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Abstract: As is well known, electroweak breaking in the MSSM requires substantial fine-

tuning, mainly due to the smallness of the tree-level Higgs quartic coupling, λtree. Hence

the fine tuning is efficiently reduced in supersymmetric models with larger λtree, as happens

naturally when the breaking of SUSY occurs at a low scale (not far from the TeV). We show,

in general and with specific examples, that a dramatic improvement of the fine tuning (so

that there is virtually no fine-tuning) is indeed a very common feature of these scenarios

for wide ranges of tan β and the Higgs mass (which can be as large as several hundred

GeV if desired, but this is not necessary). The supersymmetric flavour problems are also

drastically improved due to the absence of RG cross-talk between soft mass parameters.
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1. The supersymmetric fine tuning problem

One of the most attractive features of supersymmetry (SUSY) [1] is that it provides a

radiative mechanism for the electroweak (EW) breaking [2]. Large radiative corrections

associated to the top Yukawa coupling destabilize the origin of the Higgs potential and

induce quite naturally a non trivial minimum at the right scale, v = 246GeV, if the mass

terms that encode the soft breaking of SUSY are not far from the EW scale. This crucial

success of SUSY has been undermined in recent times by a worrisome fine tuning prob-

lem [3]–[14]: the non observation of the Higgs boson and of superpartners sets significant

lower bounds on the size of the soft breaking terms in such a way that a delicate cancellation

is generically required to avoid too large a value for v.

Let us briefly recall how this comes about in the ordinary Minimal Supersymmetric

Standard Model (MSSM). In the MSSM the Higgs sector consists of two SU(2)L doublets,

H1, H2. The (tree-level) scalar potential for the neutral components, H 0
1,2, of these doublets

reads

V MSSM(H0
1 ,H

0
2 ) = m2

1|H0
1 |2 +m2

2|H0
2 |2 − (m2

3H
0
1H

0
2 + h.c.) +

1

8
(g2 + g2

Y )(|H0
1 |2 − |H0

2 |2)2 ,
(1.1)

with m2
1,2 = µ2 + m2

H1,2
and m2

3 = Bµ, where m2
Hi

and B are soft masses and µ is the

Higgs mass term in the superpotential, W ⊃ µH1 · H2. Minimization of V MSSM leads to

a vacuum expectation value (VEV) v2 ≡ 2(〈H0
1 〉2 + 〈H0

2 〉2) and thus to a mass for the Z0

gauge boson, M 2
Z = 1

4(g
2 + g2

Y )v
2, given by

M2
Z

2
= −µ2 +

m2
H1
−m2

H2
tan2 β

tan2 β − 1
, (1.2)

– 1 –
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where tan β ≡ 〈H0
2 〉/〈H0

1 〉. The quantities in the r.h.s. of (1.2) are to be understood as

evaluated at low energy. They are related to more fundamental parameters at a higher scale,

ΛUV (typically ΛUV ≡ MGUT or MP , but there are other possibilities) by renormalization

group equations (RGEs). The MSSM RGEs for the mass parameters in (1.2) are coupled

to those of other soft terms, e.g. gaugino masses, stop masses, trilinear terms, etc., so M 2
Z

can be expressed as a linear combination of initial (UV) mass–squared parameters with

coefficients that can be calculated by integrating the RGEs. For example, for large tan β

(the best situation for the fine tuning problem, as will be clear in the discussion) and

ΛUV = MGUT = 1.4 × 1016 GeV we get [15]:

M2
Z ' −2.02µ2 + 3.57M 2 + 0.07m2 + 0.22A2 + 0.75AM , (1.3)

where M,m,A are the gaugino mass, scalar soft mass and trilinear soft term respectively,

taken universal for simplicity. From the previous equation it is apparent that, even for

moderate values of the initial parameters (i.e. significantly smaller than 1TeV), some of

the terms in the r.h.s. are much larger than M 2
Z , thus a non-trivial cancellation among

them (and therefore a fine tuning) is necessary in general.

The previous fine tuning can be avoided in two ways. The first is that the required

cancellation among different terms is “miraculously” provided by the fundamental theory

underlying the MSSM, e.g. string theory. This certainly would be a fortunate accident

since the cancellation not only involves the sizes of the various soft breaking terms (and

the µ-parameter), which arise from the unknown SUSY breaking (»»»
»

SUSY ) mechanism,

but also the different magnitudes of the coefficients in (1.3), which have to do with the

RG running between the initial and the low energy scale. These quantities have such a

different physical origin that it is difficult to imagine a fundamental reason why they should

be correlated in the correct way to enforce a cancellation. As a matter of fact, the analyses

in the literature [11, 13, 16] of many superstring, superstring-inspired and supergravity

models do not find such correlations.

The second way to avoid the fine tuning would be that each term in the r.h.s. of (1.3)

is not larger than a few times M 2
Z . But, if the soft masses are lowered at will, the masses

of SUSY particles will fall below their experimental bounds. The problem is especially

acute for the LEP bound on the Higgs mass, mh ≥ 115GeV [17] as has been stressed by

a number of authors [9]–[12]. This can be easily understood by writing the tree-level and

the dominant 1-loop correction [18] to the theoretical upper bound on mh in the MSSM:

m2
h ≤M2

Z cos2 2β +
3m4

t

2π2v2
log

M2
SUSY

m2
t

+ · · · , (1.4)

where mt is the (running) top mass (' 167GeV for Mt = 174GeV) and MSUSY is an

average of stop masses. Since the experimental lower bound on mh exceeds the tree-level

contribution, the radiative corrections must be responsible for the difference, and this

translates into a lower bound on MSUSY:

MSUSY & e−2.1 cos2 2βe(mh/62 GeV)2mt & 3.8 mt , (1.5)

– 2 –
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where the last figure corresponds to mh = 115GeV and large tanβ. Hence M 2
SUSY must

be already more than 40 times bigger than M 2
Z and this number increases exponentially

for larger (smaller) mh (tan β). On the other hand MSUSY is itself a low energy quantity

that has a dependence on the initial soft masses analogous1 to eq. (1.3):

M2
SUSY ' 3.36M 2 + 0.49m2 − 0.05A2 − 0.19AM +m2

t + (D− terms) . (1.6)

Roughly, M 2
SUSY has a magnitude similar to the main positive contribution in the r.h.s.

of (1.3), which then implies that some of the terms in that sum are at least ∼ 45 times

larger than M 2
Z , showing up the fine tuning. (The evaluation of the MSSM fine tuning is

refined in the next section.)

