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Abstract Simplified models of railway tracks can provide quick reply to some fundamental 
issues. However, when nonlinear effects like irreversible ballast deformations are important, 
a detailed model involving all structural details is preferable. Such a model can be solved by 
the finite element method, but then it is difficult to choose the correct (i) size of the model, (ii) 
size of the finite elements and (iii) type of boundary conditions. Techniques based on a 
moving window method could overcome some of these difficulties. The moving window 
method is based on the assumption that the load is kept still, while the track model (or a part 
of it) moves in the direction opposing the originally supposed load movement. This can be 
accomplished by several techniques, from which the simplest one is to shift the results of the 
current time step against the load. Nevertheless, in commercial finite element software such 
an operation is usually protected against inappropriate usage. Alternatively, some results of 
the current time step can be moved in form of initial conditions for the next time step, but 
then, if the boundary conditions are violated, the results can start to diverge from the 
pretended objective.  
In this contribution two new techniques are proposed. The enhanced moving window method 
is introduced and implemented in commercial finite element software. In addition, and for 
handling irreversible nonlinearities, an approach based on time-dependent boundary 
conditions on the front and rear faces of the moving window is established. The methods 
proposed have several advantages, some of them are listed as: (i) the model itself can be 
rather small, but the time dependent results can cover an arbitrarily large model; (ii) quasi-
stationary results can be obtained; (iii) in the linear case the effect of a set of loads can be 
achieved by superposition of previous results; (iv) in the nonlinear case the effect of repeated 
loads can be accounted for by implementation of the time-dependent boundary conditions. 
Several one- two- and three-dimensional case studies are analyzed. Influence of various 
parameters is studied. Accuracy is verified by comparison with analytical solutions or with 
results of the long simulation on large models. L2-norm is used for accuracy evaluation. 
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1. INTRODUCTION 

Railway transportation is facing the challenge of tailoring the railway system for the 21st 

century in order to improve its competiveness with airway transport. This increases demands 
on creating new lines, on modernization of existing lines and on increasing the capacity of the 
whole railway network. As a consequence, new issues related to the dynamic response of 
railway tracks to the moving load are still arising. It is necessary to have an efficient 
computational tool giving quick response with sufficient accuracy to the arising questions. 

Simplified models of railway tracks are widely used because they can quickly provide a 
simple reply to some fundamental issues and have several other advantages [1, 2]. However, 
when nonlinear effects like irreversible ballast settlements are important, then a complete 
model involving all structural details is preferable. Such a model can be solved by the finite 
element method, but then it is difficult to choose the correct (i) size of the model, (ii) size of 
the finite elements and (iii) type of boundary conditions. The model itself must be large 
enough in order to eliminate satisfactorily transient effects due to a sudden placement of the 
load on the structure and, on the other hand, small enough to be computationally accessible. 
The edges of the finite elements must be sufficiently small in order to represent adequately 
propagating waves. The Rayleigh superficial waves have the lowest velocity of propagation, 
when compared with the shear and pressure waves. In soft soils it can be lower than 100m/s. 
The excitation frequency of the oscillating part of the moving load can be around 500-
1000rad/s (for velocity 50-100m/s and sleepers spacing of 0.6m), which implies the wave 
lengths around 1-0.5m. Consequently, the elements on the subgrade surface should have the 
largest edge around 0.1-0.05m in soft soils. The boundary conditions are even more delicate 
issue. The dynamic analysis of solids of infinite dimensions with discrete methods such as 
finite elements calls for the use of special boundary that are normally referred to as absorbing, 
silent, anechoic, nonreflecting or transmitting boundaries, or, alternatively, as infinite 
elements. The purpose of these special boundaries or elements is to prevent wave reflections 
at the edges of the mathematical models used, which, by necessity, must remain finite in size. 
A number of these boundaries have been proposed in the past with recourse to various 
mathematical or physical principles. It was proven in [3] that all of them are mathematically 
equivalent, and therefore they must have comparable wave-absorbing attributes. 
Unfortunately, none of the transmitting boundaries can fully prevent all possible reflections 
under the full range of possible incident angles. 

