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The MTA: An Advanced and Versatile Thermal

Simulator for Integrated Systems
Scott Ladenheim, Yi-Chung Chen, Milan Mihajlović, and Vasilis F. Pavlidis

Abstract—Fast and accurate thermal analysis is crucial for de-
termining the propagation of heat and tracking the formation of
hot spots in integrated circuits (ICs). Existing academic thermal
analysis tools primarily use compact models to accelerate thermal
simulations but are limited to linear problems on relatively simple
circuit geometries. The Manchester Thermal Analyzer (MTA) is
a comprehensive tool that allows for fast and highly accurate
linear and nonlinear thermal simulations of complex physical
structures including the IC, the package, and the heatsink. The
MTA is targeted for 2.5/3-D IC designs but also handles standard
planar ICs. The MTA discretizes the heat equation in space using
the finite element method and performs the time integration with
unconditionally stable implicit time stepping methods. To im-
prove the computational efficiency without sacrificing accuracy,
the MTA features adaptive spatiotemporal refinement. The large-
scale linear systems that arise during the simulation are solved
with fast preconditioned Krylov subspace methods. The MTA
supports the thermal analysis of realistic integrated systems and
surpasses the computational abilities and performance of existing
academic thermal simulators. For example, the simulation of a
processor in a package attached to a heat sink, modeled by a
computational grid consisting of over 3 million nodes, takes less
than 3 minutes. The MTA is fully parallel and publicly available.∗

Index Terms—Transient thermal analysis, Integrated circuits,
Finite element method, Adaptive spatiotemporal refinement,
Krylov solvers, Algebraic multigrid

I. INTRODUCTION

Thermal issues created by higher power densities in

sub-90 nm advanced CMOS technologies lead to performance

degradation and excessive leakage currents [1]. Device

technologies, such as FinFET and SOI, have been introduced

to underpin further scaling of silicon technology by

suppressing leakage currents. However, these technologies can

be more sensitive to thermal issues due to self-heating and

the low thermal conductivity of the materials involved [2].

Circuits of “post-Dennardian” scaling also face challenges of

exponentially increasing power densities [3], [4]. Emerging

3-D technologies (i.e., multi-tier systems with vertical

interconnections) also suffer from thermal issues since 3-D

integrated circuits (IC) involve complex heat dissipation paths

and have more active regions than a single tier in a package [1],

[5], [6].
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ester, UK. (e-mail: {scott.ladenheim, yi-chung.chen, milan.mihajlovic,
vasileios.pavlidis}@manchester.ac.uk)

∗The MTA is available to download at:
https://staffnet.cs.manchester.ac.uk/acso/thermal-analyzer/

To account for these thermal effects, detailed thermal

analysis is required at several stages of the design process [7].

Academic thermal analysis tools, for instance [8]–[13], were

previously introduced to compute the temperature profile of an

IC. However, obtaining fast and accurate thermal simulations,

especially transient, remains a challenging (high performance)

computing problem which requires novel algorithms and

approaches. Tools, such as [10], [11], use compact thermal

models to simplify the heat flow model and reduce the size of

the computational problem. However, such tools suffer from

reduced accuracy and have limited scope in terms of the circuit

and surrounding package features they can model, such as

TSVs or heat sinks. Many of these tools use direct methods

to compute the solutions of the linear systems arising from

the problem discretization which hinders the scalability of the

solver. This approach is ill-suited to solve the large-scale linear

systems that result from the discretization of the 3-D structures

in an IC. Furthermore, the numerical methods used by existing

tools to compute the thermal profile of an IC are often either

low order accurate or possess numerical stability constraints.

Such limitations prohibit the analysis of complex micrometer

scale features of ICs and do not allow for useful computational

tradeoffs between the architecture level simulators and the

numerical methods used for the thermal analysis. In addition,

temperature-dependent thermal parameters are not included in

the utilized models.

The Manchester Thermal Analyzer (MTA) is a new

academic thermal analysis tool for circuits and their package

that has been developed to address these limitations. Based

only on the floorplan information of the circuit, the

MTA initially generates the corresponding computational

grid required by the thermal simulation. Power information

obtained from an external power simulator is an input to

the MTA which then computes the temperature profile of

the circuit. The MTA deploys a unified methodology that

involves advanced spatiotemporal refinement techniques and

fast preconditioned iterative solvers that can be tuned to deliver

efficient and highly accurate thermal simulations.

The contributions of this paper to the problem of thermal

analysis are:

• An advanced and versatile tool for computing highly

accurate steady state and transient thermal profiles of ICs

and their packages using either a linear or a nonlinear

model with temperature-dependent material parameters.

• A fast mesh generator for the discretization of 3-D

IC geometries with built-in local refinement capabilities

prior to the simulation.

• Fully adaptive spatiotemporal refinement and model
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parameter selection based on established error analysis

theory to compute highly accurate temperature profiles

at a near optimal computational cost.

• The shared memory parallelization capability for

multicore architectures.

With these capabalities, the MTA is able to thermally

analyze a modern processor at the floorplan level in an LGA

package attached to a heat sink with 72 fins, resulting in a

mesh of over 3M nodes in under 3 minutes, of which the

actual computation time is 40 seconds. Extensive numerical

simulations demonstrate that the MTA provides fast and

accurate linear and nonlinear thermal analyses for more

complex geometries than existing academic tools.

The paper is organized as follows. Section II discusses

related work and the motivation for the MTA. This section

contains an overview of existing thermal analysis tools.

Section III presents the new and extended version of the MTA,

which includes a description of the solution methodology

and lists the main features of the tool. Section IV covers

the computational and implementation details of the MTA.

Section V presents results of both linear and nonlinear thermal

simulations and comparisons with existing tools in terms of

both speed and accuracy. Section VI offers some concluding

remarks.

II. RELATED WORK AND MOTIVATION

There are a number of existing thermal analysis tools for

ICs, see, e.g., [8]–[13]. Tools, such as Hotpost [10] and

3D-ICE [11], invoke the electro-thermal duality and utilize

compact models to approximate the heat flow within the IC.

This approach approximates the underlying physics of the

problem by an analogous electrical circuit analysis. In these

tools, the linear systems arising from the circuit equations are

solved by direct methods [14], which become prohibitively

expensive as the size of the linear system increases. For

example, Hotspot [10], which uses the SuperLU solver [15],

computes a steady-state temperature on a circuit discretized

with 250K cuboids in 40 seconds, whereas a problem with

1M cuboids takes over 6 minutes.

Other tools, such as ICTherm [12], [13], discretize the heat

equation using finite difference methods and solve the resulting

linear systems using operator splitting methods. The solution

time for these methods scales linearly with the problem size,

but their use is limited to linear problems and structures

discretized by tensor product grids, which prevents the use

of adaptive spatial refinement. In all of these tools, transient

temperature profiles are computed using a time integration

method. The time integration methods are either explicit [10],

[11], [16], semi-implicit [12], or low order implicit [17] and

in most cases only support constant time step sizes. Stability

requirements of explicit methods are expressed by the CFL

condition [18], which bounds the maximum allowable time

step size by the size of the spatial discretization parameter.

The micrometer (or nanometer) scale features of an IC require

fine spatial grids, which place a severe restriction on the time

step size and increase the computational cost.