Several ways to alleviate the SUSY fine tuning problem have been explored in the

literature, e.g. invoking a correlation between parameters based on some theoretical con-

struction as mentioned above [11, 13, 16]. The improvement, however, is never dramatic.

Here we take a different path: the fine tuning can be alleviated or, indeed, eliminated

if the supersymmetric theory has larger tree-level quartic Higgs couplings than the con-

ventional one (see eq. (1.1)). In this way, the size of the various contributions to M 2
Z

(eq. (1.3) for the MSSM) is dramatically lowered and, besides, the soft breaking terms

do not need to be large since the radiative corrections are no longer necessary to ex-

plain the Higgs mass. We show here (building on a previous observation in [19]) how

this happens naturally if the SUSY breaking occurs at a low scale (not far from the

TeV).

The paper is organized as follows: In section 2 we discuss and identify the causes

for the abnormally large fine tuning of the MSSM, envisaging possible cures. In sec-

tion 3 we consider low scale »»»
»

SUSY scenarios, evaluating the corresponding fine tuning

and showing that it can be drastically smaller than in the MSSM. In section 4 we of-

fer a concrete and realistic realization of the mechanism in a specific model. In sec-

tion 5 we make some concluding remarks. Finally, in appendix A we present formulas

for measuring the fine tuning in generic scenarios, while appendix B discusses the limits

that Higgs searches at LEP impose on the parameters of the kind of models we con-

sider.

2. Underlying causes and possible cures

It is interesting to note that the fine tuning in the MSSM is much more severe than what

simple dimensional arguments suggest. To show this we quantify the fine tuning following

Barbieri and Giudice [3]: we write the Higgs VEV as a function of the initial parameters

pα of the model under study, v2 = v2(p1, p2, . . .), and define ∆pα, the fine tuning parameter

associated to pα, by
δM2

Z

M2
Z

=
δv2

v2
= ∆pα

δpα
pα

, (2.1)

1We have approximated in eq. (1.6) the geometric average of the stop masses by the arithmetic one,

which is sufficiently precise for the argument.

– 3 –
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where δM2
Z (δv2) is the change induced inM 2

Z (v2) by a change δpα in pα. Roughly speaking

∆−1
pα measures the probability of a cancellation among terms of a given size to obtain a

result which is ∆pα times smaller.2 Absence of fine tuning requires that ∆pα should not be

larger that O(10).
The parameter that usually requires the largest fine tuning is µ2 because, due to the

negative sign of its contribution in eqs. (1.2, 1.3), it has to compensate the (globally positive

and large) remaining contributions.3 Therefore we will focus on ∆µ2 . For large tanβ and

mh = 115GeV the required universal soft mass is m = M = A ' 325GeV, according

to eqs. (1.4), (1.6). When these figures are plugged in eq. (1.3) and the fine tuning is

evaluated according to eq. (2.1) one obtains ∆µ2 ∼ 55. Note that this corresponds to using

the tree-level potential (1.1), evaluated at a low scale. If one refines (1.1) by including the

dominant logarithmic corrections at 1-loop from the top-stop sector (see appendix A) this

figure gets down [4, 5] to ∼ 35.4

Now, one could naively expect that if the soft parameters had a size m2
soft ∼ av2, the

fine tuning would be ∆ ∼ a, but for the MSSM one gets ∆ & 20a, as can be checked from

the previous numbers. In this sense the fine tuning of the MSSM is abnormally large. To

understand the reasons for this, let us write the generic Higgs potential along the breaking

direction as

V =
1

2
m2v2 +

1

4
λv4 , (2.2)

where λ and m2 are functions of the pα parameters and tanβ, in particular

m2 = c2βm
2
1(pα) + s2

βm
2
2(pα)− s2βm

2
3(pα) . (2.3)

Minimization of (2.2) leads to

v2 =
−m2

λ
. (2.4)

Clearly, the larger the size of the individual m2
i and the smaller λ, the more severe the fine

tuning: ∆ ∼ m2i/(λv
2), where m2i are the (potentially large) individual contributions to m2

i .

For the MSSM, λ

λMSSM =
1

8
(g2 + g2

Y ) cos
2 2β ' 1

15
cos2 2β , (2.5)

which already implies a fine tuning ∼ 15 times larger (for the most favorable case of

large tanβ) than the above naive expectations. The previous λMSSM was evaluated at

tree-level but radiative corrections make λ larger, thus reducing the fine tuning. The ratio

λtree/λ1−loop is basically the ratio (m2
h)tree/(m

2
h)1−loop, so for large tanβ andmh = 115GeV

the previous factor 15 is reduced by a factor M 2
Z/m

2
h down to ∼ 9. Finally, for the MSSM

2Strictly speaking, ∆pα measures the sensitivity of v
2 against variations of pα, rather than the degree

of fine tuning [4, 6]. However, for the EW breaking it is a perfectly reasonable fine tuning indicator [4, 8]:

when pα is a mass parameter, ∆pα is large only around a cancellation point.
3As pointed out in ref. [8], it is more sensible to use µ2 rather than µ as the parameter entering eq. (2.1),

since this is the form in which it appears in the sum.
4This estimate can be softened further when subleading (1-loop and 2-loop) radiative corrections are

added. The most important effect is related to the one-loop corrections from stop mixing. In the optimal

case the figure 35 can be brought down to 20 [10, 11, 20].

– 4 –
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Figure 1: Fine tuning in the MSSM (measured by ∆µ2) as a function of the Higgs mass (in GeV)

for tanβ = 10.

(with large tan β and ΛUV = MGUT)

m2 = m2
1c

2
β +m2

2s
2
β −m2

3s2β ' 1.01µ2 − 2.31m̃2 , (2.6)

where we have set A = M = m = m̃ for simplicity. The presence of a sizeable RG coefficient

in front of m̃2 implies that, for a given magnitude of the latter, the required cancellation

must be (in this case) ∼ 2.31 times more accurate than naive expectations so, finally the

factor 9 is enhanced to ∼ 20. Notice that those large RG coefficients are a consequence of

the radiative mechanism of EW breaking, hence if the EW breaking were at tree level the

fine tuning would be reduced.

