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The Mukai pairing. I. A categorical

approach

Andrei Căldăraru and Simon Willerton

Abstract. We study the Hochschild homology of smooth spaces, em-
phasizing the importance of a pairing which generalizes Mukai’s pairing
on the cohomology of K3 surfaces. We show that integral transforms be-
tween derived categories of spaces functorially induce linear maps on ho-
mology. Adjoint functors induce adjoint linear maps with respect to the
Mukai pairing. We define a Chern character with values in Hochschild
homology, and we discuss analogues of the Hirzebruch–Riemann–Roch
theorem and the Cardy Condition from physics. This is done in the con-
text of a 2-category which has spaces as its objects and integral kernels
as its 1-morphisms.
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Introduction

The purpose of the present paper is to introduce the Mukai pairing on the
Hochschild homology of smooth, proper spaces. This pairing is the natural
analogue, in the context of Hochschild theory, of the Poincaré pairing on the
singular cohomology of smooth manifolds.

Our approach is categorical. We start with a geometric category, whose
objects will be called spaces. For a space X we define its Hochschild homology
which is a graded vector space HH•(X) equipped with the nondegenerate
Mukai pairing. We show that this structure satisfies a number of properties,
the most important of which are functoriality and adjointness.

The advantage of the categorical approach is that the techniques we de-
velop apply in a wide variety of geometric situations, as long as an analogue
of Serre duality is satisfied. Examples of categories for which our results ap-
ply include compact complex manifolds, proper smooth algebraic varieties,
proper Deligne–Mumford stacks for which Serre duality holds, representa-
tions of a fixed finite group, and compact “twisted spaces” in the sense of [3].
We expect the same construction to work for categories of Landau–Ginzburg
models [16], but at the moment we do not know if this context satisfies all
the required properties.

The Hochschild structure. In order to define the Hochschild structure
of a space we need notation for certain special kernels which will play a
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fundamental role in what follows. For a space X, denote by IdX and Σ−1
X the

objects of D(X × X) given by

IdX := ∆∗OX and Σ−1
X := ∆∗ω

−1
X [− dimX],

where ∆ : X→ X×X is the diagonal map, and ω−1
X is the anticanonical line

bundle of X. When regarded as kernels, these objects induce the identity
functor and the inverse of the Serre functor on D(X), respectively. We shall
see in the sequel that IdX can be regarded as the identity 1-morphism of X

in a certain 2-category V ar.
The Hochschild structure of the space X then consists of the following

data:

• the graded ring HH•(X), the Hochschild cohomology ring of X, whose
i-th graded piece is defined as

HHi(X) := Homi
D(X×X)(IdX, IdX);

• the graded left HH•(X)-module HH•(X), the Hochschild homology
module of X, defined as

HHi(X) := Hom−i
D(X×X)

(Σ−1
X , IdX);

• a nondegenerate graded pairing 〈−, −〉M on HH•(X), the generalized

Mukai pairing.

The above definitions of Hochschild homology and cohomology agree with
the usual ones for quasiprojective schemes (see [5]). The pairing is named
after Mukai, who was the first to introduce a pairing satisfying the main
properties below, on the total cohomology of complex K3 surfaces [15].

Properties of the Mukai pairing. The actual definition of the Mukai
pairing is quite complicated and is given in Section 5. We can, however,
extricate the fundamental properties of Hochschild homology and of the
Mukai pairing.

Functoriality: Integral kernels induce, in a functorial way, linear maps on
Hochschild homology. Explicitly, to any integral kernel Φ ∈ D(X× Y) we
associate, in Section 4.3, a linear map of graded vector spaces

Φ∗ : HH•(X)→ HH•(Y),

and this association is functorial with respect to composition of integral
kernels (Theorem 6).

Adjointness: For any adjoint pair of integral kernels Ψ ⊣ Φ, the induced maps
on homology are themselves adjoint with respect to the Mukai pairing:

〈Ψ∗v, w〉M = 〈v, Φ∗w〉M

for v ∈ HH•(Y), w ∈ HH•(X) (Theorem 8).

The following are then consequences of the above basic properties:
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Chern character: In all geometric situations there is a naturally defined ob-
ject 1 ∈ HH0(pt). An element E in D(X) can be thought of as the kernel
of an integral transform pt → X, and using functoriality of homology we
define a Chern character map

ch : K0(X)→ HH0(X), ch(E ) = E∗(1).

For a smooth proper variety the Hochschild–Kostant–Rosenberg isomor-
phism identifies HH0(X) and

⊕
p Hp,p(X); our definition of the Chern char-

acter matches the usual one under this identification [5].

Semi-Hirzebruch–Riemann–Roch Theorem: For E ,F ∈ D(X) we have

〈ch(E ), ch(F )〉M = χ(E ,F ) =
∑

i

(−1)i dim ExtiX(E ,F ).

Cardy Condition: The Hochschild structure appears naturally in the con-
text of open-closed topological quantum field theories (TQFTs). The
Riemann–Roch theorem above is a particular case of a standard con-
straint in these theories, the Cardy Condition. We briefly discuss open-
closed TQFTs, and we argue that the natural statement of the Cardy
Condition in the B-model open-closed TQFT is always satisfied, even for
spaces which are not Calabi–Yau (Theorem 16).

The 2-categorical perspective. In order to describe the functoriality of
Hochschild homology it is useful to take a macroscopic point of view using a
2-category called V ar. One way to think of this 2-category is as something
half-way between the usual category consisting of spaces and maps, and C at,
the 2-category of (derived) categories, functors and natural transformations.
The 2-category V ar has spaces as its objects, has objects of the derived
category D(X × Y) — considered as integral kernels — as its 1-morphisms
from X to Y, and has morphisms in the derived category as its 2-morphisms.

One consequence of thinking of spaces in this 2-category is that whereas
in the usual category of spaces and maps two spaces are equivalent if they
are isomorphic, in V ar two spaces are equivalent precisely when they are
Fourier–Mukai partners. This is the correct notion of equivalence in many
circumstances, thus making V ar an appropriate context in which to work.

This point of view is analogous to the situation in Morita theory in which
the appropriate place to work is not the category of algebras and algebra
morphisms, but rather the 2-category of algebras, bimodules and bimodule
morphisms. In this 2-category two algebras are equivalent precisely when
they are Morita equivalent, which again is the pertinent notion of equivalence
in many situations.

Many facts about integral transforms can be stated very elegantly as
facts about the 2-category V ar. For example, the fact that every integral
transform between derived categories has both a left and right adjoint is
an immediate consequence of the more precise fact — proved exactly the
same way — that every integral kernel has both a left and right adjoint in
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V ar. Here the definition of an adjoint pair of 1-morphisms in a 2-category is
obtained from one of the standard definitions of an adjoint pair of functors
by everywhere replacing the word ‘functor’ by the word ‘1-morphism’ and
the words ‘natural transformation’ by the word ‘2-morphism’.

The Hochschild cohomology of a space X has a very natural description in
terms of the 2-category V ar: it is the “second homotopy group of V ar based
at X”, which means that it is 2-HomV ar(IdX, IdX), the set of 2-morphisms
from the identity 1-morphism at X to itself. Unpacking this definition for
V ar one obtains precisely Ext•X×X(O∆,O∆), one of the standard definitions
of Hochschild cohomology. By analogy with homotopy groups, given a ker-
nel Φ : X → Y, i.e., a “path” in V ar, one might expect an induced map
HH•(X) → HH•(Y) obtained by “conjugating with Φ”. However, this does
not work, as the analogue of the “inverse path to Φ” needed is a simultane-
ous left and right adjoint of Φ, and such a thing does not exist in general
as the left and right adjoints of Φ differ by the Serre kernels of X and Y.

The Hochschild homology HH•(X) of a space X can be given a similar

natural definition in terms of V ar — it is 2-HomV ar(Σ
−1
X , IdX) the set of 2-

morphisms from the inverse Serre kernel of X to the identity 1-morphism at
X. In this case, the idea of “conjugating by a kernel Φ : X → Y” does work
as the Serre kernel in the definition exactly compensates the discrepancy
between the left and right adjoints of Φ.

The functoriality of Hochschild homology can be expressed by saying
that HH• is a functor into the category of vector spaces from the Grothen-
dieck category of the 2-category V ar (i.e., the analogue of the Grothendieck
group of a 1-category) whose objects are spaces and whose morphisms are
isomorphism classes of kernels. One aspect of this which we do not examine
here is related to the fact that this Grothendieck category is actually a
monoidal category with certain kinds of duals for objects and morphisms,
and that Hochschild homology is a monoidal functor. The Mukai pairing is
then a manifestation of the fact that spaces are self-dual in this Grothendieck
category. Details will have to appear elsewhere.

There is an alternative categorical approach to defining Hochschild ho-
mology and cohomology. This approach uses the notion of enhanced tri-
angulated categories of Bondal and Kapranov [1], which are triangulated
categories arising as homotopy categories of differential-graded (dg) cate-
gories. In [18], Toën argued that the Hochschild cohomology HH•(X) of a
space X can be regarded as the cohomology of the dg-algebra of dg-natural
transformations of the identity functor on the dg-enhancement of D(X). It
seems reasonable to expect that a similar construction can be used to de-
fine the Hochschild homology HH•(X) as dg-natural transformations from
the inverse of the Serre functor to the identity. However, since the theory
of Serre functors for dg-categories is not yet fully developed, we chose to
use the language of the 2-category V ar, where all our results can be made
precise.
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String diagram notation. As 2-categories are fundamental to the func-
toriality, and they are fundamentally 2-dimensional creatures, we adopt a
2-dimensional notation. The most apt notation in this situation appears
to be that of string diagrams, which generalizes the standard notation used
for monoidal categories in quantum topology. String diagrams are Poincaré
dual to the usual arrow diagrams for 2-categories. The reader unfamiliar
with these ideas should be aware that the pictures scattered through this
paper form rigorous notation and are not just mnemonics.

Note. This paper supersedes the unpublished paper [4], in which it was
stated that hopefully the correct categorical context could be found for the
results therein. This paper is supposed to provide the appropriate context.