Existing state-of-the-art tools are effective for a limited

range of problems, specifically, simple floorplan geometries

that lead to small-scale linear systems that do not change

during the simulation, i.e., the spatial and time discretizations

remain fixed. Practically, these tools model 2.5-D geometries,

where each layer of material cannot be freely discretized in the

vertical direction. Limited support or oversimplified models

are also provided for the surrounding structures of an IC,

such as the package and heat sink, which hinders design and

package space exploration.

The MTA differs from most of the previously mentioned

tools by using the finite element method (FEM) [19]

to discretize the heat equation directly. In addition, the

resulting linear systems are solved with fast preconditioned

iterative methods, specifically, multigrid preconditioned

Krylov subspace methods [20], [21]. The MTA utilizes the

FEM with varying order of the polynomial interpolation

and non-damping time integration methods. To improve

computational speed and to fully include the adaptive

refinement features supported by previous thermal analysis

tools, the MTA supports simultaneous adaptive time

integration and adaptive spatial refinement. Tools, such as [8],

[22], have previously employed simultaneous spatiotemporal

adaptivity but use explicit time integration methods.

In [8], both the grid and time step size are adaptively refined

and each element in the discretization can have a different

time step size. However, this approach uses explicit methods

which are still constrained by the CFL condition. In [22],

frequency-domain methods are used to integrate over longer

time intervals to avoid long simulations that take many small

time steps. In contrast, the MTA uses unconditionally stable

and non-dissipative adaptive synchronous time integration

methods in conjunction with adaptive spatial refinement. As

is shown, by enabling these features simultaneously, the MTA

produces as accurate thermal profiles over long simulation

intervals with comparable or improved speed compared to the

previous tools and fixed discretization approaches. At the same

time, the MTA removes many of the inherent limitations of

existing academic tools while providing a more versatile tool

capable of simulating more complex system structures.

In all of the aforementioned tools, the material properties

are considered constant yielding linear heat flow models. This

assumption has been shown to considerably affect the accuracy

even for the simple case study of steady-state analysis for

a silicon cube [23]. Recognizing the requirement to provide

highly accurate thermal analysis over wide temperature ranges,

the MTA incorporates, to the best of the authors’ knowledge

for the first time, transient nonlinear thermal analysis to

model complex circuit geometries. The MTA also provides

a novel and advanced mesh generation process that rapidly

produces finite element meshes for complex IC and package

geometries. This comprehensive set of computational features

make the MTA well-suited for the thermal analysis of modern

integrated systems characterized by increasing complexity and

heterogeneity.

III. OVERVIEW OF THE MTA

Based only on a user-supplied XML file containing the

thermal parameters and coordinates of the structures within
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the integrated system, the MTA automatically generates the

finite element mesh and numerically solves the (nonlinear)

heat equation. The power density dissipated in the active

components of the circuit is supplied from an external

power trace file that is generated either by architecture level

simulators with a power modeling framework such as [24] or

commercial power analysis tools. Further details on the XML

and power trace files are given in [25]. In the remainder of

this section, the governing heat equation is reviewed, followed

by the details of the mesh generation process, the spatial

discretization, and the time integration methods. The adaptive

spatiotemporal refinement features are also summarized. A

discussion on the effects of spatial and temporal discretization

errors to the accuracy and computational efficiency of the

simulation is also presented. Lastly, the utilized preconditioned

iterative solvers are discussed. A flow chart of the simulation

process of the MTA is given in Figure 1.

Structure definition
(.xml)

Power trace
(.ptrace)

Visualization
(optional, external)

Mesh generator
(.msh)

Heat simulator
(based on FEM library)

Fig. 1. The MTA flow. User-supplied input files are highlighted in grey.

A. Nonlinear Heat Transfer Model

The flow of heat in an IC is governed by the following

nonlinear initial boundary value problem

ρC(u)
∂u(x, t)

∂t
−∇ · (κ(u)∇u(x, t)) = f(u,x, t) in

Ω× [0, T ]
, (1a)

(κ(u)∇u) · n = η(ua − u) on ∂Ω× [0, T ], (1b)

u(x, 0) = u0 in Ω̄ = Ω ∪ ∂Ω. (1c)

The function u(x, t) denotes the temperature (in [K]) at time t
and a spatial point x = (x, y, z) in the IC domain Ω ⊂ R

3.

The physical parameters are the material density ρ [kg/m3],
the specific heat C(u) [J/kgK], the thermal conductivity

κ(u) [W/mK], and the thermal transmissivity η [W/m2K]
at the boundaries. The nonlinearity in the problem arises from

the temperature dependence of the specific heat and thermal

conductivity. Note that cV (u) = ρC(u) is the volumetric

specific heat.

The function f(u,x, t) [W/m3] is the power density

dissipated by the active layer(s) of the system. The power

density is comprised of two parts, the dynamic power f1(x, t)
and the leakage power f2(u,x, t) so that f(u,x, t) =
f1(x, t) + f2(u,x, t). The leakage power has an exponential

dependence on the temperature, i.e., f2(u,x, t) = αeβ(u−ub),

where α [W/m3], β (a dimensionless parameter), and the base

temperature ub depend on the architecture [26]–[28].

The Robin boundary condition described by (1b) represents

Newton’s law of cooling, i.e., the heat flux at the boundary

is proportional (with constant heat transfer coefficient η) to

the difference between the ambient temperature ua and the

temperature u at the boundary ∂Ω. The initial temperature

of the circuit in (1c) is denoted by u0. The values of C
and κ also vary across the circuit, since different materials

have different thermal properties. A linear heat flow model is

obtained by setting the thermal conductivity and specific heat

to constant values in (1a). In the MTA, the initial boundary

value problem (1) is solved numerically using the FEM and

implicit time integration methods.

B. Mesh Generation

The required first step in the FEM is the generation of

the computational mesh, i.e., the subdivision of the IC and

package into smaller hexahedral (cuboid) elements with a

characteristic length h referred to as the mesh width. The MTA

provides a built-in and fully automatic 3-D mesh generator,

which creates the mesh by parsing the coordinates of the IC

components from the XML file. The developed mesh generator

is extremely fast and efficient with the ability to create meshes

containing millions of nodes in seconds.

To ensure mesh quality, the mesh generation routines

offer refinement capabilities prior to the simulation. For

example, the geometry of specific structures can produce

coarse initial meshes that contain stretched elements. Other

structures can produce meshes with reentrant corners at

overhanging boundary surfaces. Without additional local mesh

refinement, such meshes can lead to thermal profiles with

low accuracy, producing, for example, an unphysical damping

of the temperature. To avoid these computational issues, the

MTA supports local mesh refinement for such structures before

performing the thermal simulation.

C. FEM Discretization

The FEM discretization of (1) results in a system of initial

value problems (IVP) of the form

M(uh)u̇h +K(uh)uh = fh(uh), (2)

or, equivalently,

M(uh)u̇h +K(uh)uh − fh(uh)
︸ ︷︷ ︸

F (uh)

= 0. (3)

The solution (temperature) and power density vectors are

denoted by uh, f(uh)h ∈ R
n, respectively. The (nonlinear)

mass and stiffness matrices are denoted by M(uh),K(uh) ∈
R

n×n. For further details of the discretization process see

[25]. The length n (dimension) of the above vectors (matrices)

is equal to the number of unknown nodal temperatures

and is commonly referred to as the number of degrees of

freedom (DOF). Note that as the mesh is refined (h → 0),

the discrete problem size increases (n → ∞), and the
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discrete solution tends to the continuous exact solution at the

asymptotic rate. The asymptotic convergence of the solution

and the relation to the computational efficiency of the thermal

simulator are discussed further in Section III-F.

