and quantitative results.

1 Introduction

The Mott transition, namely the metal–insulator transition (MIT) driven by
electron–electron interactions, is a fascinating phenomenon realized experimentally
in many compounds such as V2O3 and Ni(Se,S)2. It was suggested many years ago
by Johansson that the Mott transition concept is also relevant to elements in the
lanthanide and actinide series.1 The development of dynamical mean–field meth-
ods, and the solution of the Mott–transition problem within this methodology, has
spurred the development of new electronic structure methods, and qualitative and
quantitative insights into the physics of actinides. Johansson’s observation placing
Pu near a localization delocalization boundary is a key to understanding this com-
plex material and other localization–delocalizatoin transitions such as the α to γ
transition in elemental Cerium. The appropriate technique for developing this idea
is the dynamical mean-field method.2
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Figure 1. A schematic phase diagram of partially frustrated Hubbard model from ref6
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Non self–consistent studies of alpha gamma Cerium have appeared in ref.3 In
section 2 we discuss some qualitative aspects of the physics which are less de-
pendent on microscopic detail, and that can be understood by allowing volume
fluctuations in the model Hamiltonian phase diagram. Quantitative work on Pu4

using a framework described in section 3 will be discussed in section 4, in relation
to other methods.

2 4f and 5f Electron Systems : Qualitative Discussion

The development of the dynamical mean–field theory (DMFT) has clarified a great
deal the workings of the localization delocalization transition or crossover. It was
shown formally, in ref,5 that the low energy description of the Mott transition
within DMFT is a Kondo model satisfying a self consistency condition.

There are two phase diagrams which summarize the results of many investiga-
tions.2 The first one one exactly at integer filling, is described in figure 1. The finite
temperature transition between the localized and extended regime as a function of
the ratio of the interaction U to the bandwidth, takes place via a first order transi-
tion.2 At high temperatures the phase diagram of ref6 displays two crossover lines.
The dotted line in fig. 2 is a coherence incoherence crossover (i.e. the continuation
of a Uc2 line where metallicity is lost). The second crossover region (explicitly indi-
cated as a crossover in fig. 2 ) is a continuation of a Uc1 line, where the insulating
behavior disappears because the temperature becomes comparable with the gap.

Introducing a finite chemical potential to allow for density changes leads to the
schematic phase diagram described in fig 2.7 It is a natural extension of the previous
phase diagram, indicating various regions of phase coexistence. At a generic doping
driven finite temperature Mott endpoint the compressibility diverges.7

To understand the structure of materials, one needs to include the effect, allow-
ing the relaxation of other degrees of freedom, in addition to the ones included in
the simple Hubbard model,8.4 These degrees of freedom include the various defor-
mations of the unit cell necessary to reach the different crystal structures and the
actual volume of these materials, as well as additional bands.

We now present a simple qualitative argument connecting the model Hamil-
tonian phase diagrams 1 and 2 and a striking feature of Smith–Kmetko phase
diagram.9 The minimum and the melting temperature correlates with the loca-
tion of the Mott transition point which occurs near the Mott transition between
Neptunium and Plutonium. According to the Clausius–Clayperon equation, at the
melting curve:

dT/dp =
Vs − Vl

Ss − Sl
(1)

A minimum in the melting curve requires that Vs − Vl changes sign as pressure is
varied. The stable phase at low pressure resembles the more localized–like solution
whose volume is larger than that of the liquid phase, to allow for spin-orbital
entropy gain, while at high pressure the state is described by the more itinerant
solution which has a volume smaller than that of the liquid to gain kinetic energy
(this is done via an increase of the hybridization term in a realistic multiband

many4: submitted to World Scientific on October 28, 2001 2



c1µ (T)

µ c2(T)

U :> Uc2

U
MIT

< U< Uc2 :

:U >>Uc2

U :~< UMIT

U :> UMIT

U :< Uc1

Coexistence
region 

T

 

~

~

U

µ

U

Figure 2. Schematic phase diagram for the degenerate Hubbard model. The cross sections shown
are on the T -µ plane for different values of U . µc1 (the heavy line) Uc1 are the chemical potential
and interaction respectively at which the insulating solution gets destroyed. µc2 (the dotted line)
and Uc2 are the chemical potential and interaction at which the metallic solution gets destroyed.
UMIT is the value of the interaction at which the MIT takes place. The shaded regions are where
the metallic and the insulating solutions coexist.
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Figure 3. Schematic drawing of the free energy vs volume, obtained by allowing the volume to
fluctuate in a system near the Mott transition. The larger volume has lower energy and could
be identified with the delta phase of Pu, while the smaller volume has higher free energy and
represents a caricature of the alpha phase

description). The essential point is that the volume of the liquid phase varies
slowly with pressure, while the volume of the solid phase varies very rapidly near
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the Mott transition endpoint where the compressibility diverges. As a result the
position of the zero in eq. 1, when the system passes near the Mott transition
endpoint.