Synopsis. The paper is structured as follows. The first section is devoted
to the study of integral transforms and of the 2-category V ar. In the next
section we review the Serre functor and Serre trace on the derived category,
and we use these in Section 3 to study adjoint kernels in V ar. In Section 4
we introduce the maps between Hochschild homology groups associated to
a kernel, and we examine their functorial properties. The Mukai pairing
is defined in Section 5, where we also prove its compatibility with adjoint
functors. In Section 6 we define the Chern character and we prove the Semi-
Hirzebruch–Riemann–Roch theorem. We conclude with Section 7 where
we review open-closed TQFTs, and we discuss the Cardy Condition. An
appendix contains some of the more technical proofs.

Notation. Throughout this paper k will denote an algebraically closed field
of characteristic zero and D(X) will denote the bounded derived category
of coherent sheaves on X. Categories will be denoted by bold letters, such
as C, and the names of 2-categories will have a script initial letter, such as
V ar.

The base category of spaces. We fix for the remainder of the paper a
geometric category, whose objects we shall call spaces. It is beyond the
purpose of this paper to list the axioms that this category needs to satisfy,
but the following categories can be used:

• smooth projective schemes over k;
• smooth proper Deligne-Mumford stacks over k;
• smooth projective schemes over k, with an action of a fixed finite

group G, along with G-equivariant morphisms;
• twisted spaces in the sense of [3], i.e., smooth projective schemes

over k, enriched with a sheaf of Azumaya algebras.

For any space X as above, the category of coherent sheaves on X makes
sense, and the standard functors (push-forward, pull-back, sheaf-hom, etc.)
are defined and satisfy the usual compatibility relations.
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1. The 2-category of kernels

In this section we introduce the 2-category V ar, which provides the nat-
ural context for the study of the structure of integral transforms between
derived categories of spaces. The objects of V ar are spaces, 1-morphisms
are kernels of integral transforms, and 2-morphisms are maps between these
kernels. Before introducing V ar we remind the reader of the notion of a
2-category and we explain the string diagram notation of which we will have
much use.

1.1. A reminder on 2-categories. We will review the notion of a 2-
category at the same time as introducing the notation we will be using.
Recall that a 2-category consists of three levels of structure: objects; 1-
morphisms between objects; and 2-morphisms between 1-morphisms. It
is worth mentioning a few examples to bear in mind during the following
exposition.

1. The first example is the 2-category C at of categories, functors and
natural transformations.

2. The second example is rather a family of examples. There is a corre-
spondence between 2-categories with one object ⋆ and monoidal cat-
egories. For any monoidal category the objects and morphisms give
respectively the 1-morphisms and 2-morphisms of the corresponding
2-category.

3. The third example is the 2-category A lg with algebras over some
fixed commutative ring as its objects, with the set of A-B-bimodules
as its 1-morphisms from A to B, where composition is given by ten-
soring over the intermediate algebra, and with bimodule morphisms
as its 2-morphisms.

There are various ways of notating 2-categories: the most common way
is to use arrow diagrams, however the most convenient way for the ideas
in this paper is via string diagrams which are Poincaré dual to the arrow
diagrams. In this subsection we will draw arrow diagrams on the left and
string diagrams on the right to aid the reader in the use of string diagrams.

Recall the idea of a 2-category. For any pair of objects X and Y there is
a collection of morphisms 1-Hom(X, Y); if Φ ∈ 1-Hom(X, Y) is a 1-morphism
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then it is drawn as below.

Φ

Y X X

Φ

Y

These 1-dimensional pictures will only appear as the source and target
of 2-morphism, i.e., the top and bottom of the 2-dimensional pictures we
will be using. In general 1-morphisms will be denoted by their identity
2-morphisms, see below.

If Φ, Φ ′ ∈ 1-Hom(X, Y) are parallel 1-morphisms — meaning simply that
they have the same source and target — then there is a set of 2-morphisms
2-Hom(Φ, Φ ′) from Φ to Φ ′. If α ∈ 2-Hom(Φ, Φ ′) is a 2-morphism then it
is drawn as below.

α
Y X

Φ

Φ′

α

Φ

Φ′

Y X

At this point make the very important observation that diagrams are read
from right to left and from bottom to top.

There is a vertical composition of 2-morphisms so that if α : Φ⇒ Φ ′ and
α ′ : Φ ′ ⇒ Φ ′′ are 2-morphisms then the vertical composite α ′ ◦v α : Φ⇒ Φ ′′

is defined and is denoted as below.

Φ′′

Y X

Φ

α

α′

≡ α′ ◦v α
Y X

Φ

Φ′′

α
Y X

Φ′′

Φ

Φ′

α′

≡ α′ ◦v αY

Φ′′

Φ

X

This vertical composition is strictly associative so that (α ′′ ◦v α ′) ◦v α =

α ′′ ◦v (α ′ ◦v α) whenever the three 2-morphisms are composable. Moreover,
there is an identity 2-morphism IdΦ : Φ ⇒ Φ for every 1-morphism Φ so
that α◦v IdΦ = α = IdΦ′ ◦v α for every 2-morphism α : Φ⇒ Φ ′. This means
that for every pair of objects X and Y, the 1-morphisms between them are
the objects of a category Hom(X, Y), with the 2-morphisms forming the
morphisms. In the string notation the identity 2-morphisms are usually just
drawn as straight lines.

Φ

Y X

Φ

IdΦ

Φ

Y X

There is also a composition for 1-morphisms, so if Φ : X→ Y and Ψ : Y → Z

are 1-morphisms then the composite Ψ◦Φ : X→ Z is defined and is denoted
as below.

Ψ Φ

Y XZ
≡

Z X

Ψ◦ Φ Φ

Y XZ

Ψ
≡

XZ

Ψ◦ Φ
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Again, these pictures will only appear at the top and bottom of 2-morphisms.
This composition of 1-morphisms is not required to be strictly associative,
but it is required to be associative up to a coherent 2-isomorphism. This
means that for every composable triple Θ, Ψ and Φ of 1-morphisms there

is a specified 2-isomorphism (Θ ◦ Ψ) ◦ Φ
∼

=⇒ Θ ◦ (Ψ ◦ Φ) and these 2-
isomorphisms have to satisfy the so-called pentagon coherency condition
which ensures that although Θ◦Ψ◦Φ is ambiguous, it can be taken to mean
either (Θ ◦ Ψ) ◦ Φ or Θ ◦ (Ψ ◦ Φ) without confusion. The up-shot of this is
that parentheses are unnecessary in the notation.

Each object X also comes with an identity 1-morphism IdX, but again, in
general, one does not have equality of IdY ◦ Φ, Φ and Φ ◦ IdX, but rather

the identity 1-morphisms come with coherent 2-isomorphisms IdY ◦Φ
∼⇒ Φ,

and Φ ◦ IdX
∼⇒ Φ. Again this means that in practice the identities can

be neglected in the notation: so although we could denote the identity 1-
morphism with, say, a dotted line, we choose not to. This is illustrated
below.

X

IdX

X ≡ X

A strict 2-category is one in which the coherency 2-isomorphisms for
associativity and identities are themselves all identities. So the 2-category
C at of categories, functors and natural transformations is a strict 2-category.

The last piece of structure that a 2-category has is the horizontal compo-

sition of 2-morphisms. If Φ, Φ ′ : X→ Y and Ψ, Ψ ′ : Y → Z are 1-morphisms,
and α : Φ⇒ Φ ′ and β : Ψ⇒ Ψ ′ are 2-morphisms, then β◦hα : Ψ◦Φ⇒ Ψ ′◦Φ ′

is defined, and is notated as below.

Ψ′ Φ′

β α

Ψ Φ

XZ
Y ≡

Z X

Ψ◦ Φ

β◦h α

Ψ′ ◦ Φ′

Ψ

Z Xαβ

Φ

Φ′

Y

Ψ′

≡
Ψ′

Z X

Φ

Φ′Y

Y

β◦h α

Ψ

The horizontal and vertical composition are required to obey the interchange

law.

(β ′ ◦v β) ◦h (α ′ ◦v α) = (β ′ ◦h α ′) ◦v (β ◦h α).

This means that the following diagrams are unambiguous.

Y

Φ

X
α

α′

Φ′′

Ψ

Z
β

β′

Ψ′′

Ψ′′

Φ′

Φ′′

Φ

Z

β′

β

α′

α
XY

Ψ

Ψ′



70 ANDREI CĂLDĂRARU AND SIMON WILLERTON

It also means that 2-morphisms can be ‘slid past’ each other in the following
sense.

YZ
α

X

Φ

Ψ′

β

Ψ

Φ′

=
Ψ′

Z X

Ψ

β

α

Φ′

Y

Φ

From now on, string diagrams will be drawn without the grey borders,
and labels will be omitted if they are clear from the context.

1.2. The 2-category V ar. The 2-category V ar, of spaces and integral
kernels, is defined as follows. The objects are spaces, as defined in the
introduction, and the hom-category HomV ar(X, Y) from a space X to a space
Y is the derived category D(X×Y), which is to be thought of as the category
of integral kernels from X to Y. Explicitly, this means that the 1-morphisms
in V ar from X to Y are objects of D(X × Y) and the 2-morphisms from
Φ to Φ ′ are morphisms in HomD(X×Y)(Φ, Φ ′), with vertical composition of
2-morphisms just being usual composition in the derived category.

Composition of 1-morphisms in V ar is defined using the convolution of
integral kernels: if Φ ∈ D(X × Y) and Ψ ∈ D(Y × Z) are 1-morphisms then
define the convolution Ψ ◦ Φ ∈ D(X × Z) by

Φ ◦ Ψ := πXZ,∗(π
∗
YZΨ ⊗ π∗

XYΦ),

where πXZ, πXY and πYZ are the projections from X×Y×Z to the appropriate
factors. The horizontal composition of 2-morphisms is similarly defined.
Finally, the identity 1-morphism IdX : X → X is given by O∆ ∈ D(X × X),
the structure sheaf of the diagonal in X × X.

The above 2-category is really what is at the heart of the study of integral
transforms, and it is entirely analogous to A lg, the 2-category of algebras
described above. For example, the Hochschild cohomology groups of a space
X arise as the second homotopy groups of the 2-category V ar, at X:

HH•(X) := Ext•X×X(O∆,O∆) ∼= Hom•
D(X×X)(O∆,O∆)

=: 2-HomV ar(IdX, IdX).