Transient thermal simulations are computed by solving

(2) using a time integration method. The MTA uses

unconditionally stable implicit time integration methods [18]

and the specific methods offered by the tool are described in

Section III-E. Steady-state thermal simulations are recovered

by setting u̇h = 0 in (2) and solving K(uh)uh = fh(uh).
The computational cost of assembling the system matrices

in (2) and the solution of the underlying linear systems

increases with the dimension n. It is therefore essential

that the assembly routines have optimal computational cost

and to minimize the required number of assemblies during

the simulation. Efficient and scalable parallelization of the

assembly and solve routines is also crucial. For linear problems

where the spatial and time discretization parameters are fixed,

the assembly of these matrices is required only once. For

nonlinear problems, these matrices must be constructed at each

Newton iteration.

D. Adaptive Spatial Refinement

The temperature can vary significantly across the area

of a circuit due to highly localized heat sources and the

different properties of the constituent materials. Capturing

this behavior accurately while maintaining the overall

computational efficiency requires locally fine meshes. To

achieve the required level of accuracy with uniformly refined

meshes would lead to unnecessarily large computational

times. In order to minimize the computational effort without

sacrificing accuracy, the mesh is adaptively refined only in

parts of the domain with significant variations (large gradients)

in temperature. Adaptively refined solutions achieve the same

asymptotic level of accuracy with more economical spatial

discretizations. The adaptive mesh refinement (AMR) strategy

in the MTA is based on computed a-posteriori error estimates.

The elements of the computational mesh are marked for

refinement based on computed error estimates of the solution.

In the MTA, these estimates are computed by the error

estimator [29]. This estimator computes an approximation

of the error in each element by averaging the jumps in

the solution gradients at the faces of the adjacent elements.

The refinement/merging of the elements is triggered based

on user-specified tolerances described in IV-C. The effect of

changing these tolerances on the speed and accuracy of the

simulation is presented in Section V-B.

E. Adaptive Time Integration Methods

For transient problems, the MTA solves equation (3) using

implicit time integration methods. When the time step size is

fixed, the time interval [0, T ] is partitioned into N subintervals

such that t0 = 0 and tk = k∆t for k = 1, . . . , N , with

∆t = T/N . The discrete solution and right hand side vector

at time tk are denoted by u
k
h and f

k
h , respectively.

Implicit time integration methods replace the time derivative

in (3) by a finite difference approximation, i.e., u̇h ≈ Du
k+1
h ,

for some difference operator D. Then the following nonlinear

equation is solved for uk+1
h

M
(
u
k+1
h

)
Du

k+1
h + F

(
u
k+1
h

)
= 0. (4)

The MTA supports the following methods:

• the 1st order backward Euler (BE) method,

• the 2nd order backward differentiation formula (BDF2),

• the 2nd order trapezoidal rule (TR) and the stabilized

version of this method [30],

• the 2nd order implicit midpoint rule (IMR).

For an overview of these methods, see, e.g., [18].

The BDF methods, both the first order BE and second

order BDF2, are included as they have been previously

used [10], [17]. The main drawback is their dissipative nature,

making them unsuitable for accurate integration over long time

materials. In contrast, the TR and the IMR methods do not

introduce spurious damping into the computed solution and

accurately reproduce the energy of the system (the geometric

integration property [31]). These methods should be used for

the cases when the integration over long time intervals with

many subintervals, i.e., when O(N) = 1000. The TR method

is appropriate for linear models, while the IMR should be used

for the nonlinear model.

Each time integration method implemented in the MTA

supports adaptive time step selection of ∆t. This increases

the computational efficiency of transient thermal simulations

whilst controlling the temporal error. The new time step size is

determined based on the computed local truncation error (LTE)

estimate of the implicit method. This is accomplished using

predictor-corrector methods [31]. These methods compute

an LTE estimate to sufficient asymptotic accuracy based

on the computed predictor (explicit method) solution and

corrector (implicit method) solution and the asymptotic order

of convergence for both of these methods should be equal. Let

e denote the local truncation error (LTE) estimate [18] and εt a

user-prescribed tolerance. A standard heuristic for computing

the adaptive time step ∆tn+1 of a method of order q is

∆tn+1 = ∆tn

(
εt

‖e‖2

) 1
q+1

, (5)

where ‖e‖2 is the standard Euclidean norm and ∆tn is the

previous time step.

F. Error Analysis

Utilizing theoretical error analysis results that exist for the

FEM [19] and the IVP solvers [18] is a key advantage of

MTA’s methodology compared to other tools that are based

on the electrothermal duality. The computed FEM solution

u
k+1
h introduces a certain amount of error with respect to

the exact solution u of (1). The contributions to this error

are a combination of the spatial and temporal discretization

errors. As both the mesh width and time step size are refined,

i.e., h, ∆t → 0, this error decreases at a specific asymptotic

rate related to the order of the discretization methods used

and in the limit uk+1
h → u. Note that for meshes consisting

of different sized volume elements, h is identified as the

maximum element length, width, or height.
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The global error in the solution of (1)-(3) behaves as

‖u− uh‖ = O (hp +∆tq) , (6)

where p and q are the asymptotic convergence orders of the

space and time discretization methods [18], [19]. The order p
in the FEM is determined by the order of the basis functions

on the elements. The order q of the time integration method is

based on the order of the LTE. For numerical schemes using

equal order methods (p = q), it is advisable to set ∆t = O(h).
Otherwise, either the spatial or temporal error dominates the

solution and computational effort is wasted.

Based on these error considerations external architecture

simulators used to produce the power vector f
k+1
h should be

reconfigured based on the order of the grid resolution used

in thermal simulations. If the grid resolution is coarse, for

instance, on the order of tens or hundreds of micrometers,

configuring a power simulator to output power at the typical

sub-microsecond time rate is computationally wasteful. This

behavior can be exploited to accelerate the overall design

process since the external architecture simulators produce

smaller power trace files. Alternatively, if the external

simulators cannot be optimally reconfigured in this way, the

thermal simulator should allow for the tuning of the mesh

width h and the time step ∆t. The MTA supports the tuning

of these parameters in order to balance the error with the

computational effort. The interplay between the spatial and

temporal errors and how to set h and ∆t in the MTA for

computationally efficient thermal simulations is described in

Section V.