Notice that a similar minimum occurs near the critical pressure necessary to
transform alpha to gamma Cerium, supporting an universal mechanism related to
the closeness of a finite temperature Mott endpoint.10

Allowing the coupling of volume fluctuations to the Mott transition point, results
in a double-minimum structure in the energy vs volume curve,8.4 The larger vol-
ume minima corresponds to the solution which is more localized, while the smaller
volume minima can be continued from the more itinerant state in the coexistence
region of the phase diagram in fig 1. This situation may explain the unusual neg-
ative thermal expansion observed in delta Pu if the activation energy to the more
itinerant metastable minima is small enough to overcome the usual positive ther-
mal expansion arising from thermal fluctuations inside a single minima in which
case the total volume described by

V (T ) = Vδ(T ) + Vα(T )e−E/T (2)

can decrease as temperature increases.

3 FUNCTIONAL FORMULATION AND HYBRID SCHEMES

There are many problems where only some degrees of freedom are strongly interact-
ing, requiring sophisticated and (computationally costly ) many–body techniques
while other degrees of freedom cannot be ignored but can be handled by simpler
methods such as density functional theory (DFT).

The basic idea to merge DFT and DMFT is to introduce two relevant variables:
the density and the local Green function. The latter is defined by projecting the
full Green function onto a separate subset of correlated orbitals distinguished by
the index a from a complete set of orbitals χa(r − R) ≡ χαR (labeled by α) of a
tight–binding representation which we assume for simplicity to be orthogonal. It is
therefore given by a matrix Ĝ with elements11

Gab(iω) = − 〈
ca(iω)c+b (iω)

〉
=

−
∫
χ∗

a(r)
〈
ψ(r, iω)ψ+(r′, iω)

〉
χb(r′)drdr′. (3)

We then construct a functional Γ[ρ, Ĝ] of both ρ and the local Green function
Ĝ(iω) which gives the exact free energy at stationary point. This generalizes the
effective action construction used in connection with either pure dynamical mean–
field functionals11 or pure density functionals.12 It amounts to first considering the
partition function of the interacting electron gas, in the presence of a static source
coupled to the density and dynamic source coupled to the local spectral function,
and, second, carrying out a Legendre transformation with respect to those sources.
This functional can be constructed formally in perturbation theory, however its
explicit form is not available just as is the case in density functional theory. The
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success of DMFT in model Hamiltonians suggests a useful approximation to the
exact functional, namely the LDA+DMFT functional which allows us to compute
total energies in addition to providing a consistent derivation13 of the realistic
LDA+DMFT equations which had been formulated earlier.14

In terms of the density the local Greens function, their conjugate fields and a
local interaction matrix Û we write down the DMFT+LDA functional:

ΓLDA+DMFT (ρ, VKS,Ĝ, Σ̂) = −
T

∑
iω

tr log[iω + ∇2 − VKS − Σ] −
∫
VKS(r)ρ(r)dr −

∑
iω

TrΣ̂(iω)Ĝ(iω) +

∫
Vext(r)ρ(r)dr +

1
2

∫
ρ(r)ρ(r′)
|r − r′| drdr

′ + ELDA
xc [ρ] +

Φ[Ĝ] − ΦDC . (4)

Φ[Ĝ] is the sum of local diagrams constructed with the local interaction matrix
Û , and the local heavy propagator Ĝ, which are two particle irreducible. ΦDC

is the so called double counting term which subtracts the average energy of the
heavy level already described by LDA. We write it here in its simple form, when
only one Slater integral is included in the approach:, i.e. ΦDC = Ū n̄(n̄ − 1)/2
with n̄ = T

∑
iω,abGab(iω)eiω0+

(see Ref.15 for its general form). Other choices of
the double counting correction have also been used in the context of the LDA+U
method.

An explicit form of Φ[Ĝ] is unavailable. Furthermore its perturbative expansion
is very misleading a fact that was recognized very early on16 and lead to a refor-
mulation in terms of atomic quantities and a Weiss field. This insight, leads us to
relate Φ[Ĝ] to the free energy of an atom in a medium, Wat . The atom described
by an action Sat. To do it we introduce the second central concept of DMFT: the
Weiss field G−1

0 representing the quadratic part of the action Sat

Sat[G−1
0 ] =

∫
ττ ′

∑
ab

c+a (τ)G−1
0ab(τ, τ

′)cb(τ ′) +

∫
τ

∑
abcd

Uabcdc
+
a (τ)c+b (τ)cc(τ)cd(τ) (5)

Ĝ−1
0 = Ĝ−1

at −∆̂ where Ĝ−1
at describes the quadratic part of the action of the isolated

atom, and ∆̂ describes the bath surrounding the atom. It is the bath that added to
the atomic action produces the desired local Green function i.e. 〈cac+b 〉Sat = Gab.

