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Abstract

We consider the logic mso+u, which is monadic second-order logic extended with the unbounding
quantifier. The unbounding quantifier is used to say that a property of finite sets holds for sets
of arbitrarily large size. We prove that the logic is undecidable on infinite words, i.e. the mso+u

theory of (N, ≤) is undecidable. This settles an open problem about the logic, and improves a
previous undecidability result, which used infinite trees and additional axioms from set theory.
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1 Introduction

A celebrated result of Büchi is that the monadic second-order (mso) theory is decidable for
the structure of natural numbers with order

(N, ≤).

Stated differently, satisfiability of mso is decidable over infinite words. This paper shows that
the decidability fails after mso is extended with the unbounding quantifier. The unbounding
quantifier, denoted by

UX. ϕ(X),

binds a set variable X and says that ϕ(X) holds for arbitrarily large finite sets X. As usual
with quantifiers, the formula ϕ(X) might have other free variables beside of X. Denote by
mso+u the extension of mso by this quantifier. The main contribution of the paper is the
following theorem.

◮ Theorem 1.1. The mso+u theory of (N, ≤) is undecidable.

A corollary of the main theorem is undecidability of the logic mso+inf, which is a logic
on profinite words defined in [14], because decidability of mso+u reduces to decidability of
mso+inf. Another corollary is that the satisfiability on weighted infinite words is undecidable
for the logic amso introduced in [1], again because of a reduction from decidability of mso+u.
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Background

The logic mso+u was introduced in [2], where it was shown that satisfiability is decidable
for formulas on infinite trees where the U quantifier is only used once and not under the
scope of set quantification. A significantly more powerful fragment of the logic, albeit for
infinite words, was shown decidable in [5] using automata with counters. These automata
were further developed into the theory of cost functions initiated by Colcombet in [10]. The
decidability result from [5] entails decidability of the star height problem.

The difficulty of mso+u comes from the interaction between the unbounding quantifier
and quantification over possibly infinite sets. This motivated the study of wmso+u, which is
the variant of mso+u where set quantification is restricted to finite sets. On infinite words,
satisfiability of wmso+u is decidable, and the logic has an automaton model [3]. Similar
results hold for infinite trees [7]. The results from [7] have been used to decide properties
of ctl* [9]. Currently, the strongest decidability result in this line is about wmso+u on
infinite trees extended with quantification over infinite paths [4]. The latter result entails
decidability of problems such as the realisability problem for prompt ltl [13], deciding the
winner in cost parity games [11], or deciding certain properties of energy games [8].

While the above results showed that fragments mso+u can be decidable, and can be used
to prove results not directly related to the logic itself, it was not known whether the full logic
was decidable. The first evidence that mso+u can be too expressive was given in [12], where
it was shown that mso+u can define languages of infinite words that are arbitrarily high in
the projective hierarchy from descriptive set theory. This result was used in [6], where it was
shown that, modulo a certain assumption from set theory (namely v=l), the mso+u theory
of the complete binary tree is undecidable. The result from [6] implies that there can be no
algorithm which decides mso+u on the complete binary tree, and which has a correctness
proof in the zfc axioms of set theory. This paper strengthens the result from [6] in two ways:
first, we use no additional assumptions from set theory, and second, we prove undecidability
for words and not trees.

2 Vector Sequences

It is clear that extending mso by the ability to express precise equality of some quantities,
like set sizes, immediately leads to undecidability. The idea behind our undecidability proof
is to show that, under a certain encoding, mso+u can express that two vector sequences
have the same dimension. We begin by presenting some observations about vector sequences.

Define a number sequence to be an element of Nω, and define a vector sequence to be an
element of (N∗)ω, i.e. an infinite sequence of vectors of natural numbers of possibly different
dimensions. We write f , g for vector sequences and f, g for number sequences. If f is a
number sequence and f is a vector sequence, then we write f ∈ f if for every position i, the
i-th number in the sequence f appears in one of the coordinates of the i-th vector in the
vector sequence f . For example, the relationship f ∈ f is satisfied by

f = 0, 0, 0, . . . f = (0), (1, 0), (2, 1, 0), (3, 2, 1, 0), . . .

Number sequences are called asymptotically equivalent if they are bounded on the same sets
of positions. For example, the sequence of squares is asymptotically equivalent to every
number sequence with infinite lim inf. A vector sequence f is called an asymptotic mix of
a vector sequence g if every f ∈ f is asymptotically equivalent to some g ∈ g. A vector
sequence of dimension d is one where all vectors have dimension d.
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◮ Lemma 2.1. Let d ∈ N. There exists a vector sequence of dimension d which is not an

asymptotic mix of any vector sequence of dimension d − 1.