Some of the difficulties named above could be overcome by implementation of the moving 
window method. In the moving window method the load is kept still, and the finite element 
model of the railway track moves in the direction opposing the originally assumed load 
movement. This can be achieved by several ways. Either the finite elements are altered in 
order to implement the effect of the load velocity [4], or results are shifted against the load. 
Sometimes it is possible to pull only a part of the model at a steady speed, for instance an 
imaginary strip containing the wheel/rail irregularities. This procedure is called the moving 
irregularity model [5]. In [6] a beam on elastic foundation subjected to a moving force was 
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considered. The deflection and velocity profile of the current time step were translating back 
and used as initial conditions for the next time step. Procedure was implemented in the 
Newmark method. The moving window method is also implemented in [7]. In [6, 7] the rail is 
modeled as simply supported beam and no care is taken about reflected waves, the beam 
lengths are 30m and 62.4m, respectively, which cannot be considered as a very long beam.  

A shift of results is not simple to accomplish in commercial finite element software, because 
such an operation is usually protected against inappropriate using the software. Therefore 
other considerations must be taken into account. One of the new contributions of this paper is 
the establishment and implementation of the Enhanced Moving Window Method (EMWM) in 
commercial finite element software. The method is tested on one-, two- and three-dimensional 
models. It is shown that the quasi-stationary response of an infinite structure can be obtained 
with sufficient accuracy, which significantly reduces the calculation time by reduction of both 
the model size and the necessary analysis time. The quasi-stationary (quasi steady-state) 
response of an infinite structure subjected to one single load can be numerically obtained by 
the so-called long simulation on a large model (LSLM). In the first part of the EMWM the 
window is formed around the load and the boundary conditions used on the front and rear 
faces of the window in fact reflect the situation where equally spaced loads travel on an 
infinite structure. These loads are distributed in the way that each load stays within one 
window and the quasi-stationary response beyond it is negligible. It will be shown that such a 
result corresponds to a satisfactory approximation of the quasi-stationary response induced by 
a single load on an infinite structure. After that other boundary conditions can be implemented 
by means of one recovering step. 

The EMWM can be simply generalized to account for periodically distributed 
inhomogeneities in the longitudinal direction. The EMWM is also valid in the geometrically 
nonlinear range and reversible physically nonlinearity range if the same loading and 
unloading paths are followed. In the linear case the effect of a set of loads can be obtained by 
superposition. However, in order to implement (i) a set of loads in the nonlinear case and (ii) 
an irreversible physical nonlinearity (e.g. plasticity), further consideration must be taken. As 
another new contribution of this paper, it is suggested to solve these issues by time-dependent 
boundary conditions (T-DB). At first, quasi-stationary results are obtained for reversible 
nonlinearities. Then these results are used to provide the time dependent boundary conditions 
on front and rear faces of the model. Loads are placed on the finite element track model and 
let travel until they reach the front face. Subsequent loads are placed on the model with 
accumulated plastic deformations. When the distance of the subsequent loads is too small, 
they must be placed at the same time. In this case the time dependent boundary conditions 
should be obtained by superposition of the previous results. When the distance between loads 
is large enough, the model is let free of loads until the next load is placed.  

The EMWM solves the problem of the boundary conditions on the front and rear faces of the 
model. Regarding the bottom face, other considerations must be taken. In reality the soil, 
when subjected to a certain loading history, has the ability to memorize the highest level of 
loading, which can be mathematically represented by the over-consolidation ratio and initial 
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void ratio. In its virgin state, the soil deformability is relatively high. But following the 
unloading/reloading path shows almost negligible deformation until the highest stress the soil 
has experienced ever before is reached again [8]. The so-called active depth (zone), which 
stands for the depth of the deformable soil, is not very high and can be determined 
experimentally. In this contribution the active depth is assumed to have a certain value. Then 
a method is proposed to define the boundary conditions on the bottom surface allowing 
reducing the model depth.  

The EMWM has the following limitations: (i) only subcritical velocities can be considered, 
because the significant deflection field must be limited; (ii) at least light damping must be 
added. Implementation of supercritical velocities could only be possible under very high 
damping in order to keep the significant deflection field limited within a reasonable model 
size, otherwise, the main gain, which is the computational time reduction, is lost. Some of the 
advantages are listed as: (i) the model itself can be rather small, but the time dependent results 
extracted can cover an arbitrarily large model; (ii) nonlinearities can be introduced; (iii) 
calculation time is acceptable; (iv) transmitting boundaries on the front and rear faces of the 
model do not have to be implemented in the first part. 