There is a 2-functor from V ar to C at which encodes integral transforms:
this 2-functor sends each space X to its derived category D(X), sends each
kernel Φ : X→ Y to the corresponding integral transform Φ : D(X)→ D(Y),
and sends each map of kernels to the appropriate natural transformation.
Many of the statements about integral transforms have better formulations
in the language of the 2-category V ar.

2. Serre functors

In this section we review the notion of the Serre functor on D(X) and
then show how to realise the Serre functor on the derived category D(X×Y)

using 2-categorical language.
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2.1. The Serre functor on D(X). If X is a space then we consider the
functor

S : D(X)→ D(X); E 7→ ωX[dimX] ⊗ E ,

where ωX is the canonical line bundle of X. Serre duality then gives natural,
bifunctorial isomorphisms

ηE ,F : HomD(X)(E ,F )
∼

−→ HomD(X)(F ,SE )∨

for any objects E ,F ∈ D(X), where −∨ denotes the dual vector space.
A functor such as S, together with isomorphisms as above, was called a

Serre functor by Bondal and Kapranov [2] (see also [17]). From this data,
for any object E ∈ D(X), define the Serre trace as follows:

Tr : Hom(E ,SE )→ k; Tr(α) := ηE ,E (IdE )(α).

Note that from this trace we can recover ηE ,F because

ηE ,F (α)(β) = Tr(β ◦ α).

We also have the commutativity identity

Tr(β ◦ α) = Tr(Sα ◦ β).

Yet another way to encode this data is as a perfect pairing, the Serre pairing :

〈−, −〉S : Hom(E ,F ) ⊗ Hom(F ,SE )→ k; 〈α, β〉S := Tr(β ◦ α).

2.2. Serre kernels and the Serre functor for D(X×Y). We are inter-
ested in kernels and the 2-category V ar, so are interested in Serre functors for
product spaces X×Y, and these have a lovely description in the 2-categorical
language. We can now define one of the key objects in this paper.

Definition. For a space X, the Serre kernel ΣX ∈ 1-HomV ar(X,X) is defined
to be ∆∗ωX[dimX] ∈ D(X × X), the kernel inducing the Serre functor on

X. Similarly the anti-Serre kernel Σ−1
X ∈ 1-HomV ar(X,X) is defined to be

∆∗ω
−1
X [− dimX] ∈ D(X × X).

Notation. In string diagrams the Serre kernel will be denoted by a dashed-
dotted line, while the anti-Serre kernel will be denoted by a dashed-dotted
line with a horizontal bar through it. For example, for kernels Ψ, Φ : X→ Y,
a kernel morphism α : Φ ◦ ΣX⇒ ΣY ◦ Ψ ◦ Σ−1

X will be denoted

Ψ

α

Φ

.

The Serre kernel can now be used to give a natural description, in the 2-
category language, of the Serre functor on the product X × Y.

Proposition 1. For spaces X and Y the Serre functor SX×Y : D(X × Y) →
D(X × Y) can be taken to be ΣY ◦ − ◦ ΣX.
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Proof. The Serre functor on D(X × Y) is given by

SX×Y(Φ) = Φ ⊗ π∗
XωX ⊗ π∗

YωY[dimX + dimY].

However, observe that if Φ ∈ D(X × Y) and E ∈ D(X) then

Φ ◦ ∆∗E
∼= Φ ⊗ π∗

XE ,

where πX : X × Y → X is the projection. This is just a standard application
of the base-change and projection formulas. Similarly if F ∈ D(Y) then
∆∗F ◦ Φ ∼= π∗

YF ⊗ Φ. From this the Serre functor can be written as

SX×Y(Φ) = ΣY ◦ Φ ◦ ΣX. �

This means that the Serre trace map on X × Y is a map

Tr : 2-HomV ar(Φ, ΣY ◦ Φ ◦ ΣX)→ k

which can be pictured as

Tr




Φ

Φ



 ∈ k,

where the Serre kernel is denoted by the dashed-dotted line.
We will see below that we have ‘partial trace’ operations which the Serre

trace factors through.

3. Adjoint kernels

The reader is undoubtably familiar with the notion of adjoint functors.
It is easy and natural to generalize this from the context of the 2-category
C at of categories, functors and natural transformations to the context of an
arbitrary 2-category. In this section it is shown that every kernel, considered
as a 1-morphism in the 2-category V ar, has both a left and right adjoint:
this is a consequence of Serre duality, and is closely related to the familiar
fact that every integral transform functor has both a left and right adjoint
functor.

Using these notions of left and right adjoints we define left partial trace

maps, and similarly right partial trace maps. These can be viewed as partial
versions of the Serre trace map. This construction is very much the heart
of the paper.

3.1. Adjunctions in 2-categories. The notion of an adjunction in a 2-
category simultaneously generalizes the notion of an adjunction between
functors and the notion of a duality between objects of a monoidal category.
As it is the former that arises in the context of integral transforms, we will
use that as the motivation, but will come back to the latter below.
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The most familiar definition of adjoint functors is as follows. For cate-
gories C and D, an adjunction Ψ ⊣ Φ between functors Ψ : D → C and
Φ : C→ D is the specification of a natural isomorphism

ta,b : HomC(Ψ(a), b)
∼

−→ HomD(a,Φ(b))

for every a ∈ D and b ∈ C.
It is well known (see [8, page 91]) that this definition is equivalent to an

alternative definition of adjunction which consists of the specification of unit
and counit natural morphisms, namely

η : IdD⇒ Φ ◦ Ψ and ǫ : Ψ ◦ Φ⇒ IdC,

such that the composite natural transformations

Ψ
IdΨ◦η
=⇒ Ψ ◦ Φ ◦ Ψ

ǫ◦IdΨ=⇒ Ψ and Φ
η◦IdΦ=⇒ Φ ◦ Ψ ◦ Φ

IdΦ◦ǫ
=⇒ Φ

are respectively the identity natural transformation on Ψ and the identity
natural transformation on Φ.

It is straightforward to translate between the two different definitions of
adjunction. Given η and ǫ as above, define

ta,b : HomC(Ψ(a), b)
∼

−→ HomD(a,Φ(b))

by ta,b(f) := Φ(f) ◦ ηa. The inverse of ta,b is defined similarly using the
counit ǫ. Conversely, to get the unit and counit from the natural isomor-
phism of hom-sets, define ηa := ta,Ψ(a)(IdΨ(a)) and define ǫ similarly.

The definition involving the unit and counit is stated purely in terms of
functors and natural transformations — without mentioning objects — thus
it generalizes immediately to arbitrary 2-categories.

Definition. If C is a 2-category, X and Y are objects of C , and

Φ : X→ Y and Ψ : Y → X

are 1-morphisms, then an adjunction between Φ and Ψ consists of two 2-
morphisms

η : IdY ⇒ Φ ◦ Ψ and ǫ : Ψ ◦ Φ⇒ IdX,

such that

(ǫ ◦h IdΨ) ◦v (IdΨ ◦h η) = IdΨ and (IdΦ ◦h ǫ) ◦v (η ◦h IdΦ) = IdΦ.

Given such an adjunction we write Ψ ⊣ Φ.

It is worth noting that this also generalizes the notion of duality in a
monoidal category, that is to say two objects are dual in a monoidal category
if and only if the corresponding 1-morphisms are adjoint in the corresponding
2-category-with-one-object. Indeed, taking this point of view, May and
Sigurdsson [12] refer to what is here called adjunction as duality.
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It is at this point that the utility of the string diagram notation begins to
be seen. Given an adjunction Ψ ⊣ Φ the counit ǫ : Ψ ◦ Φ⇒ Id and the unit
η : Id⇒ Φ ◦ Ψ can be denoted as follows:

IdX

ΦΨ

ǫ and

Φ

IdY

Ψ

η .

However, adopting the convention of denoting the identity one-morphism by
omission, it is useful just to draw the unit and counit as a cup and a cap
respectively:

Ψ Φ

:=

IdX

ΦΨ

ǫ and

ΨΦ

:=

Φ

IdY

Ψ

η .

The relations become the satisfying

Φ

Ψ

Ψ

=

Ψ

and

Φ

Φ

Ψ =

Φ

.

Adjunctions in 2-categories, as defined above, do correspond to isomor-
phisms of certain hom-sets but in a different way to the classical notion of
adjunction. Namely, if Θ : Z→ Y and Ξ : Z→ X are two other 1-morphisms,
then an adjunction Ψ ⊣ Φ as above gives an isomorphism

2-Hom(Ψ ◦ Θ,Ξ)
∼

−→ 2-Hom(Θ,Φ ◦ Ξ)

Ξ

Ψ

α

Θ

7→
Ψ

Φ

Θ

Ξ

α .

The inverse isomorphism uses the counit in the obvious way.

In a similar fashion, for Θ̂ : Y → Z and Ξ̂ : X → Z two 1-morphisms, one
obtains an isomorphism

2-Hom(Θ̂ ◦ Φ, Ξ̂)
∼

−→ 2-Hom(Θ̂, Ξ̂ ◦ Ψ),

for which the reader is encouraged to draw the relevant pictures. It is
worth noting that with respect to the previous isomorphism, Ψ and Φ have
swapped sides in all senses.

Adjunctions are unique up to a canonical isomorphism by the usual ar-
gument. This means that if Ψ and Ψ ′ are, say, both left adjoint to Φ, then

there is a canonical isomorphism Ψ
∼

=⇒ Ψ ′. This is pictured below and it is
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easy to check that this is an isomorphism.

Φ

Ψ

Ψ′

.

Adjunctions are natural in the sense that they are preserved by 2-functors,
so, for instance, given a pair of adjoint kernels in V ar, the corresponding
integral transforms are adjoint functors.