Proof. In the definitions above, a sequence is a family indexed by natural numbers – formally,
a function from the indexing set N to some universe. Since the definition of asymptotic mix
does not use the order structure of the indexing set, in the proof of this lemma we allow
families to be indexed by other countable sets, namely by vectors of natural numbers. All
notions introduced above lift to the setting of families indexed by a fixed countable set. By
induction on d, we will prove the following claim about vector families indexed by N

d. We
claim that the d-dimensional identity

id : Nd → N
d,

is not an asymptotic mix of any vector family

g : Nd → N
d−1.

The induction base of d = 1 is vacuous. Let us prove the claim for dimension d assuming
that it has been proved for smaller dimensions.

Toward a contradiction, suppose that the d-dimensional identity is an asymptotic mix of
some g : Nd → N

d−1. Consider the subset of arguments {0} × N
d−1. The first coordinate of

the d-dimensional identity is bounded on this subset, namely it is zero, and therefore there
must be some g ∈ g which is bounded on this set. By permuting the vectors in g, without
loss of generality, we assume that the first coordinate of g is bounded on arguments from
{0} × N

d−1. Let

g′ : Nd → N
d−2

be the vector family obtained from g by removing the first coordinate. Let

πi : Nd → N with i ∈ {2, . . . , d}

be the projection onto the i-th coordinate, which satisfies πi ∈ id. Therefore, each πi must
be asymptotically equivalent to some gi ∈ g. Let Xi ⊆ N

d be the set of arguments x where
gi agrees with the first coordinate of g. In other words, when restricted to arguments outside
Xi the projection πi is asymptotically equivalent to some gi ∈ g′. Since the first coordinate
of g is bounded on the set {0} ×N

d−1, it follows that there is some ci ∈ N such that Xi does
not contain any arguments which have zero on the first coordinate and at least ci on the
i-th coordinate. Taking c to be the maximum of all c2, . . . , cd, we see that none of the sets
X2, . . . , Xd intersects the set

X = {(0, n2, . . . , nd) : n2, . . . , nd ≥ c}.

It is easy to observe that the vector family

(0, n2, . . . , nd) ∈ X 7→ (n2, . . . , nd) (1)

is an asymptotic mix of g′ (restricted to X), which is a vector family of dimension d − 2.
This contradicts the induction assumption, because the vector family in (1) is the (d − 1)-
dimensional identity, up to reindexing. ◭

A vector sequence is said to have bounded dimension if there is some d such that all
vectors in the sequence have dimension at most d. A vector sequence is said to tend to

STACS 2016
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infinity if for every n, all but finitely many vectors in the sequence have all entries at least n.
We order vector sequences coordinatewise in the following way: we write f ≤ g if for every
i, the i-th vectors in both sequences have the same dimension, and the i-th vector of f is
coordinatewise smaller or equal to the i-th vector of g. A corollary of the above lemma is the
following lemma, which characterises dimensions in terms only of boundedness properties.

◮ Lemma 2.2. Let f1, f2 be vector sequences of bounded dimensions which tend to infinity.

Then the following conditions are equivalent:

1. on infinitely many positions f1 has a vector of higher dimension than f2;

2. there exists some g1 ≤ f1 which is not an asymptotic mix of any g2 ≤ f2.

Proof. Say that two vector sequences are asymptotically equivalent if they have the same
dimension d, and for each coordinate i ∈ {1, . . . , d} the corresponding number sequences are
asymptotically equivalent. Vector sequences that tend to infinity are maximal with respect
to asymptotical equivalence in the following sense: if a vector sequence f of fixed dimension d

tends to infinity, then for every vector sequence h of the same dimension there exists an
asymptotically equivalent vector sequence g ≤ f (to obtain such g, on each coordinate of
each position we can take the minimum of the two numbers appearing in this place in f and
h). A corollary of this observation is that if f2 is a vector sequence of bounded dimension
which tends to infinity, then every vector sequence at each (or at each except finitely many)
position having dimension smaller or equal to the dimension of f2 is an asymptotic mix of
some g2 ≤ f2. This corollary gives the implication 2→1 in the lemma.