The EMWM and its extension by the T-DB is implemented in the ANSYS software [9]. 
Numerical procedures are automated using the ANSYS Parametric Design Language. 
Accuracy is verified by comparison with analytical solutions and long simulations on large 
models. The L2-norm is used for accuracy evaluation. The paper is organized in the following 
way: in Section 2, one-dimensional case studies are analyzed. In Section 3, two-dimensional 
cases are presented, either with or without the periodic inhomogeneities. Further, in Section 4, 
extensions by the T-BD are described and irreversible nonlinearities are implemented. In 
Section 5, three-dimensional case studies are given and the paper is concluded in Section 6. 

2. ONE-DIMENSIONAL CASE STUDY 

2.1. The improved window method 
Let an infinite beam on a visco-elastic foundation traversed from left to right by a uniformly 
moving load be assumed. Such a problem has an analytical solution in form of a quasi-
stationary response, which is well-documented in several works, e.g. in the monograph [10]. 
Numerically these results can be obtained by the so-called LSLM. This means that the load 
should be firstly imposed quasi-statically at a reasonable distance from the rear extremity of a 
long beam, and then let to travel in the direction to the front extremity until its deflection, 
velocity and acceleration profiles stabilize. Such a procedure is time consuming. Especially 
for velocities close to the critical one there is a significant part of the transient response which 
must be numerically attenuated.  

The moving window method creates a window of reduced dimensions around the load and 
moves the model instead of the load. Generally, this method should allow studying non-
homogeneous effects and other influences. However, commercial software is usually 
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protected against results movement to other positions where these results are used as the 
previous time step response and thus should be used in the next time step.  

There is the possibility to extract the displacement and velocity fields, shift them in the sense 
opposite to the assumed load movement and use them as initial conditions. Such a procedure 
is numerically sensitive. First of all, if results are shifted in a standard way, any kind of 
boundary conditions will not be satisfied by the initial fields, as it is shown in Figure 1.  

 
 

 

 

 
Figure 1. Standard results shifting – issue 1. 

For instance, let 1n  be the rear boundary node and mn  the front boundary node (m stands for 
the total number of nodes). If results obtained in the time step kt  will be shifted, then the 
result ( )1nr  in 1n  will not be used but the result ( )2nr  which was obtained in the interior node 

2n  will be placed in the rear position without fulfilling the boundary conditions. On the other 
hand ( )mnr  will be placed in an interior node and a result to be applied on the boundary node 

mn  is missing. Another issue is that the initial conditions in form of displacement and velocity 
fields do not recreate the acceleration field correctly, because the relative position of the load 
is different, as it is demonstrated in Figure 2.  
 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Standard results shifting – issue 2. 
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These facts seem to be of low importance. The discrepancies are not noticeable in first time 
steps, but along the time interval the small numerical errors accumulate until the solution 
loses its numerical stability. Several possibilities of shifting schemes and boundary conditions 
were tested. It was concluded that the best numerical performance is achieved when: (i) the 
model window is selected in the way that the response field beyond the window is negligible; 
(ii) for quasi-stationary solution the periodic boundary conditions are imposed; (ii) the time 
steps are separated in two parts: in the first part the results just obtained are used as initial 
conditions that are shifted back together with the load and a conveniently small time step tΔδ  
is applied in order to reaplicate the acceleration field; in the second part the load moves 
forward, and the step is completed to tΔ  as it is explained in Figure 3. We will name the 
method as Enhanced Moving Window Method (EMWM). 

 
 

 

 

 

 

 

 

 
Figure 3. The first part of the EMWM. 