From the above discussion it is important to notice that, although for a given size of

the soft terms the radiative corrections reduce the fine tuning, the requirement of sizeable

radiative corrections implies itself large soft terms, which in turn worsens the fine tun-

ing. More precisely, for the MSSM δradλ ∝ log(M 2
SUSY/m

2
t ), so λ can only be radiatively

enhanced by increasing MSUSY, and thus the individual m2
i . A given increase in M 2

SUSY

reflects linearly in m2
i and only logarithmically in λ, so the fine tuning ∆ ∼ m2i/(λv

2) gets

usually worse. As discussed in section 1, for the MSSM (mh)tree < (mh)exp, hence sizeable

radiative corrections are in fact mandatory and the fine tuning is consequently aggravated.

As a consequence, the fine tuning increases exponentially for increasing (decreasing) mh

(cos2 2β) as indicated by eq. (1.5).

Let us illustrate the previous discussion in a more quantitative way. In figure 1 we

plot ∆µ2 , evaluated at one-loop, as a function of the Higgs boson mass, mh, for tan β = 10

(such large value of tanβ minimizes the fine tuning, as discussed above). We only include

the dominant one-loop correction to mh, as shown in eq. (1.4), and make the simplifying

assumption that the soft parameters are universal at the GUT scale. Although the fine

– 5 –
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Figure 2: Lower bound on the MSSM fine tuning (∆µ2) as a function of tanβ from the LEP bound

mh ≥ 115GeV.

tuning can be made smaller in non-universal cases, figure 1 shows the typical size of ∆µ2

in the MSSM. As expected from the previous discussions, ∆µ2 grows exponentially for

increasing mh. The dependence of ∆µ2 with tan β is shown in figure 2 for mh at the LEP

bound,5 mh = 115GeV (the optimal choice for the fine tuning). The curve for ∆µ2 increases

exponentially for decreasing cos2 2β, again as expected. This curve can be interpreted as

a LEP lower bound on the MSSM fine tuning.

Finally, figure 3 shows contour lines of constant ∆µ2 in the (m̃, tan β) plane, where

m̃ is the universal soft mass at ΛUV . We also plot dashed contour lines of constant mh

and the LEP lower bound on mh. Again, it is clear how the fine tuning is greater for

smaller tanβ and how it grows, together with mh, for larger m̃. The upper horizontal

line and the mh = 115GeV contour line correspond to figures 1 and 2 respectively. It is

instructive to examine the behaviour of the lines of constant ∆µ2 along which m̃ and mh

grow asymptotically towards fixed upper limits. For instance, if we insist in having small

fine tuning, ∆µ2 . 10, following the ∆µ2 = 10 line we conclude that one cannot obtain m̃

larger than ∼ 175GeV (which translates into upper bounds on superpartner masses) nor

Higgs masses larger than ' 103GeV, already ruled out by LEP.

A word of caution should be added about the previous numbers. In general, attempt-

ing a very accurate determination of the fine tuning does not make much sense. What

precise value of the fine tuning should be considered too high? On top of this, the present

experimental uncertainty on the top quark mass, Mt = 174.3 ± 5.1GeV [21], translates

into a significant uncertainty on the fine tuning parameters.6 For these reasons, in our

5With our choice of universal soft masses, the mass of the pseudoscalar Higgs is generically large. In

that case the LEP bound reduces to that in the SM: mh & 115GeV.
6E.g. fixing tan β = 10 and mh = 115GeV, one gets ∆µ2 = 35−7

+12 for Mt = 174.3 ± 5.1GeV.

– 6 –
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Figure 3: Fine tuning in the MSSM (measured by ∆µ2 , solid lines) in the (m̃, tanβ) plane. Dashed

lines are contour lines of constant Higgs mass.

numerical one-loop estimates of ∆µ2 we have just included the logarithmic correction to

m2
h given in eq. (1.4). This simplification is even more justified in this paper, whose main

purpose is to compare the performance of unconventional scenarios with that of the MSSM.

In summary, the fine tuning of the MSSM is at least 20 times more severe than naively

expected due, basically, to the smallness of the tree-level Higgs quartic coupling, λtree. The

problem is worsened by the fact that sizeable radiative corrections (and thus sizeable soft

terms) are needed to satisfy the experimental bound onmh. This is also due to the smallness

of λtree: if it were bigger, radiative corrections would not be necessary. In consequence, the

most efficient way of reducing the fine tuning is to consider supersymmetric models where

λtree is larger than in the MSSM. More explicitly, the improvement can be evaluated in the

following way. The value of ∆p for a generic parameter p of a given model has the form

(see appendix A)

∆p =
p

m2

[

∂m2

∂p
+
v2

2

∂λ

∂β

dβ

dp
+ v2 ∂λ

∂p

]

. (2.7)

Focusing on the µ2 parameter, and taking into account that the last two terms of (2.7) are

usually suppressed by a factor O(v2/µ2), we can write

∆µ2 ' µ2

m2

∂m2

∂µ2
' − µ2

λv2
' −2 µ

2

m2
h

, (2.8)

where we have used the fact that the dependence of the low-energy m2 on the initial (UV)

µ parameter is usually dominated by the tree-level contribution. Strictly speaking, m2
h

in (2.8) is the Higgs mass matrix element along the breaking direction, but in many cases

– 7 –
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of interest it is very close to one of the mass eigenvalues. Therefore

∆µ2 ' ∆MSSM
µ2

[

mMSSM
h

mh

]2 [
µ

µMSSM

]2

. (2.9)

This equation shows the two main ways in which a theory can improve the MSSM fine tun-

ing: increasing mh and/or decreasing µ. The first way corresponds to increasing λ. The

second, for a given mh, corresponds to reducing the size of the soft terms (EW breaking re-

quires the size of µ2 to be proportional to the overall size of the soft squared-masses), which

is only allowed if radiative contributions are not essential to raise mh. Both improvements

indeed concur for larger λtree.

The possibility of having tree-level quartic Higgs couplings larger than in the MSSM

is natural in scenarios in which the breaking of SUSY occurs at a low-scale (not far from

the TeV scale) [22]–[24] and [19].7 Besides, in that framework EW breaking takes place

essentially at tree-level, which, as noticed above, is also welcome for the fine tuning issue.