3.2. Left and right adjoints of kernels. In an arbitrary 2-category a
given 1-morphism might or might not have a left or a right adjoint, but in
the 2-category V ar every 1-morphism, that is every kernel, has both a left
and a right adjoint. We will see below that for a kernel Φ : X→ Y there are
adjunctions

Φ∨ ◦ ΣY ⊣ Φ ⊣ ΣX ◦ Φ∨,

where Φ∨ : Y → X means the object HomD(X×Y)(Φ, OX×Y) considered as an

object in D(Y × X). This should be compared with the fact that if M is an
A-B-bimodule then M∨ is naturally a B-A-bimodule. We shall see that the
two adjunctions above are related in some very useful ways.

Proposition 2. If X is a space and ∆ : X→ X×X is the diagonal embedding

then ∆∗ : D(X) → D(X × X), the push-forward on derived categories, is a

monoidal functor where D(X) has the usual monoidal tensor product ⊗ and

D(X × X) has the composition ◦ as the monoidal structure.

Proof. The proof is just an application of the projection formula. �

This has the following immediate consequence.

Lemma 3. If E and F are dual as objects in D(X) then ∆∗E and ∆∗F are

both left and right adjoint to each other as 1-morphisms in V ar.

In order not to hold-up the flow of the narrative, the proofs of the re-
maining results from this section have been relegated to Appendix A.

We begin with some background on the Serre kernel ΣX. Recall from
Section 2 that the anti-Serre kernel Σ−1

X is defined to be ∆∗ω
−1
X [− dimX],

and that the Serre kernel ΣX is denoted by a dashed-dotted line, while the
anti-Serre kernel Σ−1

X is denoted by a dashed-dotted line with a horizontal

bar. As ω and ω−1 are inverse with respect to ⊗ the above propostion
means that ΣX and Σ−1

X are inverse with respect to ◦, thus we have maps

, , , ,

satisfying the following relations

= , = , = ,
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and all obvious variations thereof.
In the appendix it is shown that for a kernel Φ there are natural mor-

phisms

ǫ

Φ
: Φ ◦ ΣX ◦ Φ∨ → O∆ (pronounced “mepsilon”) and γΦ : Σ−1

X →
Φ∨ ◦ Φ, denoted in the following fashion, where the solid, upward oriented
lines are labelled with Φ and the solid, implicitly downward oriented lines
are labelled by Φ∨:

ǫ

Φ
: and γΦ : .

The main property of ǫ

Φ
and γΦ is that if we define ǫΦ, ǫΦ, ηΦ and ηΦ via

ηΦ : := , ηΦ : := ,

ǫΦ :=

ǫ

Φ∨
= , ǫΦ :=

ǫ

Φ
= ,

then these are the units and counits of adjunctions

Φ∨ ◦ ΣY ⊣ Φ ⊣ ΣX ◦ Φ∨.

3.3. Partial traces. We can now define the important notion of partial
traces.

Definition. For a kernel Φ : X→ Y, and kernels Ψ, Θ : Z→ X define the left

partial trace

2-Hom(Φ ◦ Θ,ΣY ◦ Φ ◦ Ψ)→ 2-Hom(Θ,ΣX ◦ Ψ)

as

Ψ

Θ

α 7→

Θ

α

Ψ

.

Similarly we define a right partial trace

2-Hom(Θ ′ ◦ Φ, Ψ ′ ◦ Φ ◦ ΣX)→ 2-Hom(Θ ′, Ψ ′ ◦ ΣY)

as

Ψ′

Θ′

α′ 7→

Θ′

α′

Ψ′

.

The following key result, proved in the appendix, says that taking partial
trace does not affect the Serre trace.
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Theorem 4. For a kernel Φ : X → Y, a kernel Ψ : Z → X and a kernel

morphism α ∈ Hom(Φ ◦ F , ΣY ◦ Φ ◦ Ψ ◦ ΣZ) then the left partial trace of α

has the same Serre trace as α, i.e., pictorially

Tr





Ψ

α

Ψ



 = Tr




Ψ

α

Ψ


 .

The analogous result holds for the right partial trace.

3.4. Adjunction as a 2-functor. As shown in Section 3.2, in the 2-cate-
gory V ar every 1-morphism, that is every kernel, Φ : X → Y has a right
adjoint ΣX ◦ Φ∨. This can be extended to a ‘right adjunction 2-functor’
τR : V arcoop → V ar, where V arcoop means the contra-opposite 2-category of
V ar, which is the 2-category with the same collections of objects, morphisms
and 2-morphisms, but in which the direction of the morphisms and the 2-
morphisms are reversed.

Before defining τR, however, it is perhaps useful to think of the more famil-
iar situation of a one-object 2-category with right adjoints, i.e., a monoidal
category with (right) duals. So if C is a monoidal category in which each ob-
ject a has a dual a∨ with evaluation map ǫa : a∨ ⊗ a→ 1 and coevaluation
map ηa : 1→ a ⊗ a∨, then for any morphism f : a→ b define f∨ : b∨ → a∨

to be the composite:

b∨
Id⊗η
−−−→ b∨ ⊗ a ⊗ a∨ Id⊗f⊗Id

−−−−−→ b∨ ⊗ b ⊗ a∨ ǫ⊗Id
−−−→ a∨.

This gives rise to a functor (−)∨ : C op → C .
Now return to the case of interest and define τR : V arcoop → V ar as

follows. On spaces define τR(X) := X. On a kernel Φ : X → Y define
τR(Φ) := ΣX ◦ Φ∨. Finally, on morphisms of kernels define it as illustrated:

τR




Φ

α

Φ′



 :=

Φ′

α

Φ

.

It is a nice exercise for the reader to check that this is a 2-functor.
Clearly a left adjoint 2-functor τL : V arcoop → V ar can be similarly created

by defining it on a kernel Φ : X→ Y by τL(Φ) := Φ∨ ◦ΣY and by defining it
on morphisms of kernels by

τL




Φ

α

Φ′



 :=
Φ

α

Φ′

.
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4. Induced maps on homology

In this section we define HH•(X), the Hochschild homology of a space X,
and show that given a kernel Φ : X→ Y we get pull-back and push-forward
maps, Φ∗ : HH•(Y) → HH•(X) and Φ∗ : HH•(X) → HH•(Y), such that if Φ

is right adjoint to Ψ then Ψ∗ = Φ∗.

4.1. Hochschild cohomology. First recall that for a space X, one way to
define its Hochschild cohomology is as

HH•(X) := Ext•X×X(O∆,O∆).

However, the ext-group is just the hom-set Hom•
D(X×X)(O∆,O∆) which by

the definition of V ar is just 2-Hom•
V ar(IdX, IdX). In terms of diagrams, we

can thus denote an element ϕ ∈ HH•(X) as

ϕ .

Note that the grading is not indicated in the picture, but this should not
give rise to confusion.

4.2. Hochschild homology. Now we define HH•(X) the Hochschild ho-

mology of a space X as follows:

HH•(X) := 2-Hom•
V ar(Σ

−1
X , IdX)

or, in more concrete terms,

HH•(X) = Ext−•
X×X(Σ−1

X ,O∆).

Thus an element w ∈ HH•(X) will be denoted

w ,

where again the shifts are understood.
It is worth taking a moment to compare this with other definitions of

Hochschild homology, such as that of Weibel [19]. He defines the Hochschild
homology of a space X as H•(X,∆∗O∆), where as usual by ∆∗ we mean
the left-derived functor. This cohomology group is naturally identified with
the hom-set Hom•

X(OX, ∆∗O∆) which is isomorphic to Hom•
X×X(∆!OX,O∆)

where ∆! is the left-adjoint of ∆∗. Direct calculation shows that ∆!OX
∼= Σ−1

X

and so our definition is recovered. Another feasible definition of Hochschild
homology is H•(X×X,O∆⊗O∆), and this again is equivalent to our definition

as there is the isomorphism Σ−1
X

∼= O∨

∆.
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4.3. Push-forward and pull-back. For spaces X and Y and a kernel
Φ : X→ Y define the push-forward on Hochschild homology

Φ∗ : HH•(X)→ HH•(Y)

as follows:

Φ∗



 w



 := Φ

w
.

For the reader still unhappy with diagrams, for v ∈ Hom•(Σ−1
X , IdX), define

Φ∗(v) ∈ Hom•(Σ−1
Y , IdY) as the following composite, which is read from the

above diagram by reading upwards from the bottom:

Σ−1
Y

γ
−→ Φ ◦ Φ∨

Id◦η◦Id
−−−−→ Φ ◦ Σ−1

X ◦ ΣX ◦ Φ∨ Id◦v◦Id◦Id
−−−−−−→ Φ ◦ ΣX ◦ Φ∨

ǫ

−→ IdY.

Similarly define the pull-back Φ∗ : HH•(Y)→ HH•(X) as follows:

Φ∗



 v



 := Φ

v
.

These operations depend only on the isomorphism class of the kernel as
shown by the following.

Proposition 5. If kernels Φ and Φ̂ are isomorphic then they give rise to

equal push-forwards and equal pull-backs: Φ∗ = Φ̂∗ and Φ∗ = Φ̂∗.

Proof. This follows immediately from the fact that the 2-morphisms γΦ,
γΦ̂, ǫ

Φ
and ǫ

Φ̂
of Section 3.2 are natural and thus commute with the given

kernel isomorphism Φ ∼= Φ̂. �

The push-forward and pull-back operations are functorial in the following
sense.

Theorem 6 (Functoriality). If Φ : X → Y and Ψ : Y → Z are kernels then

the push-forwards and pull-backs compose appropriately, namely:

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗ : HH•(X)→ HH•(Z)

and

(Ψ ◦ Φ)∗ = Φ∗ ◦ Ψ∗ : HH•(Z)→ HH•(X).

Proof. This follows from the fact that the right adjunction τR is a 2-functor.
The adjoint of Ψ ◦Φ is canonically τR(Φ) ◦ τR(Ψ), i.e., is ΣX ◦Φ∨ ◦ΣY ◦Ψ∨.
This means that the unit of the adjunction Id⇒ Ψ ◦ Φ ◦ ΣX ◦ Φ∨ ◦ ΣY ◦ Ψ∨
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is given by the composition Id⇒ Ψ ◦ ΣY ◦ Ψ∨ ⇒ Ψ ◦ Φ ◦ ΣX ◦ Φ∨ ◦ ΣY ◦ Ψ∨.
This gives

(Ψ ◦ Φ)∗(w) =
Ψ Φ

w
= Ψ∗ (Φ∗(w)) . �

Theorem 7. If Φ : X → Y and Ψ : Y → X are adjoint kernels, Φ ⊣ Ψ, then

we have

Φ∗ = Ψ∗ : HH•(X)→ HH•(Y).