G. Solvers

At each time step tk+1, a system of nonlinear algebraic

equations (4) is solved with Newton’s method. Newton’s

method starts from the initial guess u
k+1,0
h and computes the

approximate solution u
k+1,ℓ
h for ℓ = 1, 2... as

J
(

u
k+1,ℓ−1
h

)

δuk+1,ℓ−1
h = −r

(

u
k+1,ℓ−1
h

)

, (7)

u
k+1,ℓ
h = u

k+1,ℓ−1
h + δuk+1,ℓ−1

h , (8)

where

J
(
u
k+1
h

)
=

∂r
(
u
k+1
h

)

∂uk+1
h

, (9)

r
(
u
k+1
h

)
= M

(
u
k+1
h

)
Du

k+1
h + F

(
u
k+1
h

)
, (10)

are the Jacobian matrix and the residual vector at iteration

ℓ− 1, respectively. Note that in (9)-(10) the iteration index is

dropped for notational convenience. At each Newton iteration

ℓ, a linear system is solved for the correction δuk+1,ℓ−1
h ,

which is used to update the solution in (8). The stopping

criterion for the Newton iteration adopted in the MTA is

satisfied when the relative norm of the residual in (10) is less

than a user-prescribed tolerance εN , which is set to 10−6 by

default. Larger values of εN lead to faster simulations with

fewer Newton iterations required but less accurate solutions.

For linear problems, Newton’s method converges in a single

iteration.

In thermal simulations, the solution of the system of

equations in (9) is typically a computational bottleneck,

requiring the use of fast solvers. Since the Jacobian matrices

that arise from the FE discretization of (1) are large, sparse,

and symmetric positive definite, the MTA uses preconditioned

Krylov subspace iterative solvers [21]; specifically, the

conjugate gradient (CG) method [32] with the BoomerAMG

algebraic multigrid (AMG) preconditioner [20].

The advantage of the CG method is the use of

computationally inexpensive sparse matrix-vector products and

a three-term recurrence to create the orthogonal Krylov basis

(i.e., the Lanczos method [33]). Thus, the CG algorithm

has fixed storage costs, making this technique more suitable

for solving very large sparse linear systems that arise from

the discretization of 3-D partial differential equations than

sparse direct methods based on matrix factorizations. Using

iterative solvers, the MTA reduces transient simulation times

by two orders of magnitude compared to simulators that use

direct methods, such as Hotspot [10]; see Section V-A. The

implemented solvers in the MTA use the open-source software

PETSc [34], [35].

IV. COMPUTATIONAL DETAILS

This section discusses key computational details of the

MTA pertaining to the implementation, the choice of the

thermal parameters, the operation modes, and the adaptive

spatiotemporal refinement parameters.

A. Implementation Details

The numerical solution of the heat equation (1) in the

current version of the simulator is implemented with the

open-source finite element library deal.II [36], [37] for

improved computational speed and parallel efficiency. As a

result of this new implementation, the MTA supports larger

and faster thermal simulations compared to [25].

The power dissipated by the circuit is supplied to the MTA

from an external power trace file. This file contains the power

dissipated to the active layer(s) of the circuit at a uniform time

interval of size ∆ta, referred to as the atomic time step. The

power information from this file is used to assemble the power

density vector f
k+1
h . When the time step of the simulation

∆t = ∆ta, the power vectors are simply read in from the

power trace file. However, when ∆t > ∆ta, the power at time

tk+1 is taken as the average power over the number Na of

atomic subintervals contained in [tk, tk+1]

f
k+1
h =

1

Na

Na∑

i=0

f
k+ i

Na

h , (11)

where Na = (tk+1 − tk)/∆ta. Note that this implies that

the time steps in the MTA are integer multiples of ∆ta. For

adaptive time stepping methods the new time step ∆tn+1

computed in (5) is rounded down to the nearest lower integer

multiple of ∆ta. The justification for averaging the power

is that there is a significant gap in the time scales of the

circuit’s switching activity and the thermal diffusion times of

the materials involved.
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B. Temperature-Dependent Thermal Parameters

The specific heat and thermal conductivity of the different

materials used in the MTA are assumed to depend linearly on

the temperature, i.e., c(u) = c0 + c1u and κ(u) = k0 + k1u.

Note that a linear heat flow model is recovered by setting c1 =
k1 = 0. The coefficients c0, k0, and c1, k1, are determined by

linearly interpolating the data from [38], [39] over the typical

temperature range of an IC (e.g., 300-450 K). This represents

a sufficiently good approximation over this temperature range.

However, if required, the model can be improved by using a

higher order interpolation. In the nonlinear thermal simulation

presented in Section V-C, the thermal parameters of two

silicon tiers are considered to be temperature-dependent. The

nonlinear parameter values of silicon are listed in Table I.

TABLE I
NONLINEAR PARAMETER VALUES OF SILICON.

element c0 c1 k0 k1
Silicon 1.05 · 106 2.03 · 103 300 -0.5

C. Spatiotemporal Refinement Parameters

For improved computational efficiency, the MTA supports

fully adaptive spatiotemporal refinement. Utilizing several

combinations of spatiotemporal adaptivity, the MTA operates

in four different modes as listed in Table II.

TABLE II
SPATIOTEMPORAL CHARACTERISTICS OF THE MTA OPERATION MODES.

fixed h adaptive h

fixed ∆t M1 M3

adaptive ∆t M2 M4

The different modes available in the MTA provide more

flexibility in tuning thermal analyses than any other academic

thermal simulator. The use of these features requires setting

specific parameters, which affects both the speed and accuracy

of the simulation.

The mode M1 assumes fixed spatiotemporal discretization

parameters through the simulation (note that ∆t can be an

integer multiple of ∆ta). In the case of a linear model, the

Jacobian matrix in (9) needs to be assembled only once

and can be reused throughout the entire transient simulation.

Similarly, the coarsening phase of the AMG preconditioner

needs to be computed once and can be reused. When the

spatial discretization is fixed and the time step size varies

(M2), similar computational savings can be achieved since

the formation of the Jacobian only involves adding the mass

matrix to the scaled stiffness matrix. Every time the spatial

discretization changes in modes M3 and M4, the Jacobian

matrix needs to be reassembled. For the nonlinear model, the

Jacobian is assembled at each Newton iteration.

For adaptive time integration, the key parameter is the

user-prescribed LTE tolerance εt. Decreasing εt leads to an

increase in the number of time steps, but the temporal accuracy

of the solution is improved. When εt is reduced by an order

of magnitude, the number of time steps increase roughly by a

factor 101/1+q . The choice of εt is problem dependent, but

even using relatively strict tolerances, i.e., εt = O(10−5)
or smaller, decreases the simulation time by an order of

magnitude compared to simulations with a fixed atomic time

step size (see Section V-B). The optimal choice of εt is also

influenced by the mesh width. For a time stepping method of

order q, the LTE of the method is of order q + 1. Thus, for a

fixed mesh width h, it is suggested to set εt = O(hq+1).
For AMR, the key parameters are the AMR frequency,

and the percentage of elements with the largest/smallest

error estimates to be refined/merged, denoted by τr and τm,

respectively. The parameters 0 < τr, τm < 1 influence

how many elements are marked for refinement/merging and

thus control the reduction of the error in the adaptively

refined solution. The refinement strategy is based on Dörfler

marking [40]. The set of elements to be refined in the mesh is

the smallest subset of hexahedrons whose error sum is larger

than the product of τr and the total error estimate. The set of

elements to be merged is the smallest subset of hexahedrons

whose error sum is smaller than the product of τm and the

total error. Uniform refinement with no merging is achieved

by setting τr = 1 and τm = 0.