The EMWM is numerically stable. Nevertheless, in order to obtain pretended results with 
acceptable error and efficiently, three issues must be carefully considered: (i) the size of the 
window; (ii) the size of the elements; (iii) the level of damping. If the window size is too 
large, the computation will be unnecessarily long, while if it is too small then the stabilized 
results will not correspond to the infinite model. The element size will naturally help to 
improve accuracy; the damping will speed up the convergence. If no damping is assumed, 
then the transient part of the response will not attenuate. No numerical instability occurs, the 
deflection field will oscillate around the quasi-stationary solution and a very low decreasing 
tendency in L2-norm of the difference field is observed. It is worthwhile to mention that for 
the beam structure, besides deflection and velocity fields, rotation and rotational velocity 
fields must also be considered. 

In the case study of this section the beam is modeled as two UIC rails and the load 
corresponds to a common value of the axle load, P=200kN. Numerical input data are 
summarized in Table 1. A very soft foundation is chosen in order to visualize better the 
deflection field. The method is tested with respect to the beam length, the element size, the 
load velocity and the level of damping. The accuracy is evaluated by L2-norm of the 
difference field, determined as subtraction of the analytical and numerical solutions. 
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Implementation of a realistic damping behavior is not a simple task. It is impossible to 
introduce geometrical damping in such a simplified model. Material damping should 
encompass both the internal friction in the beam (usually assumed as viscous damping and 
defined by the damping ratio) as well as the damping of the geomaterial representing the 
foundation. The material damping of the foundation is commonly expressed by a damping 
coefficient c of distributed dashpots, which is a value independent of frequency. In fact, this 
coefficient should be attributed to the hysteretic damping, which is more adequate for 
geomaterials. 

Property Beam (2 UIC60) 
Young’s modulus E (GPa) 210 

Poisson’s ratio 0.3 
Density ρ  (kg/m3) 7800 

Transversal section area A (m2) 153.68·10-4 
Moment of inertia I (m4) 6110·10-8 

Bending stiffness EI (MNm2) 12.831 
Foundation stiffness k  (MN/m2) 1 
Mass per unit length μ  (kg/m) 119.8704 

Table 1. Characteristics of 2UIC60 rails. 

In this paper the damping is defined by the equivalent distributed damping coefficient 
assuring the same level of damping in lightly damped scenarios, derived and justified in [11] 

 μξ kc 22= . (1) 

Relation (1) means that practically same results are obtained if either damping in rails is 
defined by the damping ratio ξ  (and no damping is attributed to the foundation) or the 
damping coefficient c is given by (1) and no damping in rails is assumed, or any combination 
of these values. It is necessary to point out that the critical damping of the infinite beam on 
elastic foundation is defined differently and depends on the load velocity, [10] 

 ( )( )323
27
22 4242 ++++−= qqqqk

q
ccr μ  (2) 

where 

 4
2

4kEI
v

v
vq
cr

μ
==  (3) 

In ANSYS software the damping specified in the case studies was introduced as the mass 
damping.  
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2.2. Results stabilization and convergence 
At first, the results stabilization and convergence is tested with respect to the beam length. 
Beam lengths of 200m, 60m and 36m are considered.  

 
Figure 4. Results comparison on a reduced length: the analytical solution (grey solid line) versus the EMWM 

solution (black dotted line), 500th and 30th time step on the left and right figures are shown, respectively.  

 

 
Figure 5. EMWM results on a reduced length, 200th (grey solid line) and 500th time step (black dotted line).  
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The other numerical input data are: the element size de=0.2m, the load velocity v=50m/s and 
the damping ratio ξ =0.1. This means that the equivalent damping coefficient of the 
foundation is c=3097Ns/m2, which can be introduced in ANSYS software as mass coefficient 
α =25.83s-1. In this case the critical velocity is vcr=244.47m/s, thus q=0.205 and 
ccr=67229.2Ns/m2. Therefore this level of damping represents 4.6% of the critical damping. In 
Figure 4 the EMWM results on a reduced length of 200m-long beam are shown. It is seen that 
the results coincidence is excellent and that it was satisfactory after the 30th time step. In 
Figure 5 it is verified that there is no lack of numerical stability in the EMWM. Full results 
comparison is done after 200 and 500 time steps. The 500th time step represents in this case 
100m load travelled distance. In Figure 6 the deflection field obtained for the beam lengths 
L=36m and 200m are compared. 

 
Figure 6. Results comparison. Numerical results correspond to 90th time step, the number in parentheses stands 

for the beam length.  