Proof. By the uniqueness of adjoints we have a canonical isomorphism Ψ ∼=
τR(Φ), and by Proposition 5 we have Ψ∗ = (τR(Φ))∗. It therefore suffices to
show that Φ∗ = (τR(Φ))∗. Observe that

τR(τR(Φ)) = τR(ΣX ◦ Φ∨) ∼= τR(Φ∨) ◦ τR(ΣX) ∼= ΣY ◦ Φ∨∨ ◦ Σ−1
X ,

and similarly

τL(τR(Φ)) ∼= Φ ◦ Σ−1
X ◦ ΣX.

Of course the latter is isomorphic to Φ but the Serre kernels are left in so to
make the adjunctions more transparent. We now get the unit for adjunction
τR(Φ) ⊣ τR(τR(Φ)) and the counit for the adjunction τL(τR(Φ)) ⊣ τR(Φ) as
follows:

Φ , Φ .

Thus

τR(Φ)∗ (w) = Φ

w
= Φ

w
= Φ∗(w). �

5. The Mukai pairing and adjoint kernels

In this section we define the Mukai pairing on the Hochschild homology
of a space and show that the push-forwards of adjoint kernels are themselves
adjoint linear maps with respect to this pairing.

First observe from Section 3.4 that we have two isomorphisms:

τR, τL : HH•(X) = Hom−•(Σ−1
X , IdX)

∼

−→ Hom•(IdX, ΣX),

given by

τR



 v



 := v and τL



 v′



 := v′ .
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Note that this differs slightly from the given definition, but we have used
the uniqueness of adjoints. The above isomorphisms allow the definition of
the Mukai pairing as follows.

Definition. The Mukai pairing on the Hochschild homology of a space X

is the map

〈−, −〉M : HH•(X) ⊗ HH•(X)→ k,

defined by
〈
v, v ′

〉
M

:= Tr
(
τR(v) ◦ τL(v ′)

)
.

Diagrammatically, this is

〈
v , v′

〉

M

:= Tr



 v v′



 .

Observe that as τR and τL are both isomorphisms and as the Serre pairing
is nondegenerate, it follows that the Mukai pairing is nondegenerate.

We can now easily show that adjoint kernels give rise to adjoint maps
between the corresponding Hochschild homology groups.

Theorem 8 (Adjointness). If Φ : X→ Y and Ψ : Y → X are adjoint kernels,

Ψ ⊣ Φ, then the corresponding push forwards are adjoint with respect to the

Mukai pairing in the sense that for all w ∈ HH•(X) and v ∈ HH•(Y) we have

〈Ψ∗(v), w〉M = 〈v, Φ∗(w)〉M.

Proof. Note first that Ψ∗ = Φ∗, by Theorem 7. Thus

〈Ψ∗(v), w〉M = 〈Φ∗(v), w〉M = Tr




Φ

v w





= Tr



 v

Φ

w



 = Tr



 v w

Φ





= 〈v, Φ∗(w)〉M. �

Corollary 9. If the integral kernel Φ : X → Y induces an equivalence on

derived categories, then Φ∗ : HH•(X)→ HH•(Y) is an isometry.

Proof. If Φ induces an equivalence, then it has a left adjoint Ψ : Y → X

which induces the inverse, so Ψ ◦ Φ ∼= IdX, and we know that (IdX)∗ is the
identity map. Thus

〈Φ∗v, Φ∗w〉M = 〈Ψ∗Φ∗v, w〉M = 〈(Ψ ◦ Φ)∗v, w〉M = 〈v, w〉M. �
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6. The Chern character

In this section we define the Chern character map ch : K0(X)→ HH0(X).
We discuss the relationship between our construction and the one of Markar-
ian [10, Definition 2]. Then we show that the Chern character maps the Euler
pairing to the Mukai pairing: we call this the Semi-Hirzebruch–Riemann–
Roch Theorem.

6.1. Definition of the Chern character. Suppose X is a space, and E

is an object in D(X). Consider E as an object of D(pt×X), i.e., as a kernel
pt→ X, so there is an induced linear map

E∗ : HH•(pt)→ HH•(X).

Now, because the Serre functor on a point is trivial, HH0(pt) is canonically
identifiable with Hompt×pt(Opt,Opt) so there is a distinguished class 1 ∈
HH0(pt) corresponding to the identity map. Define the Chern character of
E as

ch(E ) := E∗(1) ∈ HH0(X).

Graphically this has the following description:

ch(E ) :=
E

.

Naturality of push-forward leads to the next theorem.

Theorem 10. If X and Y are spaces and Φ : X → Y is a kernel then the

diagram below commutes.

D(X)
Φ◦−

✲ D(Y)

HH0(X)

ch

❄
Φ∗
✲ HH0(Y).

ch

❄

Proof. Let E be an object of D(X). We will regard it either as an object
in D(X), or as a kernel pt→ X, and similarly we will regard Φ ◦ E either as
an object in D(Y) or as a kernel pt→ Y. By Theorem 6 we have

Φ∗ ch(E ) = Φ∗ (E∗(1)) = (Φ ◦ E )∗1 = ch(Φ ◦ E ). �

6.2. The Chern character as a map on K-theory. To show that the
Chern character descends to a map on K-theory we give a characterization
of the Chern character similar to that of Markarian [10].

For any object E ∈ D(X), which is to be considered an object of D(pt×X),
there are the following two maps:

ιE : HH•(X)→ Hom•
D(X×X)(E , ΣX ◦ E ); v 7→ v

E
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and

ιE : Hom•
D(X×X)(E ,E )→ HH•(X);

E

ϕ 7→ ϕ

E

pt

X

.

Recall that the Mukai pairing is a nondegenerate pairing on HH•(X) and
that the Serre pairing is a perfect pairing between Hom•

D(X×X)(E , ΣX ◦ E )

and Hom•
D(X×X)(E ,E ). With respect to these pairings the two maps ιE and

ιE are adjoint in the following sense.

Proposition 11. For ϕ ∈ Hom•(E ,E ) and v ∈ HH•(X) the following equal-

ity holds:

〈v, ιE ϕ〉M = 〈ιE v, ϕ〉S.

Proof. Here in the third equality we use the invariance of the Serre trace
under the partial trace map.

〈
v, ιE ϕ

〉

M
=

〈
v , ϕ

E

pt

X

〉

M

:= Tr



 ptv ϕ

E

X





= Tr



 v

E

ϕ

X pt


 = Tr




ϕ

E

v
pt

X





=:

〈
v

E

,

E

ϕ

〉

S

=: 〈ιE v, ϕ〉S. �

Note that, using this, the Chern character could have been defined as

ch(E ) := ιE (IdE ).

Then from the above proposition the following is immediate.

Lemma 12. For v ∈ HH0(X) and E ∈ D(X) there is the equality

〈v, ch(E )〉M = Tr(ιE (v)),

and this defines ch(E ) uniquely.

The fact that the Chern character descends to a function on the K-group
can now be demonstrated.

Proposition 13. For E ∈ D(X) the Chern character ch(E ) depends only

on the class of E in K0(X). Thus the Chern character can be considered as

a map

ch : K0(X)→ HH0(X).
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Proof. It suffices to show that if F → G →H → F [1] is an exact triangle
in D(X), then

ch(F ) − ch(G ) + ch(H ) = 0

in HH0(X).
For G ,H ∈ D(X), α : G → H and v ∈ HH•(X) the diagram on the left

commutes as it expresses the equality on the right:

G
α

✲ H

ΣX ◦ G

ιG (v)
❄ IdΣX

◦ α
✲ ΣX ◦ H .

ιH (v)
❄

;
α

v

H

G

=
v

H

α

G
.

In other words, from an element v ∈ HH•(X) we get τR(v) ∈ Hom(IdX, ΣX),
which in turn gives rise to a natural transformation between the functors
IdD(X) : D(X) → D(X) and ΣX ◦ −: D(X) → D(X). This leads to a map of
triangles

F ✲ G ✲ H ✲ F [1]

SXF

ιF (v)
❄

✲ SXG

ιG (v)
❄

✲ SXH

ιH (v)
❄

✲ SXF [1].

ιF (v)[1]
❄

Observe that if we represent the morphism v by an actual map of complexes
of injectives, and the objects F , G and H by complexes of locally free
sheaves, then the resulting maps in the above diagram commute on the nose
(no further injective or locally free resolutions are needed), so we can apply
[11, Theorem 1.9] to get

TrX(ιF (v)) − TrX(ιG (v)) + TrX(ιH (v)) = 0.

Therefore, by the lemma above, for any v ∈ HH•(X),

〈v, ch(F ) − ch(G ) + ch(H )〉M = 0.

Since the Mukai pairing on HH0(X) is nondegenerate, we conclude that

ch(F ) − ch(G ) + ch(H ) = 0. �

6.3. The Chern character and inner products. One reading of the
Hirzebruch–Riemann–Roch Theorem is that it says that the usual Chern
character map ch : K0 → H•(X) is a map of inner product spaces when
K0(X) is equipped with the Euler pairing (see below) and H•(X) is equipped
with the pairing 〈x1, x2〉 := (x1 ∪ x2 ∪ tdX) ∩ [X]. It is shown in [5] that
the Hochschild homology Chern character composed with the Hochschild–
Kostant–Rosenberg map IHKR gives the usual Chern character:

K0
ch
−→ HH0(X)

IHKR−−−→
⊕

p

Hp,p(X).

Here we show that the Hochschild homology Chern character is an inner
product map when HH•(X) is equipped with the Mukai pairing.
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First recall that the Euler pairing on K0(X) is defined by

χ(E ,F ) :=
∑

i

(−1)i dim ExtiX(E ,F ).