AMR is computationally expensive, requiring the

re-assembly of the Jacobian matrix on the refined grid

in addition to redistributing the DOFs and computing a new

coarsening scheme for the AMG preconditioner. As a result,

tuning the AMR frequency parameter is important to balance

the accuracy and speed of the simulation. Note that fewer

refinements during the simulation lead to shorter execution

times, but the thermal profiles generally have slightly lower

accuracy. The choice of these spatiotemporal refinement

parameters is problem dependent and insights are offered in

Section V-B related to the tradeoffs between the speed and

accuracy of thermal simulations in each mode.

V. RESULTS

In this section, the accuracy and speed of the MTA are

validated together with experiments that demonstrate the

full range of the simulator’s capabilities. In Section V-A,

the accuracy of the MTA is verified with the proprietary

multi-physics software COMSOL [41]. The simulation speed

of the MTA is then compared to Hotspot version 6.0 [10]. Both

comparisons are performed on a basic benchmark problem.

These tests illustrate both the accuracy and favorable execution

times of thermal simulations using the MTA. In addition,

the effect of varying h and ∆t on the global error and

how to choose these parameters for efficient computations is

presented. In Section V-B, the same benchmark problem is

used to demonstrate the computational benefits of enabling the

spatiotemporal refinement features of the MTA and to provide

guidelines for the choice of the spatiotemporal parameters. In

Section V-C, nonlinear thermal simulations are presented for

a slightly more complex geometry. Lastly, in Section V-D,

results from a packaged circuit, the LGA benchmark [42], are

shown to demonstrate the parallel capabilities of the MTA for a

more complex scenario. All of the experiments are performed

on a PC with an Intel i7 4790 processor, 32 GB DRAM, and

the CentOS 7 operating system.
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A. Validation with COMSOL and Hotspot

The accuracy of the MTA is validated through a

comparison with the proprietary software COMSOL [41],

and the state-of-the-art academic simulator Hotspot [10]. A

steady-state and transient thermal simulation are considered

on a 3-D benchmark system. This system is chosen to

match Hotspot’s modeling capabilities in terms of geometries

and structures. In addition, this benchmark serves to

demonstrate the achievable computational gains needed for

more complicated problems. The benchmark structure is a

circuit consisting of two silicon tiers attached to a heat

spreader and heat sink as depicted in Figure 2. Note that solid

arrows at the boundary indicate the Robin boundary condition

in (1b) and dashed arrows indicate an adiabatic boundary

(η = 0).

Silicon Tier 1
Silicon Tier 2

Spreader

Heat sink

Heat flux out

Heat flux out

Zero flux Zero fluxz

x

y

Fig. 2. Vertical cross-section of the basic benchmark circuit and package.

The dimensions are 10 mm × 10 mm × 0.5 mm for the

silicon tiers, 10 mm× 10 mm× 1 mm for the heat spreader,

and 50 mm × 50 mm × 10 mm for the heat sink. Tier 2

dissipates 20 W throughout the entire simulation while Tier

1 is inactive. The parameters used to configure the linear

thermal simulations are summarized in Table III, where the

subscript Ti (HS) indicates a parameter of the silicon tier

at room temperature (heat spreader or sink). The MTA uses

hexahedral elements so the problem can be discretized with 1st

(Q1) and 2nd (Q2) order elements. COMSOL uses tetrahedral

elements with 1st (P1) and 2nd order (P2) elements. The length

of the transient simulation is T = 1 sec with a fixed time step

∆t = 0.001 sec.

TABLE III
PARAMETERS OF THE BENCHMARK SYSTEM FROM FIGURE 2.

Parameter CTi
, κTi

CHS , κHS η ua

Value
1.75 MJ

kgK
, 3.55 MJ

kgK
,

100 W
m2K

318.1 K
100 W

mK
400 W

mK

To compare the accuracy of the temperatures computed by

the MTA and COMSOL as the order of the numerical scheme

and grid resolution vary, the minimum umin and maximum

umax temperatures in the entire domain are compared. These

values are listed in Table IV for steady-state simulations, and

in Table V at the end of transient simulations, respectively.

The temperature u(xc) at the center of the active layer xc =
(0.005, 0.005, 0.00075) is also listed.

TABLE IV
THE STEADY-STATE TEMPERATURES OBTAINED WITH THE MTA AND

COMSOL.

Tool Order DOF umin umax u(xc)

MTA

Q1 54,689 346.334 349.826 349.720
Q1 415,041 346.334 349.836 349.729
Q1 3,232,385 346.334 349.840 349.733
Q2 54,689 346.334 349.834 349.727
Q2 415,041 346.334 349.839 349.732

Q2 3,232,385 346.333 349.841 349.734

Comsol
P1 77,816 346.334 349.831 349.595
P2 604,787 346.334 349.835 349.728

TABLE V
THE TRANSIENT TEMPERATURES AT TIME T = 1 SEC OBTAINED WITH

THE MTA AND COMSOL.

Tool Scheme DOF umin umax u(xc)

MTA

Q1-BE
7,569 318.176 321.290 321.178
54,689 318.176 321.313 321.200
415,041 318.176 321.323 321.209

Q2-TR

7,569 318.176 321.309 321.196
54,689 318.176 321.321 321.208
415,041 318.176 321.326 321.213

Comsol
P1-BE 77,816 318.176 321.319 321.077
P2-BE 604,787 318.176 321.324 321.211

In Table VI, global measures of the error between the

COMSOL and MTA solutions for the cases highlighted in

bold in Tables IV and V are shown for both steady-state

and transient simulations. For the steady-state simulation, the

integral of the COMSOL and MTA solutions, highlighted in

bold in Table IV, is shown. For the transient simulation, the

maximum of the integrals over the time interval [0, T ] for the

COMSOL and MTA solutions, highlighted in bold in Table V

is shown. This global measure of error illustrates the near

perfect agreement between the two models.

TABLE VI
GLOBAL ERROR COMPARISON OF THE MTA AND COMSOL.

Simulation Error

Steady
∫
Ω |uCOMl − uMTA| dx = 8.32 · 10−9

Transient max[0,T ]

∫
Ω |uCOM − uMTA| dx = 5.75 · 10−6

Furthermore, observe that the difference in the reported

temperatures between the MTA and COMSOL is within a

few thousandths of a degree, a negligible amount over the

temperature range. In Figure 3, the transient temperatures at

the point xc, i.e., u(xc, t), for both the MTA and COMSOL

are plotted for numerical schemes of different order, which

shows almost perfect agreement between the two models.

SL: The thermal simulator Hotspot outputs the average

temperature of the active layers. For comparison with the

MTA, the average temperature of Silicon Tier 2 is computed

in the MTA. This average is computed by summing the

temperature at the nodes in Silicon Tier 2 and dividing by the

number of nodes in Tier 2. The errors between the average

temperatures are reported in Table VII.
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Fig. 3. Time evolution of u(xc) computed with the MTA and Comsol.

TABLE VII
ERROR COMPARISON BETWEEN THE MTA AND HOTSPOT.

Simulation MTA Hotspot Error

Steady
Transient

For the error estimation in subsequent computations, a

highly accurate transient temperature profile computed with

the MTA using Q2 elements on a grid with 415,041 DOF and

the TR method serves as a reference solution uref . A measure

of accuracy of the solution uh to the reference solution is the

maximum pointwise error ‖uh − Puref‖∞
†, where P is the

injection operator from the reference to the coarser grid.