These ideas are developed in detail in the next sections.

3. Low-scale SUSY breaking

In any realistic breaking of SUSY, there are two scales involved: the »»»
»

SUSY scale, say
√
F ,

which corresponds to the VEVs of the relevant auxiliary fields in the »»»
»

SUSY sector; and

the messenger scale, M , associated to the interactions that transmit the breaking (through

effective operators suppressed by powers of M) to the observable sector. These operators

give rise to soft terms (such as scalar soft masses), but also hard terms (such as quartic

scalar couplings):

m2
soft ∼

F 2

M2
, λ»»SUSY ∼

F 2

M4
∼ m2

soft

M2
. (3.1)

Phenomenology requires msoft = O(1TeV), but this does not fix the scales
√
F and M

separately. The MSSM assumption is that there is a hierarchy of scales: msoft ¿
√
F ¿M ,

so that the hard terms are negligible and the soft ones are the only observable trace of

»»»
»

SUSY . However, there is no real need for such a strong hierarchy, so the scales
√
F and

M could well be of similar order (thus not far from the TeV scale). This happens in the

so-called low-scale »»»
»

SUSY scenarios. In this framework, the hard terms of eq. (3.1), are not

negligible anymore and hence the »»»
»

SUSY contributions to the Higgs quartic couplings can

be easily larger than the ordinary MSSM value (2.5). As discussed in the previous section,

this is exactly the optimal situation to ameliorate the fine tuning problem.

The messenger scale M may be not far from the EW scale for various reasons. E.g.

there could be some massive fields responsible for the »»»
»

SUSY mediation (like in gauge

mediation) with masses ∼ M ; or there could be a more fundamental reason, as in models

with large extra-dimensions or in supersymmetric Randall-Sundrum models. Instead of

7This can also happen in models with extra dimensions opening up not far from the electroweak scale

[25]. Another way of increasing λtree is to extend the gauge sector [26] or to enlarge the Higgs sector [27].

The latter option has been studied in [28] (for the NMSSM) but this framework is less effective in our

opinion, see section 5.

– 8 –
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sticking to one of these particular examples, it is convenient to describe the observable

physics using an effective field-theory approach [23, 19]. Denoting by T the superfield

responsible for »»»
»

SUSY , 〈FT 〉 6= 0, and assuming that, apart from the T field, the spectrum

is minimal (i.e. the same as in the MSSM), the effective theory is like the SUSY part of

the MSSM, plus some effective interactions which include couplings between T and the

observable fields, suppressed by powers of M . These effective interactions can appear in

the superpotential, W , as well as in the Kähler potential, K, or the gauge kinetic function.

As a simple example, suppose that the Kähler

〈FT〉

〈FT〉

H H
FT

〈FT〉 〈FT〉H

H

H

H

Figure 4: Higgs soft masses and hard

quartic couplings that arise from the

Kähler operator (3.2).

potential contains the operator

K ⊃ − 1

M2
|T |2|H|2 + · · · , (3.2)

where H denotes any Higgs superfield. Once FT
takes a VEV the above nonrenormalizable inter-

action produces soft terms as well as hard terms,

as schematically represented in the diagrams of fig-

ure 4. Notice that m2
soft ∼ |FT |2/M2, λ»»SUSY ∼ |FT |2/M4 ∼ m2

soft/M
2, in agreement

with (3.1).

In general, the Higgs potential has the structure of a generic two Higgs doublet model

(2HDM), with T -dependent coefficients [19],

V = V0(T̄ , T ) +m2
1(T̄ , T )|H1|2 +m2

2(T̄ , T )|H2|2 −
[

m2
3(T̄ , T )H1 ·H2 + h.c.

]

+

+
1

2
λ1(T̄ , T )|H1|4 +

1

2
λ2(T̄ , T )|H2|4 + λ3(T̄ , T )|H1|2|H2|2 + λ4(T̄ , T )|H1 ·H2|2 +

+

[

1

2
λ5(T̄ , T )(H1 ·H2)

2 + λ6(T̄ , T )|H1|2H1 ·H2 + λ7(T̄ , T )|H2|2H1 ·H2 + h.c.

]

+

+ · · · (3.3)

where we have truncated at O(H4), which makes sense whenever v2/M2 is small. The

quantities m2
i , λi can be expressed in terms of the parameters appearing in W and K

(explicit expressions can be found in ref. [19]). If the T field is heavy enough it can

be integrated out and one ends up with a truly 2HDM. The previous potential is to be

compared with the MSSM one (eq. (1.1)) with λ1,2 = 1
4(g

2 + g2
Y ), λ3 = 1

4(g
2 − g2

Y ),

λ4 = −1
2g

2, λ5,6,7 = 0.

The appearance of non-conventional quartic couplings has a deep impact on the pattern

of EW breaking [19]. In the MSSM, the existence of D-flat directions, |H1| = |H2|, imposes

the well-known condition, m2
1 +m2

2 − 2|m2
3| > 0, in order to avoid a potential unbounded

from below along such directions. However, the boundedness of the potential can now

be simply ensured by the contribution of the extra quartic couplings, and this opens up

many new possibilities for EW breaking. For example, the universal case m2
1 = m2

2 is now

allowed, as well as the possibility of having both m2
1 and m2

2 negative (with m2
3 playing a

minor role). In addition, and unlike in the MSSM, there is no need of radiative corrections

to destabilize the origin, and EW breaking generically occurs already at tree-level (which is

– 9 –
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just fine since the effects of the RG running are small as the cut-off scale is M). Moreover,

this tree-level breaking (which is welcome for the fine tuning issue, as discussed in section 2)

occurs naturally only in the Higgs sector [19], as desired.

Finally, the fact that quartic couplings are very different from those of the MSSM

changes dramatically the Higgs spectrum and properties. In particular, the MSSM upper

bound on the mass of the lightest Higgs field no longer applies, which has also an important

and positive impact on the fine tuning problem, as is clear from the discussion after eq. (2.9).

4. A concrete model

In this section we evaluate numerically the fine tuning involved in the EW symmetry

breaking in a particular model with low-scale »»»
»

SUSY and compare it with that of the

MSSM. We choose a model first introduced (as “example A”) in [19] and analyzed there

for its own sake. We show now that the fine tuning problem is greatly softened in this

model even if it was not constructed with that goal in mind.