Theorem 14 (Semi-Hirzebruch–Riemann–Roch). The Chern character

ch : K0→ HH0(X)

is a map of inner product spaces: in other words, for E ,F ∈ D(X) we have

〈ch(E ), ch(F )〉M = χ(E ,F ).

Proof. The first thing to do is to get an interpretation of the Euler pairing.
Considering the totality of Ext-groups Ext•(E ,F ) as a graded vector space,
the Euler characteristic is just the graded dimension of Ext•(E ,F ), which
is to say it is the trace of the identity map on Ext•(E ,F ). Moreover, if
Rπ∗ : D(X) → D(pt) is the derived functor coming from the map X → pt,
then

Ext•(E ,F ) ∼= H•(X,E ∨ ⊗ F ) ∼= Rπ∗(E
∨ ⊗ F )

and the latter is just the composition E ∨◦F , where E ∨ and F are considered
as kernels respectively X → pt and pt → X. Thus, using the invariance of
the Serre trace under the partial trace map,

χ(E ,F ) = Tr(IdE ∨◦F ) = Tr



 F

X ptpt

E



 = Tr




F

ptpt

X

E





=

〈

E
,

F

〉

M

= 〈ch(E ), ch(F )〉M. �

6.4. Example. To have a noncommutative example at hand, consider the
case when G is a finite group acting trivially on a point. The orbifold BG

is defined to be the global quotient [ · /G] and then the category of coherent
sheaves on the orbifold BG is precisely the category of finite dimensional
representations of G. One can naturally identify HH0(BG) with the space of
conjugation invariant functions on G, and the Chern character of a repre-
sentation ρ is precisely the representation-theoretic character of ρ. See [20]
for details.

7. Open-closed TQFTs and the Cardy Condition

We conclude with a discussion of open-closed topological field theories
in the B-model and we prove that a condition holds for Hochschild homol-
ogy which is equivalent to the Cardy Condition in the Calabi–Yau case.
Appropriate references for open-closed 2d topological field theories include
Moore–Segal [14], Costello [7] and Lauda–Pfeiffer [9].
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7.1. Open-closed 2d TQFTs. Consider the open and closed 2-cobordism
category 2Coboc whose objects are oriented, compact one-manifolds — in
other words, disjoint unions of circles and intervals — and whose morphisms
are (diffeomorphism classes of) cobordisms-with-corners between the source
and target one-manifolds. A morphism can be drawn as a vertical cobordism,
from the source at the bottom to the target at the top. As well as parts
of the boundary being at the top and the bottom, there will be parts of
the boundary in between, corresponding to the fact that this is a cobordism
with corners. An example is shown below.

Disjoint union makes 2Coboc into a symmetric monoidal category and an
open-closed two-dimensional topological quantum field theory (2d TQFT) is
defined to be a symmetric monoidal functor from 2Coboc to some appropriate
symmetric monoidal target category, which we will take to be the category of
vector spaces or the category of graded vector spaces. The category 2Coboc

has a simple description in terms of generators and relations which means
that there is a reasonably straight forward classification of open-closed 2d
TQFTs up to equivalence. This is what we will now describe. The following
morphisms generate 2Coboc as a symmetric monoidal category.

We will come back to the relations below.
To specify an open-closed 2d TQFT up to equivalence on objects it suf-

fices to specify the image C of the circle and the image O of the interval. The
former is called the space of closed string states and the latter is called the
space of open-string states. Using the four planar generating morphisms pic-
tured above, together with the relations between them, it transpires that O,
the space of open-string states is precisely a symmetric, but not-necessarily
commutative Frobenius algebra. This means that it is a unital algebra with
a nondegenerate, symmetric, invariant inner product. It is useful to note
here that the inner product is symmetric because the two surfaces pictured
below are diffeomorphic, however these surfaces are not ambient isotopic
— so one cannot be deformed to the other in three-space while the bottom
boundary is fixed.

diffeo
=
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On the other hand, the first four generating morphisms, along with their
relations, mean that C, the space of closed string states, is a commuta-

tive Frobenius algebra. The last two morphisms mean that there are maps
i∗ : C→ O and i∗ : O→ C, and by the relations these are adjoint with respect
to the pairings on these spaces. Moreover, i∗ is an algebra map, such that
its image lies in the centre of O. The final relation that these must satisfy is
the Cardy Condition. In terms of the generators pictured above this is the
following relation:

= .

Note again that these surfaces are diffeomorphic but not isotopic in three-
space. In terms of maps, writing µ : O ⊗ O → O and δ : O → O ⊗ O for the
product and coproduct of the open string state space and writing τ : O⊗O→
O ⊗ O for the symmetry in the target category, the Cardy Condition is the
equality of maps from O to O:

µ ◦ τ ◦ δ = i∗ ◦ i∗.

We will have reason to use an equivalent condition below.
To summarize, having an open-closed 2d TQFT is equivalent to having

the data of a commutative Frobenius algebra C, a symmetric Frobenius
algebra O, and an algebra map i∗ : C→ O with central image, such that the
Cardy Condition is satisfied.

7.2. Open-closed 2d TQFTs with D-branes. A more interesting model
of string theory is obtained when we specify a set of ‘boundary conditions’
or ‘D-branes’ for the open strings. For a mathematician this just means a
set of labels for the boundary points of objects. So fix a set Λ of labels, and
consider the category 2CobΛ

oc of open-closed cobordisms such that the ob-
jects are compact, oriented one-manifolds with the boundary points labelled
with elements of the set Λ, and morphisms having their internal boundaries
labelled compatibly with their boundaries. Here is an example of a mor-
phism from the union of the circle and the interval labelled (B, A), to the
interval labelled (B, A).

B C

A

Now a Λ-labelled open-closed TQFT is a symmetric monoidal functor
to some appropriate target category which we will again take to be the
category of vector spaces or the category of graded vector spaces. Moreover,
the category 2CobΛ

oc is similarly generated by morphisms as listed above, but
now they must all be labelled, and the relations are just labelled versions of
the previous relations. Thus we can similarly classify Λ-labelled open-closed
TQFTs. Once again the image of the circle is a commutative Frobenius
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algebra, C. However, rather than getting a single vector space O associated
to an interval, we get a vector space OBA associated to each ordered pair
(B, A) of elements of Λ; so we do not get a single Frobenius algebra, but
rather something which could be called a ‘Frobenius algebra with many
objects’ or a ‘Frobenius algebroid’, but, for the reason explained below, such
a thing is commonly known as a Calabi–Yau category. It is a category in the
following sense. We take the category whose objects are parametrized by Λ

and, for A,B ∈ Λ, the morphism set Hom(A,B) is taken to be OBA (this
is consistent with us reading diagrams from right to left). The composition
µCBA : OCB⊗OBA→ OCA is given by the image of the appropriately labelled
version of the morphism pictured.

B

AC

The Frobenius or Calabi–Yau part of the structure is a — possibly graded
— perfect pairing OAB⊗OBA→ k: the grading degree of this map is called
the dimension of the Calabi–Yau category.

So to specify a labelled open-closed 2d TQFT it suffices to specify a
commutative Frobenius algebra C, a Calabi–Yau category O and an algebra
map iA : C → OAA with central image, for each object A, such that the
labelled version of the Cardy Condition holds.

7.3. The open-closed 2d TQFT from a Calabi–Yau manifold. Asso-
ciated to a Calabi–Yau manifold X there are two standard 2d TQFTs coming
from string theory, imaginatively named the A-model and the B-model: it
is the B-model we will be interested in here. In the B-model the boundary
conditions are supposed to be “generated” by complex submanifolds of X

so the boundary conditions are taken to be complexes of coherent sheaves
on X; the open string category is then supposed to be the derived category
of coherent sheaves on X. This is indeed a Calabi–Yau category, which is
why such categories are so named: for each E and F , the requisite pairing
Hom•

D(X)(E ,F ) ⊗ Hom•
D(X)(F ,E )→ k[− dimX] comes from the Serre pair-

ing as a Calabi–Yau manifold is precisely a manifold with a trivial canonical
bundle.

According to the physics, the closed string state space C should be

Hom•
D(X×X)(O∆,O∆),

in other words, the Hochschild cohomology algebra HH•(X). As X is Calabi–
Yau, a trivialization of the canonical bundle induces an isomorphism between
Hochschild cohomology and Hochschild homology, up to a shift. This means
that the closed string space C has both the cohomological product and the
Mukai pairing, and these make C into a Frobenius algebra.

We need to specify the algebra maps iE : C→ OE E . These are maps

iE : Hom•(O∆,O∆)→ Hom•(E ,E )
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which can be given by interpreting E as a kernel pt → X and taking iE to
be convolution with the identity on E . This is given diagrammatically on
an element ϕ ∈ Hom•(O∆,O∆) as follows.

ϕ 7→
E

ϕ

X pt

.

At this point it should be noted that C is to be thought of as the centre
of the category O. The notion of centre is generalized from algebras to cat-
egories by taking the centre of a category to be the natural transformations
of the identity functor; however, in a 2-category an appropriate notion of
the centre of an object is the set of 2-endomorphisms of the identity mor-
phism on that object. This means that C is the centre, in this sense, of the
category O in the 2-category V ar.

The map going the other way, iE : Hom•(E ,E )→ Hom•(O∆,O∆) is given
by taking the trace, namely for e ∈ HomD(X)(E ,E ) the map is given by

E

e

X pt

7→ pteX

E

.

This definition relies on the fact that X is Calabi–Yau, so that the Serre
kernel is, up to a shift, just the identity 1-morphism IdX.

An argument similar to Proposition 11 shows that iE and iE are adjoint.
In order to argue that we indeed have an open-closed TQFT it remains to
show that the Cardy Condition holds. In fact, we will prove a more general
statement, the Baggy Cardy Condition.

7.4. The Baggy Cardy Condition. In the case of a manifold X that is
not necessarily Calabi–Yau we don’t have the same coincidence of structure
as above: we no longer have a Frobenius algebra HH•(X); rather we have
an algebra HH•(X) and an inner product space HH•(X). This means that
we can not formulate the Cardy Condition as it stands. We now state a
condition which makes sense for an arbitrary, non-Calabi–Yau manifold and
which is equivalent to the Cardy Condition in the Calabi–Yau case.