In Table VIII, the simulation times and corresponding errors

are reported with the simulator running in mode M1 as

both the spatial discretization (DOF) and the time step size

vary. The total execution times reported in this table are for

simulations where the temperature is output once at the end

of the simulation (T = 1 sec).

TABLE VIII
THE SIMULATION TIME AND ACCURACY IN MODE M1 AS h AND ∆t VARY.

Scheme DOF ∆t Time (s) ‖uh − Puref‖∞ [K]

Q1-BE

54,689

h = 0.002

0.1 8.45 0.090
0.01 56.7 0.075
0.001 295 0.074

415,041

h = 0.001

0.1 70.7 0.034
0.01 567 0.019
0.001 3,924 0.018

Q2-TR
54,689

h = 0.004

0.1 16.3 0.123
0.01 117 0.046
0.001 615 0.046

415,041

h = 0.002

0.1 135 0.108
0.01 970 0.001
0.001 7,433 -

There is a significant decrease in the execution time as the

time step size increases. The Q1-BE solution on the coarsest

grid with ∆t = 0.1 is accurate to within 0.09 degrees, a

difference of less than 3% relative to the temperature range

of the system (∼ 3 degrees K). The reduction of ∆t by a

factor of 10 for the fixed spatial grid does not lead to a

†The infinity norm is defined as ‖u‖∞ = max
1≤i≤n

|ui|

tenfold decrease in execution time due to a one-off cost of

the solution output (cf. Table VIII). The other computational

phases, such as the assembly and solution times, however,

do reduce by a factor of ten. Note that the reduction in the

error as ∆t decreases from 0.01 to 0.001 is almost negligible

for each example in Table VIII. This behavior follows the

discussion on the computational error from Section III-F and

illustrates how both the spatial and time discretization errors

contribute to the global error, which is often neglected in the

thermal analysis of ICs. A fixed grid resolution (or time step)

introduces a certain level of spatial (temporal) error. Thus,

computational effort is wasted in simulations when the orders

of the mesh width h and time step size ∆t differ significantly.

For this particular benchmark problem, observe that the mesh

width h = O(10−3) and choosing a time step ∆t < 0.01
is unnecessary. Furthermore, this behavior indicates that for

this fixed grid resolution, the atomic time step size ∆ta of

the external power simulator should be set to O(10−2). In the

MTA, the mesh generator provides an estimate of the mesh

width that helps to tune the time step.

To illustrate the improved performance the MTA offers over

both COMSOL and academic open-source thermal simulators,

the execution time of the MTA is compared to both COMSOL

and Hotspot 6.0 [10] using the same system depicted in

Figure 2. Since Hotspot uses first order accurate schemes,

the MTA steady-state simulation is also computed with Q1

elements and the transient simulation is computed in mode

M1 (cf. Table II) using the Q1-BE scheme with ∆t = 0.01
sec. The execution times for each of the tools are reported in

Table IX.

TABLE IX
TOTAL SIMULATION TIMES OF THE BENCHMARK FROM FIGURE 2.

Analysis
MTA

(415,041 DOF)

Hotspot

(262,144 DOF)
COMSOL

(604,787 DOF)

Steady 33.9 sec 39.7 sec 25.0 sec
Transient (∆t = 0.01) 567 sec 78,000 sec 80,000 sec

For steady-state problems, the simulation time for the MTA

is faster than Hotspot’s on a discrete problem that is nearly

twice the size. This indicates that for equal problem sizes, the

MTA performs thermal simulations in less than half the time

required by Hotspot. Moreover, as shown later in Section V-D,

the MTA simulates systems with problem sizes that are well

beyond the capabilities of Hotspot and other existing tools.

A direct pointwise temperature comparison is not possible

since Hotspot outputs the temperature at different grid points

than the MTA, but the temperature of the two solutions is

reasonably close. The improvement in the simulation time is

considerably greater for transient thermal simulations, where

the MTA is almost two orders of magnitude faster than

Hotspot.

As described in [25], the proposed solution methodology

allows the execution time to roughly scale linearly in the

number of DOFs. This scaling trend can be seen for each phase

of the simulation in Table X, which reports the breakdown

of times (in secs) for a set of increasingly larger transient

simulations conducted in mode M1 with Q1 elements and a

fixed time step size ∆t = 0.01 sec.
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TABLE X
THE BREAKDOWN OF TRANSIENT SIMULATION TIMES (IN SEC).

DOF
Phase 7,569 54,689 415,041

Assemble f
k+1
h

0.95 6.52 54.0

Assemble M,K 0.09 0.77 6.70
Copy mesh 0.07 0.74 6.90
Distribute DOF 0.02 0.17 1.29
Output 0.29 2.47 20.0
Solve 2.94 41.7 432

Total 5.36 57.3 567

The reported times are from a simulation with 100 time

steps. In this simulation, the coefficient matrices M and K
are assembled only once and the power source vector f

k+1
h

is assembled at each time step. The generated mesh is read

and copied by the MTA once at the start of the simulation.

Distributing the DOF is a fast and necessary step that entails

setting up the various finite element data structures in deal.II.

Lastly, in this simulation, the solution is written to an output

file once at the end of the simulation.

The mesh generation time, i.e., creating the .msh file, for

the simulations from Table X is less than a second for the

finest grid in this case study. The majority of the simulation

time is spent solving the linear system. Only 10% of the time

is spent assembling the power source vector f
k+1
h at each

time step. Even with these fast simulation times, additional

computational efficiency and gains in the simulation speed are

possible by enabling the adaptive spatiotemporal refinement

features. These features allow the MTA to analyze more

refined and complex circuit designs.

B. Adaptive Spatiotemporal Refinement

The benchmark system from Figure 2 with the same

parameters is used to demonstrate the computational

advantages of enabling adaptive spatiotemporal refinement.

The benefits of temporal adaptivity (mode M2) are discussed

first, followed by spatial adaptivity (mode M3), and lastly

when both adaptive modes are enabled simultaneously (mode

M4).

A simulation in mode M2 on a fixed grid consisting of

415,041 DOF (with h = 0.001) is considered first. The initial

time step size for this simulation is ∆t = 0.001 sec. In

Table XI, the number of time steps N , the simulation times,

and the accuracy of the solution are reported for different

adaptive time integration methods as the tolerance εt varies.

Compared to the solution times reported in Table VIII for

fixed time step simulations, there is a notable decrease in

both the number of time steps and simulation times. If the

parameters of the fixed and adaptive BE method are tuned

so that they produce similar solution error for the problem

under consideration, then the adaptive method will take 30%

shorter execution time (cf. Table VIII). Similar or better

computational savings are achieved with higher order adaptive

time integration schemes, compared to the fixed step schemes.

For example, a simulation with the adaptive Q2-STABTR

(k∗ = 10) scheme using εt = 10−4 requires only 19 time steps

and executes in just over 3 minutes. The error is 0.003 degrees,

a difference of less than 1% within the temperature range.

Mode M2 simulations have the advantage that the optimal

time step size is automatically selected by the simulator at

each time step.

The errors reported in the last column of Table XI start

to stagnate as εt decreases, which indicates that spatial

error dominates the solution similarly as in mode M1. Since

computational times increase as εt decreases, reducing εt past

a certain point results in extra and unnecessary computational

effort. For this particular experiment setting εt = 10−4 is

sufficient, athough for finer spatial grids, a smaller value of

εt is more appropriate. For a fixed h, there is a set εt value

that leads to optimal computational effort. Based on the error

analysis of the solution methodology (cf. Section III-F), for a

fixed mesh width h, this value is εt = O(hq+1), where q is

the order of the time stepping method. This experiment also

highlights the importance of stabilization in the TR method.