For the implication 1→2, we use Lemma 2.1. Let d1 be such that on an infinite set X ⊆ N

of positions f1 has dimension d1 and f2 has a smaller dimension. By Lemma 2.1, there is a
vector sequence

h : X → N
d1

of dimension d1 which is not an asymptotic mix of any vector sequence of smaller dimension.
As we have observed, h is asymptotically equivalent to some g1 ≤ f1 (when restricted to
positions from X), because f1 tends to infinity on all coordinates. Therefore, g1 is not an
asymptotic mix of any g2 ≤ f2 on X, since such a vector sequence g2 has strictly smaller
dimension. We can arbitrarily extend g1 to all positions outside of X, and still it will not be
an asymptotic mix of any g2 ≤ f2. ◭

3 Encoding a Minsky Machine

We now use the results on vector sequences from the previous section to prove undecidability
of mso+u. To do this, it will be convenient to view an infinite word as a sequence of finite
trees of bounded depth, in the following sense. Consider a word

w ∈ {1, 2, 3, . . . , n}ω

which has infinitely many 1’s. We view such a word as an infinite sequence of trees of depth
(at most) n, denoted by tree(w), as described in Figure 1.

The key to the undecidability proof is the following lemma, which says that, in a certain
asymptotic sense, degrees can be compared for equality. Here the degree of a tree node is
defined to be the number of its children.

◮ Lemma 3.1. There is an mso+u formula, which defines the set of words

w ∈ {1, 2, 3}ω

which have infinitely many 1’s and such that tree(w) has the following properties:
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depth 1

depth 2

depth 3

w = 1 12 223 33 3323 33 33 3 3 23 3

...

...

Figure 1 An example of tree(w) for n = 3. Formally speaking, the leaves of tree(w) are positions

with label n, while the tree structure is defined by the following rule. For 1 ≤ i < n, two leaves

which correspond to positions x and y with label n have a common ancestor at depth i if and only if

there is no position between x and y which has label in {1, . . . , i}. In particular, if between x and y

there is a position with label 1, then x and y are in different trees of the sequence. Note that the

mapping w 7→ tree(w) is not one-to-one, e.g. in the picture, the first 2 just after the first 1 could be

removed from w without affecting tree(w).

(a) the degree of depth-2 nodes tends to infinity;

(b) all but finitely many nodes of depth 1 have the same degree.

Proof. Condition (a) is easily seen to be expressible in mso+u. One says that for every
infinte set of depth-2 nodes, their degrees are unbounded.

Let us focus on condition (b). Fix a word w with infinitely many 1’s as in the statement
of the lemma. For an infinite set X of depth-1 nodes, define

fX : N → N
∗

to be the vector sequence, where the i-th vector is the sequence of degrees of the children of
the i-th node from X. Condition (a) says that if X is the set of all depth-1 nodes, then fX

tends to infinity, which implies that fX also tends to infinity for any other infinite set X of
depth-1 nodes.

Call two sets X, Y of depth-1 nodes alternating if every two nodes in X are separated by
a node in Y , and vice versa. Condition (b) is equivalent to saying that

depth-1 nodes have bounded degree;
one cannot find infinite alternating sets X, Y of depth-1 nodes such that infinitely often
fX has strictly bigger dimension than fY .

The first condition is clearly expressible in mso+u. The second condition, thanks to
Lemma 2.2, can be restated as: one cannot find infinite alternating sets X, Y of depth-1
nodes such that there is some gX ≤ fX which is not an asymptotic mix of any gY ≤ fY .
This is expressible in mso+u (the quantification over vector sequences gX ≤ fX amounts to
selecting a subset of depth-3 nodes that are descendants of nodes in X). ◭

Minsky Machines

To prove undecidability, we reduce emptiness for Minsky machines to deciding mso+u. By
a Minsky machine we mean a (possibly nondeterministic) device which has a finite state
space, and two counters that can be incremented, decremented, and tested for zero. It is
undecidable whether a given Minsky machine has an accepting run, i.e. one which begins in
a designated initial state with zero on both counters, and ends in a designated final state.

STACS 2016
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degree n2degree n1degree n2degree n1

degree d degree ddepth 1

depth 2

depth 3

depth 4

...

Figure 2 A sequence of trees as in Lemma 3.2. Here d = 2, n1 = 3, and n2 = 2.

Let ρ be a finite run of a Minsky machine of length d. We say that a vector of natural
numbers (n1, . . . , n2d) describes the run ρ if, for i = 1, . . . , d, the numbers n2i−1, n2i store
the value of the two counters in the i-th configuration of ρ. Note that this description does
not specify fully the run ρ, as the state information is missing. The following lemma contains
the reduction of Minsky machine emptiness to satisfiability of mso+u.