Theorem 15. Suppose that O is a Calabi–Yau category and C is an inner

product space, such that for each A ∈ O there are adjoint maps iA : OAA→ C

and iA : C→ OAA. Then the Cardy Condition

µBAB ◦ τ ◦ δABA = iB ◦ iA

is equivalent to the following equality holding for all a ∈ OAA and b ∈ OBB,

where the map amb : OAB→ OAB is the map obtained by precomposing with

a and postcomposing with b:
〈
iB−, iA−

〉

C

= Tr −m−.
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Proof. The first thing to do is examine the left-hand side of the Cardy
Condition. As O is a Calabi–Yau category there is the following equality of
morphisms OAA→ OBB.

A

B B

A

=

A

BB

A

Note that this does not require any reference to C, but it does fundamentally
require the symmetry of the inner product. This is reflected in the fact that
the surfaces underlying the above pictures are diffeomorphic but not ambient
isotopic.

This means that the Cardy Condition is equivalent to the following equal-
ity.

A

B

A

B

= B

A

By the nondegeneracy of the inner product on OBB this is equivalent to the
equality of two maps OBB ⊗ OAA→ k which are drawn as follows.

AB B A

=

B A AB

The right-hand side is instantly identifiable as
〈
iB−, iA−

〉
C
. The left-hand

side is identifiable as the trace of the triple composition map OBB ⊗ OBA ⊗
OAA→ OBA which gives the required result. �

We can now show that the alternative condition given in the above theo-
rem holds for the derived category and Hochschild homology of any space:
in particular, the Cardy Condition holds for Calabi–Yau spaces.

Theorem 16 (The Baggy Cardy Condition). Let X be a space, let E and

F be objects in D(X) and consider morphisms

e ∈ HomD(X)(E ,E ) and f ∈ HomD(X)(F ,F ).

Define the operator

fme : Hom•
D(X)(E ,F )→ Hom•

D(X)(E ,F )

to be postcomposition by f and precomposition by e. Then we have

Tr fme =
〈
ιE (e), ιF (f)

〉

M
,

where ιE , ιF are the maps defined in Section 6.2, and Tr denotes the (super)
trace.
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Proof. The proof is very similar to the proof of the Semi-Hirzebruch–Rie-
mann-Roch Theorem (Theorem 14). The first thing to observe is that
Hom(E ,F ) ∼= E ∨ ◦ F and that fme is just e∨ ◦ f. However, we have
τR(e) = Σpt ◦ e∨ and Σpt is trivial so e∨ = τR(e). Putting this together with
the invariance of the Serre trace under the partial trace we get the following
sequence, and hence the required result.

Tr fme = Tr



 e∨ fpt

E F

X

pt



 = Tr



 pt

X

pt

E

e∨

F

f





= Tr



 ptf

F

X

ept

E



 = Tr



 ptf

F

X

pt

E

e





=

〈

X

pt

E

e ,

X

ptf

F

〉

M

=
〈
ιE(e), ιF(f)

〉

M
. �

Observe that the Semi-Hirzebruch–Riemann–Roch Theorem is a direct con-
sequence of the Baggy Cardy Condition, with e = IdE , f = IdF .

Appendix A. Duality and partial trace

In this appendix we show that given a kernel Φ : X → Y and its dual
kernel Φ∨ : Y → X there are canonical 2-morphisms

Σ−1
X → Φ∨ ◦ Φ and Φ ◦ ΣX ◦ Φ∨ → IdY

giving rise to a variety of natural adjunctions satisfying a number of com-
patibility relations.

The notion of duality in V ar is seen to be a middle-ground between the
operations τL and τR: it is an involution, unlike τL and τR, but it does not
respect composition, which τL and τR do.

A.1. Polite duality. Recall from Section 2.2 that for every space X there
is the Serre kernel ΣX : X→ X such that for spaces X and Y the functor

ΣY ◦ − ◦ ΣX : HomV ar(X, Y)→ HomV ar(X, Y)

is a Serre functor for the category HomV ar(X, Y).

Definition. If Φ : X → Y and Φ† : Y → X are kernels then a polite du-

ality between them, denoted Φ
∨←→Φ†, consists of adjunctions as follows

(numbered as shown)

Φ† ◦ ΣY ⊣1 Φ ⊣2 ΣX ◦ Φ†,

Φ ◦ ΣX ⊣3 Φ† ⊣4 ΣY ◦ Φ,

such that the following compatibility relations hold.
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(1+2). For kernels Θ : Z → X and Ψ : Z → Y, the diagram of
isomorphisms below commutes:

Hom(Ψ, Φ ◦ Θ)
1 → Hom(Φ† ◦ ΣY ◦ Ψ, Θ)

Hom(Φ ◦ Θ,ΣY ◦ Ψ ◦ ΣZ)∨

Serre↓
2→ Hom(Θ,ΣX ◦ Φ† ◦ ΣY ◦ Ψ ◦ ΣZ)∨.

Serre↓

(2+3). The composite map

Hom(Θ,Φ† ◦ Ψ)
∼

−→
3

Hom(Φ ◦ ΣX ◦ Θ,Ψ)
∼

−→
2

Hom(ΣX ◦ Θ,ΣX ◦ Φ† ◦ Ψ)

is the one induced by composition with ΣX.
(3+4). Same as (1+2), but for adjunctions 3 and 4.
(1+4). Same as (2+3), but for adjunctions 1 and 4.

It is useful to think of this definition in terms of string diagrams. For
each of the four adjunctions we get a unit and a counit. Denoting Φ by an
upward oriented line and Φ† by a downward oriented line, we can draw the
units and counits as follows.

η1 : η2 : η3 : η4 :

ǫ1 : ǫ2 : ǫ3 : ǫ4 : .

Relation (2+3) can be represented graphically in the following way: for
any α ∈ Hom(Θ,Φ† ◦ Ψ) we have

Ψ

α

Θ

=
α

Ψ

Θ

.

From this we can deduce the equality

= ,

so we define the following diagram to be this common morphism:

γΦ : .

Similarly we can deduce that the counits ǫ2 and ǫ3 are equal, and we define
the following diagram to be the common morphism:

ǫ

Φ
: .
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The symbol ǫ is pronounced “mepsilon” and the names ǫ and γ come from
the shape of the morphisms.

Just as above, using the relation (1+4) from the units η1 and η4, and the
counits ǫ1 and ǫ4 we obtain the common morphisms denoted as follows:

γΦ∨ :

ǫ

Φ∨
: .

So the four units and four counits are obtained from these two ǫ -shaped
and two γ-shaped morphisms.

Relations (1+2) and (3+4) in the definition of polite duality are essentially
equivalent to the invariance of the Serre trace under a partial trace in the

following sense. Given a polite duality Φ
∨←→Φ† and a morphism α ∈

Hom(Φ ◦ Θ,Σ ◦ Φ ◦ Ψ) we can define the left partial trace in Hom(Θ,Σ ◦ Ψ)

with respect to Φ† as drawn below:

Θ

α

Ψ

.

Similarly we can define a right partial trace when the Φ is on the right
rather than on the left. So the following diagram is the right partial trace
with respect to Φ and Φ† of a morphism α ′ ∈ Hom(Θ ′ ◦ Φ, Ψ ′ ◦ Φ ◦ Σ):

Θ′

α′

Ψ′

.

Theorem 17. If Φ and Φ† form a politely dual pair of kernels, then the

Serre trace is invariant under partial trace with respect to Φ:

Tr





Ψ

α

Ψ



 = Tr




Ψ

α

Ψ


 ; Tr




Ψ′

α′

Ψ′


 = Tr



 α′

Ψ′

Ψ′


 .

Proof. We will just prove the left partial trace case. Relation (1+2) says
that for β ∈ Hom(Ψ, Φ ◦ Θ) and γ ∈ (Θ,Σ ◦ Φ† ◦ Σ ◦ Ψ ◦ Σ) we have the
equality

Tr




Θ

Ψ

β

γ

Ψ



= Tr




Θ

Ψ

β

γ

Ψ



.
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Applying this with

β :=

Ψ

and γ :=

Ψ

α

Ψ

we obtain the equality

Tr




α

Ψ

Ψ




= Tr





Ψ

Ψ

α




.

The result follows from the commutativity property of the Serre trace,
namely that Tr(β ◦v α) = Tr(S(α) ◦v β). �

Proposition 18. Polite dualities Φ
∨←→Φ† and Ψ

∨←→Ψ† for two kernels

Φ : X→ Y and Ψ : Y → Z canonically induce a polite duality

Ψ ◦ Φ
∨←→Φ† ◦ ΣY ◦ Ψ†.

Proof. The required adjunctions are constructed in the obvious fashion,
using the fact that the composition, in reverse order, of adjoints (left or
right) of composable functors is naturally an adjoint (in the same direction)
of the composition of the functors. The compatibilities required by the polite
duality follow from straight forward checks. �

Adjunctions are intrinsic parts of a polite duality. Conversely, the fol-
lowing proposition shows that any adjunction induces a polite duality in a
natural way.

Proposition 19. Given an adjunction Ψ ⊣ Φ, define Φ† := Ψ ◦ Σ−1
Y . Then

there exists a polite duality Φ
∨←→Φ† where the adjunction ⊣1 is the given

one Ψ ⊣ Φ.

Proof. As ΣX ◦ Φ† = ΣX ◦ Ψ ◦ Σ−1
Y , compatibility relation (1+2) yields an

adjunction

Φ ⊣2 ΣX ◦ Φ†.

Similarly, relations (1+4) and (2+3) force adjunctions

Φ ◦ ΣX ⊣3 Φ† ⊣4 ΣY ◦ Φ,

and it is easy to see that relation (3+4) is then automatically satisfied. �

Proposition 20. Let Φ ∈ D(X× Y) be a kernel, and let Φ∨ ∈ D(Y ×X) be

the dual R HomX×Y(Φ, OX×Y), regarded as a kernel from Y to X. Then there

exists a canonical polite duality Φ
∨←→Φ∨.