The adaptive TR method suffers from a ringing instability

which limits the growth of the time step sizes [30]. The

stabilization alleviates this restriction on the growth of the

adaptive time step size.

TABLE XI
THE SIMULATION TIME AND ACCURACY IN MODE M2 AS εt VARIES .

Scheme εt N Time (s) ‖uh − Puref‖∞ [K]

Q1-BE

415,041

10−4 15 102 0.048

10−5 33 188 0.032

10−6 88 443 0.023

Q2-BDF2

415,041

10−4 17 181 0.012

10−5 27 273 0.004

10−6 47 451 0.001

Q2-TR

415,041

10−4 78 759 0.001

10−5 477 3980 0.000

10−6 1000 8000 -

Q2-STABTR

k∗ = 10
415,041

10−4 19 201 0.003

10−5 29 286 0.002

10−6 44 429 0.002

To demonstrate the computational benefits of periodic

adaptive spatial refinement, several simulations in mode M3

are run using the Q1-BE scheme with an initial problem size

of 54,689 DOF over the time interval T = 1 sec. In this set

of experiments, the effect on the simulation time and accuracy

is considered as the AMR frequency, time step size, and the

refinement threshold τr are varied. The merging threshold is

set to τm = 0 to ensure that no elements are merged. For

∆t = 0.1, the AMR frequency is set to 5 giving a total of two

adaptive refinements. For ∆t = 0.02, the AMR frequency is

set to 10 giving a total of five adaptive mesh refinements.

The results of these simulations are shown in Table XII.

Note that increasing τr improves the accuracy of the solution

but at a higher computational cost since these cases lead to

finer grids. More importantly, the simulation where the final

grid consists of 109,079 DOF is accurate to within 0.027

degrees, or a difference of roughly 1% within the temperature

range. This achieved level of accuracy is better than the M1

temperature profile computed on a fixed grid of 415,041 DOF

with ∆t = 0.1 (0.034 degrees in Table VIII) and, more

importantly, is obtained with a shorter execution time of

64.5 secs (compared to 70.7 secs). This result highlights
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the benefit of AMR in the MTA, namely, the ability to

compute temperatures on smaller, more economical grids

while achieving the same level of accuracy as for the larger

uniformly refined grid.

TABLE XII
THE SIMULATION TIME AND SOLUTION ACCURACY IN MODE M3 AS THE

AMR FREQUENCY AND ∆t VARY.

AMR freq. ∆t τr Grid size Time (s) ‖uAMR − Puref‖∞ [K]

5 0.1
0.25 58,713 15.4 0.091
0.50 73,290 16.9 0.046

10 0.02
0.25 109,079 64.5 0.027
0.50 411,812 164 0.020

Enabling adaptive spatial or temporal refinement

individually improves the computational efficiency of

thermal simulations. Mode M4 in the MTA enables both of

these features simultaneously for fully adaptive spatiotemporal

refinement. In Table XIII, a comparison of the simulation

time and accuracy between all four operation modes is shown.

TABLE XIII
THE SIMULATION TIME (SECS) AND ACCURACY OF THE DIFFERENT MTA

SIMULATION MODES.

Mode Size Time (N) ‖uh − Puref‖∞ [K]

M1 (∆t = 0.02) 415,041 228 (50) 0.022

M2 (εt = 10−5) 415,041 188 (33) 0.032
M3 (∆t = 0.02, AMR 10, τm = 0.5) 411,812 164 (50) 0.020

M4 (εt = 5.0 · 10−5, AMR 8, τm = 0.5) 367,470 110 (38) 0.024

To demonstrate the effects of a larger power variance on the

performance of the spatiotemporal adaptive modes, Table XIII

is reproduced below with a steady power of 100W applied to

the active regions of the circuit.

TABLE XIV
THE SIMULATION TIME (SECS) AND ACCURACY OF THE DIFFERENT MTA

SIMULATION MODES FOR LARGER POWER VARIANCE.

Mode Size Time (N) ‖uh − Puref‖∞ [K]

M1 (∆t = 0.02) 415,041

M2 (εt = 10−5) 415,041
M3 (∆t = 0.02, AMR 10, τm = 0.5)

M4 (εt = 5.0 · 10−5, AMR 8, τm = 0.5)

This table shows the impact of fully adaptive spatiotemporal

refinement in reducing the computational cost of thermal

simulations while maintaining the same level of accuracy

compared to simulations with fixed discretization parameters.

The M4 simulation is run using the Q1-BE scheme. The

initial grid size is 54,689 DOF, the AMR frequency is 8,

εt = 5.0 ·10−5, τr = 0.5, and τm = 0. The simulation time of

the fully adaptive M4 simulation is 110 secs and requires 38

time steps, which is fastest amongst all modes. The final grid

consists of only 367,470 DOFs and the temperature is accurate

to within 0.024 degrees. Although the M2 simulation takes

5 fewer time steps, the total simulation time is longer since

the fixed computational grid yields a larger discrete problem

size. The M3 simulation is marginally more accurate than

the M4 simulation but using a fixed time step size yields

a longer simulation. For this set of experiments, enabling

full spatiotemporal adaptivity halves the execution time while

maintaining the same level of accuracy as a simulation with

fixed spatiotemporal discretization parameters. In addition,

simulations with simultaneous spatiotemporal adaptivity take

shorter times to execute for the same level of accuracy than

the simulations with only one adaptively refined discretization

parameter (modes M2 and M3).

C. Nonlinear transient thermal simulations

The operating temperature range of modern IC technologies

is typically between 300-400 K [43]. The thermal conductivity

and specific heat of the silicon components of a circuit

are temperature-dependent and vary significantly over this

temperature range. Thus, a linear model is no longer sufficient

to accurately represent the underlying physics and does not

capture the hotspots of a circuit. The following experiments

demonstrate that the linear and nonlinear models predict a

different number of hotspots over this temperature range. This

behavior demonstrates the need for added accuracy and favors

the use of nonlinear models in transient simulations.

Nonlinear thermal simulations are performed on a similar

benchmark system to the one depicted in Figure 2. However,

for this case, the dimensions of the integrated circuit system

have been modified. The dimensions are now 10 mm ×
10 mm×0.125 mm for the silicon tiers, 10 mm×10 mm×
0.25 mm for the heat spreader, and 50 mm×50 mm×10 mm
for the heat sink. The two silicon tiers are now subdivided in

the z-direction into an active layer of height 0.025 mm and

an inactive bulk layer of height 0.1 mm. The active layer is

then subdivided in the x−y plane into quadrants representing

a 4 core system as shown in Figure 4. This specific geometry

C11C12

C13 C14

x

y

(a) The active region of silicon T1.

C21C22

C23 C24

x

y

(b) The active region silicon T2.

Fig. 4. The active cores of the silicon tiers.

which consists of 4 cores for the active silicon layer has been

previously considered in [44]–[46]. The two silicon tiers and

the heat spreader are attached to a heat sink with 11 fins.