The superpotential is given by

W = Λ2
ST + µH1 ·H2 +

`

2M
(H1 ·H2)

2 , (4.1)

and the Kähler potential is

K = |T |2+|H1|2+|H2|2−
αt

4M2
|T |4+ α1

M2
|T |2

(

|H1|2 + |H2|2
)

+
e1

2M2

(

|H1|4 + |H2|4
)

. (4.2)

(All parameters are real with αt > 0.) Here T is the singlet field responsible for the break-

ing of supersymmetry, ΛS is the »»»
»

SUSY scale and M the ‘messenger’ scale (see previous

section). The typical soft masses are ∼ m̃ ≡ Λ2
S/M . In particular, the mass of the scalar

component of T is O(m̃) and, after integrating this field out, the effective potential for H1

and H2 is a 2HDM, like (3.3), with very particular Higgs mass terms:

m2
1 = m2

2 = µ2 − α1m̃
2 , m2

3 = 0 , (4.3)

and Higgs quartic couplings like those of the MSSM plus contributions of order µ/M and

m̃2/M2:

λ1 = λ2 =
1

4

(

g2 + g2
Y

)

+ 2α2
1

m̃2

M2
,

λ3 =
1

4

(

g2 − g2
Y

)

+
2

M2
(α2

1m̃
2 − e1µ

2) ,

λ4 = −1

2
g2 − 2

(

e1 + 2
α2

1

αt

)

µ2

M2
,

λ5 = 0 ,

λ6 = λ7 =
`µ

M
. (4.4)

The symmetry of the potential under H1 ↔ H2 allows to solve the minimization conditions

explicitly not only for v but also for tan β. Depending on the value of the parameter l,

one gets either8 tanβ = 1 or tanβ > 1. The explicit expressions for v and sin 2β, and

8One has sgn(tan β) = −sgn(lµ/M). We are implicitly taking parameters such that tan β > 0.
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the spectrum of Higgs masses, can be found in [19]. One important difference with respect

to the MSSM spectrum is that all Higgs masses are now of order v. The CP-even scalars

h,H can be in the region accessible to LEP searches. Although the charged Higgs, H±,

and the pseudoscalar, A0, are usually too heavy for detection at LEP, in some regions of

parameter space they might also be light and their possible production must be considered

too. Limits on the parameter space of this model that result from Higgs searches at LEP

are discussed in appendix B and will be explicitly shown later on.

To evaluate the fine tuning in this model we simply plug (4.3) and (4.4) in the general

expression for ∆µ2 given in appendix A (eq. (A.9)) to obtain

∆µ2 = − µ2

λv2

[

1 + v2

(

ls2β

2µM
− 1

M2
ê1s

2
2β

)]

, (4.5)

where λ is the quartic scalar coupling along the breaking direction, explicitly given in

eq. (A.4) and ê1 ≡ e1 + α2
1/αt. This expression is valid both for tan β = 1 and tanβ > 1

and as discussed in section 2 is dominated by the first term. Although (4.5) is a tree-level

result, useful for understanding most of the parametric dependence of ∆µ2 , we use for the

numerical comparison with the MSSM a one-loop-refined evaluation of ∆µ2 (both in the

MSSM and the present model), computed following the procedure explained in appendix A.

We should also comment on the relation between the coupling λ along the breaking

direction (which is the coupling relevant for (4.5)) and the Higgs mass. At tree-level one

of the CP-even Higgses lies along the breaking direction and therefore has mass-squared

2λv2, but this is no longer the case at one loop: radiative corrections induce a deviation

in the direction of the mass eigenstates, the effect being larger for light tree level masses.

We will use the notation m2
‖ = 2λv2 for the mass matrix element that controls the fine

tuning (4.5) keeping in mind that it does not always correspond to the mass of a physical

state. Explicitly, in the region tan β > 1 on which we focus here,

m2
‖ =

[

1

4
(g2 + g2

Y ) + 2α2
1

m̃2

M2
+

lµ

M
s2β

]

v2 +
3m4

t

2π2v2
log

M2
SUSY

m2
t

+ · · · , (4.6)

where we have added the dominant one-loop stop correction, as in the MSSM.

For the values of the parameters of the unconventional model we take as a first example

(set A) those used in [19]: µ/M = 0.6, e1 = −1.3, m̃/M = 0.5 and αt = 3. The exact value

of α1 is fixed by the minimization condition for v: it is always α1 & µ2/m̃2 = 1.44, and

gets closer and closer to µ2/m̃2 for increasing m̃. The parameter l is free and can be traded

by tanβ. To understand some of the numerical results that follow it is important to study

the dependence of m2
‖ on m̃ (for fixed m̃/M). Its tree level part decreases monotonically

with increasing m̃ due to the behaviour of α1, while the one-loop correction increases

logarithmically with m̃ (it enters through M 2
SUSY which we take to be M 2

SUSY ' m̃2 +m2
t ).

The combination of these two opposite effects results in a mass m‖ that decreases with m̃

for small m̃ (where the tree-level dependence dominates), reaches a minimum, and then

starts increasing again for larger m̃ (when the one-loop dependence takes over). For this

reason, every value of m‖ corresponds to two values of m̃: a low value, associated to a large

tree level Higgs coupling and a small radiative effect, which has small fine tuning; and a

– 11 –
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Figure 5: Fine tuning in the unconventional SUSY scenario of section 4 as a function of the Higgs

mass (in GeV) for tanβ = 10 and the rest of parameters as in set A (left) or as in set B (right).
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Figure 6: Fine tuning in a low-scale SUSY breaking scenario as a function of the Higgs mass (in

GeV) for tanβ = 10.

high value, associated to a larger radiative effect, which has larger fine tuning. This causes

∆µ2 to be a bi-valued function of m‖. Moreover, for this set of parameters m‖ is a good

approximation to mh.

This behaviour is shown in figure 5, left plot, which is the equivalent of figure 1, but

for the unconventional scenario just introduced, with tan β = 10. We can use the soft

mass m̃ as a parameter along the curve plotted, with ∆µ2 growing for increasing m̃. In

the large-m̃ range of this curve (its steep upper branch) radiative corrections dominate

the Higgs mass and the behaviour of the fine tuning is similar to that in the MSSM (i.e.

it grows with increasing mh). If we restrict our attention to the more interesting low-m̃

range (the lower branch of the curve), the contrast with the MSSM result is evident: now,

the larger mh is, the smaller the tuning becomes and for mh & 300 one gets ∆µ2 < 10.
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Figure 7: Fine tuning in the (m̃, tanβ) plane in a low-scale SUSY breaking scenario with param-

eters as in set B. Dashed lines are contour lines of constant mh (upper plot) or mH (lower plot).