THE MUKAI PAIRING. I. A CATEGORICAL APPROACH 95

Proof. For kernels Θ ∈ D(Z×X) and Ψ ∈ D(Z× Y) consider the sequence
of isomorphisms

HomD(Z×Y)(Ψ, Φ ◦ Θ)

∼= HomD(Z×Y)(Ψ, πZY,∗(π
∗
ZXΘ ⊗ π∗

XYΦ))

∼= HomD(Z×X)(πZX,!(π
∗
ZYΨ ⊗ π∗

YXΦ∨), Θ)

= HomD(Z×X)(πZX,∗(π
∗
ZYΨ ⊗ π∗

YX(Φ∨ ⊗ ωY[dimY])), Θ)

= HomD(Z×Y)((Φ
∨ ◦ ΣY) ◦ Ψ, Θ).

Taking Z = Y, Θ = Φ∨ ◦ ΣY and Ψ = IdY yields a morphism of kernels

IdY → Φ ◦ Φ∨ ◦ ΣY;

in a similar fashion we obtain a morphism

Φ∨ ◦ ΣY ◦ Φ→ IdX.

These two morphisms satisfy the identities needed to make Φ∨ ◦ΣY the left
adjoint of Φ. Proposition 19 gives the result. �

A.2. Reflexively polite kernels. We still need to address one more com-
patibility between the dualities constructed above. Given a kernel Φ, the
previous proposition yields a polite duality

Φ
∨←→Φ∨.

Given any polite duality Φ
∨←→Φ†, we get, symmetrically, a polite duality

Φ† ∨←→Φ by switching the adjunctions 1 and 3 and the adjunctions 2 and
4. Thus there is a natural polite duality

Φ∨ ∨←→Φ.

On the other hand, applying Proposition 20 to the kernel Φ∨ we get a polite

duality Φ∨
∨←→Φ∨∨ and then, using the canonical identification Φ∨∨ ∼= Φ,

we get another polite duality

Φ∨ ∨←→Φ.

The fundamental question is whether these two polite dualities are the same.

Definition. Let Φ : X → Y be a kernel. We shall say that Φ is reflexively

polite if the two dualities above are equal.

Immediately we get the following result.

Proposition 21. If a kernel Φ is reflexively polite then so is Φ∨.

Proposition 22. If Φ : X → Y and Ψ : Y → Z are reflexively polite kernels

then so is Ψ ◦ Φ.

Proof. This follows at once from the fact that the adjunctions defined in
Proposition 18 are canonical. �
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Proposition 23. Suppose that Φ : X → Y and Ψ : X ′ → Y ′ are reflexively

polite kernels then so is Φ ⊠ Ψ : X × X ′ → Y × Y ′, the kernel defined by

Φ ⊠ Ψ := π∗
XYΦ ⊗ π∗

X′Y′Ψ.

Proof. This is obvious once one realises that all operations decompose with
respect to the box product operation, and the canonical bundle of a product
of spaces is the box product of the canonical bundles of the factors. �

Proposition 24. Let ∆ : X → X × X denote the diagonal map, let E be an

object in D(X), then the kernel ∆∗E : X→ X is reflexively polite.

Proof. Serre duality gives a natural identification of kernels X→ X

(∆∗E )∨ ∼= ∆∗(E
∨ ⊗ ω−1

X [− dimX]).

The result now follows from Proposition 2 and the fact that the functor
given by tensoring with an object of the derived category is left and right
adjoint to the one obtained by tensoring with the dual object. �

Proposition 25. Let X be a space, then the kernel OX considered as a kernel

X→ pt is reflexively polite, and so also is O∨

X : pt→ X.

Proof. First, observe that checking reflexive duality amounts to checking
the equality of two quadruples of adjunctions. In each quadruple, any one of
the adjunctions determines the remaining three, and thus in order to check
the equality it suffices to check that one of the compatibilities (1+2), (1+3),
etc. holds with one adjunction chosen from one duality, and the other one
from the second duality.

Furthermore, adjunctions are completely determined by their respective
units and counits, and these are determined by considered functors between

derived categories of the form

Φ ◦ −: D(Z × X) =: HomV ar(Z,X)→ HomV ar(Z, pt) := D(Z),

and analogues for Φ∨◦−, for various choices of the space Z. Thus, if we argue
that the desired equality holds for the adjunctions between these induced
functors (for arbitrary choice of Z), we will have argued that Φ is reflexively
polite.

For ease of notation, write Φ for the kernel OX : X → pt. For a given
space Z, let πZ : X × Z → Z denote the projection. The functors Φ ◦ −

and Φ∨ ◦ − are then naturally identified with πZ,∗ and π∗
Z, respectively.

Adjunctions 1 and 2 from the polite duality Φ
∨←→Φ∨ correspond to the

classical adjunctions

π∗
Z ⊣ πZ,∗ ⊣ π!

Z,

while the same ones from the polite duality Φ∨
∨←→Φ∨∨ correspond to

πZ,! ⊣ π∗
Z ⊣ πZ,∗.
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Indeed, the standard way (see [6, Theorem 4.6]) to define the adjunctions
πZ,∗ ⊣ π!

Z and πZ,! ⊣ π∗
Z is to require them to satisfy the analogue of condi-

tion (1+2) from the definition of a polite duality.
The condition of polite duality can now can be stated as the statement

that the composite isomorphism

HomX×Z(Θ,π∗
ZΨ) ∼= HomZ(πZ,!Θ,Ψ) = HomZ (πZ,∗S(Θ), Ψ)

∼= HomX×Z

(
S(Θ), π!

ZΨ
)

= HomX×Z (S(Θ),S(π∗
ZΨ))

is the one induced by the functor S(−) = −⊗π∗
XωX[dimX], where πX denotes

the projection from X × Z to X. This fact corresponds to the fact that the
diagram marked (!) below commutes

Hom(Θ,π∗Ψ)
∼

Hom(S−1π∗SΘ,Ψ)
∼

Hom(π∗SΘ,SΨ)
∼

Hom(SΘ,Sπ∗Ψ)

Serre (!) Serre

Hom(π∗Ψ, SΘ)∨

∼

∼

Hom(Ψ, π∗SΘ)∨

∼

=== Hom(Ψ, π∗SΘ)∨

∼

∼

Hom(π∗Ψ, Θ)∨.

∼

�

Proposition 26. Let πX : X × Y → X be the projection, and (abusing nota-

tion) denote by πX,∗ : X×Y → X and π∗
X : X→ X×Y the kernels represented

in D(X × X × Y) by the structure sheaf of the graph of πX. Then πX,∗ and

π∗
X are reflexively polite.

Proof. Both kernels are of the form O∆X
⊠ OY, and the result then follows

from Propositions 25, 24, and 23. �

Theorem 27. Every kernel is reflexively polite.

Proof. With notation as in Proposition 26, any kernel Φ : X → Y decom-
poses as

Φ = πY,∗ ◦ (− ⊗ Φ) ◦ π∗
X.

Since the claim of the theorem holds for each individual kernel in the decom-
position (Propositions 26 and 24), the result follows from Proposition 18. �
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[3] Căldăraru, Andrei. Derived categories of twisted sheaves on Calabi–Yau
manifolds. Ph.D. thesis, Cornell University, 2000. http://www.math.wisc.edu/
∼andreic/publications/ThesisSingleSpaced.pdf.
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[6] Căldăraru, Andrei. Derived categories of sheaves: a skimming. Snowbird lectures

in algebraic geometry, 43-75. Contemp. Math., 388. Amer. Math. Soc., Providence,

RI, 2005. MR2182889 (2006h:14022).
[7] Costello, Kevin. Topological conformal field theories and Calabi–Yau categories.

Adv. Math. 210 (2007), no. 1, 165–214. MR2298823 (2008f:14071), Zbl 1171.14038.
arXiv:math.AG/0412149.

[8] Gelfand, Sergei I.; Manin, Yuri I. Methods of homological algebra. Second edi-
tion. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. xx+372
pp. ISBN: 3-540-43583-2. MR1950475 (2003m:18001), Zbl 1006.18001.

[9] Lauda, Aaron D.; Pfeiffer, Hendryk. Open-closed strings: Two-dimensional
extended TQFTs and Frobenius algebras. Topology Appl. 155 (2008), no. 7, 623–
666. MR2395583 (2009g:57049), Zbl 1158.57038. arXiv:math/0510664.

[10] Markarian, Nikita. The Atiyah class, Hochschild cohomology and the Riemann–
Roch theorem. arXiv:math.AG/0610553 (earlier version available as Max-Planck
preprint MPIM2001-52).

[11] May, J. Peter. The additivity of traces in triangulated categories. Adv. Math. 163

(2001), no. 1, 34–73. MR1867203 (2002k:18019), Zbl 1007.18012.
[12] May, J. P.; Sigurdsson, J. Parametrized homotopy theory. Mathematical Sur-

veys and Monographs, 132. American Mathematical Society, Providence, RI, 2006.
x+441 pp. ISBN: 978-0-8218-3922-5; 0-8218-3922-5. MR2271789 (2007k:55012),
Zbl 1119.55001.

[13] Moore, Gregory W. Lectures on branes, K-theory and RR charges — two varia-
tions on the theme of 2d TFT. Clay Mathematical Institute Lectures. Available at
http://www.physics.rutgers.edu/∼gmoore/clay.html.

[14] Moore, Gregory W.; Segal, Graeme. D-branes and K-theory in 2D topological
field theory. arXiv:hep-th/0609042.

[15] Mukai, Shigeru. Moduli of vector bundles on K3 surfaces, and symplectic mani-
folds. Sugaku 39 (1987) 216–235; translated as Sugaku Expositions 1 (1988) 139–174.
MR0922020 (89h:32057), Zbl 0651.14003, Zbl 0685.14021.

[16] Orlov, D. O. Triangulated categories of singularities and D-branes in Landau–
Ginzburg models. Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi
i Prilozh., 240–262; translation in Proc. Steklov Inst. Math. 2004, no. 3 (246), 227–
248. MR2101296 (2006i:81173), Zbl 1101.81093.

[17] Reiten, I.; Van den Bergh, M. Noetherian hereditary abelian categories satis-
fying Serre duality. J. Amer. Math. Soc. 15 (2002), no. 2, 295–366. MR1887637
(2003a:18011), Zbl 0991.18009.
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