 
Figure 7. Convergence rate represented by L2-norm of the difference field, comparison of different beam lengths. 

The convergence rate is evaluated by plotting the L2-norm of the difference field. In Figure 7 
it is seen that the beam length does not contribute to the convergence rate. In the legend the 
number of iterations means the same as the number of time steps. One might remark that the 
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integral is taken over very different domains, nevertheless, the extension from L=36m to 
L=60m and L=200m is by insignificant displacement values, therefore the comparison is 
meaningful. It is seen, however, that the error tends to a fixed value, impossible to remove. 
The final error is attributed to small oscillations around the analytical deflection, which stay at 
the same positions, and are formed around insignificant values. These inaccuracies could be 
improved by reducing the element size. In Figure 8 a detail of the deflection field is shown on 
the 36m-long beam with element sizes de=0.2m and 0.1m, respectively.  

 
Figure 8. Detail of the displacement field: improvements attributed to the element size.  

2.3. Velocity and damping influence 
At first, the EMWM is tested with respect to the load velocity. In Figure 9 it is seen that 
analytical and numerical results match for v=100m/s, 150m/s and 200m/s on beam lengths 
L=24m, 30m and 36m, respectively (de=0.2m).  

In addition, it is shown that the rate of the convergence can be highly improved by the 
damping increase. It is known that the presence of damping distorts the quasi-stationary 
deflection to a non-symmetrical shape. A highly damped case (ξ =1, which means 46% of the 
critical damping) is tested in order to confirm better the coincidence with the analytical 
solution. In Figure 10 results are presented for L=24m, v=50m/s and de=0.2m. 

Further, the damping influence on the convergence rate is tested. Results are presented in 
Figure 11 for v=50m/s, L=36m, de=0.1m and ξ =0, 0.1 and 0.05, respectively. It is confirmed 
that the case without damping has very low convergence rate. In Figure 12 it is shown 
extension to 20000 iterations (time steps). 



Z. Dimitrovová1* and A.F.S. Rodrigues1 

 11

 

 
Figure 9. EMWM results convergence: v=100m/s (top left), 150m/s (top right) and 200m/s (bottom); analytical 

(grey solid line) versus numerical results (black dotted line). 

 
Figure 10. Results convergence in highly damped case. 
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Figure 11. Convergence rate represented by the L2-norm of the difference field: comparison of different damping 

values: ξ=0 (black dotted line), ξ=0.1 (black dashed line), ξ=0.05 (black solid line). On the right extension to 
20000 iterations of the undamped case is shown together with the linear trend line. 

2.4. Set of loads and time dependent boundary conditions 

It is useful to present the extension of the EMWM allowing accounting for more loads. When 
the forces are relatively close to each other, they can be placed on the structure at the same 
time. Alternately, in the linear case, results can be superposed. The results in Figure 12 
correspond to deflection field induced by two equal forces P=200kN distanced by 3m. The 
effect of successive loads can be studied more efficiently by introduction of the T-DB. This 
means that once the quasi-stationary results are obtained, they can be used in form of 
boundary conditions, while the load is moving on the structure. For consecutive loads the 
corresponding boundary conditions are obtained by superposition.  

 
Figure 12. Effect of two forces: comparison with superposition of the analytical results.  

The implementation of the T-DB can be made by two approaches. In the first approach the 
load is placed in the middle of the structure and moved to the right, while the rear beam 
extremity is fixed and the front beam node movement is directed by the results obtained 
previously. In the second approach the structure is reduced by half, the load is placed in the 
rear node and moved to the front node, while both beam extremities are directed by the T-DB. 
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Small differences in results are detected because only displacements and rotations can be 
imposed in the rear and front nodes of the structure. Results are summarized in Figures 13 and 
14. In these figures the deflection fields obtained are shifted back for visualization and 
comparison with the quasi-stationary shape.  

 
Figure 13. The T-DB: first approach.  

 

Figure 14. The T-DB: second approach.  

 
Figure 15. The T-DB approaches comparison by the L2-norm of the difference field (red solid line – first 

approach, violet solid line – second approach).  
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The error is analyzed by the L2-norm in Figure 15. It can be concluded that the performance 
of both approaches is practically the same. 