The LEP bound for each case is also shown.

All this is the straightforward result of having a larger tree level contribution to the Higgs

mass. For the choice of parameters considered here (set A) the resulting Higgs mass is

somewhat large, but we can easily choose different parameters in order to lower the Higgs

mass without loosing the dramatic improvement in ∆µ2 . This is shown on the right plot

of figure 5, which has (set B): µ/M = 0.3, e1 = −2, m̃/M = 0.5, αt = 1 and α1 & 0.36.

The bi-valuedness of ∆µ2 is more evident in this case.

We plot ∆µ2 vs. mh in figure 6 to make even clearer the difference of behaviour with

respect to the MSSM (see figure 1). We take µ = 330GeV, m̃ = 550GeV, e1 = −2, αt = 1,

l chosen to give tan β = 10 and instead of fixing m̃/M we vary it from 0.05 to 0.8. In this
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way we can study the effect on the fine tuning of varying λ when the low energy mass scales

(µ and m̃) are kept fixed. When m̃/M is small (and this implies that µ/M is also small),

the unconventional corrections to quartic couplings are not very important and the Higgs

mass tends to its MSSM value.9 As m̃/M increases, the tree level Higgs mass (or λ) also

grows and this makes ∆µ2 decrease with mh, just the opposite of the MSSM behaviour.

Finally, figure 7 is the version of figure 3 for this unconventional model. The values of

the parameters are those of set B. We show lines of constant ∆µ2 in the (m̃, tan β) plane,

together with lines of constant mh (upper plot) and mH (lower plot). In each plot we

also draw the experimental lower bound on the corresponding Higgs mass coming from

LEP, either for Higgs-strahlung or associated production as indicated (see appendix B

for details). We find that the fine tuning is larger for smaller tan β and larger m̃, as in

the MSSM, but now the overall value of ∆µ2 is significantly smaller. From the figure

we can estimate that for soft masses m̃2 ∼ av2, the fine tuning in this model (say near

mh = 115GeV and tan β = 3) is ∆ ∼ 3.5a instead of the ∼ 20a we found for the MSSM.

The pattern of Higgs masses is also different and restricting the fine tuning to be less than

10 does not impose an upper bound on the Higgs masses, in contrast with the MSSM case.

As a result, the LEP bounds do not imply a large fine tuning: in the region with small

m̃ and tan β not too close to 1,10 we can get simultaneously Higgs masses large enough to

escape LEP detection and small fine tunings. In any case, following the line of ∆µ2 = 10

we do find an upper bound m̃ . 500GeV, so that LHC would either find superpartners or

revive an (LHC) fine tuning problem for these scenarios (although the problem would be

much softer than in the MSSM).

5. Concluding remarks

1. As is well known, in the MSSM a successful electroweak breaking requires substantial

fine-tuning. This fine tuning is abnormally large in the following sense: if the soft

parameters have a size m2
soft ∼ av2, one expects a fine tuning of one part in a; but in

practice it is more than 20 times larger.

2. The main reason for that is the small magnitude of the tree-level Higgs quartic

coupling λMSSM = 1
8 (g

2 + g2
Y ) cos

2 2β ' 1
15 cos

2 2β. This has two effects:

• The “natural” value for the Higgs VEV, v2 ∼ m2
soft/λ tends to be much larger

than m2
soft, specially if tan β is not large.

• Sizeable radiative corrections (and thus sizeable soft terms) are needed to satisfy

the experimental bound on mh, which worsens the fine tuning problem. Since

mh increases logarithmically with msoft, the problem gets exponentially worse

for increasing mh.

9For the model at hand this limit is not realistic, as it implies too small (or even negative) values of m2
A,

m2
H and m

2
H± . However, we are interested in the opposite limit, of sizeable m̃/M .

10Besides the tan β > 1 region we have explored in this paper, there is a wide region of parameter space

with tan β = 1 which is also experimentally allowed [19].
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In addition, the radiative mechanism for EW breaking aggravates the problem, since

it induces large coefficients for the individual contributions of certain soft terms to

the effective potential.

3. As a consequence, the most efficient way of reducing the fine tuning is to consider

supersymmetric models where λtree is larger than in the MSSM. (An estimate of the

expected improvement in the fine tuning, using the ordinary fine tuning parameters

is given in eq.(2.9))

4. The latter possibility takes place naturally in scenarios in which the breaking of SUSY

occurs at a low scale (not far from the TeV scale). Then, the quartic couplings get

»»»
»

SUSY corrections, δλ ∼ m2
soft/M

2, so that λ+ δλ can be easily larger than λMSSM,

as desired to ameliorate the fine tuning problem. Moreover, this opens up many new

possibilities for EW breaking and for a non-conventional Higgs spectrum.

5. We demonstrate this in an explicit model of low-scale »»»
»

SUSY studied in a previous

paper by its own sake (and not with the goal of solving the fine tuning problem).

This indicates that the improvement in the fine tuning is indeed a generic feature of

these scenarios.

By modifying the parameters of the model we achieve a dramatic improvement of

the fine tuning for any range of tan β and the Higgs mass (which can be as large as

several hundred GeV if desired, but this is not necessary). It is in fact quite easy to

get e.g. ∆ < 5 (i.e. no fine tuning), in contrast with the MSSM values, ∆ > 20 (and

much larger for mh > 115GeV and/or small tan β).

6. In scenarios with low-scale »»»
»

SUSY , the interval of running of the soft parameters is

small, which has further consequences:

• EW breaking takes place at tree-level, which, as discussed in point 2), also helps

in reducing the fine tuning.

• The cross-talk (through RG running) between mass parameters in the Higgs

sector and those of other sectors (squarks, gluinos, etc.) is drastically reduced.

The latter can be (much) heavier than MZ without upsetting the naturalness

of the electroweak scale. In this sense these scenarios represent an alternative

to other options which try to reduce the fine tuning by postulating correlations

between different parameters to implement cancellations in MZ : here MZ does

not even depend strongly on those parameters.