The thermal parameters of the two silicon tiers, i.e.,

C(u), κ(u) in (1a), use the values listed in Table I. The

thermal parameters of the heat spreader and sink are constant

over the operating temperature range of the circuit. The

boundary condition at the bottom silicon layer is assumed

to be adiabatic. A nonlinear M1 simulation using a first

order scheme (Q1-BE) over the time interval T = 50 sec

with ∆t = 0.01 sec is performed. The initial and ambient

temperatures are assumed to be 300 K. During the simulation,

a core dissipates three set levels of power: 0 W (idle), 10 W,

or 25 W. The 25 W of power represents an upper bound that a

core of this size can dissipate [3], whereas the smaller power

value is an intermediate value. It is assumed that during each
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second 80% of the cores are active. During this interval, the

active cores dissipate high power 80% of the time and low

power the remaining 20%.

The hot spots in the circuit are identified as any node in the

mesh where the temperature is above the threshold temperature

of 358.15 K, which is a representative value for the safe

operating temperature of the circuit [43]. The temperature trace

at the spatial point x∗ = (0.0045, 0.00625, 0.0001) is shown

in Figure 5. Note that this point is in core C14.

Fig. 5. Time evolution of u(0.0045, 0.00625, 0.0001) with the nonlinear
model.

The point x∗ is selected as it is the location where the

maximum temperature is encounterd during the simulation.

Note that the temperature at this point is larger than the hot

spot threshold temperature after 35 secs, and that the highest

temperatures are observed between 48 and 50 secs. To better

understand the formation of hot spots, cross-sections of the

nonlinear thermal profile of the circuit at z = 100 µm and

z = 225 µm at 48 and 50 secs are shown in Figure 6.

(a) z = 100 µm at t = 48 sec. (b) z = 100 µm at t = 50 sec

(c) z = 225 µm at t = 48 sec (d) z = 225 µm at t = 50 sec

Fig. 6. Cross-sections of the nonlinear active layer.

Next, the numbers of hot spots as identified by the linear

and nonlinear models is presented. To this end, two linear

simulations with κ1 = 100 [W/mK] and κ2 = 150 [W/mK]

are performed in addition to the nonlinear simulation. Note

that κ1 and κ2 are the thermal conductivities of silicon at

300 K and 400 K, respectively. At each time step in the

simulation, the total number of nodes where the computed

temperature is above the hot spot threshold is recorded.

Figure 7 depicts these numbers over the interval [48, 50] secs.

Fig. 7. Total number of hot spots for the linear and nonlinear simulation
between 48-50 secs.

Observe that the total number of hot spots predicted by the

nonlinear model is bounded above by the linear simulation

with κ1 and below by the linear simulation with κ2. During

this time interval, the maximum difference between the

number of hot spots in the linear simulation with κ1 and the

nonlinear simulation is 221. This maximum difference occurs

at time t = 48.15 sec. Similarly, the maximum difference

between the number of hot spots in the nonlinear simulation

and the linear simulation with κ2 is 229, which occurs at

time t = 48.06 secs, i.e., in the critical range when maximum

temperatures are observed.

This behavior shows that linear simulations with lower

thermal conductivities over predict the total number of

hot spots, whereas linear simulations with higher thermal

conductivities predict fewer hot spots. Utilizing nonlinear

models, which incorporate temperature-dependent thermal

parameters, allows the simulator to accurately capture the total

number and the locations of hot spots, thereby avoiding either

underdesign (κ2) or overdesign (κ1) of the circuit to appease

exacerbating temperatures.

D. Complex Structures and Parallel Performance

A benchmark integrated system is considered to further

demonstrate the capabilities of the MTA to perform the thermal

analysis of circuits and complex package structures. The

considered system, called the LGA benchmark, is the Intel

Xeon processor (Nehalem Architecture) in a flip-chip land grid

array (FCLGA) package described in [42]. Figures 8(a)-8(c)

illustrate the assembly of a heat sink with 72 fins and thermal

grease (TG), the CPU, and package components. Displayed

in Figure 8(d) is the thermal profile of the LGA benchmark

from a steady-state thermal simulation with the splash2-barnes

power trace. The discretization of the LGA benchmark with

Q1 elements results in a mesh with 3,604,605 DOF and the

thermal simulation is executed in parallel.
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In Table XV, the breakdown of the total simulation time

into different phases as a function of the number of processors

used is reported for the steady-state LGA benchmark thermal

simulation.

(a) Heat sink + TG (b) + HS + TIM + die

(c) + Package-PCB (d) Thermal Map

Fig. 8. The LGA benchmark geometry and steady-state temperature map.

TABLE XV
TIME (IN SECS) SPENT IN EACH PHASE OF A STEADY-STATE SIMULATION

WITH THE LGA BENCHMARK AS A FUNCTION OF THE NUMBER OF

PROCESSORS.

Phase 1 core 2 cores 4 cores

Computation
Assembly 26.0 13.0 7.00
Distribution 11.0 7.00 6.00
Solve 46.0 34.0 30.0

Total computation 83.0 55.0 43.0

Read/Write
Copy mesh 67.0 77.0 89.0
Output 271 132 56.0

Total read/write 338 209 145

Total simulation time 421 264 188

Note that the time of the computational phase alone, which

excludes the time to copy the mesh and output the results, for

1 core is roughly 80 secs and improves to 40 secs on 4 cores.

A linear scaling with the number of cores is observed for the

output and assembly phases of the simulation. The time of

the copy mesh phase increases with the number of cores as

the deal.II shared memory data structures require a copy of the

initial fine mesh on each core to start the simulation. Although

the distribution and solve phases do not scale optimally due

to the constraints of shared memory parallelization, there is

still a notable reduction in the solve time and thus the overall

simulation time which enables the thermal analysis of complex

integrated circuit systems.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the MTA, an advanced and versatile academic

tool for the thermal analysis of integrated systems is

introduced. The MTA is a physics based model, as opposed

to models which invoke the electrothermal duality. The

tool employs a state-of-the-art numerical methodology for

the discretization of the nonlinear heat equation. As shown

through several detailed experiments, the MTA provides fast

and accurate thermal simulations with the ability to model

the complex geometries of realistic IC systems in parallel.

The proposed thermal simulator has the ability to compute

temperature profiles of ICs discretized on computational grids

consisting of 3M nodes in under 3 minutes, surpassing the

computational and modeling abilities of existing academic

thermal simulators.

In addition to providing larger and faster simulation

capabilities, the MTA provides more computationally efficient

simulations by enabling adaptive spatiotemporal refinement

features. Moreover, the established error analysis results of the

employed numerical schemes are used to efficiently configure

simulations in the MTA as well as other external architecture

simulators. This feature improves the speed of the design

flow process. Existing academic tools are either unable or

do not support methodologies that allow for such optimal

configurations.

The MTA supports nonlinear thermal simulations in four

stable operation modes which enable different combinations

of the adaptive spatiotemporal refinement features. As shown

through an example simulation, the linear and nonlinear

models predict different numbers of hot spots and their

locations. The use of the highly accurate nonlinear model

offers an important means for improved thermal management

of integrated systems in order to avoid excessive (or under)

utilization of thermal management techniques or policies.

Overall, the MTA offers a publicly available, easy to use,

multi-feature tool, approaching in a comprehensive manner

the many aspects and requirements of the IC thermal analysis

process.
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