3. TWO-DIMENSIONAL CASE STUDY 
In the two-dimensional case studies two models are considered. In the first one a beam is 
placed on a soil and in the second one, besides these components, sleepers and ballast layer 
are also modeled. The beam corresponds to two UIC60 rails and the soil is characterized by 
pressure and shear waves velocities of propagation vp=187m/s, vs=100m/s and density of 
1850kg/m3. The properties of other components are summarized in Table 2. 

Property Sleeper Ballast 
Young’s modulus E (GPa) 30 0.2 

Poisson’s ratio 0.2 0.1 
Density ρ  (kg/m3) 2054 1850 

Depth (m) 0.2 0.6 
Length (m) 0.2 --- 

Table 2. Characteristics of sleepers and ballast. 

The EMWM is firstly verified on the first model. Then, on the second model the EMWM 
extension to periodic inhomogeneities in the longitudinal direction is validated. For the sake 
of simplicity sleeper dimension is matched to the element size de=0.2m. Their distance is kept 
as 0.6m. The plane elements in the ANSYS model are assumed under plane strain conditions.  

3.1. Model depth 

In the two-dimensional case study it is important to set correctly the model depth and the 
boundary conditions on the bottom line. It is incorrect to approximate the soil layer by the 
semi-infinite elastic plane. Deep soil layers are usually much stiffer and, moreover, the soil 
memorizes the highest level of loading and shows almost negligible deformation until the 
highest stress the soil has experienced ever before is reached [8]. The so-called active depth 
(zone), which stands for the depth of the deformable soil, should be determined 
experimentally. At such a level the boundary displacements can be fixed.  

It is proposed a reduction of the model depth by representative springs and viscous boundary 
according to [12]. The representative distributed elastic springs are defined as: 

 
( )

( )( )( )hH
E

hH
kn −−+

−
=

−
+

=
νν
νμλ

211
12

, (4) 

 ( )( )hH
E

hH
kt −+

=
−

=
ν

μ
12

, (5) 

where nk  and tk  stand for the spring rigidities in normal and tangential directions, 
respectively, and λ , μ , E, ν  are elastic constants: two Lame´s constants, Young´s modulus 
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and Poisson´s ratio of the omitted soil. H represents the active depth and h the depth of the 
soil in the model. For non-homogeneous active depth the spring constants must be composed. 

First of all, results independence on the model depth is analyzed. The active depth is chosen 
as H=12m and the model depth h is varied between 10m, 8m, 6m and 4m. No analytical 
results are available, therefore the EMWM results are compared with the LSLM results in 
Figures 16, 17 and 18. Very good results coincidence is obtained until h=6m. In Figure 16 the 
beam stabilized deflection is shown. All deflections shown in this figure should be coincident, 
because the results should not depend on the model depth for a fixed active depth. It is seen, 
however, that for the shallow model (h=4m) the discrepancies are already too large. It was 
verified by the LSLM that they are attributed to the representative springs definition and not 
to the EMWM. In Figures 17 and 18 the vertical and horizontal displacements in the vertical 
soil cut under the load are plotted. It is seen that coincidence in vertical displacements under 
the load is excellent, while discrepancies can be found in horizontal displacements. The 
horizontal displacements are one order less than the vertical ones, therefore the absolute error 
is not very significant. 

 
Figure 16. Beam vertical deflection: black dotted line stays for the LSLM; h in the legend represents the model 

depth, red dotted line marks the results which are deviated from the correct ones.  

 
Figure 17. Soil vertical deflection under the load: black dotted line stays for the large model; h in the legend 

represents the model depth, red dotted line marks the results which are deviated from the correct ones.  

Nevertheless, it can be concluded that the definition of the horizontal springs should be 
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improved. In all presented cases the damping is defined by ξ=0.1 and a representative spring 
of the full soil layer calculated according to equation (4) with h=0. These two values define c 
by equation (1), which yields the mass coefficient α=15.28s-1 to be introduced in the ANSYS 
software. 

 
Figure 18. Soil horizontal deflection under the load: black dotted line stays for the large model; h in the legend 

represents the model depth, red dotted line marks the results which are deviated from the correct ones.  