7. The previous point is also very interesting for flavour physics in two different fronts.

First, in the MSSM the stringent FCNC bounds on the non-universality of the spar-

ticle mass matrices ( e.g. from the K-K̄ system) could now be alleviated simply by

increasing the relevant soft masses ( e.g. beyond 1TeV) with negligible effect in EW

breaking. Second, as it is known, even assuming UV universality, RG evolution in-

duces flavour violating effects which for the µ→ eγ process are extremely dangerous.
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This problem is eliminated in the context of low scale SUSY breaking, where the RG

effects are minimized (for a discussion see [29]). Incidentally, the two flavour problems

just mentioned can also be understood as fine tuning problems of the MSSM.

8. Finally, it is clear that, apart from scenarios with low-scale »»»
»

SUSY , there are other

extensions of the MSSM which increase λtree and thus improve the fine tuning. An

alternative, discussed in [28], is to enlarge the Higgs sector, as in the NMSSM. This

framework, however, is less effective for a number of reasons. First, the simplest

NMSSM model gives an extra contribution to λ that vanishes for large tan β, pre-

cisely the region where the MSSM fine tuning was smallest (even if still too large).

Second, the conventional NMSSM with soft terms generated at very high scale has

important bounds on the previous extra contribution, derived from the requirement

of perturbativity. This means that the available increase in λtree (and the consequent

improvement in the fine tuning) is more modest than could be thought a priori. Fi-

nally, EW breaking still occurs radiatively, which eliminates the extra bonus discussed

in 6) above.

A. General formulas for fine tuning parameters

Here we consider a generic scenario where the Higgs sector consists of two SU(2)L doublets

of opposite hypercharge, H1 and H2, as is the case in many supersymmetric models [30].

The most general Higgs potential for such two Higgs doublet models (2HDM) is (at tree

level)

V = m2
1|H1|2 +m2

2|H2|2 −
[

m2
3H1 ·H2 + h.c.

]

+

+
1

2
λ1|H1|4 +

1

2
λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H1 ·H2|2 +

+

[

1

2
λ5(H1 ·H2)

2 + λ6|H1|2H1 ·H2 + λ7|H2|2H1 ·H2 + h.c.

]

. (A.1)

The minimum of this potential occurs in general at non-zero values of the neutral compo-

nents of the Higgs doublets, H0
1 and H0

2 with tanβ ≡ 〈H0
2 〉/〈H0

1 〉 and 〈H0
1 〉 = (v/

√
2) cos β,

〈H0
2 〉 = (v/

√
2) sinβ. It is useful to write V as a ‘SM-like’potential for v:

V (v) =
1

2
m2v2 +

1

4
λv4 , (A.2)

where λ and m2 are functions of tanβ and the initial parameters of the theory, pα. Ex-

plicitly

m2 =
3

∑

i=1

ci(β)m
2
i (pα) , ~c = (c2β, s

2
β ,−s2β) , (A.3)

and

λ =
7

∑

i=1

di(β)λi(pα) , ~d =

(

1

2
c4β ,

1

2
s4
β, s

2
βc

2
β, s

2
βc

2
β , s

2
βc

2
β , c

2
βs2β , s

2
βs2β

)

. (A.4)
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Minimization of V with respect to v and β implies11

v2 =
−m2

λ
, (A.5)

2λ
∂m2

∂β
−m2 ∂λ

∂β
= 0 . (A.6)

In order to evaluate the fine tuning in a generic theory of this kind, we will use the fine

tuning parameters, ∆pα , introduced by Barbieri and Giudice [3]:

δM2
Z

M2
Z

=
δv2

v2
= ∆pα

δpα
pα

, (A.7)

where δM2
Z (δv2) is the change induced in M 2

Z (v2) by a change δpα in pα. Naturalness

requires ∆pα . O(10).
Applying eq. (A.7) to eq. (A.5) we get, after trading ∂m2/∂β by ∂λ/∂β using eq. (A.6),

∆p =
p

m2

[

∂m2

∂p
+
v2

2

∂λ

∂β

dβ

dp
+ v2 ∂λ

∂p

]

. (A.8)

The dependence of β on p, which is not explicit in the initial potential (A.1), can be

extracted from eq. (A.6) by acting on it with d/dp, to obtain finally

∆p = −
p

x

[(

2
∂2m2

∂β2
+ v2 ∂

2λ

∂β2

)(

∂λ

∂p
+

1

v2

∂m2

∂p

)

− ∂λ

∂β

∂2m2

∂β∂p
+
∂m2

∂β

∂2λ

∂β∂p

]

, (A.9)

where

x ≡ λ

(

2
∂2m2

∂β2
+ v2 ∂

2λ

∂β2

)

− v2

2

(

∂λ

∂β

)2

. (A.10)

(Note that the dependence of m2 and λ on β is determined by eqs. (A.3), (A.4).)

In many cases, equations (A.8) and (A.9) admit expansions which are useful for fine

tuning estimates (although in the computations of this paper we have used the complete

expressions). If there exists a fine tuning at all, there must be some cancellation between

the various contributions to m2, say m2i, which generically implies ∂m2/∂p = O(m2i/p) À
O(m2/p). Then, the last two terms within the brackets in eq. (A.8) are suppressed by a

factor O(m2/m2i), and

∆p '
p

m2

∂m2

∂p
= − p

λv2

∂m2

∂p
. (A.11)

The same result can be obtained from eq. (A.9).

Let us now consider how the previous results are modified by radiative corrections. As

is well-known, the 1-loop correction to the effective Higgs potential in a supersymmetric

theory (using the DR renormalization scheme) is given by

δ1V =
1

64π2

∑

a

NaM
4
a (H)

[

log
M2

a (H)

Q2
− 3

2

]

, (A.12)

11With an abuse of notation we use the same symbols (v and β) for the variables and their vacuum

expectation values, but the meaning should be clear.
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where Q is the renormalization scale, M 2
a (H) is the H-dependent mass eigenvalue of the

particle a and Na its multiplicity (taken negative for fermions). δ1V modifies the mini-

mization conditions as well as mh. However, it is possible to reproduce these results by

using appropriately (one-loop) corrected m2
i , λi parameters in the tree-level expressions,

e.g. the minimization equations (A.5), (A.6) [32]. In this way, one can still use all the

previous (tree-level-like) equations (A.8)–(A.11) for fine tuning estimates. In particular,

the dominant contribution to the fine tuning is still given by eq. (A.11) but expressed in

terms of the one-loop corrected parameters.