We can now relate the sum of local graphs Φ[Ĝ] to the free energy of the atom in
the medium Wat = − log

∫
exp[−Sat] via

Φ[Ĝ] = Wat[Ĝ−1
0 ] − Tr(Ĝ−1

0 − Ĝ−1)Ĝ− Tr log Ĝ. (6)
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The functional (4) can be viewed as a functional of four independent variables,
since the stationary condition in the conjugate fields reproduces the definition of
the dynamical Kohn–Sham field and the Weiss field. Extremizing it leads us to
compute the Green function Gab(iω), (3) with the Kohn–Sham potential entering
Hk

αβ (this matrix is just an expression of the one particle Kohn Sham Hamiltonian
in a tight binding basis) and with

Σab(iω) =
δΦ

δGab(iω)
− δΦDC

δGab(iω)
, (7)

which identifies Σ(iω) as the self–energy of a generalized Anderson impurity model
in a bath characterized by a matrix of levels

εab =
∑
k

Hk
ab (8)

hybridized with the medium via hybridization function ∆ab(iωn). The matrix
δΦDC/δGab(iω) = Ū(n̄ − 1/2) takes into account the double counting effects of
Coulomb interaction already contained in matrix Hk

ab. The hybridization function
∆ab(iω) obeys the self–consistency condition

iω − εab − ∆ab(iω) = Σab(iω) +[∑
k

[iω − Ĥk − Σ̂(iω)]−1

]−1

ab

(9)

The self-consistent loop with respect to ∆̂(iω) and Σ̂(iω) is known as DMFT
loop which amounts to: (i) fixing some input hybridization ∆̂(iω), (ii) solving the
Anderson impurity model and extracting the impurity Green function and self–
energy Σ̂(iω), and (iii) recovering a new hybridization function ∆̂(iω) from the
Eq. (9) after performing the k integration. Since the charge density depends on
Σ̂(iω), another self–consistent loop is required to obtain the extremum of Eq. (4).
It updates the charge density once the DMFT loop delivers the self–energy, which
modifies the one–electron Hamiltonian (hopping integrals). The new hoppings set
up a new set of impurity levels and we see that the solution of eqs.(7)–(9) should
carried out in a double iterative loop: the DMFT loop one finds Σ̂(iω) for given ρ
while the global one (DFT like) updates ρ. This framework was fully implemented
recently, and resulted in quantitative insights into the delta phase of Plutonium4

4 Delta Plutonium: DMFT view and comparison with other
methods

δ Pu is an anomalous metal. To begin density functional calculations grossly un-
derestimate its volume by up to 35%.17–19 . If the f electron is included as core,
then density functional grossly overestimate the volume. This is very anomalous
since even in strongly correlated materials such as the high–temperature super-
conductors, LDA predicts volume with 5% accuracy and even phonons with good
accuracy.
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A second puzzle has to do with the nature of the α phase. This phase’s volume
is correctly predicted by LDA. The transport and thermodynamic properties of α
and δ are very similar, and have received so far no explanation. For a review see,20

more recent measurements were performed by.21

Several approaches have been implemented to address these puzzles. The
LDA+U method was applied to δ Pu in.18, 19 It is able to produce the correct
volume of the delta phase, for values of the parameter U consistent with first prin-
ciples calculations. The drawback of this method is that its inability to predict
correct excitation spectrum. The group in Los Alamos, has proposed a constrained
LDA approach in which 4 of the 5f electrons, are treated as core, while the remain-
ing one is allowed to participate in band formation.22 The dynamical mean–field
theory has been fully implemented and applied to this problem in.4

To compare the results of the dynamical mean–field calculations with the LDA
and LDA+U methods as well as with the experiments, we discuss the results pre-
sented on Fig. 4. Fig. 4(a) shows the calculated density of states for δ Pu in
the vicinity of the Fermi level (solid line)4 in comparison with the photoemission
data.21 Both the quasiparticle peak and the lower and upper Hubbard bands can
be clearly distinguished in this plot. The corresponding comparison within the local
density approximation is shown on Fig. 4 (b). The LDA produces two peaks near
the Fermi level corresponding to 5f5/2 and 5f7/2 states separated by the spin-orbit
coupling. The Fermi level falls into dip between these states and cannot reproduce
the features seen in photoemission. Moreover the value of the density of states is
too small to account for the measured specific heat. Fig. 4(c) shows the compar-
ison between our calculated density of states using the LDA+U method18 (solid
and dashed lines) and the photoemission data (symbols). Two curves (solid and
dashed) for the LDA+U calculations correspond to different double counting terms
of the LDA+U method. We see that LDA+U fails completely to reproduce the
intensity of the f-states near the Fermi level as it pushes the f-band 2-3 eV below
the Fermi energy. This is the picture expected from the static Hartree-Fock the-
ory as the LDA+U. Only full inclusion of the dynamic effects within the DMFT
allows to account for both the quasiparticle resonance and the Hubbard satellites
and explain all features of the photoemission spectrum in δ Pu
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