The effect of different velocities is analyzed on the shallow model of h=4m. Results are 
plotted in Figure 19. 

 
Figure 19. Beam vertical deflection: velocity influence on the shallow model (values in the legend are in m/s).  

Further, the second model is tested. The geometry detail of the shallow model (h=4m) is 
shown in Figure 20. Depending on the required precision, calculations take 10-30 minutes. 

 
Figure 20. The geometry detail of the second model: the shallow version with h=4m.  
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The extension to periodic non-homogeneities is tested by results independency on the starting 
load position. Perfect results coincidence is obtained. Displacement fields are shown in the 
full model in Figures 21 and 22.  

 

 

 
 

 

 

 
Figure 21. Vertical displacement field of the full (H=h=12m)and the shallow model (h=4m): the detail of the 

LSLM results (left) and the EMWM results (right). Values are in [m], the legend of the LSLM is on the top of 
figures and of the EMWM on the bottom of the figures.  

 

 

 

 
 

 

 

 
Figure 22. Horizontal displacement field of the full (H=h=12m)and the shallow model (h=4m): the detail of the 
LSLM results (left) and the EMWM results (right). Values are in [m], the legend of the LSLM is on the top of 

figures and of the EMWM on the bottom of the figures.  
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Detail of the LSLM and EMWM results on the same model length of 36m are compared for 
h=12m and h=4m. Similarly as in the previous case, it is confirmed that the discrepancies in 
the shallow model are attributed to the representative horizontal spring definition and not to 
the EMWM. 

4. TIME-DEPENDENT BOUNDARY AND PLASTICITY 

In this section the extension of the EMWM by the T-DB is presented in order to account for 
irreversible nonlinearities. For the sake of simplicity a test case with no connection to railway 
applications is chosen for the preliminary analysis. The first model from Section 3 is selected 
with the active depth and the model depth as H=h=4m and the model length as L=36m.  

 

 
 

 
Figure 23. Equivalent plastic strain (above) and stress (bellow, in Pa) obtained by the application of the EMWM. 

 

 

 

 
Figure 24. Equivalent plastic strain (above) and stress (bellow, in Pa) obtained by the application of the extended 

EMWM by the first approach of T-DB. 

The bilinear von Mises plasticity with isotropic hardening is added to the soil behavior. The 
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yield stress is introduced as 10kPa and the tangent modulus of elasticity as 35MPa. Firstly, it 
is confirmed that by simple implementation of the EMWM the plastified regions are only 
concentrated below the load, which means that the regions plastified previously completely 
recovered, which does not correspond to the reality (Figure 23). In Figure 24 results obtained 
by the extension of the EMWM by the first approach of the T-DB are presented. Results 
presented must be confirmed by the LSLM. Introduction of realistic ballast failure behavior is 
the subject for the further research. 

5. THREE-DIMENSIONAL CASE STUDY 
The three-dimensional case study models the real railway track documented in [13]. For the 
preliminary results the model is simplified by symmetry and only one substrate layer of h=2m 
is implemented. It is further assumed that the active depth is equal to this depth, i.e. that 
H=2m. The rail pads influence is omitted and thus a rigid connection between the rail and 
sleeper is introduced. A three-dimensional model has one more boundary which has not been 
discussed in this paper yet. It is the lateral boundary. This boundary is modeled as the viscous 
boundary according to [12].  

 
Figure 25. The three-dimensional model of 15m length. 

 
In Figure 25 the geometry of the model is shown. The stabilized results obtained by the 
EMWM after 15 iterations are compared with the results obtained on a longer model of 30m 
by the LSLM. Some differences are detected, especially for lower velocities, but it is 
necessary to point out, that the 30m-long model is not large enough to be representative. In 
the large model the viscous boundary is also applied on the front and rear faces. 

6. CONCLUSIONS 
In this paper two new approaches are presented. They are designated as the EMWM and 
extension o this method by the T-DB. Both methods are numerically stable. These methods 
have as its objectives: (i) determine the quasi-stationary response to a moving load; (ii) 
account for consecutive loads and accumulated irreversible nonlinearities. Cases studies 
presented demonstrate that the objectives are fulfilled.   
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