Now, one expects δ1m
2
i = O(Nh2m̃2/(32π2)), δ1λi = O(Nh4/(32π2)), where h is the

coupling constant of a field with multiplicity N to the Higgses and m̃2 is a typical soft mass.

Moreover there can be a logarithmic factor ∼ log(m̃2/m2
t ). Clearly δ1m

2
i are smaller than

the typical O(m̃2) tree-level contributions, so they do not affect the degree of fine tuning.

On the other hand, δ1λi can be relevant if the tree-level values are small, as it happens for

instance in the MSSM (but not in models with sizeable λtree, as those considered in this

paper). These corrections are normally dominated by the top-stop sector with coupling

ht =
√
2mt/(v sinβ), which besides being O(1) has large multiplicity, NL + NR = 12. If

some of the Higgs self-couplings, λi, are initially large, say O(1), they can also contribute

substantially to δ1λi, though the multiplicity is smaller than for the stops. However, as

mentioned above, in this case δ1λi ¿ λtree and therefore such corrections can be ignored

for the fine tuning issue.

Consequently, for fine tuning estimates, we approximate the radiative corrections by

the logarithmic stop contribution (more sophisticated expressions for δ1λi can be found

in [31]):

δ1λ2 =
3h4

t

8π2
log

M2
SUSY

m2
t

. (A.13)

In particular the approximate formula given in eq. (A.11) simply gets corrected by a factor

λtree/λ1−loop.

B. LEP Higgs bounds

The main Higgs production mechanism of the physical CP-even scalars H0
α = h0,H0 at

LEP is e+e− → Z0H0
α. The Higgs production cross-section is

σZHα = ξ2
Hασ

SM
Zh (m2

Hα) , (B.1)

where σSMZh (m2) is the SM production cross-section for a Higgs with mass m [33] and

the prefactor ξHα measures the coupling Z0Z0H0
α relative to the SM value. In a generic

2HDM the linear combination along the breaking direction12 h‖ ≡ h0r
1 cos β+h0r

2 sinβ has a

coupling to ZZ of SM strength while the orthogonal combination h⊥ ≡ h0r
1 sinβ−h0r

2 cos β

does not couple to ZZ. In the basis {h‖, h⊥} the mass eigenstates h0,H0 read

h0 = ξhh‖ + ξHh⊥ , H0 = ξHh‖ − ξhh⊥ , (B.2)

12We write H0
1 = (v1 + h0r

1 + ih0i
1 )/

√
2 and a similar formula for H0

2 .
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with ξ2
h + ξ2

H = 1. That is, the coupling H0
αZ

0Z0 is proportional to the amount of h‖ that

enters in the composition of H0
α. From the definition of tanβ and that of the mixing angle

of the two CP-even Higgs bosons h0,H0:

h0 = h0r
2 cosα− h0r

1 sinα ,

H0 = h0r
1 cosα+ h0r

2 sinα , (B.3)

we obtain the familiar expressions

ξ2
h = sin2(α− β) , ξ2

H = cos2(α− β) . (B.4)

In the alternative scenario considered in section 4, at tree level, the mass matrix for

CP-even Higgses (in the basis {h0r
1 , h0r

2 }) is

M2
H0
α
=







m2
‖c

2
β +m2

⊥s
2
β (m2

‖ −m2
⊥)cβsβ

(m2
‖ −m2

⊥)cβsβ m2
‖s

2
β +m2

⊥c
2
β







=







cβ sβ

sβ −cβ













m2
‖ 0

0 m2
⊥













cβ sβ

sβ −cβ






. (B.5)

This implies that h‖ and h⊥ are in fact mass eigenstates and means in particular that

only h‖ could be produced at LEP. For some choice of parameters (like in set A, used

in section 4), h‖ turns out to be the heavy state, and its mass makes it kinematically

inaccessible at LEP. The light state turns out to be h⊥ and even if it is light it does not

couple to Z0 and therefore it is not produced.

At one loop the previous situation changes. Corrections to the mass matrix (B.5), the

main one being

δ〈h0r
2 |M2

H0
i
|h0r

2 〉 =
3m4

t

π2v2s2
β

log
MSUSY

mt
, (B.6)

induce deviations of the mass eigenstates from h‖ and h⊥, making ξh and ξH different from

1 and 0. Working out the expression for the one-loop corrected α we arrive at the simple

result

ξ2
h =

(m2
H −m2

h‖
)c2β + (m2

h⊥
−m2

h)s
2
β

m2
H −m2

h

, (B.7)

and

ξ2
H =

(m2
H −m2

h⊥
)s2
β + (m2

h‖
−m2

h)c
2
β

m2
H −m2

h

. (B.8)

As discussed before, {h‖, h⊥} are the tree level mass eigenstates.

In order to implement the LEP bound in this alternative scenario, we conservatively

impose that σZHα should be smaller than σSMZh (m2
h) evaluated at

√
s = 209GeV and

mH = 115GeV (the ultimate LEP bound on the SM Higgs mass). This requirement

can be represented as an upper limit on ξ2
Hα

as a function of mh. A more refined bound

(unnecessarily sophisticated for our purposes) can be found on the experimental papers [34,

35].
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Another possible Higgs production mechanism is associated production e+e− → A0H0
α,

with cross section given by [33]

σAHα = (1− ξ2
Hα)λ̄σ

SM
Zh (m2

Hα) , (B.9)

where λ̄ is a kinematical factor. The non observation of this process sets a limit on our

model. We implement this limit by using the experimental bound on the coefficient (1 −
ξ2
Hα

) derived e.g. in [36] as a function of mHα +mA. (We are conservative in using that

experimental curve, which applies strictly to the case mHα ' mA, and in assuming ∼ 100%

branching ratios A→ bb̄ and Hα → bb̄.) When (1− ξ2
Hα

) ' 1, this limit reads mHα+mA .

195GeV.

Finally, charged Higgs production (e+e− → H+H−) does not give constraints in

this scenario because mH± ' 95GeV while the experimental limit is around mH± .

80GeV [37].
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