◮ Lemma 3.2. For every Minsky machine, one can compute a formula of mso+u which

defines the set of words

w ∈ {1, 2, 3, 4}ω

which have infinitely many 1’s and such that tree(w) has the following properties, which are

illustrated in Figure 2:

(a) the degree of depth-3 nodes tends to infinity;

(b) all but finitely many depth-1 nodes have the same degree d;

(c) for every i ∈ {1, . . . , d}, all but finitely many depth-2 nodes that are an i-th child have

the same degree, call it ni;

(d) n1 − 1, . . . , nd − 1 describe some accepting run of the Minsky machine.

Proof. Condition (a) is clearly expressible in mso+u.
We say that a sequence of trees of depth 3 is well-formed if the degree of depth-2 nodes

tends to infinity, and that it has almost constant degree if all but finitely many depth-1
nodes have the same degree. Lemma 3.1 says that mso+u can express the conjunction of
being well-formed and having almost constant degree. We will use this property to define
conditions (b), (c) and (d).

Define the flattening of tree(w) to be the sequence of depth-3 trees obtained from tree(w)
by removing all depth-3 nodes and connecting all depth-4 nodes directly to their depth-2
grandparents. By condition (a), the flattening is well-formed. Since the flattening does not
change the degree of depth-1 nodes, condition (b) is the same as saying that the flattening
has almost constant degree, and therefore can be expressed in mso+u thanks to Lemma 3.1.

Define a depth-2 selector with offset i to be a set of nodes X in the tree tree(w) which
selects exactly one child for every depth-1 node (and therefore X contains only depth-2
nodes), and all but finitely many nodes in X are an i-th child. A depth-2 selector, without
i being mentioned, is a depth-2 selector for some i. Being a depth-2 selector is equivalent
to saying that one gets a well-formed sequence of almost constant degree if one keeps only
nodes from X← and their descendants, where X← is the set of nodes of depth 2 that have
a sibling from X to the right. Therefore, being a depth-2 selector is definable in mso+u.
Condition (c) is the same as saying that for every depth-2 selector X, if one only keeps the
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nodes from X and their descendants, then the resulting sequence has almost constant degree,
which can be expressed in mso+u thanks to Lemma 3.1.

We are left with condition (d) about Minsky machines. We say that a depth-2 selector X

represents zero, if all but finitely many nodes in X have degree one (recall that condition (d)
uses ni − 1 to represent a counter value, because a depth-2 node cannot have degree zero).
Representing zero is definable in first-order logic. If X, Y are selectors, we say that Y

increments X if there is some n such that all but finitely many nodes in X have degree n,
and all but finitely many nodes in Y have degree n + 1. This is equivalent to saying that if
one keeps only nodes from X ∪ Y and their descendants, and then removes one subtree of
every node from Y , then the resulting sequence of depth-3 trees has almost constant degree.
Therefore incrementation is definable in mso+u (technically, one needs to translate the
above tree properties to word properties, via the encoding from Figure 1). Using formulas
for representing zero and incrementation, it is easy to formalise condition (d) in mso+u

(the formula first guesses the missing state information to fully specify the run ρ, and then
verifies its consistency with the Minsky machine). ◭

In particular, the formula computed in Lemma 3.2 is satisfiable if and only if the Minsky
machine has an accepting run. This yields undecidability of mso+u on infinite words, which
is the same as our main Theorem 1.1.

Quantifier Complexity

Here we examine the quantification structure of the formulas in the undecidability proof. We
count the number of blocks of quantifiers of same type. We do not claim that the formulas
are optimal.

The more interesting part of the formula in Lemma 3.1 says: for all sets X, Y and
functions gX there exists a function gY such that gX is an asymptotic mix of gY . The
condition “gX is an asymptotic mix of gY ” is expressed as: for every gX ∈ gX there exists
gY ∈ gY such that for every set of positions Z either both gX and gY are bounded on Z or
none of them is. Thus the entire formula has six blocks of quantifiers, starting from universal
quantifiers (where the most internal quantifiers are U and negations of U).

The formula from Lemma 3.2 says: there exists an infinite word (a labelling of (N, ≤))
and a labelling by states of the Minsky machine, such that for every set X either X is not a
depth-2 selector or the children selected by X satisfy appropriate conditions. Saying that X

is not a depth-2 selector amounts to using the formula from Lemma 3.1 negatively, starting
from an existential quantifiers. The rest of the condition about X says that all but finitely
many nodes in X have the same degree, and that the degree of these nodes is smaller/greater
by one than the degree of the left siblings of nodes in X, which is expressible by using the
formula from Lemma 3.1 positively. Concluding, the whole formula uses eight nested blocks
of quantifiers: seven blocks of alternating existential and universal quantifiers, ended by
quantifiers U and negations of U.
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